

Engineering Solutions & Electromagnetic Compatibility Services

FCC Part 15.247 & IC RSS-210 Limited Modular Approval Report

Test Lab:	Applicant:		
Rhein Tech Laboratories, Inc. Tel: 703-689-0368 360 Herndon Parkway Fax: 703-689-2056 Suite 1400 www.rheintech.com Herndon, VA 20170 E-Mail: ATCBINFO@rheintech.com	Innovative Wireless Technologies, Inc. (IWT) 1100 Main Street Tel: 434-316-5230 x114 Lynchburg, VA 24504 Fax: 434-316-5232 Contact: Gary Raulerson, Jr.		
FCC ID IC	SP8-SBB0100-010-1 9568A-SBB01000101	Test Report Date	September 13, 2012
Platform	N/A	RTL Work Order Number	2012045
Model	SBB0100-010-R4G	RTL Quote Number	QRTL12-045
American National Standard Institute	ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices		
FCC Classification	DSS – Part 15 Spread Spectrum Transmitter		
FCC Rule Part(s)	FCC Rules Part 15.247: Operation within the bands 920-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz Direct Sequence System (10-01-11)		
IC Rule Part(s)	RSS-210 Issue 8: Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment RSS-Gen Issue 3: General Requirements and Information for the Certification of Radio Apparatus		
Frequency Range (MHz)	Output Power (W)	Frequency Tolerance	Emission Designator
902.5 – 927.0	0.575	N/A	539KFXD

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this test report. No modifications were made to the equipment during testing in order to achieve compliance with these standards. Furthermore, there was no deviation from, additions to, or exclusions from, the applicable parts of FCC Part 2, FCC Part 15, IC RSS-210, IC RSS-Gen and ANSI C63.10.

Signature:

Date: September 13, 2012

Typed/Printed Name: Desmond A. Fraser

Position: President

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc. and Innovative Wireless Technologies, Inc. (IWT). The test results relate only to the item(s) tested.

These tests are accredited and meet the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board/ACCLASS. Refer to certificate and scope of accreditation AT-1445.

Table of Contents

1	General Information	5
1.1	Scope	5
1.2	Description of EUT	5
1.3	Test Facility	5
1.4	Related Submittal(s)/Grant(s)	5
1.5	Modifications	5
2	Test Information	6
2.1	Description of Test Modes	6
2.2	Exercising the EUT	6
2.3	Test Result Summary.....	6
2.4	Test System Details	7
2.5	Configuration of Tested System.....	8
3	Peak Output Power – FCC §15.247(b)(2); IC RSS-Gen	9
3.1	Power Output Test Procedure.....	9
3.2	Power Output Test Data.....	9
4	Band Edge Compliance of RF Conducted Emissions – FCC §15.247(d); IC RSS-Gen	10
4.1	Band Edge Test Procedure.....	10
4.2	Test Results	11
5	Antenna Conducted Spurious Emissions – FCC §15.247(d); IC RSS-210 A8.5	13
5.1	Antenna Conducted Spurious Emissions Test Procedures	13
5.2	Antenna Conducted Spurious Emissions Test Results	13
6	20 dB Bandwidth – FCC §15.247(a)(1)(i); IC RSS-210 A8.1(a).....	14
6.1	20 dB Bandwidth Test Procedure	14
6.2	20 dB Modulated Bandwidth Test Data	14
6.3	20 dB Bandwidth Plots	15
7	Carrier Frequency Separation - §15.247(a)(1); RSS-210 A8.1(b).....	18
7.1	Carrier Frequency Separation Test Procedure	18
7.2	Carrier Frequency Separation Test Data	19
8	Hopping Characteristics – FCC §15.247(a)(1)(i); RSS-210 A8.1(c).....	20
8.1	Hopping Characteristics Test Procedure	20
8.2	Average Time of Occupancy	22
9	Conducted Emissions Measurement Limits – FCC §15.207; IC RSS-Gen.....	25
9.1	Limits of Conducted Emissions Measurement.....	25
9.2	Conducted Emissions Measurement Test Procedure	25
9.3	Conducted Line Emissions Test Data	26
9.3.1	Conducted Emissions Transmit Center Channel	26
10	Radiated Emissions – FCC §15.209; IC RSS-210	29
10.1	Limits of Radiated Emissions Measurement.....	29
10.2	Radiated Emissions Measurement Test Procedure	29
10.3	Radiated Emissions Test Results	31
10.3.1	Radiated Emissions Digital	31
10.3.2	Radiated Emissions Harmonics/Spurious	32
11	Conclusion	34

Figure Index

Figure 2-1: Test Configuration	8
--------------------------------------	---

Table Index

Table 2-1: Frequencies Tested	6
Table 2-2: Test Result Summary – FCC Part 15, Subpart C (Section 15.247), IC RSS-210/RSS-Gen..	6
Table 2-3: Equipment Under Test	7
Table 2-4: Accessory Equipment	7
Table 3-1: Power Output Test Equipment	9
Table 3-2: Power Output Test Data.....	9
Table 4-1: Band Edge Test Equipment	10
Table 5-1: Antenna Conducted Spurious Emissions Test Equipment	13
Table 6-1: 20 dB Bandwidth Test Equipment.....	14
Table 6-2: 20 dB Modulated Bandwidth Test Data	14
Table 7-1: Carrier Frequency Separation Test Equipment	18
Table 8-1: Hopping Characteristics Test Equipment.....	20
Table 8-2: Average Time of Occupancy Test Equipment	22
Table 9-1: Conducted Emissions Test Equipment	28
Table 10-1: Radiated Emissions Test Equipment	30
Table 10-2: Radiated Emissions Digital Test Data – Whip Antenna	31
Table 10-3: Radiated Emissions Digital Test Data – Yagi Antenna	31
Table 10-4: Radiated Emissions Digital Test Data – Rubber Duck Antenna	32
Table 10-5: Radiated Emissions Harmonics/Spurious TX Frequency – 902.5 MHz (Average).....	32
Table 10-6: Radiated Emissions Harmonics/Spurious TX Frequency – 902.5 MHz (Peak).....	32
Table 10-7: Radiated Emissions Harmonics/Spurious TX Frequency – 915.0 MHz (Average).....	33
Table 10-8: Radiated Emissions Harmonics/Spurious TX Frequency – 915.0 MHz (Peak).....	33
Table 10-9: Radiated Emissions Harmonics/Spurious TX Frequency – 927.0 MHz (Average).....	34
Table 10-10: Radiated Emissions Harmonics/Spurious TX Frequency – 927.0 MHz (Peak).....	34

Plot Index

Plot 4-1: Lower Band Edge (902 MHz Band Edge, 902.5 MHz Carrier)	11
Plot 4-2: Upper Band Edge (928 MHz Band Edge, 927.0 MHz Carrier)	12
Plot 6-1: 20 dB Bandwidth; 902.5 MHz.....	15
Plot 6-2: 20 dB Bandwidth; 915.0 MHz.....	16
Plot 6-3: 20 dB Bandwidth; 927.0 MHz.....	17
Plot 7-1: Carrier Frequency Separation.....	19
Plot 8-1: Number of Hopping Frequencies	21
Plot 8-2: Time of Occupancy (Dwell Time)	23
Plot 8-3: Time of Occupancy (Dwell Time 20 Second Sweep).....	24
Plot 9-1: Conducted Emissions Receive Center Channel - Neutral Side	26
Plot 9-2: Conducted Emissions Receive Center Channel - Hot Side	27
Plot 9-3: Conducted Emissions Transmit Center Channel - Neutral Side	27
Plot 9-4: Conducted Emissions Transmit Center Channel - Hot Side	28

Appendix Index

Appendix A:	FCC §1.1307, §1.1310, §2.1091, §2.1093; IC RSS-Gen: RF Exposure	35
Appendix B:	FCC Agency Authorization Letter.....	36
Appendix C:	FCC Confidentiality Request Letter.....	37
Appendix D:	FCC Part 15 Unlicensed Modular Transmitter Equipment Approval	38
Appendix E:	IC Letters.....	39
Appendix F:	IC Confidentiality Request Letter	40
Appendix G:	Canadian-Based Representative Attestation	41
Appendix H:	RSS-Gen 3.2.3 Limited Modular Approval.....	42
Appendix I:	Label and Label Location	43
Appendix J:	Technical Operational Description	44
Appendix K:	Schematics.....	45
Appendix L:	Block Diagram.....	46
Appendix M:	User Manual	47
Appendix N:	Test Photographs	48
Appendix O:	External Photographs	54
Appendix P:	Internal Photographs	55

Photograph Index

Photograph 1:	Radiated Emissions – Front View – Whip Antenna	48
Photograph 2:	Radiated Emissions – Rear View – Whip Antenna	49
Photograph 3:	Radiated Emissions – Front View – Rubber Duck Antenna	50
Photograph 4:	Radiated Emissions – Rear View – Rubber Duck Antenna	51
Photograph 5:	Radiated Emissions – Front View – Yagi Antenna	52
Photograph 6:	Radiated Emissions – Rear View – Yagi Antenna	53

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
Model #: SBB0100-010-R4G
Standards: FCC 15.247/RSS-210
FCC ID: SP8-SBB0100-010-1
Report #: 2012045

1 General Information

1.1 Scope

Applicable Standards:

- FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz.
- RSS-210 Issue 8: Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
- RSS-Gen Issue 3: General Requirements and Information for the Certification of Radio Apparatus

1.2 Description of EUT

Equipment Under Test	SBB0100-010-R4G
Power Supply	3 – 17 VDC
Modulation Type	FHSS
Frequency Range	902.5 – 927.0 MHz
Antenna Connector Type	MMCX
Antenna Type & Gain	Yagi (10.2 dBi); Rubber Duck (2 dBi); Whip (2 dBi)
Weight	43 g

1.3 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing.

