

FCC RF Inspection Report

Product Name	Wireless module
Model No	WAPC003
FCC ID.	SLE-WAPC003

Applicant	Moxa Inc.
Address	No. 1111, Heping Rd., Bade Dist., Taoyuan City 334004, Taiwan

Date of Receipt	Apr. 25, 2022
Issue Date	Jul. 25, 2022
Report No.	2240703R-RFNAOTHV03-1
Report Version	V1.0

The test results relate only to the samples tested.

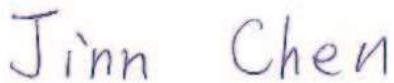
The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test Report


Issued Date: Jul. 25, 2022

Report No.: 2240703R-RFNAOTHV03-1

Product Name	Wireless module
Applicant	Moxa Inc.
Address	No. 1111, Heping Rd., Bade Dist., Taoyuan City 334004, Taiwan
Manufacturer	Moxa Inc.
Model No.	WAPC003
FCC ID.	SLE-WAPC003
EUT Rated Voltage	12-48 VDC, PoE
EUT Test Voltage	12 VDC
Trade Name	MOXA
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C ANSI C63.4: 2014, ANSI C63.10: 2013
Test Result	Complied

Documented By :

(Supervisor / Jinn Chen)

Tested By :

(Senior Engineer / Ivan Chuang)

Approved By :

(Senior Engineer / Jack Hsu)

TABLE OF CONTENTS

	Description	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description.....	5
1.2.	Summary of Test Item	7
1.3.	Tested System Details.....	8
1.4.	Configuration of Tested System	8
1.5.	EUT Exercise Software	8
1.6.	Test Facility	9
1.7.	List of Test Item and Equipment	10
1.8.	Uncertainty	11
2.	Conducted Emission.....	12
2.1.	Test Setup	12
2.2.	Limits	12
2.3.	Test Procedure	12
2.4.	Test Result of Conducted Emission.....	13
3.	Radiated Emission	14
3.1.	Test Setup	14
3.2.	Limits	15
3.3.	Test Procedure	16
3.4.	Test Result of Radiated Emission.....	18
4.	Band Edge	31
4.1.	Test Setup	31
4.2.	Limits	32
4.3.	Test Procedure	32
4.4.	Test Result of Band Edge	34
5.	Duty Cycle	50
5.1.	Test Setup	50
5.2.	Test Procedure	50
5.3.	Test Result of Duty Cycle.....	51
6.	EMI Reduction Method During Compliance Testing	52

Appendix 1: EUT Test Photographs

Appendix 2: Product Photos: Please refer to the file: 2240703R-Product Photos

Revision History

Report No.	Version	Description	Issued Date
2240703R-RFNAOTHV03-1	V1.0	Initial issue of report.	Jul. 25, 2022

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Wireless module
Trade Name	MOXA
Model No.	WAPC003
FCC ID.	SLE-WAPC003
Frequency Range	2412-2462MHz for 802.11b/g/n/ac-20BW, 2422-2452MHz for 802.11n/ac-40BW
Number of Channels	802.11b/g/n-20MHz: 11, n-40MHz: 7
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 300Mbps, 802.11ac: up to 400Mbps
Channel separation	802.11b/g/n/ac: 5 MHz
Type of Modulation	802.11b: DSSS (DBPSK, DQPSK, CCK) 802.11g/n/ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)
Antenna Type	Dipole Antenna, Panel Antenna
Channel Control	Auto
Antenna Gain	Refer to the table “Antenna List”

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	MOXA	ANT-WDB-ANM-0306	Dipole	3.80 dBi For 2.4GHz
2	MOXA	ANT-WDB-ANM-0502	Dipole	4.62 dBi For 2.4GHz
3	MOXA	ANT-WDB-ARM-02	Dipole	2.04 dBi For 2.4GHz
4	MOXA	ANT-WDB-ARM-0202	Dipole	1.80 dBi For 2.4GHz
5	MOXA	ANT-WSB-AHMR-05-1.5m	Dipole	5.00 dBi For 2.4GHz
6	MOXA	MAT-WDB-CA-RM-2-0205	Dipole	2.50 dBi For 2.4GHz
7	MOXA	MAT-WDB-DA-RM-2-0203-1m	Dipole	2.45 dBi For 2.4GHz
8	MOXA	MAT-WDB-PA-NF-2-0708	Panel	7.63 dBi For 2.4GHz
9	MOXA	ANT-WDB-PNF-1011	Panel	10.33 dBi For 2.4GHz
10	MOXA	ANT-WDB-ONM-0707	Dipole	7.10 dBi For 2.4GHz
11	MOXA	ANT-WDB-ONF-0709	Dipole	7.40 dBi For 2.4GHz
12	MOXA	ANT-WSB-PNF-12-02	Panel	12.34 dBi For 2.4GHz

Note: The antenna of EUT is conforming to FCC 15.203.

802.11b/g/n/ac-20MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

802.11n/ac-40MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 03:	2422 MHz	Channel 04:	2427 MHz	Channel 05:	2432 MHz	Channel 06:	2437 MHz
Channel 07:	2442 MHz	Channel 08:	2447 MHz	Channel 09:	2452 MHz		

Note:

1. The EUT is a Wireless module with a built-in 2.4GHz WLAN transceiver.
2. Regarding the operation frequency, the customer-provided frequency and worst-case is selected to perform the test.
3. Lowest data rate is tested in each mode. The only worst case is shown in the report.
4. These tests are conducted on a sample for the purpose of demonstrating compliance of transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
5. This is a permissive change for FCC ID: SLE-WAPC003. According to the major change, DEKRA tests Conducted Emission, Radiated Emission, Radiated Band Edge worst-case and other testing data refer to original module report (report no.: 2110552R-E3032110118). Additional the host: Wireless AP/bridge/client, Brand: MOXA, Model number: AWK-4252A is contain this module's FCC ID.

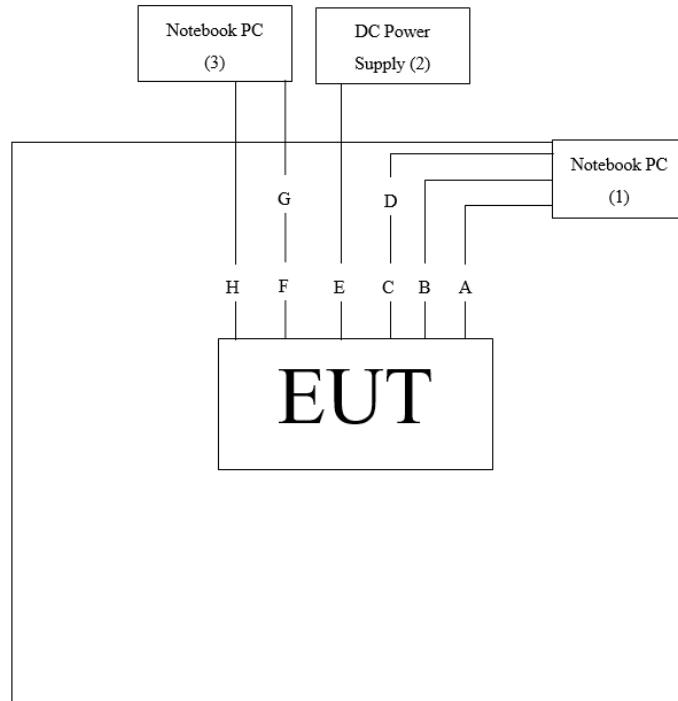
Test Mode	Transmit: (802.11ac-40BW) PoE
	SISO A: Transmit (802.11b)
	SISO A: Transmit (802.11g)
	MIMO: Transmit (802.11ac-20BW)
	MIMO: Transmit (802.11ac-40BW)

1.2. Summary of Test Item

Test Condition			Test Item					
			Conducted			Radiated Emission		
Antenna No.	Antenna Type	Antenna Gain	Conducted Power	Power Density	Occupied Bandwidth	Conducted Emission (20dBc)	Radiated Emission	Band Edge
1	Dipole	3.80 dBi						
2	Dipole	4.62 dBi						
3	Dipole	2.04 dBi						
4	Dipole	1.80 dBi						
5	Dipole	5.00 dBi						
6	Dipole	2.50 dBi						
7	Dipole	2.45 dBi						
8	Panel	7.63 dBi						
9	Panel	10.33 dBi						
10	Dipole	7.10 dBi						
11	Dipole	7.40 dBi	✓	✓	✓	✓	✓	✓
12	Panel	12.34 dBi	✓	✓	✓	✓	✓	✓

Note:

- Transmitting antennas of directional gain greater than 6 dBi ,the conducted output power from the intentional radiator shall be reduced below the limit.
- Used exclusively for fixed, point-to-point operations the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product	Manufacturer	Model No.	Serial No.	Power Cord
1 Notebook PC	ASUS	P2438U	H1NXCV11U083025	N/A
2 DC Power Supply	KEYSIGHT	E36234A	MY59001234	Non-shielded, 1.8m
3 Notebook PC	DELL	Inspiron 15 3000	GT5JPJ2	N/A

Signal Cable Type	Signal cable Description
A USB Cable	Shielded, 1.2m
B LAN Cable	Non-shielded, 2m
C LAN to RS-232 Cable	Non-shielded, 1.5m
D RS-232 to USB Cable	Shielded, 0.8m
E Power Cable	Non-shielded, 1m
F DI/DO Cable	Non-shielded, 1.1m
G LAN Cable	Non-shielded, 2m
H LAN Cable	Non-shielded, 3m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

1. Setup the EUT as shown in Section 1.4.
2. Execute software “QCARCT V3.0.295.0” on the Notebook Computer.
3. Configure the test mode, the test channel, and the data rate.
4. Press “OK” to start the continuous Transmit.
5. Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
Conducted Emission	Temperature (°C)	10~40 °C	26.4 °C
	Humidity (%RH)	10~90 %	47.2 %
Radiated Emission	Temperature (°C)	10~40 °C	22.9 °C
	Humidity (%RH)	10~90 %	69.1 %

USA : FCC Registration Number: TW0033

Canada : CAB Identifier Number: TW3023 / Company Number: 26930

Site Description : Accredited by TAF
Accredited Number: 3023

Test Laboratory : DEKRA Testing and Certification Co., Ltd
Address : No. 5-22, Ruishukeng Linkou District, New Taipei City,
24451, Taiwan
Performed Location : No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City
333411, Taiwan, R.O.C.
Phone number : +886-3-275-7255
Fax number : +866-3-327-8031
Email address : info.tw@dekra.com
Website : <http://www.dekra.com.tw>

1.7. List of Test Item and Equipment

For Radiated measurements /HY-CB03

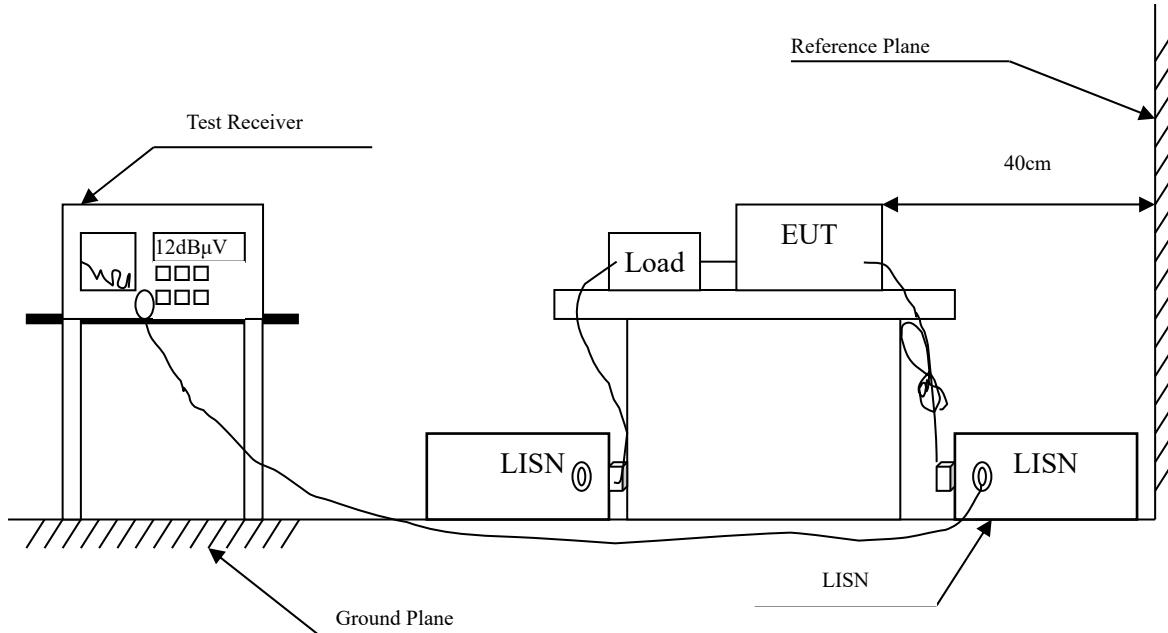
	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
	Loop Antenna	AMETEK	HLA6121	56736	2022.05.14	2023.05.13
X	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2021.08.10	2022.08.09
X	Horn Antenna	ETS-Lindgren	3117	00227700	2021.11.09	2022.11.08
	Horn Antenna	Com-Power	AH-840	101100	2021.10.04	2022.10.03
X	Pre-Amplifier	SGH	SGH0301-9	20211007-10	2022.02.22	2023.02.21
X	Pre-Amplifier	EMCI	EMC051835SE	980313	2021.11.24	2022.11.23
X	Pre-Amplifier	EMCI	EMC05820SE	980310	2021.07.07	2022.07.06
	Pre-Amplifier	EMCI	EMC184045SE	980369	2022.05.12	2023.05.11
	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314		
	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242		
X	Filter	MICRO TRONICS	BRM50702	G251	2021.09.16	2022.09.15
	Filter	MICRO TRONICS	BRM50716	G188	2021.09.16	2022.09.15
X	EMI Test Receiver	R&S	ESR	102793	2021.12.15	2022.12.14
X	Spectrum Analyzer	R&S	FSV3044	101113	2022.01.25	2023.02.24
	Coaxial Cable	SGH	SGH18	2021005-3	2022.03.18	2023.03.17
	Coaxial Cable	SGH	SGH18	202108-4		
	Coaxial Cable	SGH	SGH18	20110223-1		
X	Coaxial Cable	SGH	HA800	GD20110222-3		

Note:

1. All equipments are calibrated every one year.
2. The test instruments marked with "X" are used to measure the final test results.
3. Test Software version : E3 210616 dekra V9

1.8. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.


