

Certification Exhibit

FCC ID: SK9PMCR2 IC: 864G-PMCR2

FCC Rule Part: 15.247
IC Radio Standards Specification: RSS-210

ACS Report Number: 09-0245-15C

Manufacturer: Itron, Inc. Model: PMCR2

RF Exposure

Model: PMCR2 FCC ID: SK9PMCR2 IC: 864G-PMCR2

General Information:

Applicant: Itron Electricity Metering Inc.

ACS Project: 09-0245
FCC ID: SK9PMCR2
Device Category: Mobile

Environment: General Population/Uncontrolled Exposure

Exposure Conditions: Greater than 20 centimeters

Simultaneous Tx: Yes

Technical Information:

Radio	900 MHz LAN	2.4GHz Zigbee (Register PCB)	2.4GHz Zigbee (Cell Relay PCB) ¹	GPRS Modem Module FCC ID: N7NMC8790 IC:2417C-MC8790	
Antenna Type	Phantom Omni-directional	Stud Mount Omni-directional	Stud Mount Omni-directional	Mobile Low Profile Omni-directional	
Antenna Model	TRA9023	MMSO2300	MMSO2300	MLPVDB800/1900S	
Antenna Gain	3dBi	0dBi	0dBi	GSM850: 3dBi GSM1900: 4dBi	
Conducted Power	24.59dBm	15.16dBm	Note1	GSM850: 31.8dBm GSM1900: 28.7dBm	
Maximum EIRP	0.574W	0.033W	Note1	GSM850: 3.020W GSM1900: 1.862W	
Maximum ERP	0.350W	0.020W	Note1	GSM850: 1.840W GSM1900: 1.135W	

Note 1: The Cell Relay 2.4GHz low power Zigbee contribution to the overall MPE calculation is negligible and therefore will not be included in the power density calculations below.

MPE Calculation:

Power Density

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Source Based Time Averaging of GPRS/EDGE Modem

The GPRS Modem is a Class 12 modem with a 50% source-based time averaged duty cycle. The measured level was reduced by a factor 3dB to account for the duty cycle of the Modem. The duty cycle correction factor is determined using the formula: 10log (0.50) = 3dB.

Corrected Level 850 = 31.8 - 3.0 = 28.8 dBmCorrected Level 1900 = 28.7 - 3.0 = 25.7 dBm Model: PMCR2 FCC ID: SK9PMCR2 IC: 864G-PMCR2

MPE Calculator for Mobile Equipment Limits for General Population/Uncontrolled Exposure*									
Transmit Frequency	Radio Power	Power Density Limit	Radio Power	Antenna Gain	Antenna Gain (mW	Distance	Power Density		
(MHz)	(dBm)	(mW/Cm2)	(mW)	(dBi)	eq.)	(cm)	(mW/cm^2)		
902.25	24.59	0.60	287.74	3	1.995	20	0.114		
2405	15.16	1.00	32.81	0	1.000	20	0.007		
824	28.8	0.55	758.58	3	1.995	20	0.301		
1850	25.7	1.00	371.54	4	2.512	20	0.186		

<u>Summation of Power Densities – Simultaneous Transmissions</u>

This device contains multiple transmitters which can operate simultaneously and therefore the maximum RF exposure is determined by the summation of power densities.

The maximum power density as calculated by a summation of power densities for each simultaneous transmission combination as follows:

GPRS Modem Operating in the 800MHz Cellular Band:

900MHz LAN: 0.114 (mW/cm^2) 2.4GHz Ziabee: 0.007 (mW/cm^2) GSM 850 (GPRS): 0.301 (mW/cm^2) TOTAL: 0.422 (mW/cm²)

GPRS Modem Operating in the 1900MHz PCS Band:

900MHz LAN: 0.114 (mW/cm^2) 0.007 (mW/cm^2) 2.4GHz Zigbee: GSM 1900 (GPRS): 0.186 (mW/cm^2) TOTAL: 0.307 (mW/cm²)

Installation Guidelines:

The installation manual shall contain text similar to the following advising how to install the equipment to maintain compliance with the FCC RF exposure requirements:

"RF Exposure (Intentional Radiators Only)

In accordance with FCC requirements of human exposure to radiofrequency fields, the radiating element shall be installed such that a minimum separation distance of 20cm is maintained from the general population."

<u>Conclusion:</u>
This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.