1.4 Related Submittal(s)/Grant(s)

This is an original application for LIMITED MODULAR APPROVAL certification for Innovative Wireless Technologies, Inc., Model: SBB0100-010-R4G, FCC ID: SP8-SBB0100-010-1, IC: 9568A-SBB01000101.

1.5 Modifications

No modifications were required for compliance.

2 Test Information

2.1 Description of Test Modes

In accordance with FCC 15.31(m), and because the EUT utilizes an operating band greater than 10 MHz, the following frequencies were tested:

Table 2-1: Frequencies Tested

Channel	Frequency
Low (00)	902.5
Mid (25)	915.0
High (49)	927.0

2.2 Exercising the EUT

The EUT was tested in all three orthogonal planes in order to determine worst-case emissions. The EUT was provided with software to continuously transmit during testing. The carrier was also checked to verify that information was being transmitted. There were no deviations from the test standard(s) and/or methods. The test results reported relate only to the item tested.

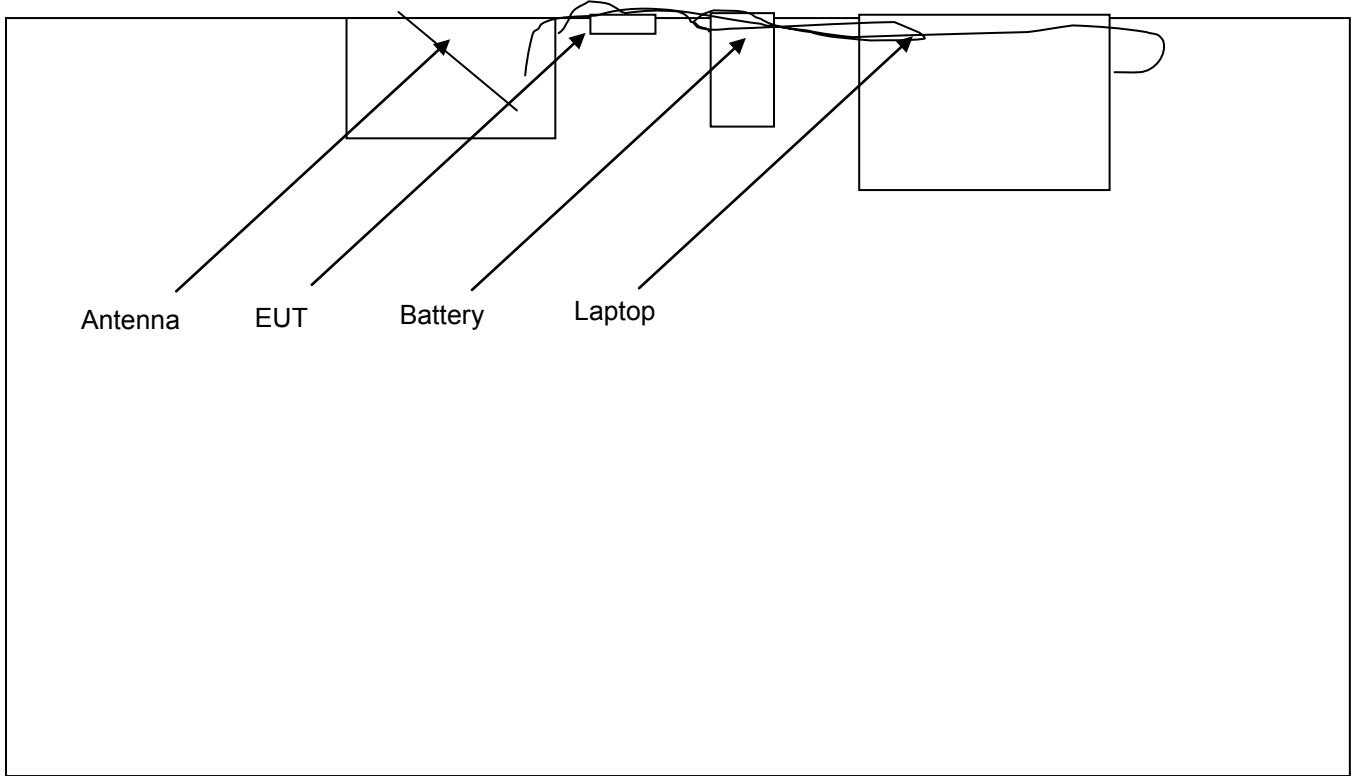
2.3 Test Result Summary

Table 2-2: Test Result Summary – FCC Part 15, Subpart C (Section 15.247), IC RSS-210/RSS-Gen

FCC Reference	IC Reference	C63.10 Procedure	Test	Pass/Fail or N/A
FCC 15.207	RSS-Gen 7.2.4	6.2	AC Power Conducted Emissions	Pass
FCC 15.209	RSS-Gen 7.2.5	6.5, 6.6	Radiated Emissions	Pass
FCC 15.247(b)	RSS-210 A8.4	6.10	Maximum Peak Power Output	Pass
FCC 15.247(d)	RSS-210 A8.5	6.7	Antenna Conducted Spurious Emissions	Pass
FCC 15.247(d)	RSS-210 A8.5	6.9.2	Band Edge	Pass
FCC 15.247(a)(1)	RSS-210 A8.1(a)	6.9.1	20 dB Bandwidth	Pass
FCC 15.247(a)(a)	RSS-210 A8.1©	7.7	Hopping Characteristics	Pass

2.4 Test System Details

The test samples were received on July 27, 2012. The FCC identifiers for all applicable equipment, plus descriptions of all cables used in the tested system, are identified in the following tables.


Table 2-3: Equipment Under Test

Part	Manufacturer	Model #	Serial Number	FCC ID	RTL Bar Code
Module	Innovative Wireless Technologies, Inc.	SBB0100-010-R4G	N/A	SP8-SBB0100-010-1	20793
Yagi 10.2 dBi Antenna	M2 Antenna Systems, Inc.	902-5	N/A	N/A	20798
Rubber Duck 2 dBi Antenna	Nearson	S152AH-915S	N/A	N/A	20797
Whip 2 dBi Antenna	Innovative Wireless Technologies, Inc.	RAT1000-006R4A	0942TWM	N/A	20796
12VDC Lithium Manganese Dioxide Battery	Ultralife Batteries, Inc.	BA-5390/U	0199184	N/A	20784

Table 2-4: Accessory Equipment

Part	Manufacturer	Model #	Serial Number	FCC ID	RTL Bar Code
Laptop	Dell	Inspiron 6400	100308	N/A	20785
AC Adapter	Dell	FA90PS0-00	CN-0GX808-73245-7CE-8860	N/A	20786

2.5 Configuration of Tested System

Figure 2-1: Test Configuration

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
Model #: SBB0100-010-R4G
Standards: FCC 15.247/RSS-210
FCC ID: SP8-SBB0100-010-1
Report #: 2012045

3 Peak Output Power – FCC §15.247(b)(2); IC RSS-Gen

3.1 Power Output Test Procedure

A conducted power measurement of the EUT was taken using a Rohde & Schwarz Analyzer.

Procedure: C63.10-2009 6.10

Table 3-1: Power Output Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901581	Rohde & Schwarz	1166.1660.50	Spectrum Analyzer	2001006	6/3/13
901139	Weinschel Corp.	48-20-34 DC-18GHz	Attenuator, 100W 20dB	BK5859	2/29/13

3.2 Power Output Test Data

Table 3-2: Power Output Test Data

Frequency (MHz)	Peak Conducted High Power (dBm)	Peak Conducted Low Power (dBm)
902.5	27.6	16.8
915.0	27.1	16.6
927.0	27.6	16.7

Test Personnel:

Daniel W. Baltzell
EMC Test Engineer

Signature

July 29, 2012
Date of Test

4 Band Edge Compliance of RF Conducted Emissions – FCC §15.247(d); IC RSS-Gen

4.1 Band Edge Test Procedure

Procedure: C63.10-2009 6.9.2, 6.9.3

The EUT was connected to the spectrum analyzer through suitable attenuation. The span was set wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation. The spectrum analyzer was set to the following:

RBW > = 1% of the span

VBW > = RBW

Sweep = auto

Detector function = peak

Trace = max hold

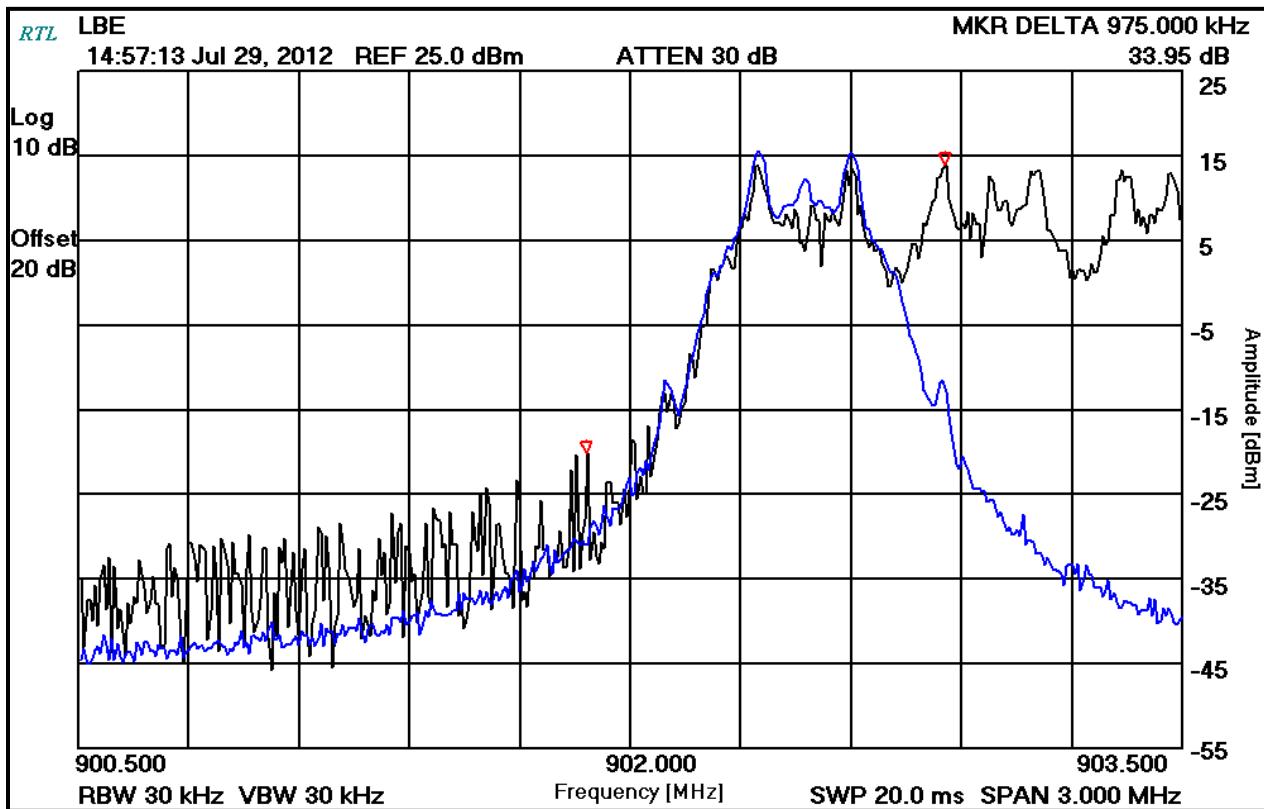

The trace was allowed to stabilize. The marker was set on the emission at the band edge. The marker-delta was used to show the delta between the maximum in-band emission and the emission at the band edge, and was compared to the 20 dBc requirement of 15.247(d) (when using peak emissions).

Table 4-1: Band Edge Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900913	Hewlett Packard	85462A	EMI Receiver RF Section (9 kHz–6.5 GHz)	3325A00159	8/17/12
900914	Hewlett Packard	8546OA	RF Filter Section, (100 kHz–6.5 GHz)	3330A00107	8/17/12
901337	Narda Microline	766-10	Attenuator DC-4GHz, 10 dB, 20W	6242	7/15/13
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz, 10 dB, 50W	BH1487	2/29/13

4.2 Test Results

Plot 4-1: Lower Band Edge (902 MHz Band Edge, 902.5 MHz Carrier)

Plot 4-2: Upper Band Edge (928 MHz Band Edge, 927.0 MHz Carrier)

Test Personnel:

Daniel W. Baltzell
EMC Test Engineer

Signature

July 29, 2012
Date of Test

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
Model #: SBB0100-010-R4G
Standards: FCC 15.247/RSS-210
FCC ID: SP8-SBB0100-010-1
Report #: 2012045

5 Antenna Conducted Spurious Emissions – FCC §15.247(d); IC RSS-210 A8.5

5.1 Antenna Conducted Spurious Emissions Test Procedures

Procedure: C63.10-2009 6.7

Antenna spurious emissions per FCC 15.247(d) were measured from the EUT antenna port using a 50-ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz. The modulated carrier was identified at the following frequencies: 903.0 MHz, 915.0 MHz and 927.0 MHz. The carrier to the 10th harmonic of the carrier frequency was investigated.

5.2 Antenna Conducted Spurious Emissions Test Results

All spurious emissions were greater than 20 dB below the limit (note that we are reporting power as peak). Per FCC 15.31(o), no data is being reported.

Table 5-1: Antenna Conducted Spurious Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	3/13/13
901339	Weinschel Corp.	47-40-34	Attenuator DC-18GHz, 40 dB, 25W	BM4864	7/15/13

Test Personnel:

Daniel W. Baltzell
EMC Test Engineer

Signature

July 29, 2012

Date of Test

6 20 dB Bandwidth – FCC §15.247(a)(1)(i); IC RSS-210 A8.1(a)

6.1 20 dB Bandwidth Test Procedure

The minimum 20 dB bandwidths were measured using a 50-ohm spectrum analyzer. The carrier was adjusted on the analyzer so that it was displayed entirely on the spectrum analyzer. The sweep time was set to 0.5 seconds and allowed through several sweeps with the max hold function used in peak detector mode. The resolution bandwidth was set to 27 kHz, and the video bandwidth set at 270 kHz. The minimum 20 dB bandwidths were measured using the spectrum analyzer delta marker set 20 dB down from the peak of the modulated carrier.

Table 6-1: 20 dB Bandwidth Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	3/13/13
901339	Weinschel Corp.	47-40-34	Attenuator DC-18GHz, 40 dB, 25W	BM4864	7/15/13

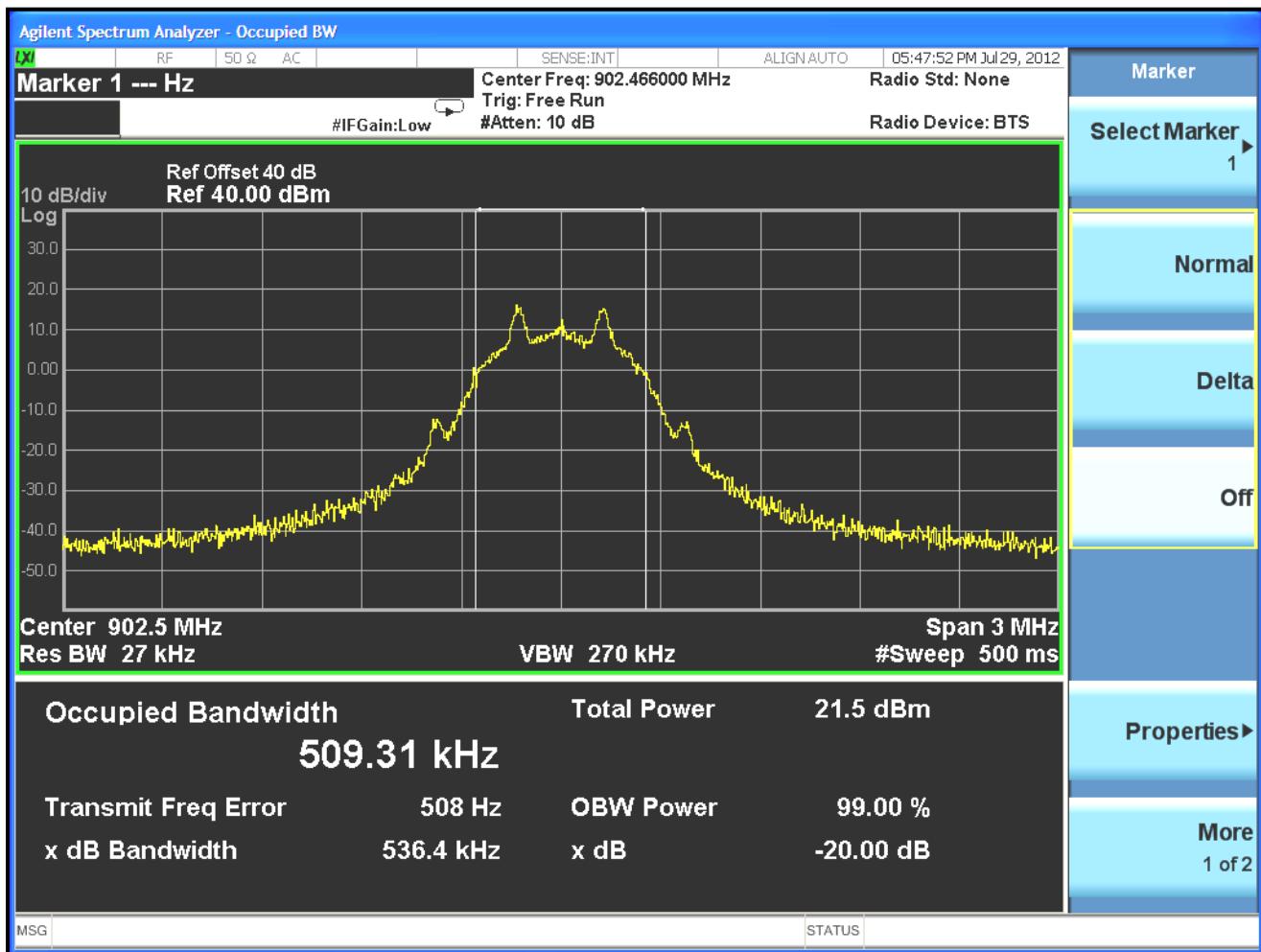
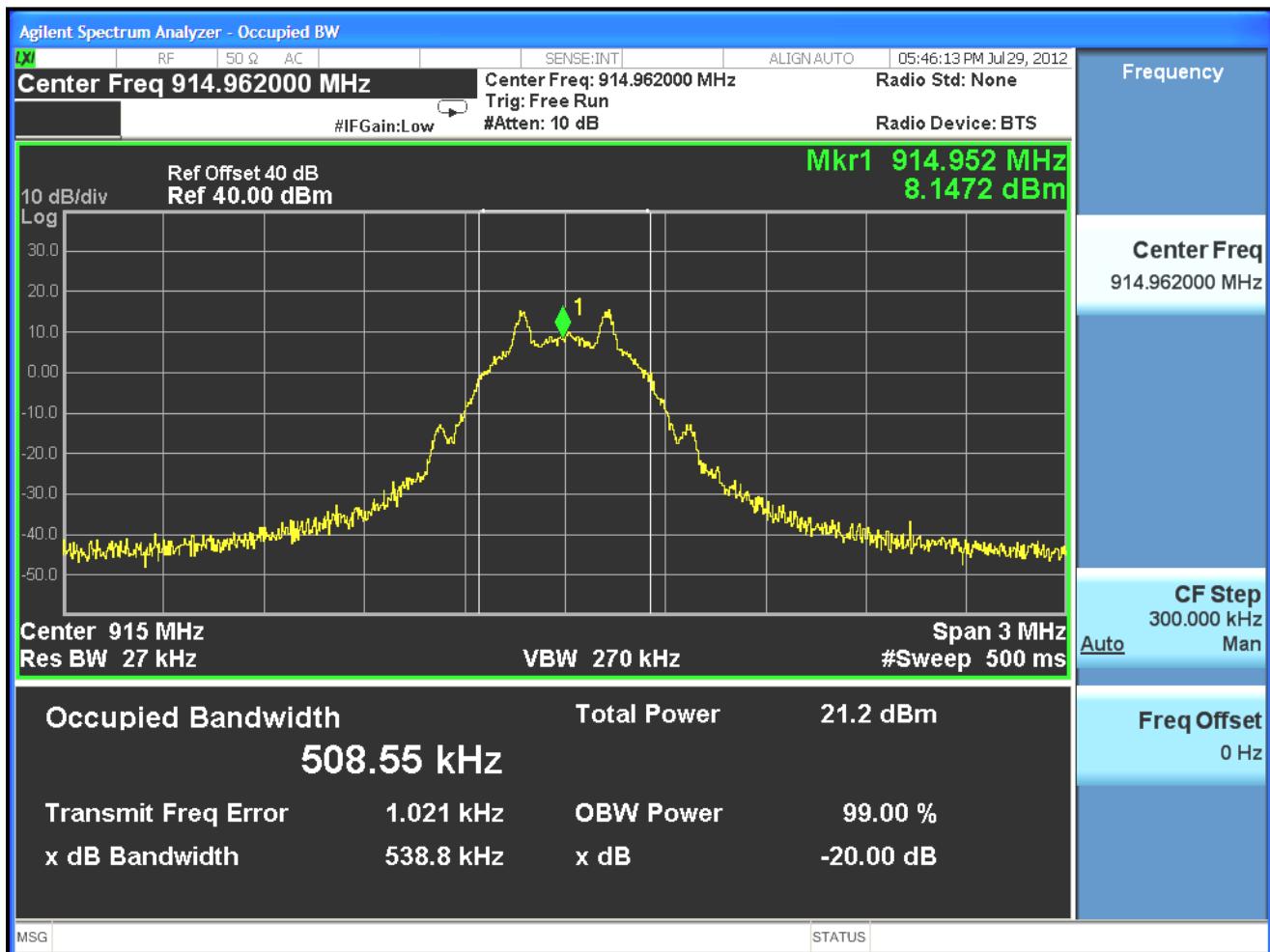