The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test item	Uncertainty	
Conducted Emission	± 3.42 dB	
Radiated Emission	Under 1GHz ± 4.06 dB	Above 1GHz ± 3.73 dB
Band Edge	Under 1GHz ± 4.06 dB	Above 1GHz ± 3.73 dB
Duty Cycle	± 2.31 ms	

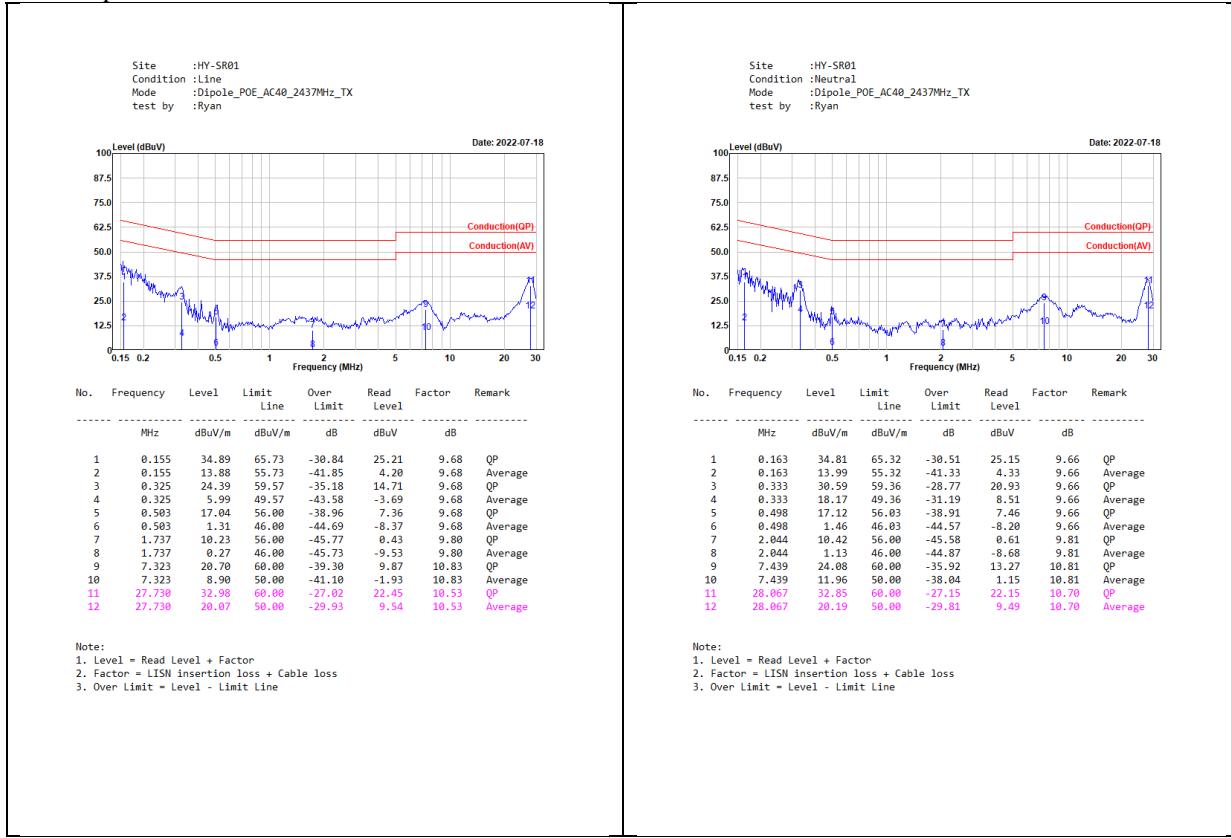
2. Conducted Emission

2.1. Test Setup

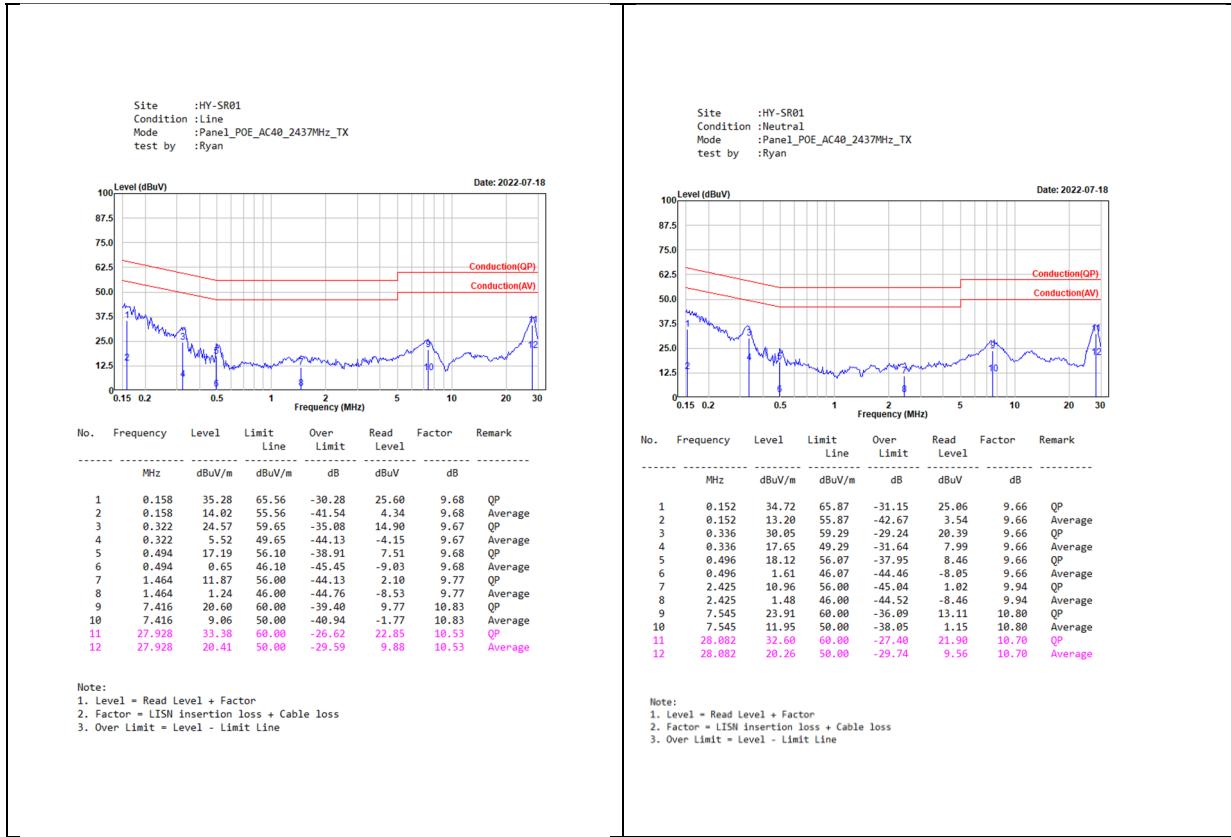
2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dB μ V) Limit		
Frequency MHz	Limits	
	QP	AVG
0.15 - 0.50	66-56	56-46
0.50-5.0	56	46
5.0 - 30	60	50

2.3. Test Procedure

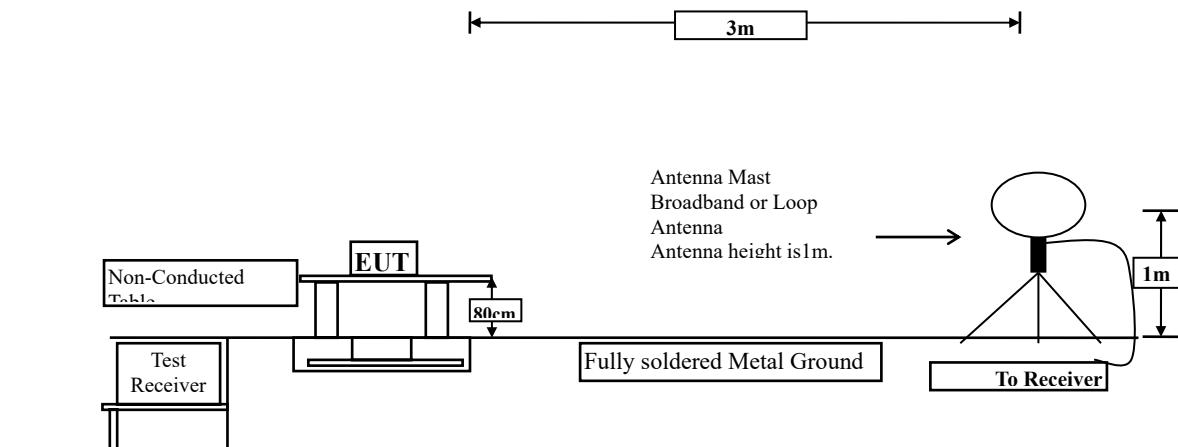

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

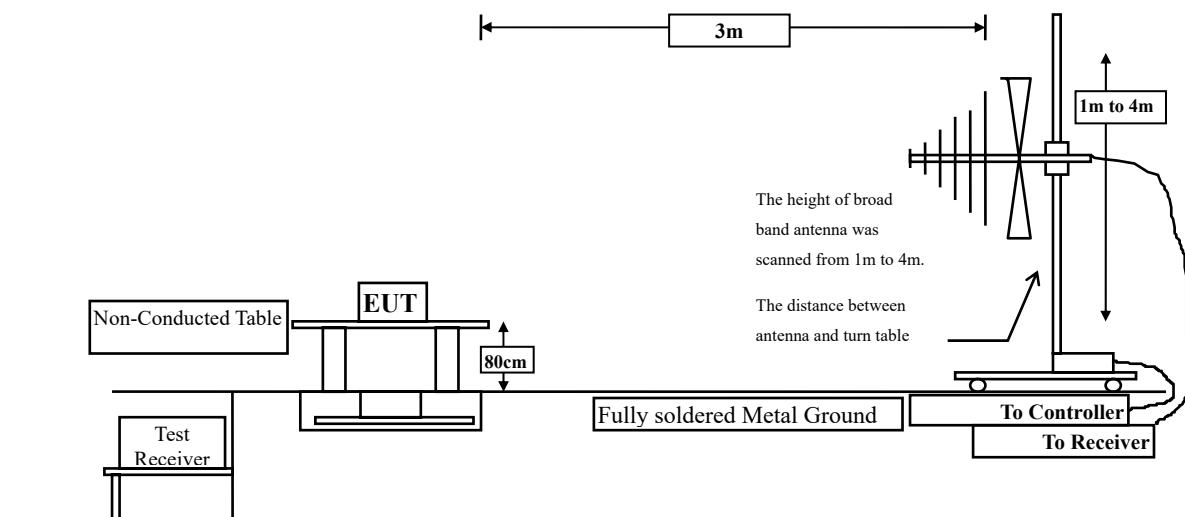
Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.


Conducted emissions were measured over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

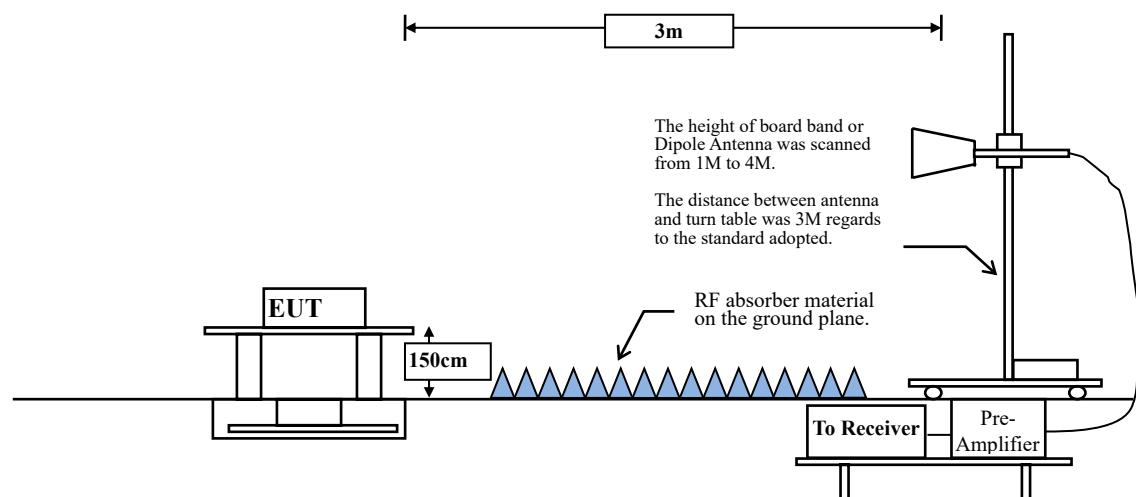
2.4. Test Result of Conducted Emission

Dipole-PoE


Panel-PoE


3. Radiated Emission

3.1. Test Setup


Radiated Emission Under 30MHz

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

3.2. Limits

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits		
Frequency MHz	Field strength (microvolts/meter)	Measurement distance (meter)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remarks:

1. RF Voltage (dB μ V) = 20 log RF Voltage (uV)
2. In the Above Table, the tighter limit applies at the band edges.
3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The measurement frequency range from 9kHz - 10th Harmonic of fundamental was investigated.

RBW and VBW Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

VBW $\geq 3 \times$ RBW.

