

Excellence in Compliance Testing

Certification Test Report

**FCC ID: SK9PMCR1
IC: 864G-PMCR1**

**FCC Rule Part: 15.249
IC Radio Standards Specification: RSS-210**

ACS Report Number: 08-0399-15C-2400-DXX

Manufacturer: Itron, Inc.
Model: Cell Relay Pole, Ethernet

Test Begin Date: October 6, 2008
Test End Date: October 7, 2008

Report Issue Date: October 20, 2008

FOR THE SCOPE OF ACCREDITATION UNDER LAB Code 200612-0

This report is not be used to claim certification, approval, or endorsement by NVLAP, NIST or any government agency.

Prepared by: _____
Jeff Woods
Wireless Certifications Engineer
ACS, Inc.

Reviewed by: _____
Kirby Munroe
Director, Wireless Certifications
ACS, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 16 pages

Table of Contents

1.0 General	3
1.1 Purpose	3
1.2 Product Description	3
1.2.1 General	3
1.2.2 Intended Use	3
1.3 Test Methodology and Considerations	3
2.0 Test Facilities	4
2.1 Location	4
2.2 Laboratory Accreditations/Recognitions/Certifications	4
2.3 Radiated Emissions Test Site Description	5
2.3.1 Semi-Anechoic Chamber Test Site	5
2.3.2 Open Area Tests Site (OATS)	6
2.4 Conducted Emissions Test Site Description	7
3.0 Applicable Standards and References	7
4.0 List of Test Equipment	8
5.0 Support Equipment	9
6.0 EUT Setup Block Diagrams	9
7.0 Summary of Tests	10
7.1 Antenna Requirement – FCC: Section 15.203	10
7.2 Power Line Conducted Emissions – FCC: Section 15.207 IC: RSS-Gen 7.2.2	10
7.2.1 Test Methodology	10
7.2.2 Test Results	10
7.3 Radiated Emissions – FCC: Section 15.109(Unintentional Radiation) IC: RSS-210 2.6	11
7.3.1 Test Methodology	11
7.3.2 Test Results	11
7.4 Occupied Bandwidth – FCC: Section 15.215 IC: RSS-GEN 4.6.1	12
7.4.1 Test Methodology	12
7.4.2 Test Results	12
7.5 Fundamental Field Strength – FCC: Section 15.249(a) IC: RSS-210 A2.9(a)	14
7.5.1 Test Methodology	14
7.5.2 Duty Cycle Correction	14
7.5.3 Test Results	14
7.5.4 Sample Calculation	14
7.6 Band-Edge Compliance and Spurious Emissions – FCC: Section 15.249 IC: RSS-210 A2.9	15
7.6.1 Band-Edge Compliance – FCC: Section 15.249(d) IC: RSS-210 A2.9(b)	15
7.6.1.1 Test Methodology	15
7.6.1.2 Test Results	15
7.6.2 Radiated Spurious Emissions – FCC: Section 15.249(a), (c) IC:RSS-210 A2.9(a)	16
7.6.2.1 Test Methodology	16
7.6.2.2 Test Results	16
8.0 CONCLUSION	16

Additional Exhibits Included In Filing

Internal Photographs

Schematics

External Photographs

Manual

Test Setup Photographs

Theory of Operation

Label Information

System Block Diagram

1.0 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15, Subpart C of the FCC's Code of Federal Regulations and IC standard RSS-210, Issue 7, June 2007.

1.2 Product Description

1.2.1 General

This product is a pole mountable version of Itron's OpenWay Cell Relay product with an Ethernet only backhaul. The Cell Relay is an ANSI C12.22 relay that routes meter data traffic from a proprietary 900 MHz RFLAN mesh network to a Collection Engine server via a wide area network IP backhaul. The Cell Relay performs C12.22 aptile and routing translations on the data it is routing. The Cell Relay contains two short range Zigbee radios that are used for wireless device configuration.

Manufacturer Information:

Itron, Inc.
313 North Highway 11
West Union SC 29696

Test Sample Serial Number(s):

PMCRFCC16754939

Test Sample Condition:

Test sample was in good working condition with no defects.

Detailed photographs of the EUT are filed separately with this filing.