6.2 20 dB Modulated Bandwidth Test Data

Table 6-2: 20 dB Modulated Bandwidth Test Data

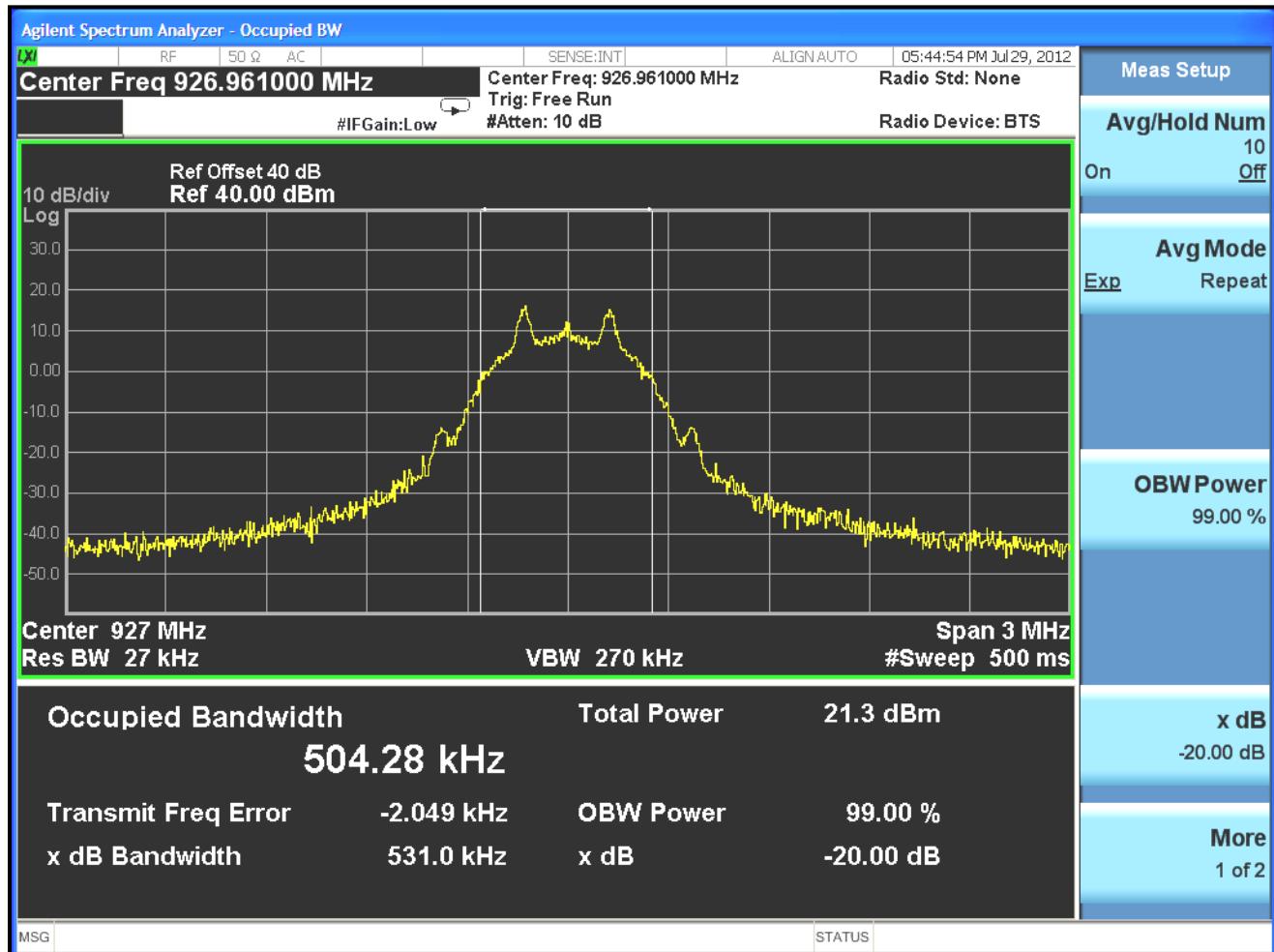
Frequency (MHz)	20 dB Bandwidth (kHz)
902.5	536.4
915.0	538.8
927.0	531.0

6.3 20 dB Bandwidth Plots


Plot 6-1: 20 dB Bandwidth; 902.5 MHz

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
Model #: SBB0100-010-R4G
Standards: FCC 15.247/RSS-210
FCC ID: SP8-SBB0100-010-1
Report #: 2012045


Plot 6-2: 20 dB Bandwidth; 915.0 MHz

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
Model #: SBB0100-010-R4G
Standards: FCC 15.247/RSS-210
FCC ID: SP8-SBB0100-010-1
Report #: 2012045

Plot 6-3: 20 dB Bandwidth; 927.0 MHz

Test Personnel:

Daniel W. Baltzell
EMC Test Engineer

Daniel W. Baltzell

Signature

July 29, 2012
Date of Test

7 Carrier Frequency Separation - §15.247(a)(1); RSS-210 A8.1(b)

7.1 Carrier Frequency Separation Test Procedure

Frequency Hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

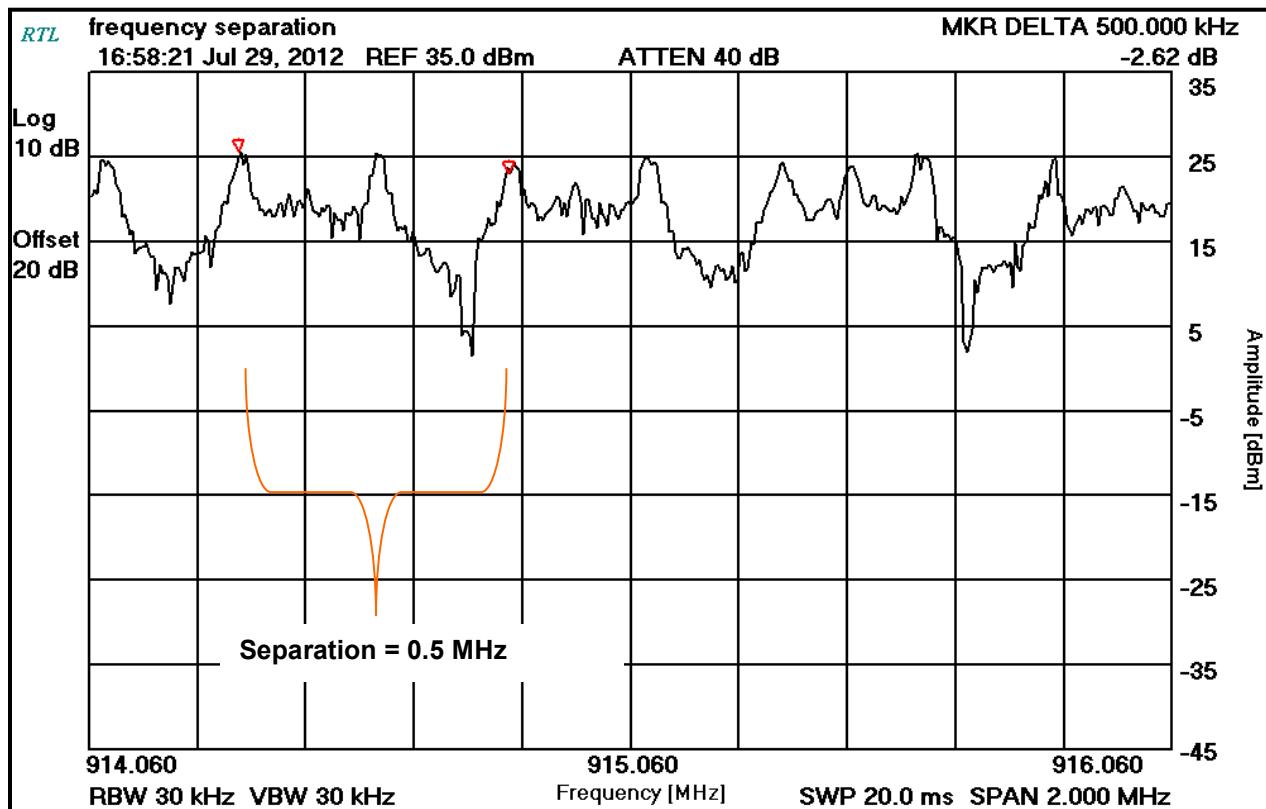

Measured frequency separation = 0.5 MHz

Table 7-1: Carrier Frequency Separation Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900913	Hewlett Packard	85462A	EMI Receiver RF Section (9 kHz–6.5 GHz)	3325A00159	8/17/12
900914	Hewlett Packard	8546OA	RF Filter Section (100 kHz-6.5 GHz)	3330A00107	8/17/12
901337	Narda Microline	766-10	Attenuator DC-4GHz, 10 dB, 20W	6242	7/15/13
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz, 10 dB, 50W	BH1487	2/29/13