Table 1 —RBW as a function of frequency

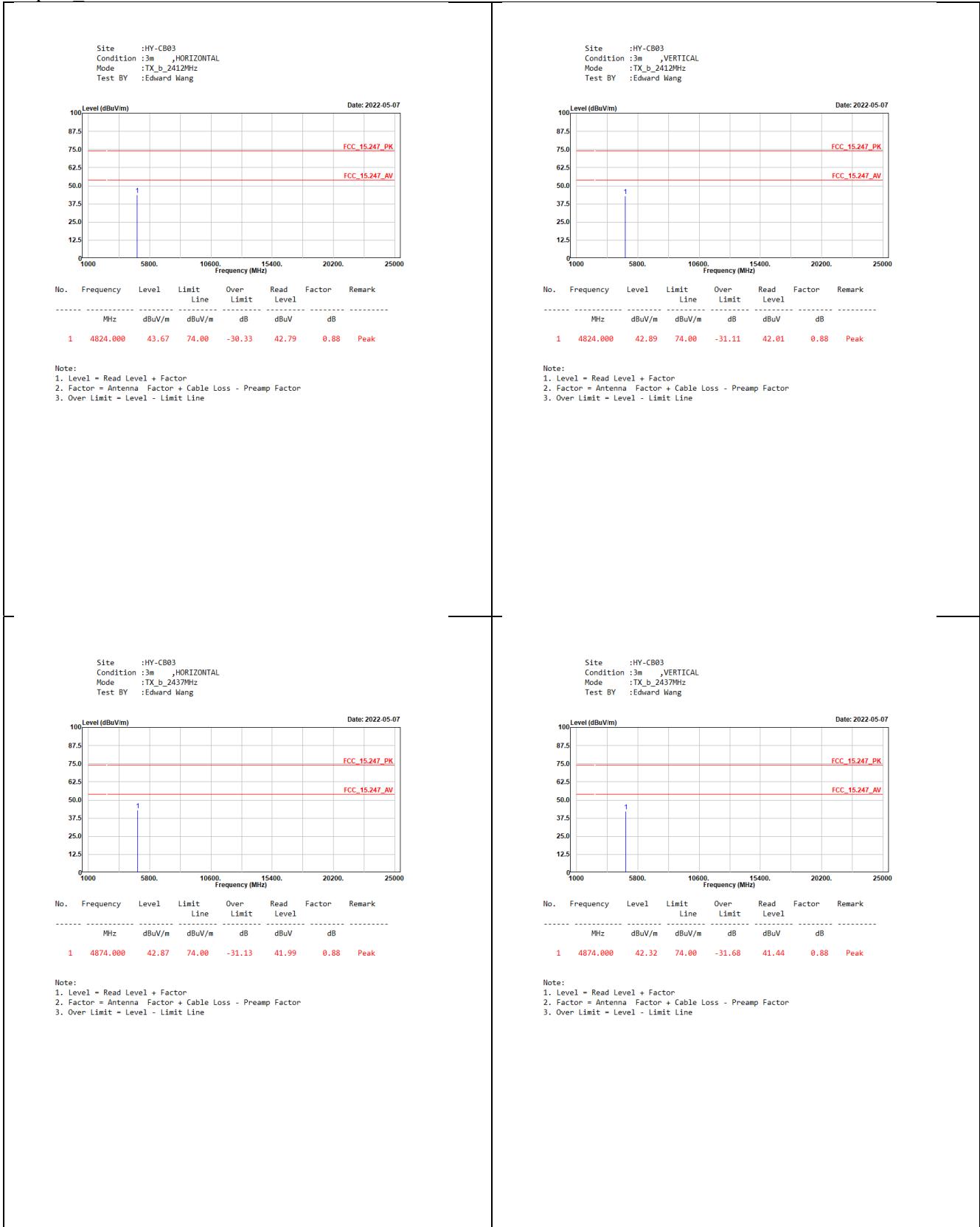
Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

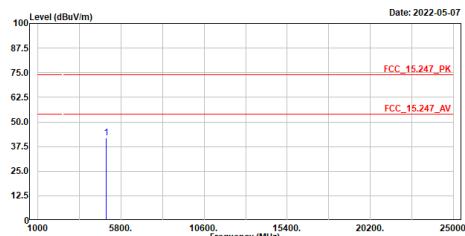
RBW = 1MHz.

VBW = 10Hz, when duty cycle $\geq 98\%$

VBW $\geq 1/T$, when duty cycle $< 98\%$

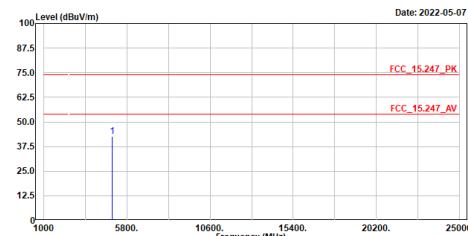

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

2.4GHz band	Duty Cycle (%)	T (ms)	1/T (Hz)	VBW (Hz)
802.11 b	99.20	12.4500	80	10
802.11 g	95.13	2.0500	488	500
802.11 ac20	96.88	4.9600	202	300
802.11 ac40	94.07	2.3800	420	500


Note: Duty Cycle Refer to Section 5.

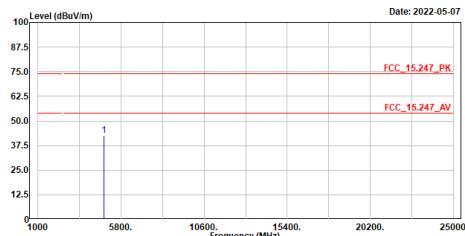
3.4. Test Result of Radiated Emission

Dipole SISO A


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_b_2462MHz
 Test BY :Edward Wang

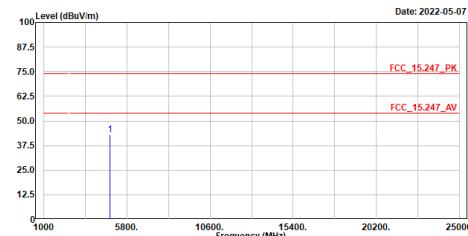
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4962.000	41.96	74.00	-32.04	40.92	1.04	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_b_2462MHz
 Test BY :Edward Wang

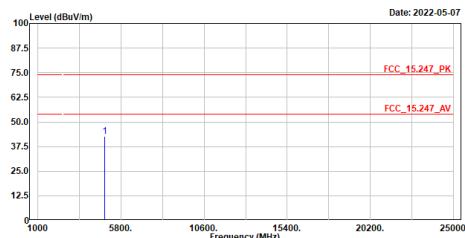
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4962.000	42.78	74.00	-31.22	41.74	1.04	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_g_2412MHz
 Test BY :Edward Wang

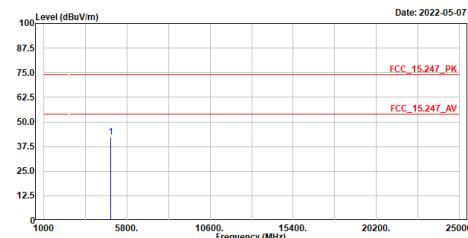
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4824.000	42.47	74.00	-31.53	41.59	0.88	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_g_2412MHz
 Test BY :Edward Wang

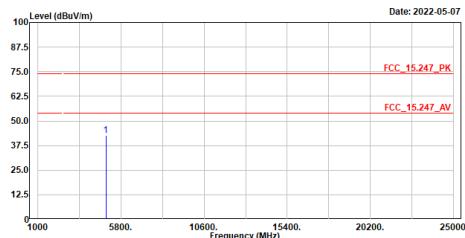
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4824.000	43.04	74.00	-30.96	42.16	0.88	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_g_2437MHz
 Test BY :Edward Wang

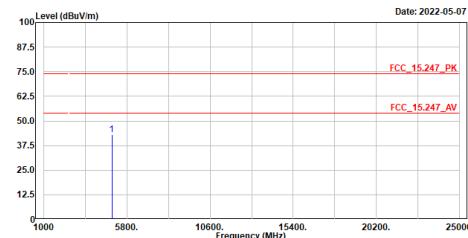
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	42.49	74.00	-31.51	41.61	0.88	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_g_2437MHz
 Test BY :Edward Wang

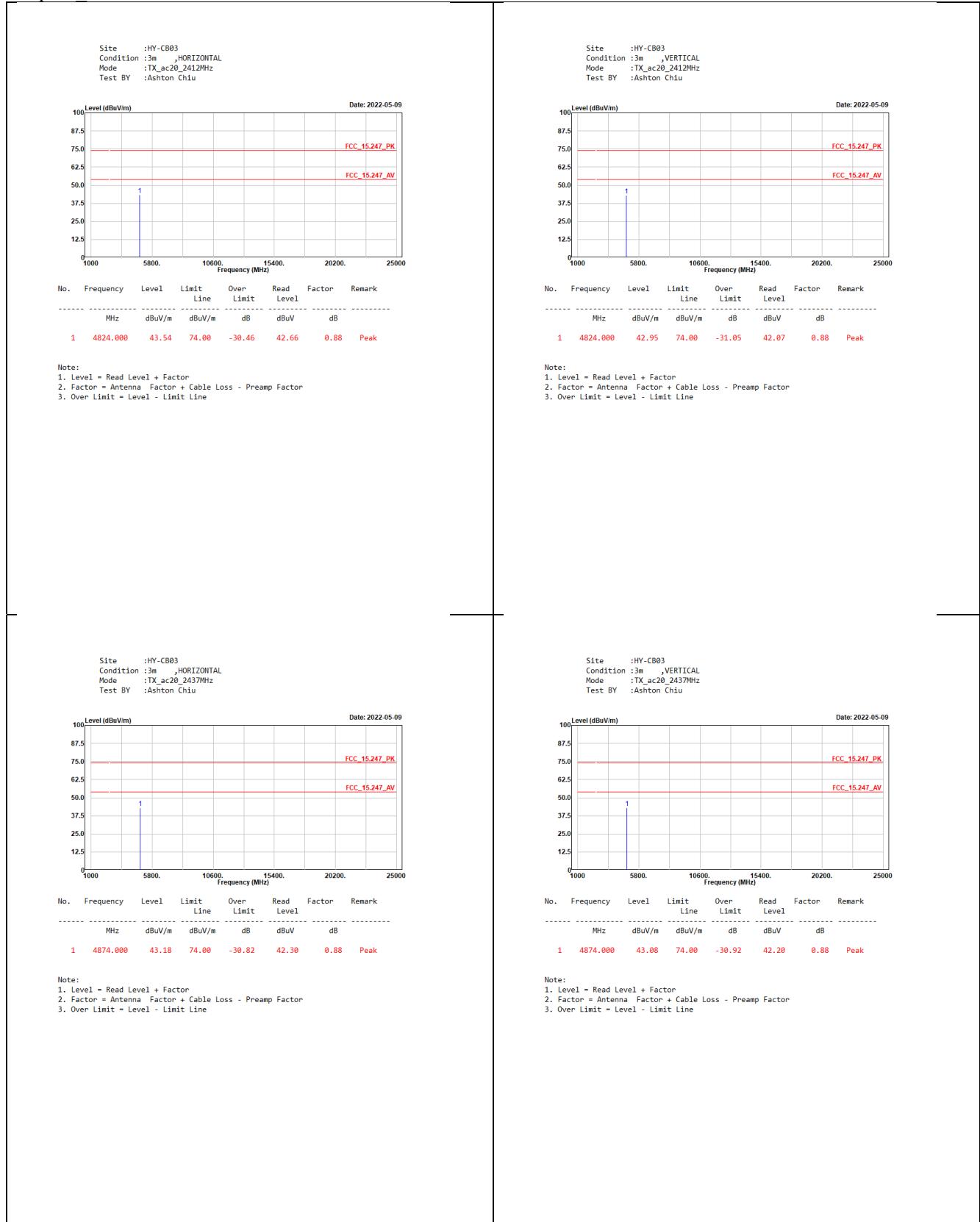
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	42.13	74.00	-31.87	41.25	0.88	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_g_2462MHz
 Test BY :Edward Wang

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924.000	42.70	74.00	-31.30	41.71	0.99	Peak

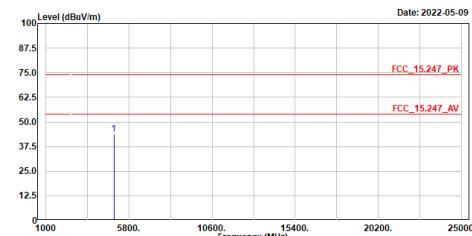
Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_g_2462MHz
 Test BY :Edward Wang

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924.000	43.05	74.00	-30.95	42.06	0.99	Peak

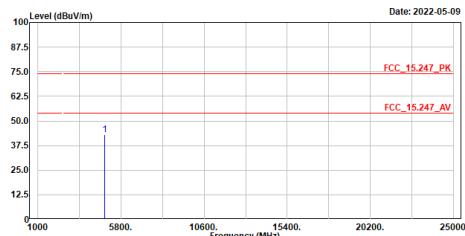
Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Dipole MIMO


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_ac20_2462MHz
 Test BY :Ashton Chiu

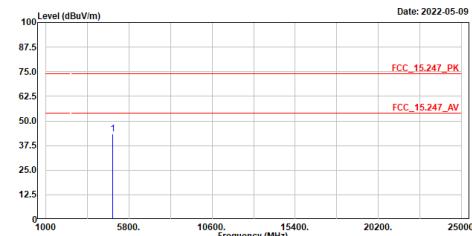
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924.000	43.60	74.00	-30.40	42.61	0.99	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_ac20_2462MHz
 Test BY :Ashton Chiu

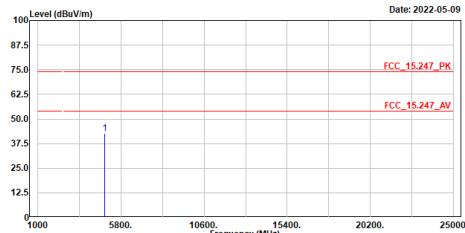
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924.000	43.72	74.00	-30.28	42.73	0.99	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_ac40_2422MHz
 Test BY :Ashton Chiu

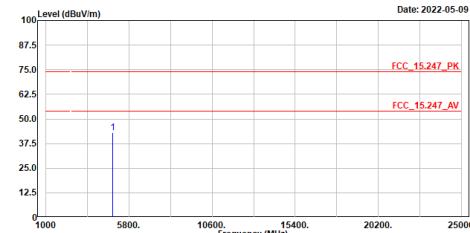
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4844.000	42.87	74.00	-31.13	42.03	0.84	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_ac40_2422MHz
 Test BY :Ashton Chiu

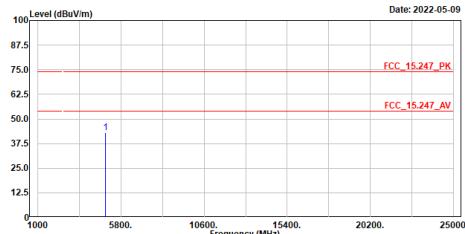
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4844.000	43.38	74.00	-30.62	42.54	0.84	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_ac40_2437MHz
 Test BY :Ashton Chiu

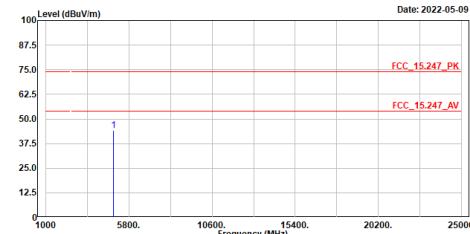
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	42.74	74.00	-31.26	41.86	0.88	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