7.2 Carrier Frequency Separation Test Data

Plot 7-1: Carrier Frequency Separation

Test Personnel:

Daniel W. Baltzell
EMC Test Engineer

Signature

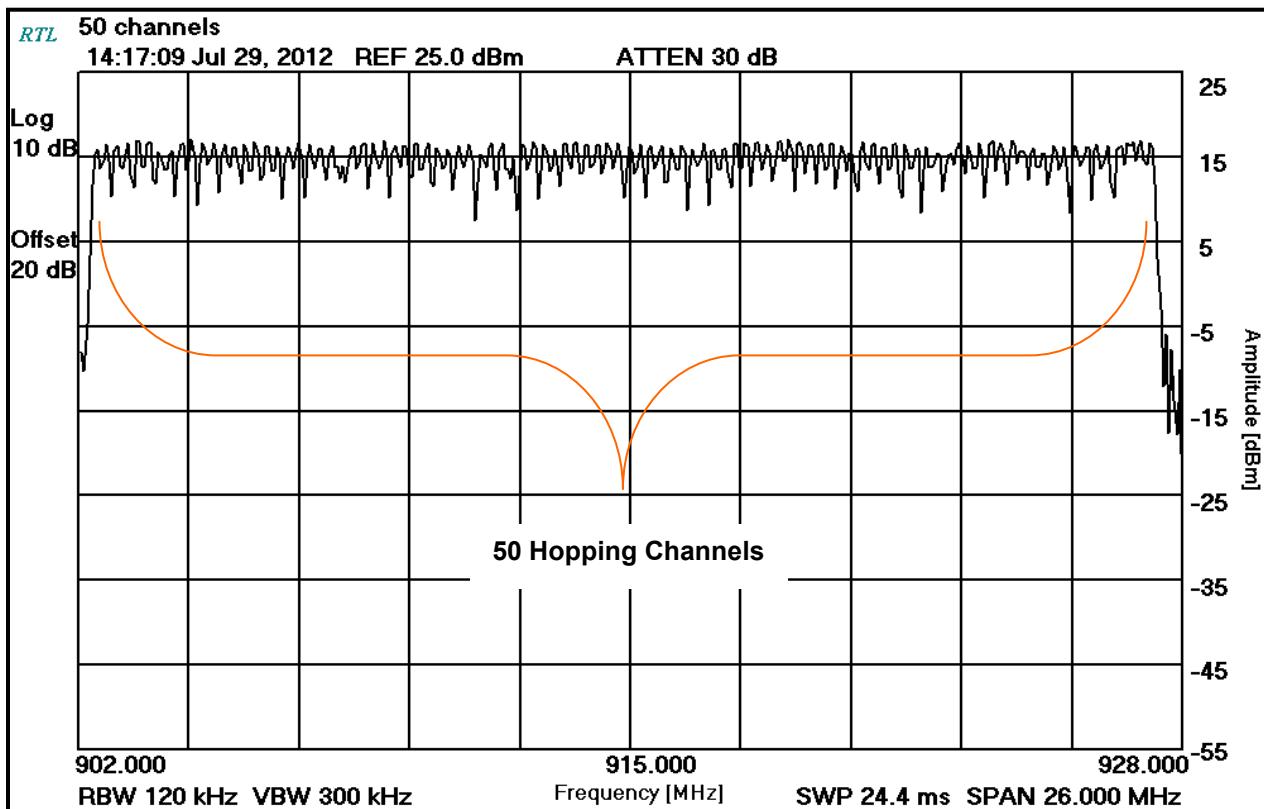
July 29, 2012
Date of Test

8 Hopping Characteristics – FCC §15.247(a)(1)(i); RSS-210 A8.1(c)

8.1 Hopping Characteristics Test Procedure

For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

Table 8-1: Hopping Characteristics Test Equipment


RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	3/13/13
901339	Weinschel Corp.	47-40-34	Attenuator DC-18GHz, 40 dB, 25W	BM4864	7/15/13
900913	Hewlett Packard	85462A	EMI Receiver RF Section (9 kHz-6.5 GHz)	3325A00159	8/17/12
900914	Hewlett Packard	8546OA	RF Filter Section (100 kHz-6.5 GHz)	3330A00107	8/17/12
901337	Narda Microline	766-10	Attenuator DC-4GHz, 10 dB, 20W	6242	7/15/13
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz, 10 dB, 50W	BH1487	2/29/13

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
Model #: SBB0100-010-R4G
Standards: FCC 15.247/RSS-210
FCC ID: SP8-SBB0100-010-1
Report #: 2012045

Measured number of hopping frequencies = 50

Plot 8-1: Number of Hopping Frequencies

Test Personnel:

Daniel W. Baltzell
EMC Test Engineer

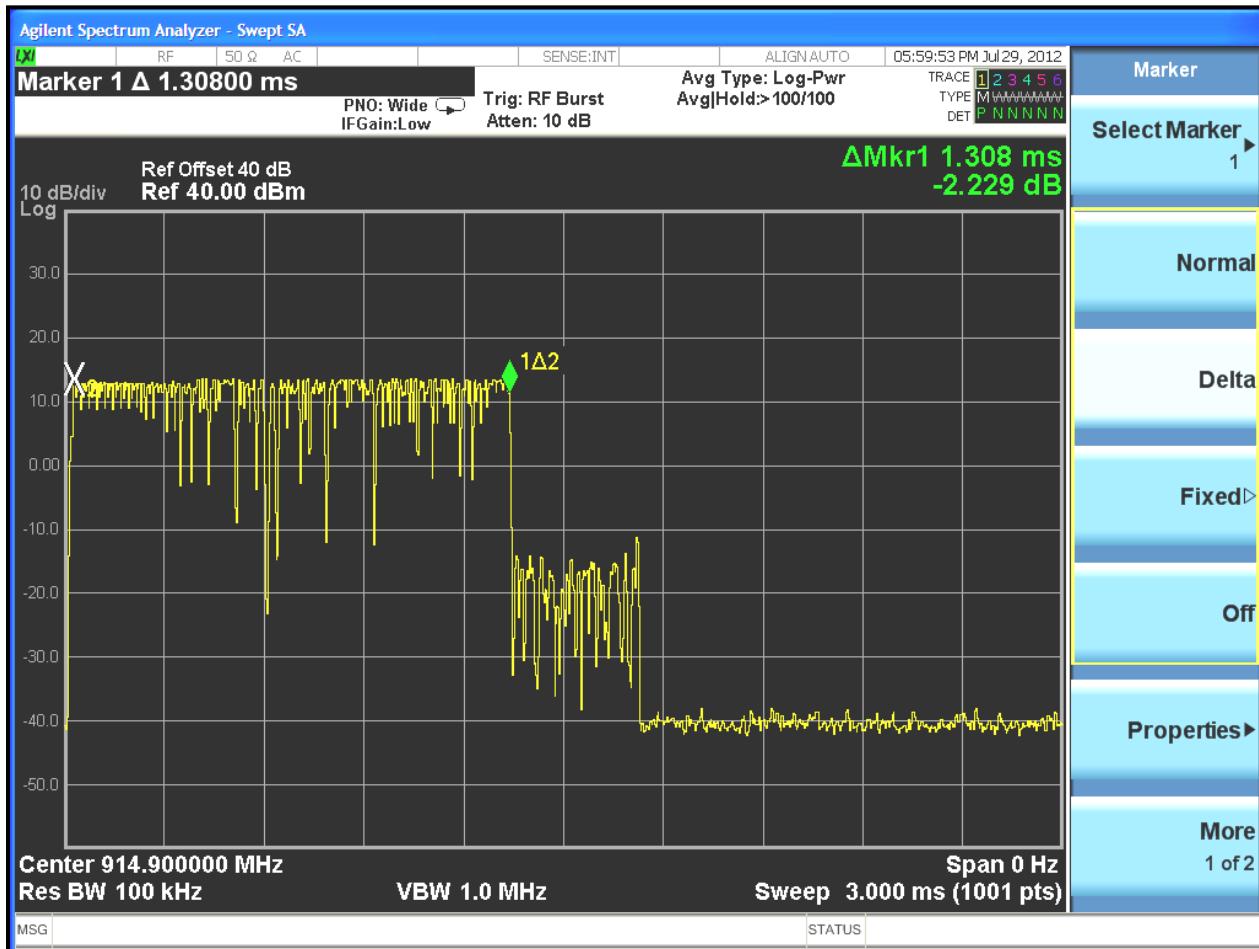
Signature

July 29, 2012

Date of Test

8.2 Average Time of Occupancy

The spectrum analyzer sweep was set to 3 ms, with a zero span and max hold, until a pulse from the device under test was captured. A marker delta was used to measure the dwell time for this pulse. The sweep was then set to single sweep for 20 seconds. The number of pulses in 20 s was 4. Therefore, the average time of occupancy in twenty seconds is equal to $4 \times 1.3 \text{ ms} = 5.2 \text{ ms}$, which meets the limit as defined by 15.247(a)(1)(i) of 0.4 seconds.


Table 8-2: Average Time of Occupancy Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901581	Rohde & Schwarz	1166.1660.50	Spectrum Analyzer	2001006	6/3/13
901139	Weinschel Corp.	48-20-34 DC-18GHz	Attenuator, 100W 20dB	BK5859	2/29/13

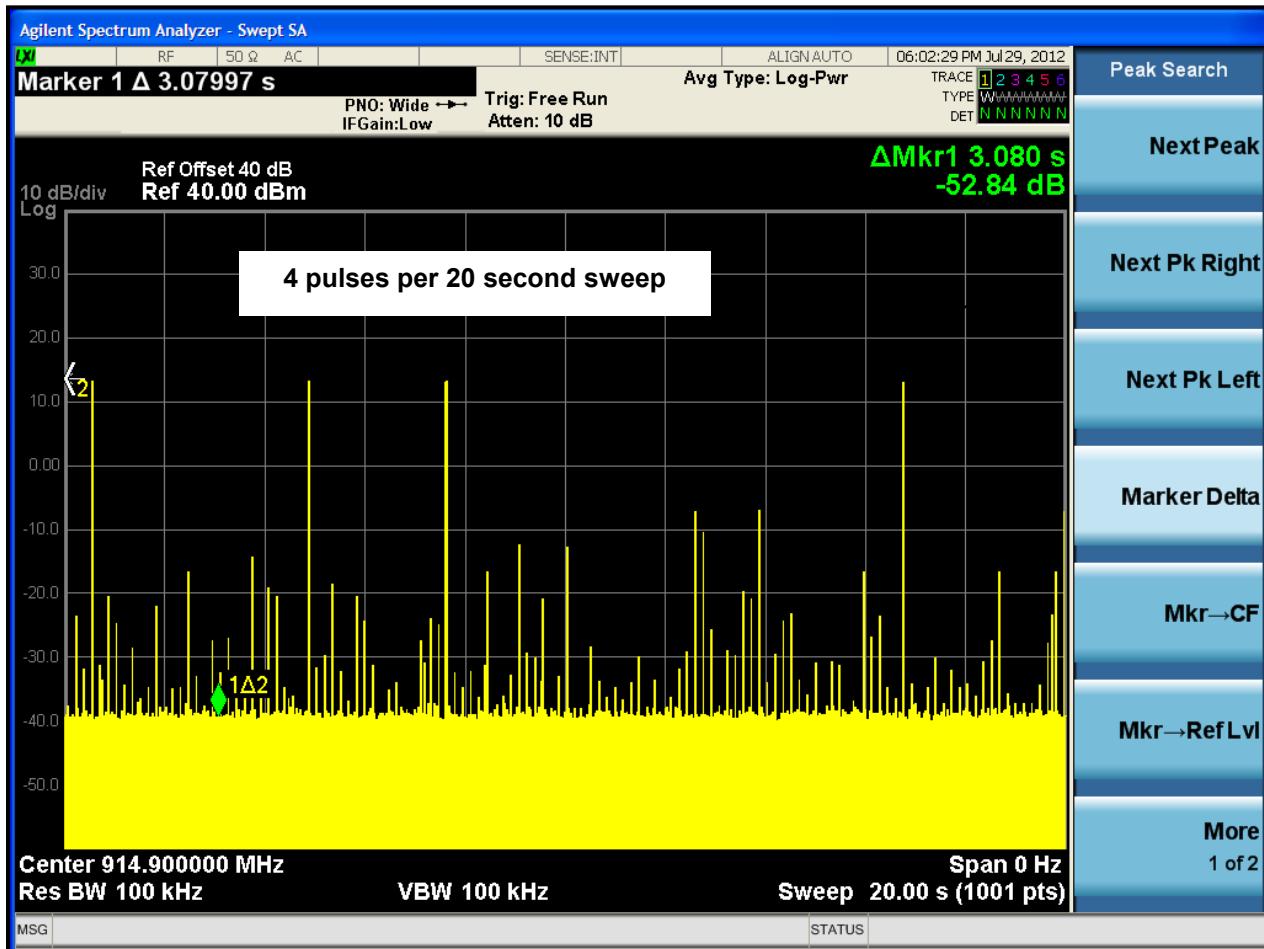
Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
Model #: SBB0100-010-R4G
Standards: FCC 15.247/RSS-210
FCC ID: SP8-SBB0100-010-1
Report #: 2012045

Plot 8-2: Time of Occupancy (Dwell Time)

Test Personnel:

Daniel W. Baltzell
EMC Test Engineer



Signature

July 29, 2012

Date of Test

Plot 8-3: Time of Occupancy (Dwell Time 20 Second Sweep)

Number of pulses in 20 seconds: 4

Width of pulse = 1.3 ms

Total time per 20 seconds = 5.2 ms which is less than 400 ms = PASS

Test Personnel:

Daniel W. Baltzell
 EMC Test Engineer

Daniel W. Baltzell

Signature

July 29, 2012

Date of Test

9 Conducted Emissions Measurement Limits – FCC §15.207; IC RSS-Gen

9.1 Limits of Conducted Emissions Measurement

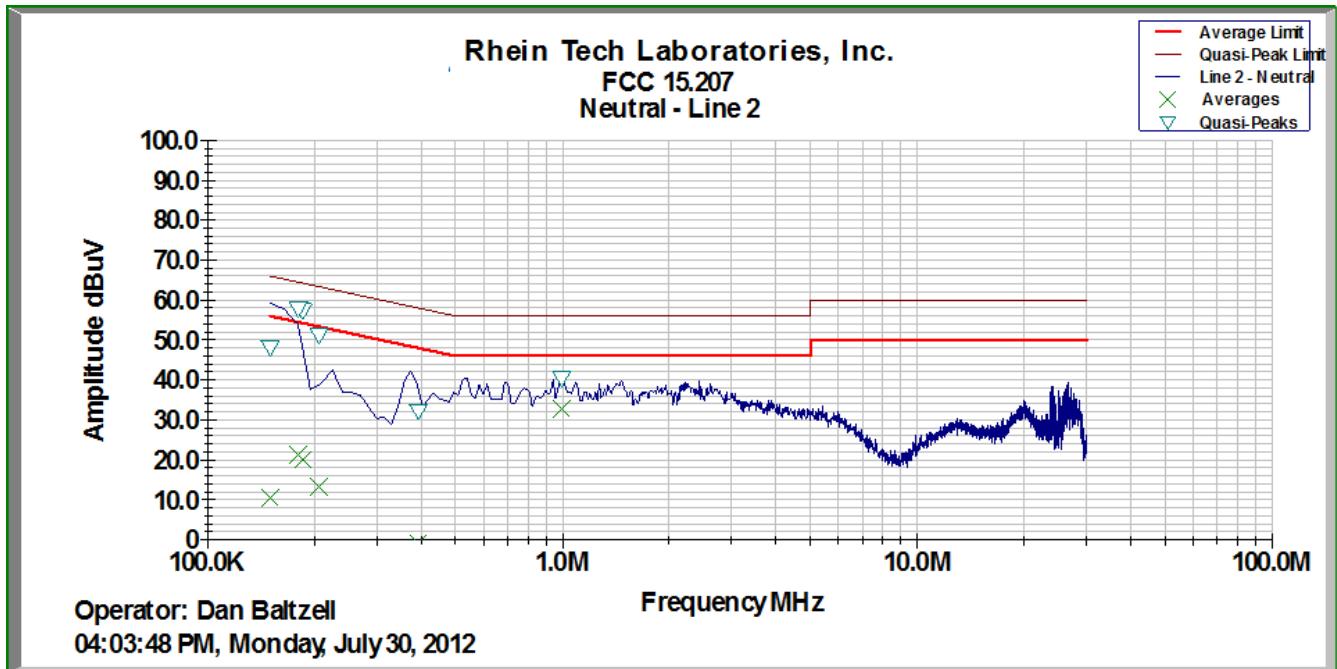
Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

9.2 Conducted Emissions Measurement Test Procedure

Procedure: C63.10-2009 6.2

The power line conducted emission measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 80 centimeters high. Power was fed to the EUT through a 50-ohm/50 micro Henry Line Impedance Stabilization Network (EUT LISN). The EUT LISN was fed power through an A.C. filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed A.C. power. A metal power outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