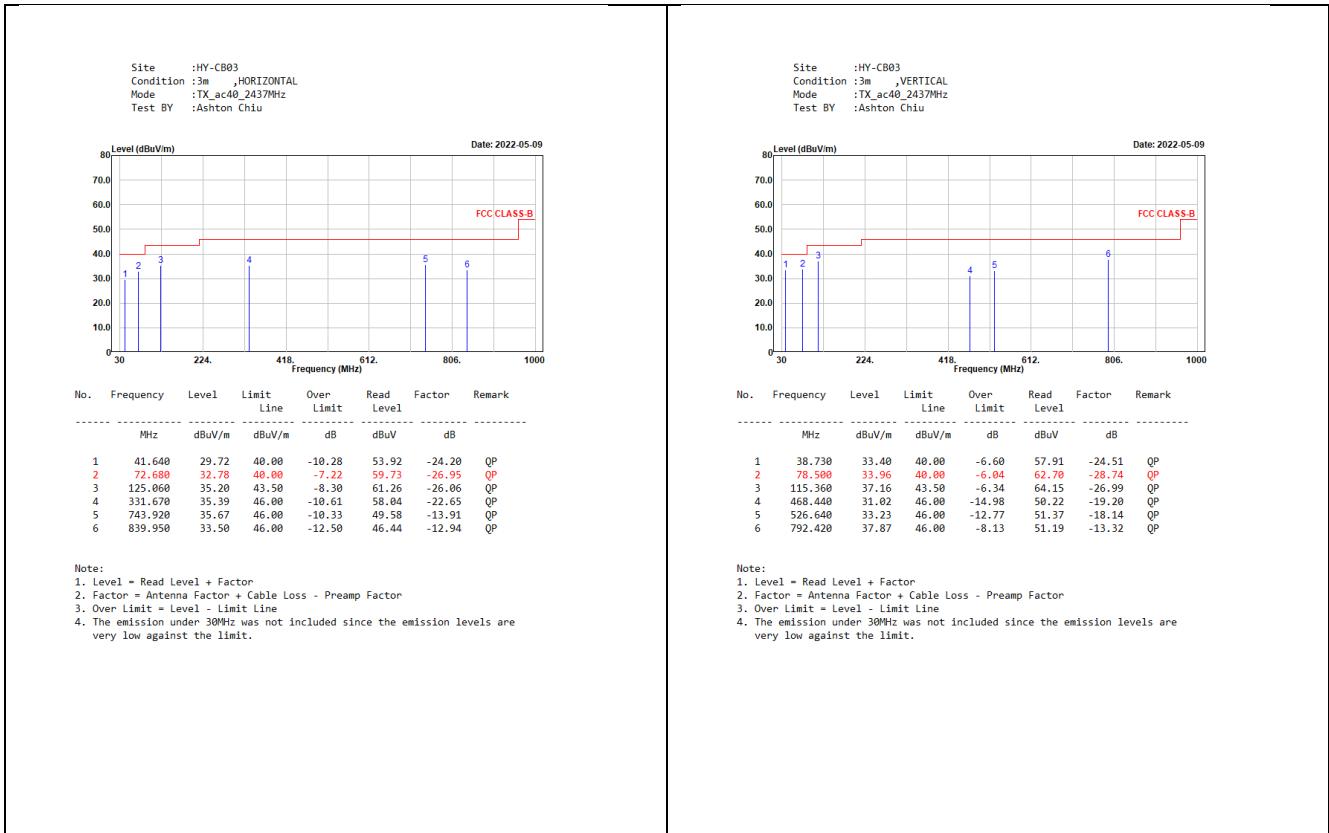

Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_ac40_2437MHz
 Test BY :Ashton Chiu

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	43.02	74.00	-30.98	42.14	0.88	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

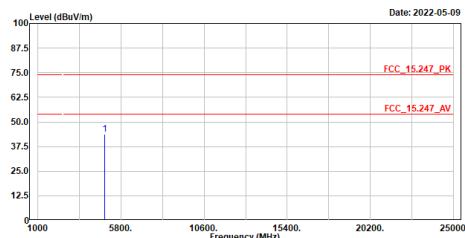

Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_ac40_2452MHz
 Test BY :Ashton Chiu

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4984.000	43.01	74.00	-30.99	42.06	0.95	Peak

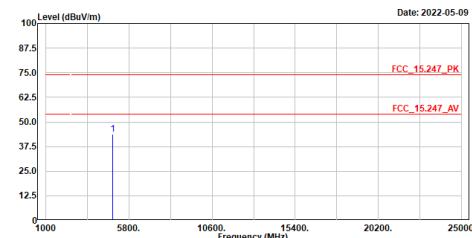

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_ac40_2452MHz
 Test BY :Ashton Chiu

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4984.000	44.14	74.00	-29.86	43.19	0.95	Peak

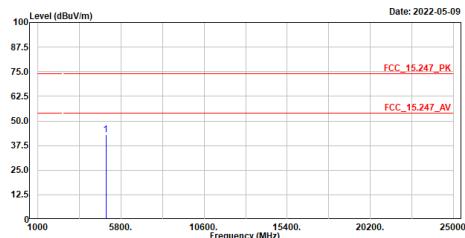

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Panel SISO A


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_b_2437MHz
 Test BY :Jing Chang

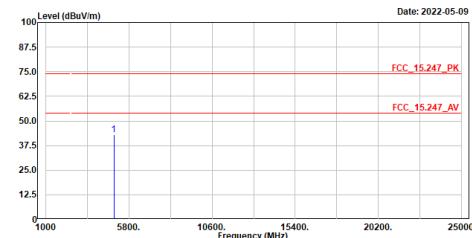
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	43.63	74.00	-30.37	42.77	0.86	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_b_2437MHz
 Test BY :Jing Chang

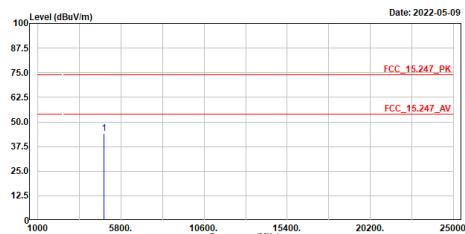
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	43.93	74.00	-30.07	43.05	0.88	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_b_2462MHz
 Test BY :Jing Chang

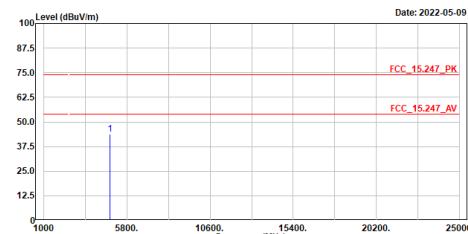
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924.000	43.00	74.00	-31.00	42.12	0.88	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_b_2462MHz
 Test BY :Jing Chang

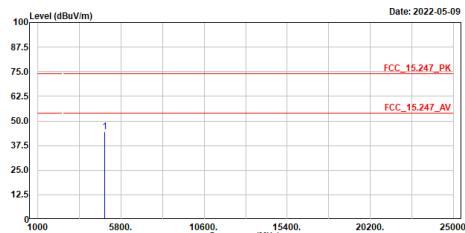
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924.000	42.86	74.00	-31.14	41.97	0.89	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_g_2412MHz
 Test BY :Jing Chang

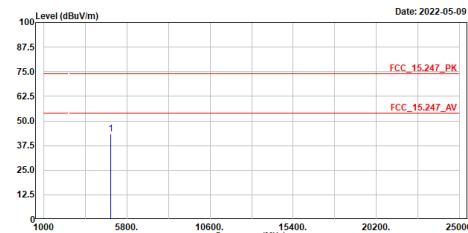
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4824.000	44.26	74.00	-29.74	43.35	0.91	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

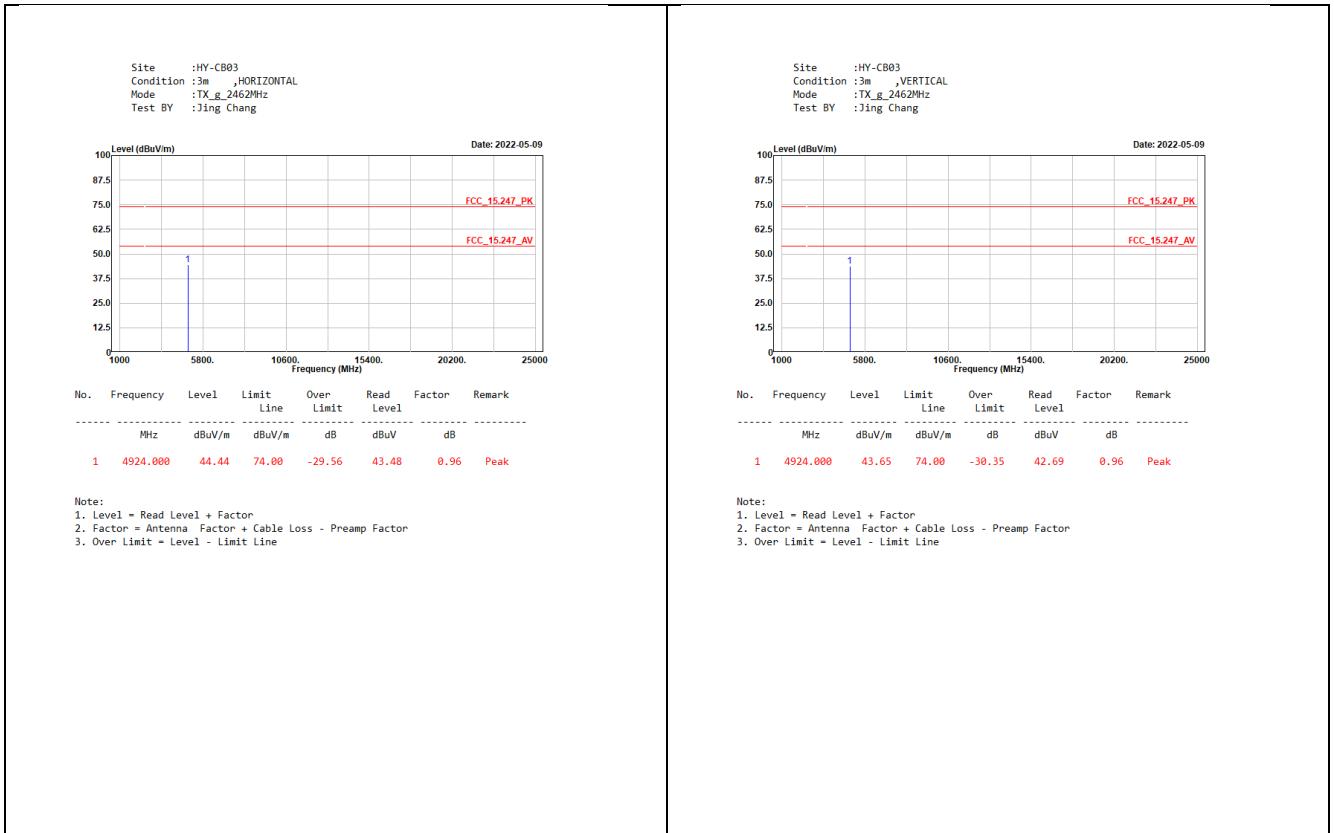

Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_g_2412MHz
 Test BY :Jing Chang

No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4824.000	43.82	74.00	-30.18	42.92	0.90	Peak

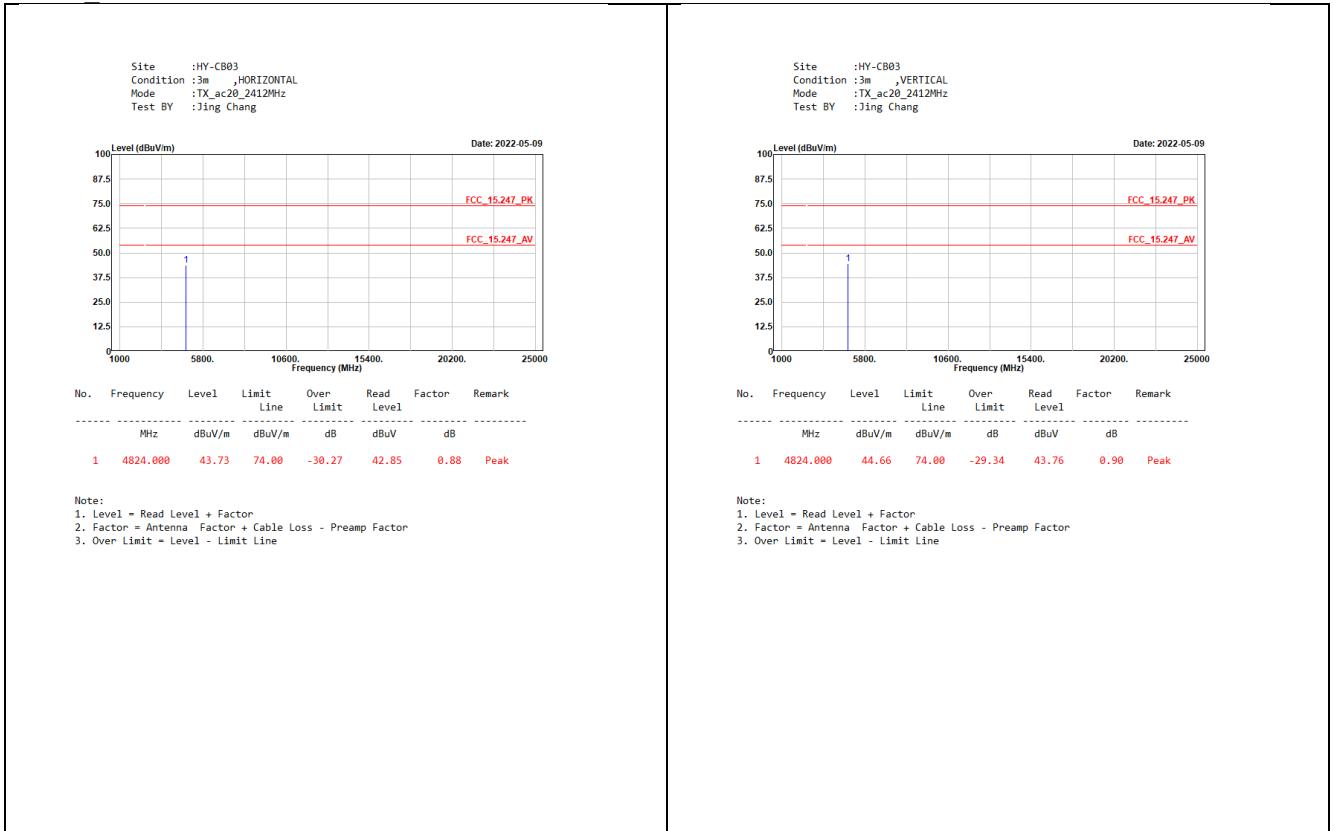
Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_g_2437MHz
 Test BY :Jing Chang