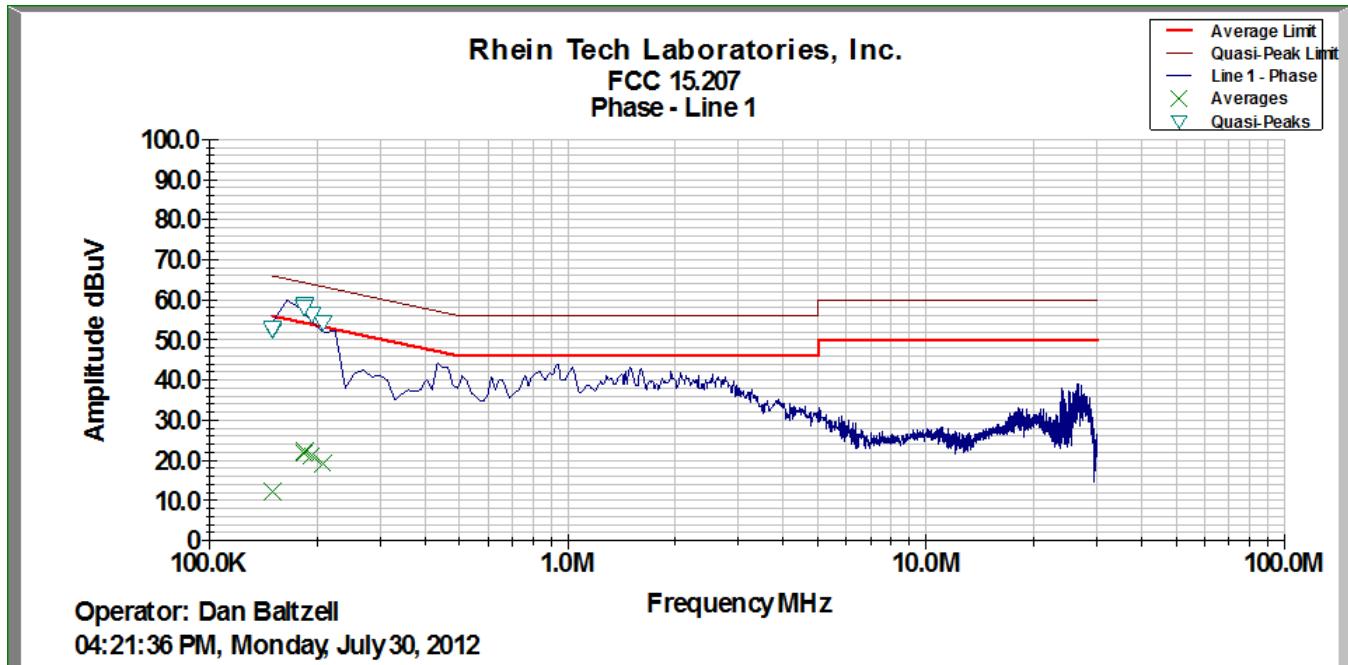
The spectrum analyzer was connected to the A.C. line through an isolation transformer. The 50-ohm output of the EUT LISN was connected to the spectrum analyzer input. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or peak mode if applicable). The analyzer's 6 dB bandwidth was set to 9 kHz. No video filter less than 10 times the resolution bandwidth was used. Average measurements are performed in linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, and by increasing the sweep time in order to obtain a calibrated measurement. The emission spectrum was scanned from 150 kHz to 30 MHz. The highest emission amplitudes relative to the appropriate limit were measured and have been recorded in this report.

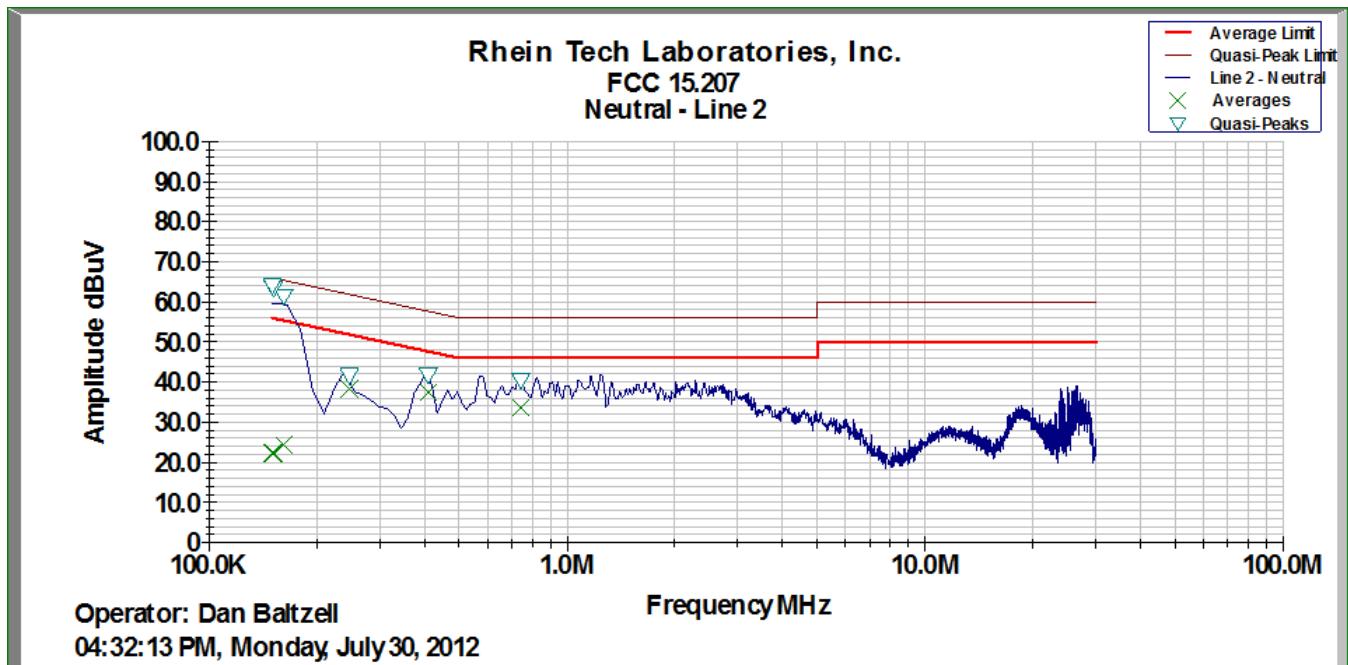

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
Model #: SBB0100-010-R4G
Standards: FCC 15.247/RSS-210
FCC ID: SP8-SBB0100-010-1
Report #: 2012045

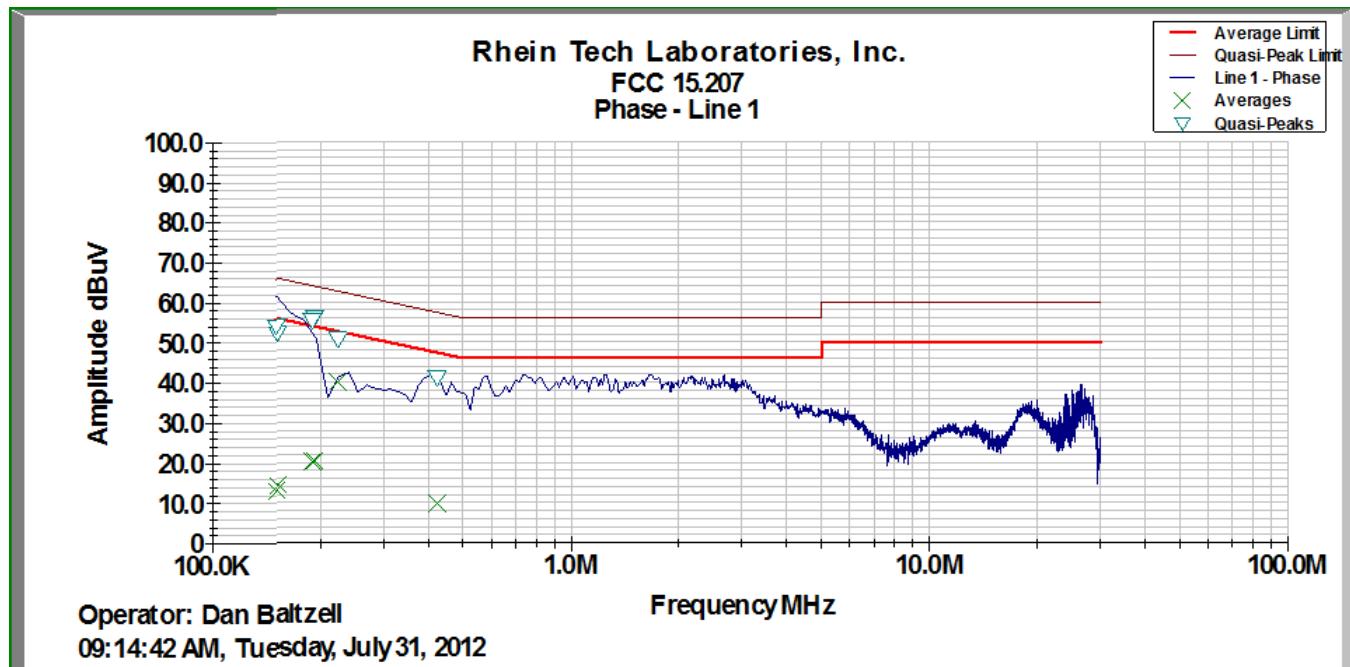
9.3 Conducted Line Emissions Test Data

9.3.1 Conducted Emissions Transmit Center Channel


Plot 9-1: Conducted Emissions Receive Center Channel - Neutral Side


Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
Model #: SBB0100-010-R4G
Standards: FCC 15.247/RSS-210
FCC ID: SP8-SBB0100-010-1
Report #: 2012045


Plot 9-2: Conducted Emissions Receive Center Channel - Hot Side

Plot 9-3: Conducted Emissions Transmit Center Channel - Neutral Side

Plot 9-4: Conducted Emissions Transmit Center Channel - Hot Side

Results: Pass

Table 9-1: Conducted Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900968	Hewlett Packard	8567A	Spectrum Analyzer (10 kHz - 1.5 GHz)	2602A00160	11/17/12
900969	Hewlett Packard	85650A	Quasi-Peak Adapter	2412A00414	11/17/12
900970	Hewlett Packard	85662A	Spectrum Analyzer Display	2542A11239	11/17/12
901083	AFJ International	LS16	16A LISN (110 V)	16010020080	4/18/13
N/A	Rhein Tech Laboratories, Inc.	Automated Emission Tester	Emissions testing software Rev. 14.0.2	N/A	N/A

Test Personnel:

Daniel W. Baltzell
 Test Engineer

Signature

July 30 & 31, 2012

Dates of Test

10 Radiated Emissions – FCC §15.209; IC RSS-210

10.1 Limits of Radiated Emissions Measurement

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009-0.490	2400/f (kHz)	300
0.490-1.705	2400/f (kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any circumstances of modulation.

10.2 Radiated Emissions Measurement Test Procedure

Procedure: C63.10-2009 6.5, 6.6

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one and three meter distances. This was done in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to ensure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three/ten-meter, open-field test site. The EUT was placed on a nonconductive turntable 0.8 meters above the ground plane. The spectrum was examined from 9 kHz to the 10th harmonic of the highest fundamental transmitter frequency.

At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations. For frequencies between 30 and 1000 MHz, the spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the CISPR quasi-peak detection mode. For emissions above 1,000 MHz, emissions are measured using the average detector function with a minimum resolution bandwidth of 1 MHz. No video filter less than 10 times the resolution bandwidth was used. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
 Model #: SBB0100-010-R4G
 Standards: FCC 15.247/RSS-210
 FCC ID: SP8-SBB0100-010-1
 Report #: 2012045

Table 10-1: Radiated Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900932	Hewlett Packard	8449B OPT H02	Preamplifier 1-26.5 GHz	3008A00505	7/14/13
900878	Rhein Tech Laboratories	AM3-1197-0005	3 meter antenna mast, polarizing	Outdoor Range 1	Not Required
901516	Insulated Wire, Inc.	KPS-1503-2400-KPS	RF cable, 20'	NA	10/14/12
901236	IW Microwave Products	KPS-1503-360-KPS	High Frequency RF Cables	36"	7/8/13
901242	Rhein Tech Laboratories	WRT-000-0003	Wood rotating table	N/A	Not Required
900772	EMCO	3161-02	Horn Antenna (2-4 GHz)	9804-1044	4/19/14
900321	EMCO	3161-03	Horn Antennas (4-8.2 GHz)	9508-1020	4/19/14
900323	EMCO	3160-7	Horn Antennas (8.2-12.4 GHz)	9605-1054	4/19/14
901581	Rohde & Schwarz	1166.1660.50	Spectrum Analyzer	2001006	6/3/13
900791	Chase	CBL6111B	Bilog Antenna (30 MHz-2000 MHz)	N/A	1/31/13
900913	Hewlett Packard	85462A	EMI Receiver RF Section (9 kHz-6.5 GHz)	3325A00159	8/17/13
900914	Hewlett Packard	85460A	RF Filter Section, (100 kHz-6.5 GHz)	3330A00107	8/17/13
900905	Rhein Tech Laboratories	PR-1040	OATS 1 Preamplifier 40dB (30 MHz-2 GHz)	1006	7/14/13

10.3 Radiated Emissions Test Results

10.3.1 Radiated Emissions Digital

Table 10-2: Radiated Emissions Digital Test Data – Whip Antenna

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail
48.303	Qp	V	0	1.0	41.7	-19.5	22.2	40.0	-17.8	Pass
72.001	Qp	V	90	1.0	45.5	-22.1	23.4	40.0	-16.6	Pass
96.002	Qp	V	180	1.0	41.8	-18.3	23.5	43.5	-20.0	Pass
120.002	Qp	V	0	1.0	48.1	-16.0	32.1	43.5	-11.4	Pass
143.997	Qp	V	180	1.0	50.8	-17.5	33.3	43.5	-10.2	Pass
168.008	Qp	V	30	1.0	51.8	-18.1	33.7	43.5	-9.8	Pass
216.010	Qp	V	240	1.0	60.0	-18.3	41.7	46.0	-4.3	Pass
240.012	Qp	V	100	1.0	59.5	-15.8	43.7	46.0	-2.3	Pass
288.005	Qp	V	225	1.0	51.7	-13.5	38.2	46.0	-7.8	Pass
312.015	Qp	V	90	1.0	47.8	-12.8	35.0	46.0	-11.0	Pass
314.300	Qp	V	0	1.0	33.0	-12.9	20.1	46.0	-25.9	Pass
342.500	Qp	V	270	1.0	33.5	-12.4	21.1	46.0	-24.9	Pass
432.013	Qp	V	180	1.0	46.8	-9.3	37.5	46.0	-8.5	Pass
624.003	Qp	V	120	1.0	42.0	-5.4	36.6	46.0	-9.4	Pass

Table 10-3: Radiated Emissions Digital Test Data – Yagi Antenna

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail
72.012	Qp	H	0	1.0	41.6	-22.1	19.5	40.0	-20.5	Pass
143.880	Qp	V	0	1.0	34.9	-17.5	17.4	43.5	-26.1	Pass
239.704	Qp	V	0	1.0	32.8	-15.8	17.0	46.0	-29.0	Pass
407.255	Qp	H	0	1.0	31.7	-9.2	22.5	46.0	-23.5	Pass
574.963	Qp	H	0	1.0	32.1	-6.1	26.0	46.0	-20.0	Pass
646.818	Qp	H	0	1.0	31.7	-4.9	26.8	46.0	-19.2	Pass

Table 10-4: Radiated Emissions Digital Test Data – Rubber Duck Antenna

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail
72.012	Qp	V	270	1.0	55.5	-22.1	33.4	40.0	-6.6	Pass
120.036	Qp	V	0	1.0	43.4	-16.0	27.4	43.5	-16.1	Pass
168.060	Qp	V	0	1.0	34.5	-18.1	16.4	43.5	-27.1	Pass
287.475	Qp	H	40	1.0	31.5	-13.4	18.1	46.0	-27.9	Pass
287.475	Qp	V	90	1.0	24.5	-13.4	11.1	46.0	-34.9	Pass
407.255	Qp	H	0	1.0	33.1	-9.2	23.9	46.0	-22.1	Pass
574.963	Qp	H	0	1.0	33.5	-6.1	27.4	46.0	-18.6	Pass
646.818	Qp	H	180	1.0	33.2	-4.9	28.3	46.0	-17.7	Pass

10.3.2 Radiated Emissions Harmonics/Spurious

Table 10-5: Radiated Emissions Harmonics/Spurious TX Frequency – 902.5 MHz (Average)

Emission Frequency (MHz)	Average Analyzer Reading (dBuV) (1 MHz RBW/ 10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
2707.410	33.2	11.0	44.2	54.0	-9.8
3609.880	27.2	10.6	25.5	54.0	-28.5
4512.350	25.3	14.3	21.1	54.0	-32.9
5414.820	25.7	13.5	26.4	54.0	-27.6
7219.760	25.8	13.1	26.8	54.0	-27.2
9024.700	26.6	18.2	30.2	54.0	-23.8

Table 10-6: Radiated Emissions Harmonics/Spurious TX Frequency – 902.5 MHz (Peak)

Emission Frequency (MHz)	Peak Analyzer Reading (dBuV) (1 MHz RBW/VBW)	Site Correction Factor (dB/m)	Peak Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dB)
2707.410	44.4	11.0	55.4	74.0	-18.6
3609.880	40.5	10.6	51.1	74.0	-22.9
4512.350	38.5	14.3	52.8	74.0	-21.2
5414.820	39.3	13.5	52.8	74.0	-21.2
7219.760	40.4	13.1	53.5	74.0	-20.5
9024.700	40.4	18.2	58.6	74.0	-15.4

Table 10-7: Radiated Emissions Harmonics/Spurious TX Frequency – 915.0 MHz (Average)

Emission Frequency (MHz)	Average Analyzer Reading (dBuV) (1 MHz RBW/ 10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
2744.910	30.3	10.9	41.2	54.0	-12.8
3659.880	26.2	10.6	36.8	54.0	-17.2
4574.850	26.0	10.6	36.6	54.0	-17.4
7319.760	25.5	13.0	38.5	54.0	-15.5
8234.730	27.4	18.5	45.9	54.0	-8.1
9149.700	26.4	18.2	44.6	54.0	-9.4

Table 10-8: Radiated Emissions Harmonics/Spurious TX Frequency – 915.0 MHz (Peak)

Emission Frequency (MHz)	Peak Analyzer Reading (dBuV) (1 MHz RBW/VBW)	Site Correction Factor (dB/m)	Peak Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dB)
2744.910	42.0	10.9	52.9	74.0	-21.1
3659.880	41.1	10.6	51.7	74.0	-22.3
4574.850	39.7	10.6	50.3	74.0	-23.7
7319.760	39.3	13.0	52.3	74.0	-21.7
8234.730	41.3	18.5	59.8	74.0	-14.2
9149.700	39.9	18.2	58.1	74.0	-15.9

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: IWT
 Model #: SBB0100-010-R4G
 Standards: FCC 15.247/RSS-210
 FCC ID: SP8-SBB0100-010-1
 Report #: 2012045

Table 10-9: Radiated Emissions Harmonics/Spurious TX Frequency – 927.0 MHz (Average)

Emission Frequency (MHz)	Average Analyzer Reading (dBuV) (1 MHz RBW/ 10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
2780.910	33.4	10.8	44.2	54.0	-9.8
3707.880	27.4	10.6	38.0	54.0	-16.0
4634.850	26.9	14.1	41.0	54.0	-13.0
7415.760	26.1	12.9	39.0	54.0	-15.0
8342.730	26.7	18.4	45.1	54.0	-8.9

Table 10-10: Radiated Emissions Harmonics/Spurious TX Frequency – 927.0 MHz (Peak)

Emission Frequency (MHz)	Peak Analyzer Reading (dBuV) (1 MHz RBW/VBW)	Site Correction Factor (dB/m)	Peak Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dB)
2780.910	44.2	10.8	55.0	74.0	-19.0
3707.880	41.1	10.6	51.7	74.0	-22.3
4634.850	40.9	14.1	55.0	74.0	-19.0
7415.760	39.3	12.9	52.2	74.0	-21.8
8342.730	40.4	18.4	58.8	74.0	-15.2

No emissions were found in hopping mode.

Test Personnel:

Daniel W. Baltzell
 EMC Test Engineer

Signature

July 30, 2012

Date of Test

11 Conclusion

The data in this measurement report shows that the Innovative Wireless Technologies, Inc. (IWT) Model SBB0100-010-R4G, FCC ID: SP8-SBB0100-010-1, IC: 9568A-SBB01000101, complies with all the applicable requirements of Parts 2 and 15 of the FCC Rules and Regulations and Industry Canada RSS-Gen and RSS-210.