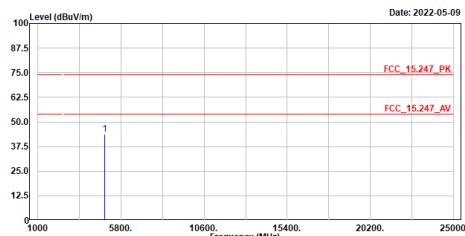
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	44.34	74.00	-29.66	43.46	0.88	Peak


Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

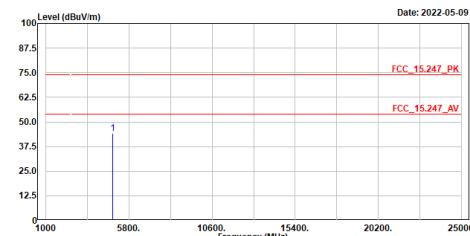
Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_g_2437MHz
 Test BY :Jing Chang



No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	43.48	74.00	-30.52	42.58	0.90	Peak

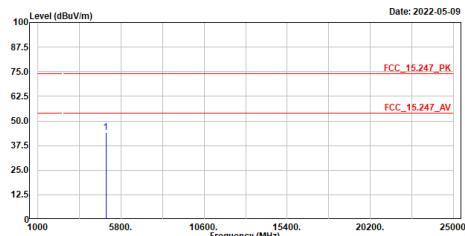

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Panel MIMO


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_ac20_2437MHz
 Test BY :Jing Chang

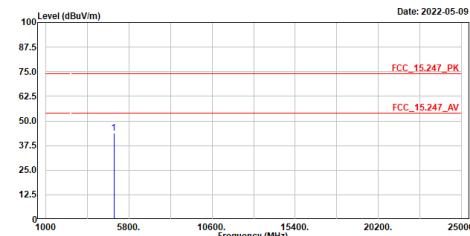
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	43.59	74.00	-30.41	42.72	0.87	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_ac20_2437MHz
 Test BY :Jing Chang

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	44.23	74.00	-29.77	43.35	0.88	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_ac20_2462MHz
 Test BY :Jing Chang

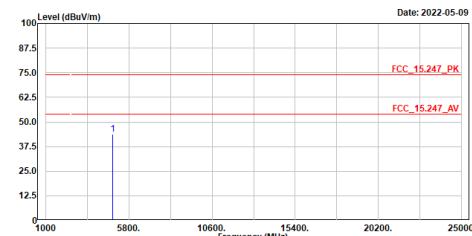
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924.000	44.18	74.00	-29.82	43.20	0.98	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_ac20_2462MHz
 Test BY :Jing Chang

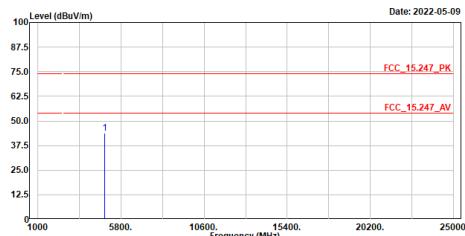
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924.000	43.90	74.00	-30.10	42.87	1.03	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

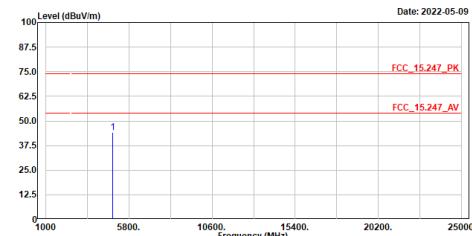
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4844.000	43.64	74.00	-30.36	42.62	1.02	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

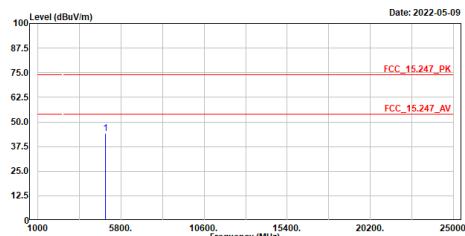
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4844.000	43.85	74.00	-30.15	43.01	0.84	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_ac40_2437MHz
 Test BY :Jing Chang

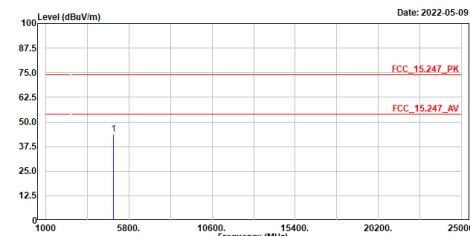
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	43.63	74.00	-30.37	42.76	0.87	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_ac40_2437MHz
 Test BY :Jing Chang

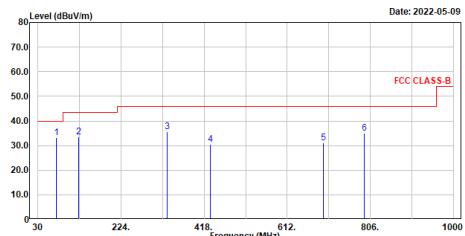
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	44.31	74.00	-29.69	43.47	0.84	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_ac40_2452MHz
 Test BY :Jing Chang

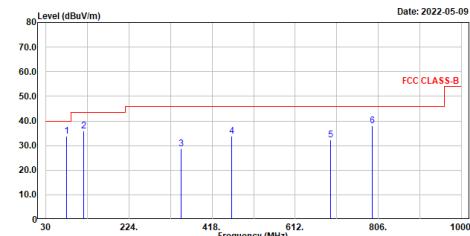
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4904.000	43.97	74.00	-30.03	42.95	1.02	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_ac40_2452MHz
 Test BY :Jing Chang

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4904.000	43.81	74.00	-30.19	42.86	0.95	Peak

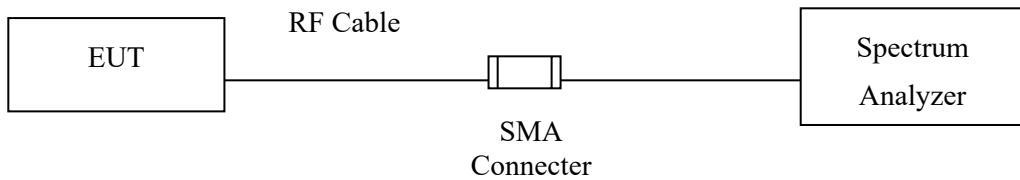
Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,HORIZONTAL
 Mode :TX_ac40_2437MHz
 Test BY :Ashton Chiu

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	72.688	33.06	40.00	-6.94	60.01	-26.95	QP
2	125.060	33.41	43.50	-10.09	59.47	-26.06	QP
3	331.670	35.57	46.00	-10.43	58.22	-22.65	QP
4	432.550	30.56	46.00	-15.44	58.63	-20.07	QP
5	696.390	31.05	46.00	-14.95	45.93	-14.88	QP
6	792.420	34.91	46.00	-11.09	48.23	-13.32	QP

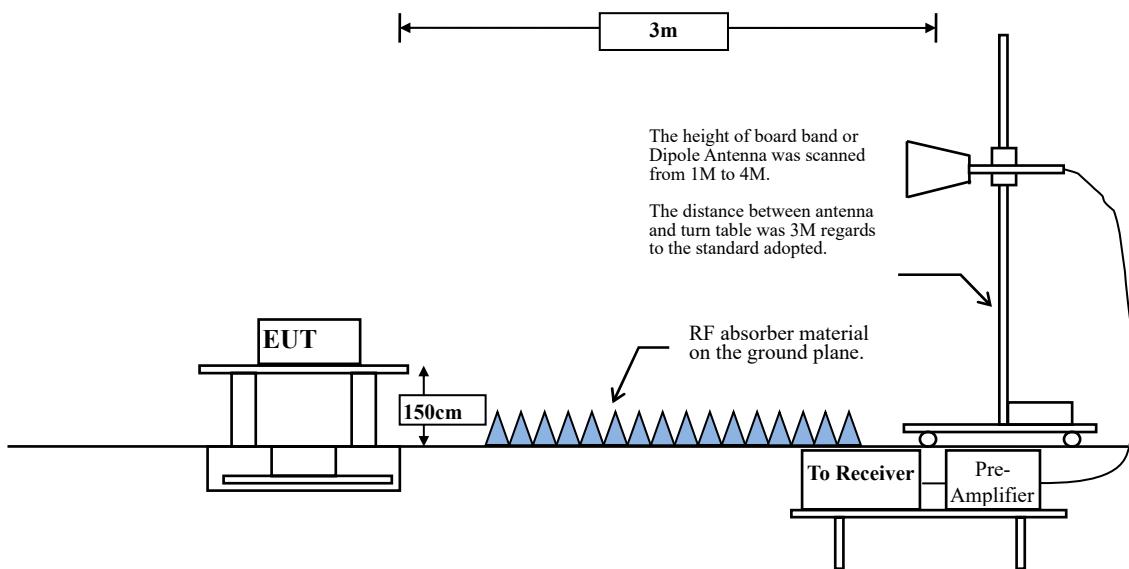
Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line
 4. The emission under 30MHz was not included since the emission levels are very low against the limit.

Site :HY-CB03
 Condition :3m ,VERTICAL
 Mode :TX_ac40_2437MHz
 Test BY :Ashton Chiu


No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	77.530	33.84	40.00	-6.16	62.38	-28.54	QP
2	118.270	35.90	43.50	-7.60	62.57	-26.67	QP
3	345.250	28.68	46.00	-17.32	51.20	-22.52	QP
4	463.590	33.86	46.00	-12.14	53.16	-19.30	QP
5	695.420	32.15	46.00	-13.85	47.07	-14.92	QP
6	792.420	37.97	46.00	-8.03	51.29	-13.32	QP

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line
 4. The emission under 30MHz was not included since the emission levels are very low against the limit.

4. Band Edge


4.1. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

Above 1GHz

4.2. Limits

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

4.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

RBW and VBW Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

VBW $\geq 3 \times$ RBW.

Table 1 —RBW as a function of frequency

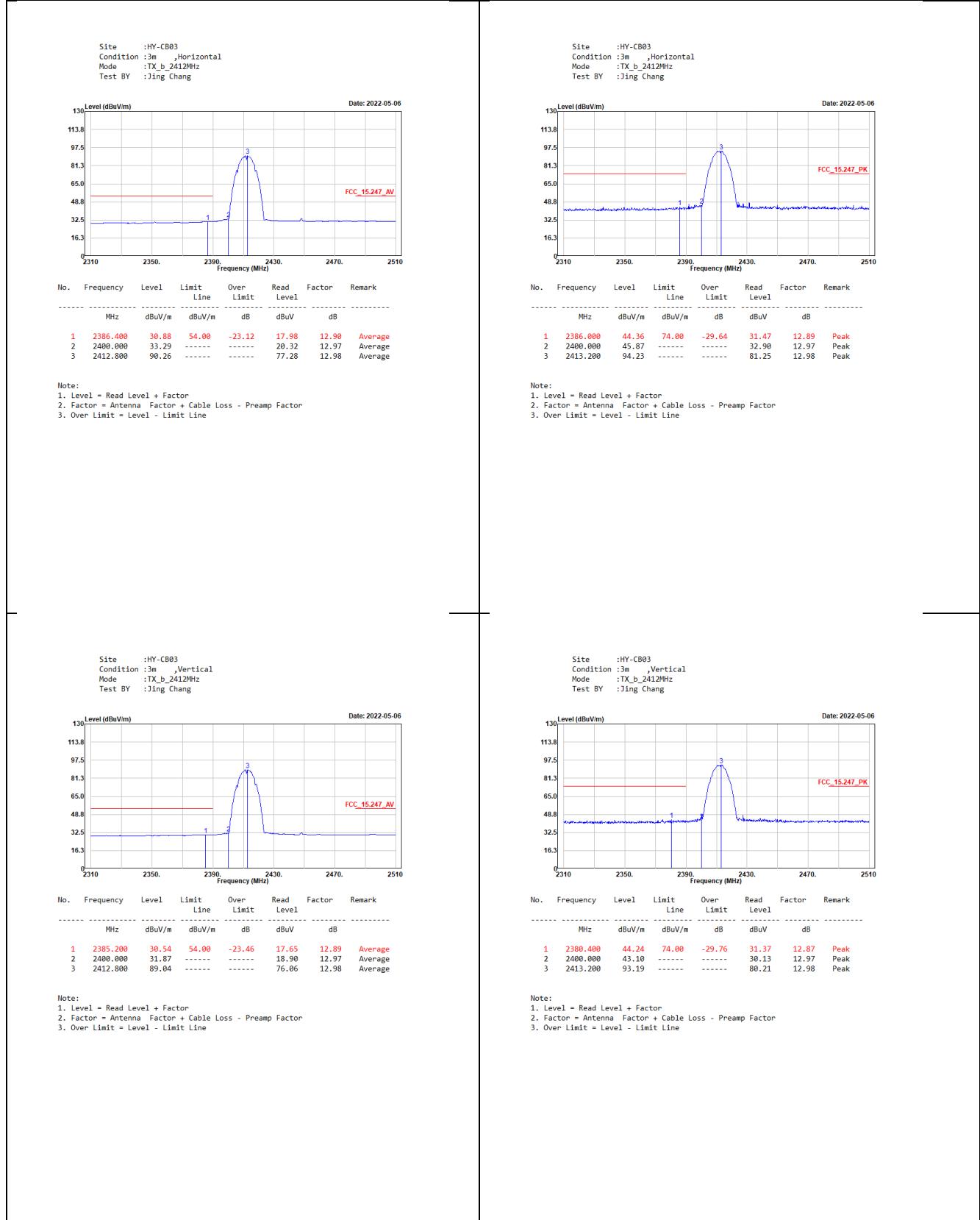
Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

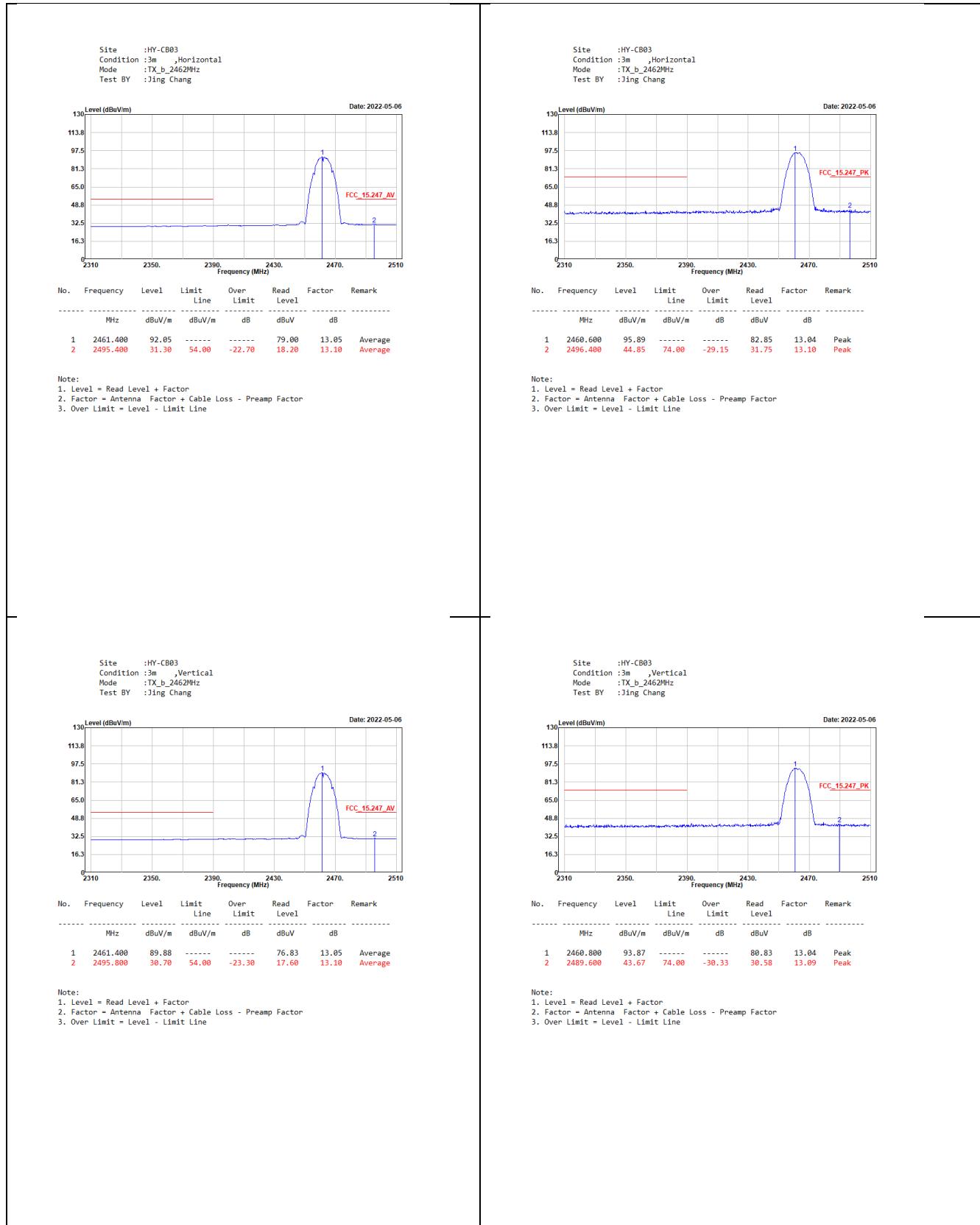
According to C63.10 Section 11.12.2.5 Average measurement procedure.

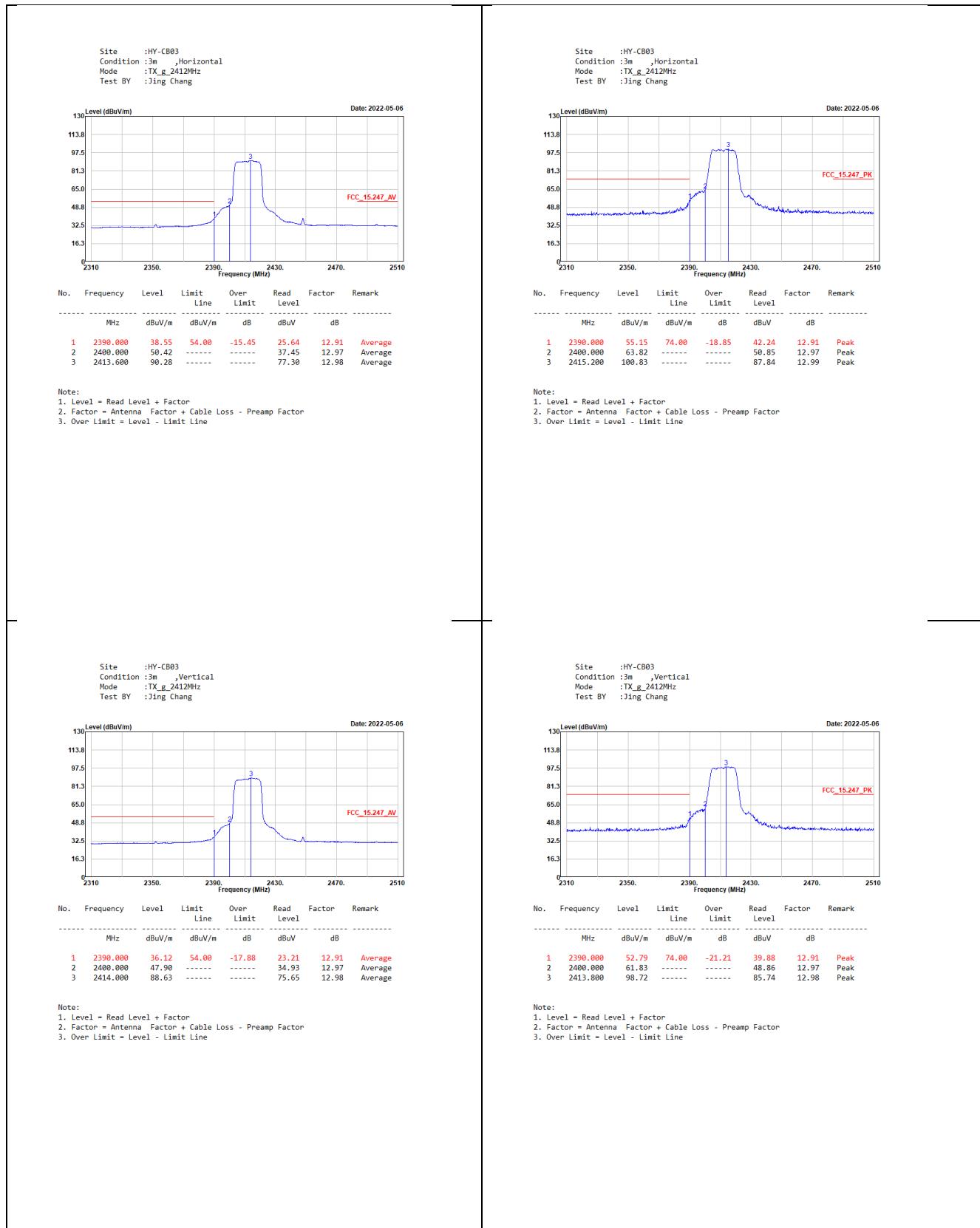
RBW = 1MHz.

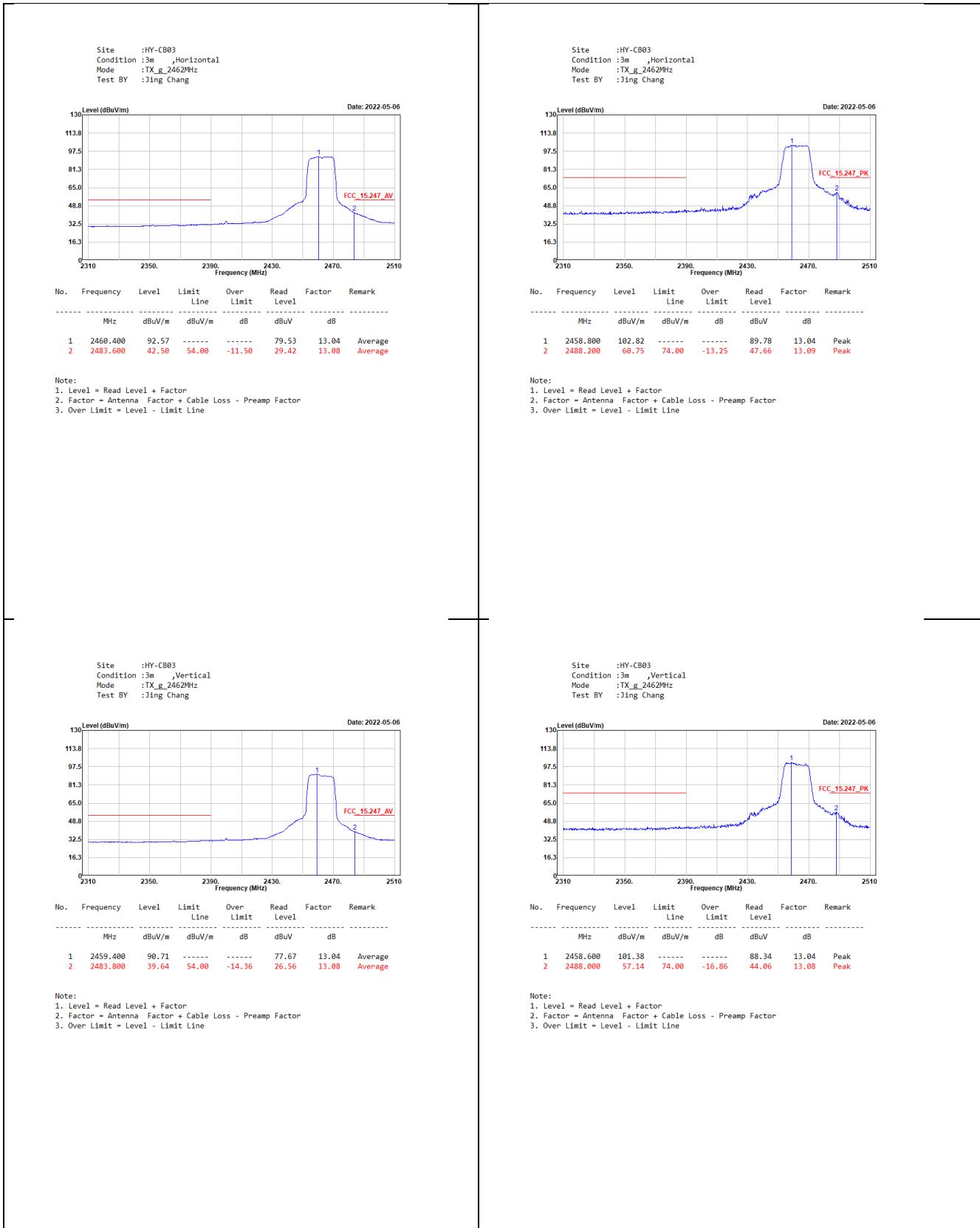
VBW = 10Hz, when duty cycle $\geq 98\%$

VBW $\geq 1/T$, when duty cycle $< 98\%$

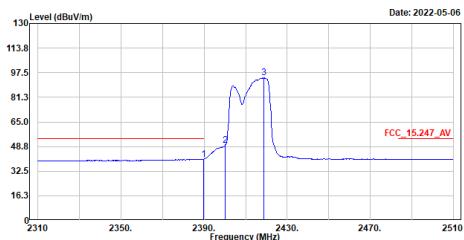

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

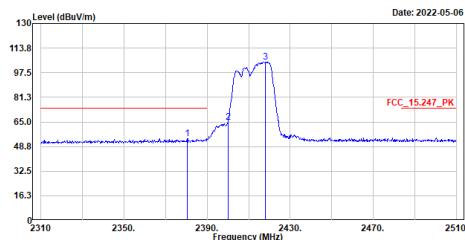

2.4GHz band	Duty Cycle (%)	T (ms)	1/T (Hz)	VBW (Hz)
802.11 b	99.20	12.4500	80	10
802.11 g	95.13	2.0500	488	500
802.11 ac20	96.88	4.9600	202	300
802.11 ac40	94.07	2.3800	420	500


Note: Duty Cycle Refer to Section 5.

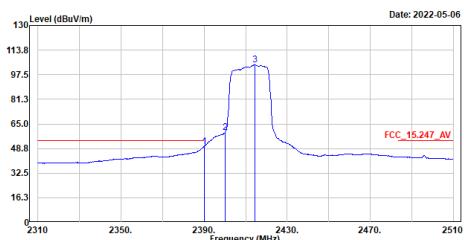

4.4. Test Result of Band Edge

Dipole SISO A

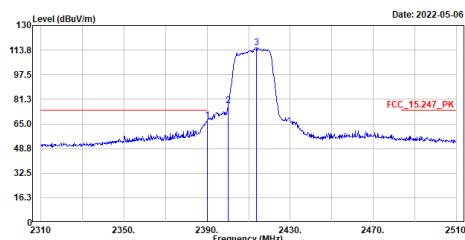



Dipole MIMO

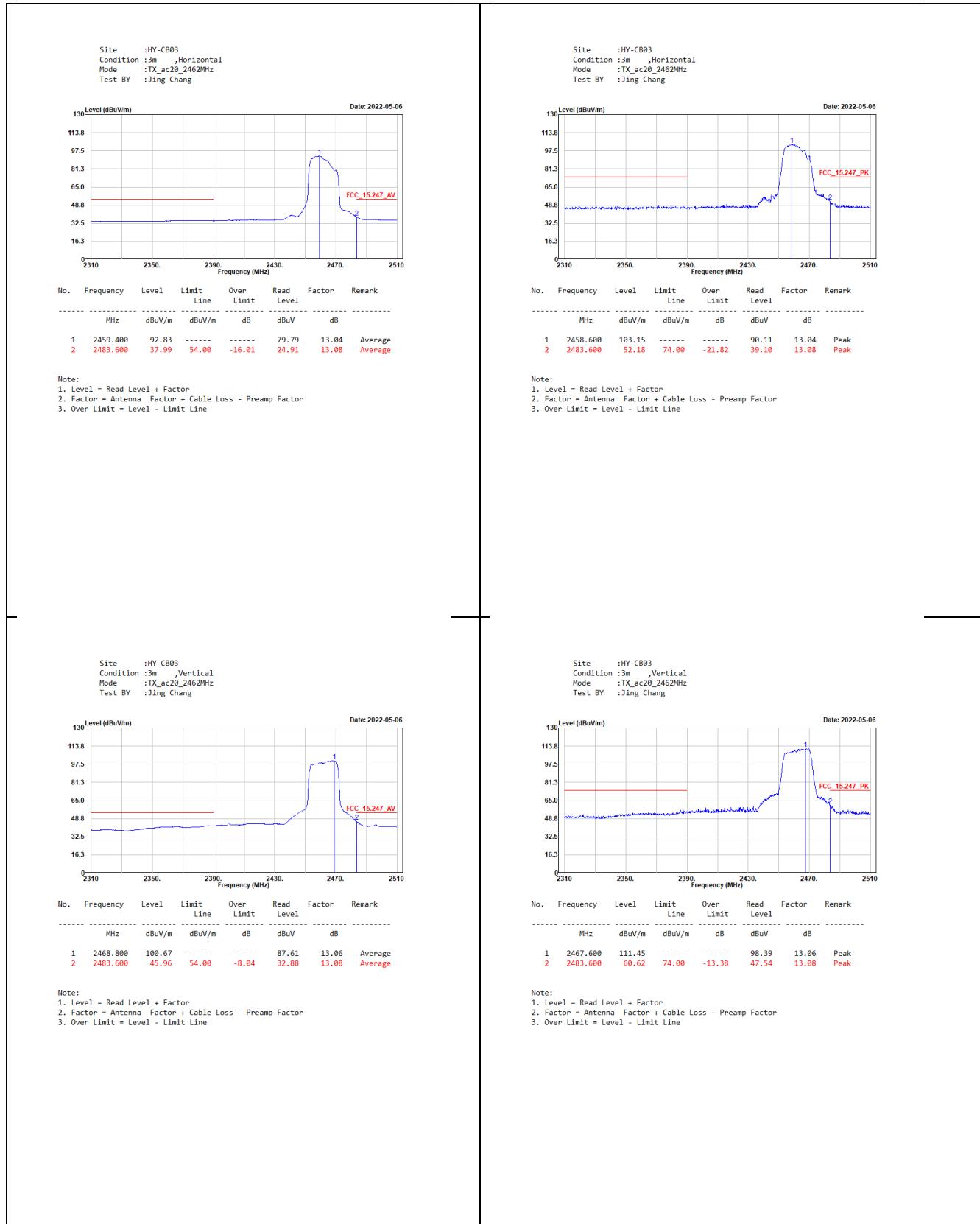
Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac20_2412MHz
 Test BY :Jing Chang


Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

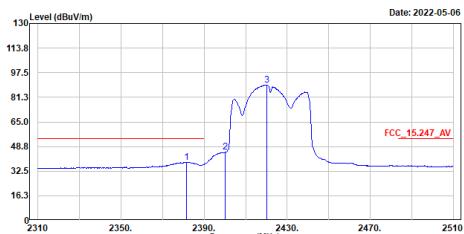
Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac20_2412MHz
 Test BY :Jing Chang


Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

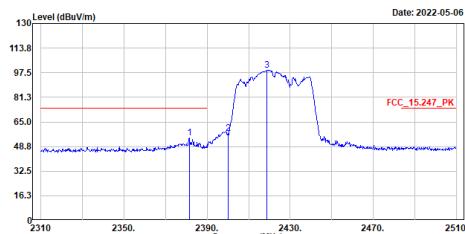
Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac20_2412MHz
 Test BY :Jing Chang



Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

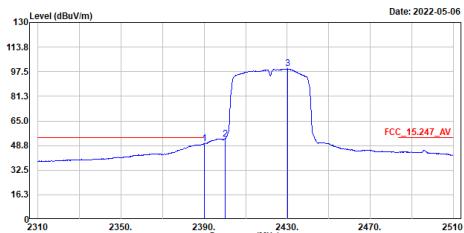

Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac20_2412MHz
 Test BY :Jing Chang

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

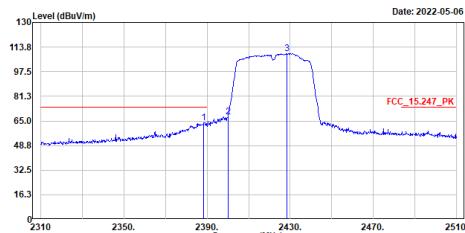
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2381.400	38.47	54.00	-15.53	25.59	12.88	Average
2	2400.000	45.11	-----	-----	32.14	12.97	Average
3	2420.200	89.38	-----	-----	76.38	13.00	Average

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2381.400	54.36	74.00	-19.64	41.48	12.88	Peak
2	2400.000	57.55	-----	-----	44.58	12.97	Peak
3	2418.800	99.18	-----	-----	86.18	13.00	Peak

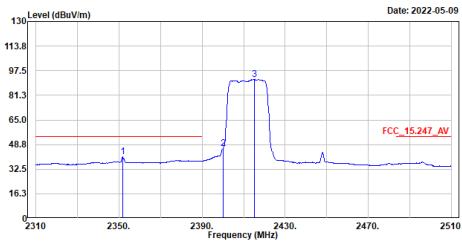
Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2380.000	49.96	54.00	-4.04	37.05	12.91	Average
2	2400.000	53.05	-----	-----	48.08	12.97	Average
3	2430.400	99.44	-----	-----	86.43	13.01	Average

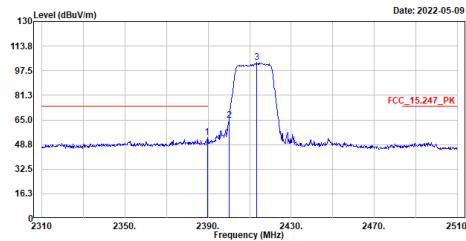
Note:
 1. Level = Read level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang


No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2380.400	63.70	74.00	-10.30	50.88	12.90	Peak
2	2400.000	67.48	-----	-----	54.52	12.96	Peak
3	2428.600	109.64	-----	-----	96.63	13.01	Peak

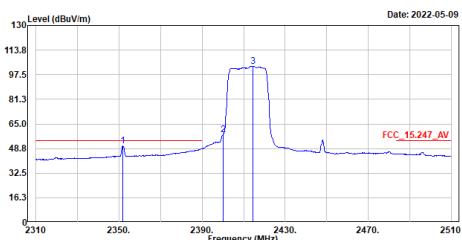
Note:
 1. Level = Read level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Panel SISO A


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac20_2412MHz
 Test BY :Jing Chang

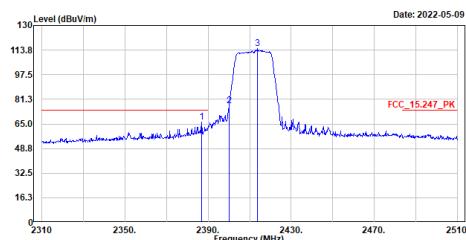
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2352.000	40.55	54.00	-13.45	27.83	12.72	Average
2	2400.000	46.02	-----	-----	33.05	12.97	Average
3	2415.200	91.72	-----	-----	78.73	12.99	Average

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

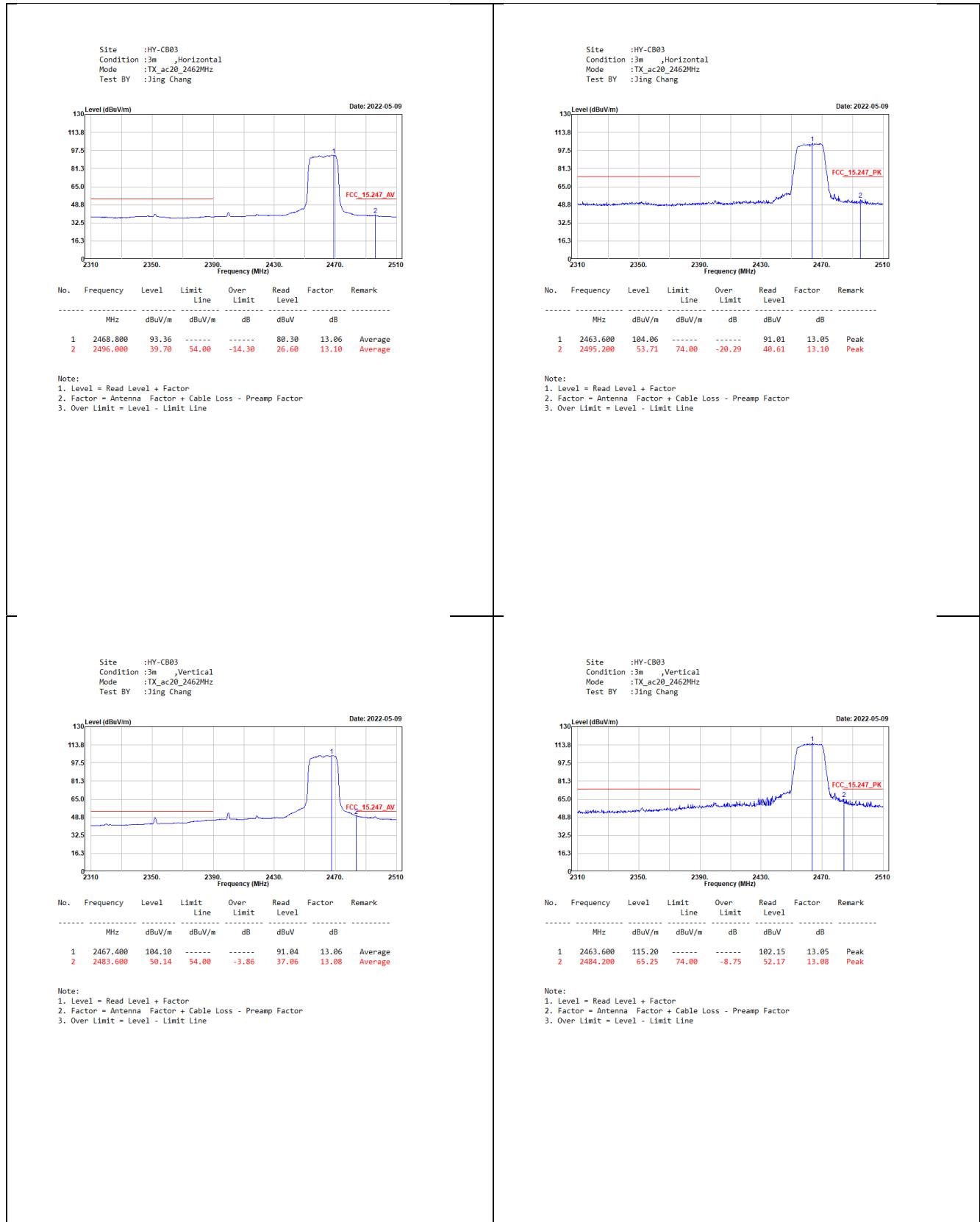

Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac20_2412MHz
 Test BY :Jing Chang

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2389.600	53.46	74.00	-20.54	48.55	12.91	Peak
2	2400.000	64.88	-----	-----	51.91	12.97	Peak
3	2413.400	103.00	-----	-----	90.02	12.98	Peak

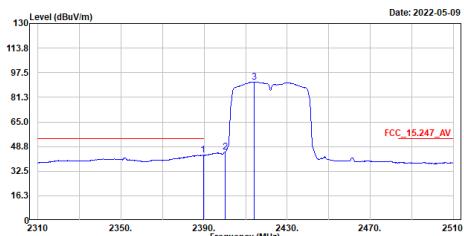
Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac20_2412MHz
 Test BY :Jing Chang

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2351.800	50.75	54.00	-3.25	38.03	12.72	Average
2	2400.000	57.86	-----	-----	44.89	12.97	Average
3	2414.400	103.06	-----	-----	90.08	12.98	Average


Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac20_2412MHz
 Test BY :Jing Chang



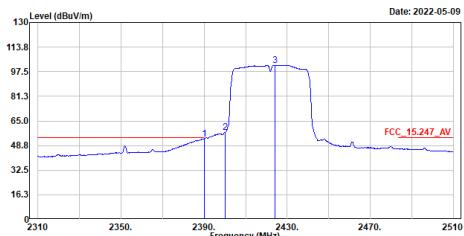
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2387.000	66.37	74.00	-7.63	53.47	12.90	Peak
2	2400.000	76.96	-----	-----	63.99	12.97	Peak
3	2413.600	114.59	-----	-----	101.61	12.98	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

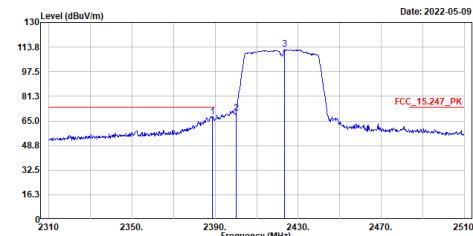
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2389.600	43.02	54.00	-10.98	30.11	12.91	Average
2	2400.000	45.02	-----	-----	32.05	12.97	Average
3	2414.200	91.42	-----	-----	78.44	12.98	Average

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

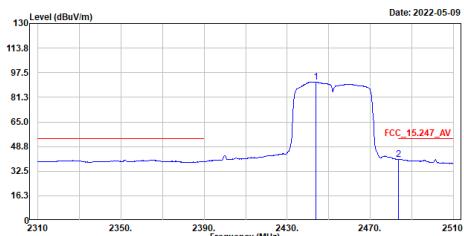
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2388.200	56.51	74.00	-17.49	43.61	12.90	Peak
2	2400.000	57.72	-----	-----	44.75	12.97	Peak
3	2414.600	101.52	-----	-----	88.54	12.98	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

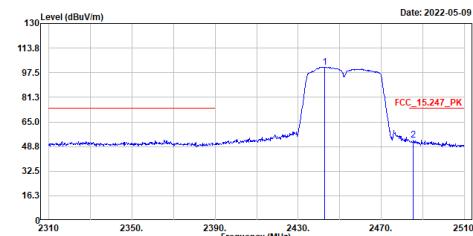
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2390.000	53.22	54.00	-0.78	40.31	12.91	Average
2	2400.000	57.34	-----	-----	44.37	12.97	Average
3	2424.000	101.74	-----	-----	88.74	13.00	Average

Note:
 1. Level = Read level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

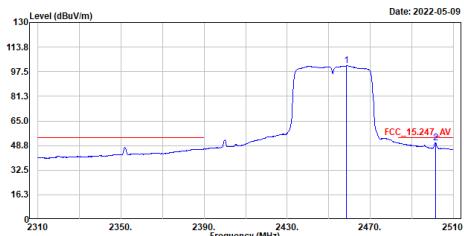
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2398.800	67.62	74.00	-6.38	54.71	12.91	Peak
2	2400.000	69.94	-----	-----	56.97	12.97	Peak
3	2423.400	112.21	-----	-----	99.21	13.00	Peak

Note:
 1. Level = Read level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac40_2452MHz
 Test BY :Jing Chang

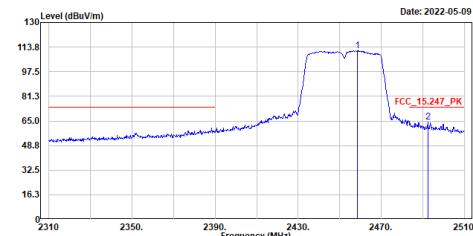
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2443.800	91.32	-----	-----	78.29	13.03	Average
2	2483.600	40.27	54.00	-13.73	27.19	13.08	Average

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac40_2452MHz
 Test BY :Jing Chang

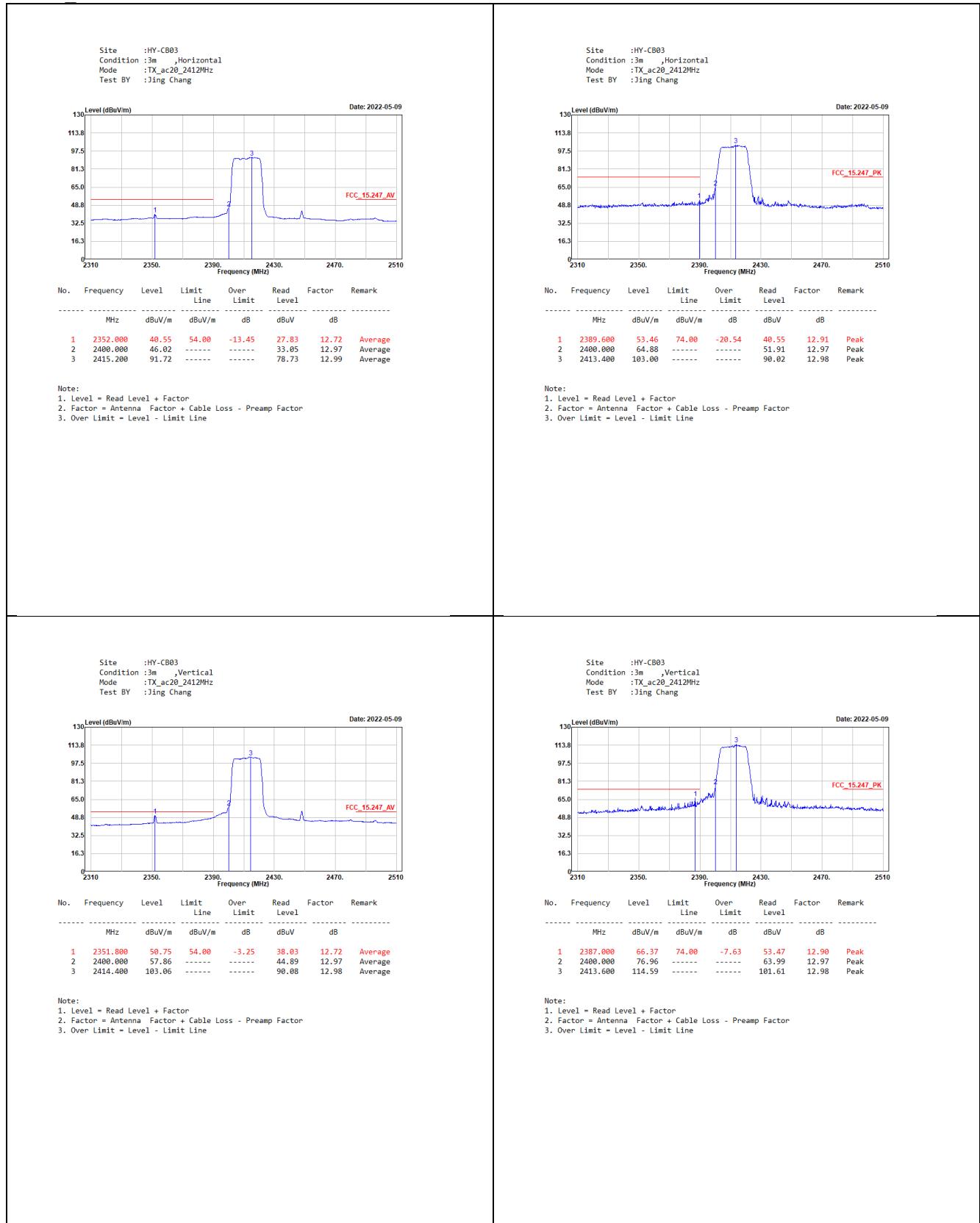
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2442.800	101.29	-----	-----	88.26	13.03	Peak
2	2485.400	53.08	74.00	-20.92	40.00	13.08	Peak

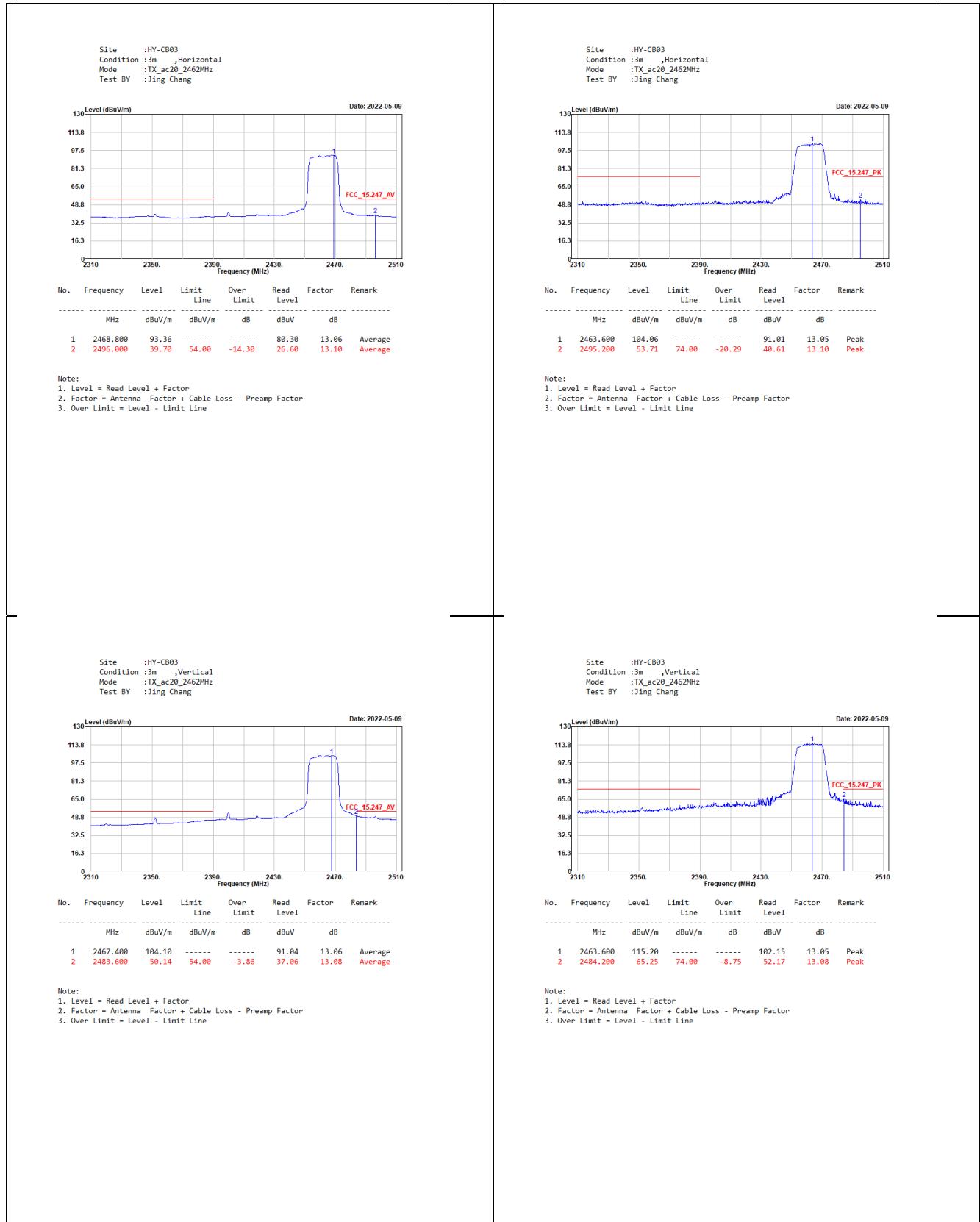
Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac40_2452MHz
 Test BY :Jing Chang

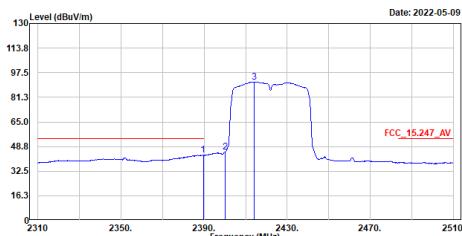
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2458.600	101.42	-----	-----	88.38	13.04	Average
2	2501.400	50.71	54.00	-3.29	37.60	13.11	Average

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

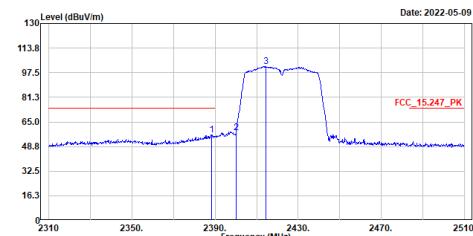

Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac40_2452MHz
 Test BY :Jing Chang



No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2458.400	111.56	-----	-----	98.52	13.04	Peak
2	2492.400	64.04	74.00	-9.96	50.95	13.09	Peak

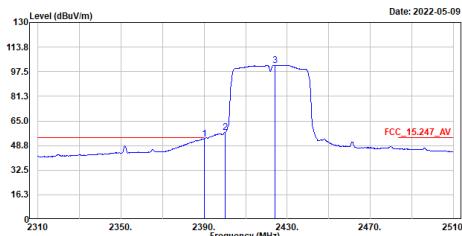

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Panel MIMO


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2389.600	43.02	54.00	-10.98	30.11	12.91	Average
2	2400.000	45.02	-----	-----	32.05	12.97	Average
3	2414.200	91.42	-----	-----	78.44	12.98	Average

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

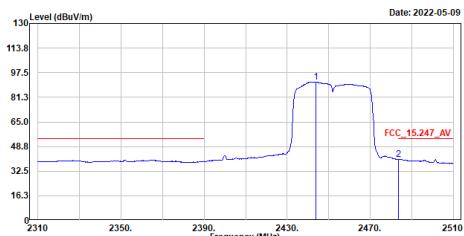
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2388.200	56.51	74.00	-17.49	43.61	12.90	Peak
2	2400.000	57.72	-----	-----	44.75	12.97	Peak
3	2414.600	101.52	-----	-----	88.54	12.98	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

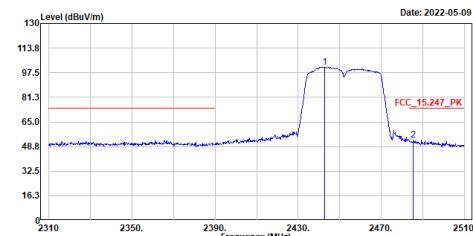
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2390.000	53.22	54.00	-0.78	40.31	12.91	Average
2	2400.000	57.34	-----	-----	44.37	12.97	Average
3	2424.000	101.74	-----	-----	88.74	13.00	Average

Note:
 1. Level = Read level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac40_2422MHz
 Test BY :Jing Chang

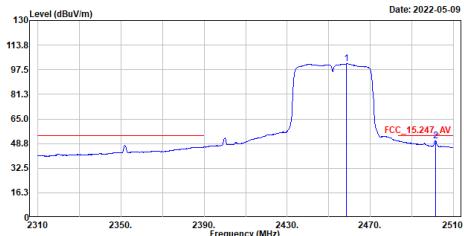
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2398.800	67.62	74.00	-6.38	54.71	12.91	Peak
2	2400.000	69.94	-----	-----	56.97	12.97	Peak
3	2423.400	112.21	-----	-----	99.21	13.00	Peak

Note:
 1. Level = Read level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac40_2452MHz
 Test BY :Jing Chang

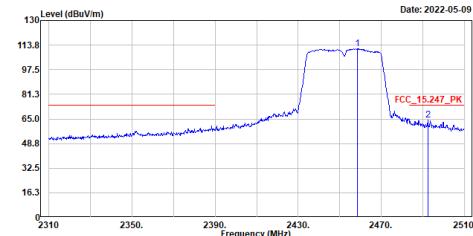
No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2443.800	91.32	-----	-----	78.29	13.03	Average
2	2483.600	40.27	54.00	-13.73	27.19	13.08	Average

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Horizontal
 Mode :TX_ac40_2452MHz
 Test BY :Jing Chang

No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2442.800	101.29	-----	-----	88.26	13.03	Peak
2	2485.400	53.08	74.00	-20.92	40.00	13.08	Peak

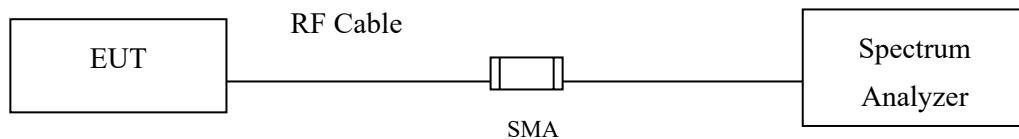
Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line


Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac40_2452MHz
 Test BY :Jing Chang

No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2458.600	101.42	-----	-----	88.38	13.04	Average
2	2501.400	50.71	54.00	-3.29	37.60	13.11	Average

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

Site :HY-CB03
 Condition :3m ,Vertical
 Mode :TX_ac40_2452MHz
 Test BY :Jing Chang



No.	Frequency	Level	Limit	Over	Read	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2458.400	111.56	-----	-----	98.52	13.04	Peak
2	2492.400	64.04	74.00	-9.96	50.95	13.09	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line

5. Duty Cycle

5.1. Test Setup

5.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to ANSI C63.10 2013 for compliance to FCC 47CFR 15.247 requirements.

5.3. Test Result of Duty Cycle

Product : Wireless module
Test Item : Duty Cycle

Duty Cycle Formula:

$$\text{Duty Cycle} = \text{Ton} / (\text{Ton} + \text{Toff})$$

$$\text{Duty Factor} = 10 \log (1/\text{Duty Cycle})$$

Results:

2.4GHz band	Ton (ms)	Ton + Toff (ms)	Duty Cycle (%)	Duty Factor (dB)
802.11b	12.4500	12.5500	99.20	0.03
802.11 g	2.0500	2.1550	95.13	0.22
802.11 ac20	4.9600	5.1200	96.88	0.14
802.11 ac40	2.3800	2.5300	94.07	0.27

6. EMI Reduction Method During Compliance Testing

No modification was made during testing.