1.2.2 Intended Use

The Cell Relay is an ANSI C12.22 relay that routes meter data traffic from a proprietary 900 MHz RFLAN mesh network to a Collection Engine server via a wide area network IP backhaul. The Cell Relay contains two short range Zigbee radios that are used for wireless device configuration.

1.3 Test Methodology and Considerations

The EUT was tested in a configuration typical of normal use.

This device is considered a composite device by definition. The 900 MHz LAN and the 2.4 GHz Zigbee radios on the register board operate under CFR 47 Part 15.247 and IC RSS-210. The 2.4 GHz Zigbee radio located on the Cell Relay Core board operates under CFR 47 Part 15.249 and IC RSS-210. This report addresses Part 15.249 and RSS 210 for the 2.4 GHz Zigbee radio located on the Cell Relay Core board only. Separate reports will be issued for Part 15.247 and RSS 210 in reference to the 900 MHz LAN and 2.4GHz Zigbee radios located on the register board.

See test setup photographs for additional information.

2.0 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

Advanced Compliance Solutions
5015 B.U. Bowman Drive
Buford, GA 30518
Phone: (770) 831-8048
Fax: (770) 831-8598

2.2 Laboratory Accreditations/Recognitions/Certifications

The Semi-Anechoic Chamber Test Site, Open Area Test Site (OATS) and Conducted Emissions Site have been fully described, submitted to, and accepted by the FCC, Industry Canada and the Japanese Voluntary Control Council for Interference by information technology equipment. In addition, ACS is compliant to ISO 17025 as certified by the National Institute of Standards and Technology under their National Voluntary Laboratory Accreditation Program. The following certification numbers have been issued in recognition of these accreditations and certifications:

FCC Registration Number: 89450

Industry Canada Lab Code: IC 4175

VCCI Member Number: 1831

- VCCI OATS Registration Number R-1526
- VCCI Conducted Emissions Site Registration Number: C-1608

NVLAP Lab Code: 200612-0

2.3 Radiated Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

The Semi-Anechoic Chamber Test Site consists of a 20' x 30' x 18' shielded enclosure. The chamber is lined with Toyo Ferrite Grid Absorber, model number FFG-1000. The ferrite tile grid is 101 x 101 x 19mm thick and weighs approximately 550 grams. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber.

The turntable is 150cm in diameter and is located 160cm from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is all steel, flush mounted table installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Behind the turntable is a 3' x 6' x 4' deep shielded pit used for support equipment if necessary. The pit is equipped with 1 - 4" PVC chases from the turntable to the pit that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit.

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3-1 below:

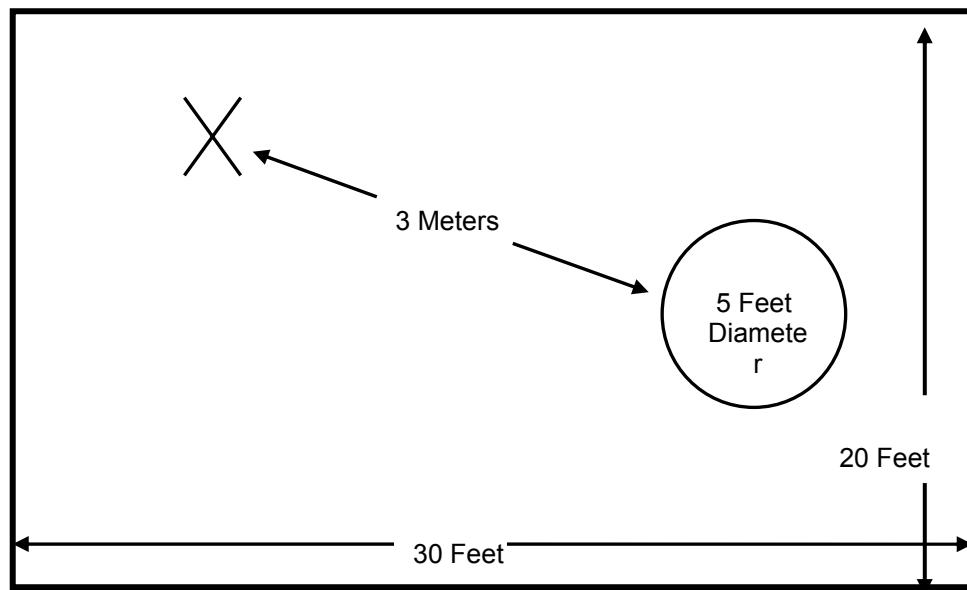


Figure 2.3-1: Semi-Anechoic Chamber Test Site

2.3.2 Open Area Tests Site (OATS)

The open area test site consists of a 40' x 66' concrete pad covered with a perforated electro-plated galvanized sheet metal. The perforations in the sheet metal are 1/8" holes that are staggered every 3/16". The individual sheets are placed to overlap each other by 1/4" and are riveted together to provide a continuous seam. Rivets are spaced every 3" in a 3 x 20 meter perimeter around the antenna mast and EUT area. Rivets in the remaining area are spaced as necessary to properly secure the ground plane and maintain the electrical continuity.

The entire ground plane extends 12' beyond the turntable edge and 16' beyond the antenna mast when set to a 10 meter measurement distance. The ground plane is grounded via 4 - 8' copper ground rods, each installed at a corner of the ground plane and bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is an all aluminum 10' flush mounted table installed in an all aluminum frame. The table is remotely operated from inside the control room located 40' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Adjacent to the turntable is a 7' x 7' square and 4' deep concrete pit used for support equipment if necessary. The pit is equipped with 5 - 4" PVC chases from the pit to the control room that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit. The pit is covered with 2 sheets of 1/4" diamond style re-enforced steel sheets. The sheets are painted to match the perforated steel ground plane; however the underside edges have been masked off to maintain the electrical continuity of the ground plane. All reflecting objects are located outside of the ellipse defined in ANSI C63.4.

A diagram of the Open Area Test Site is shown in Figure 2.3-2 below:

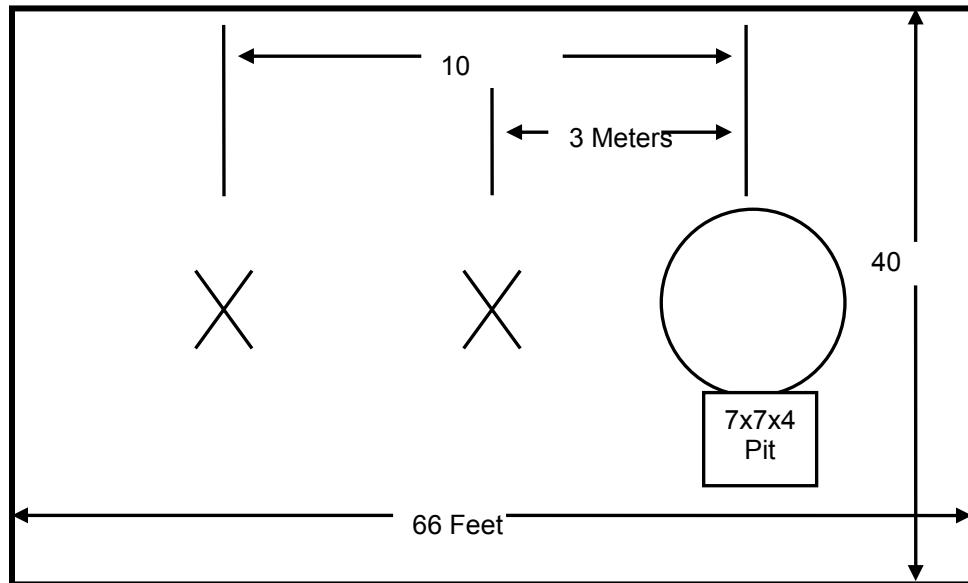


Figure 2.3-2: Open Area Test Site

2.4 Conducted Emissions Test Site Description

The AC mains conducted EMI site is located in the main EMC lab. It consists of an 8' x 8' solid aluminum horizontal group reference plane (GRP) bonded every 3" to an 8' X 8' vertical ground plane.

The site is of sufficient size to test table top and floor standing equipment in accordance with section 6.1.4 of ANSI C63.4.

A diagram of the room is shown below in figure 4.1.3-1:

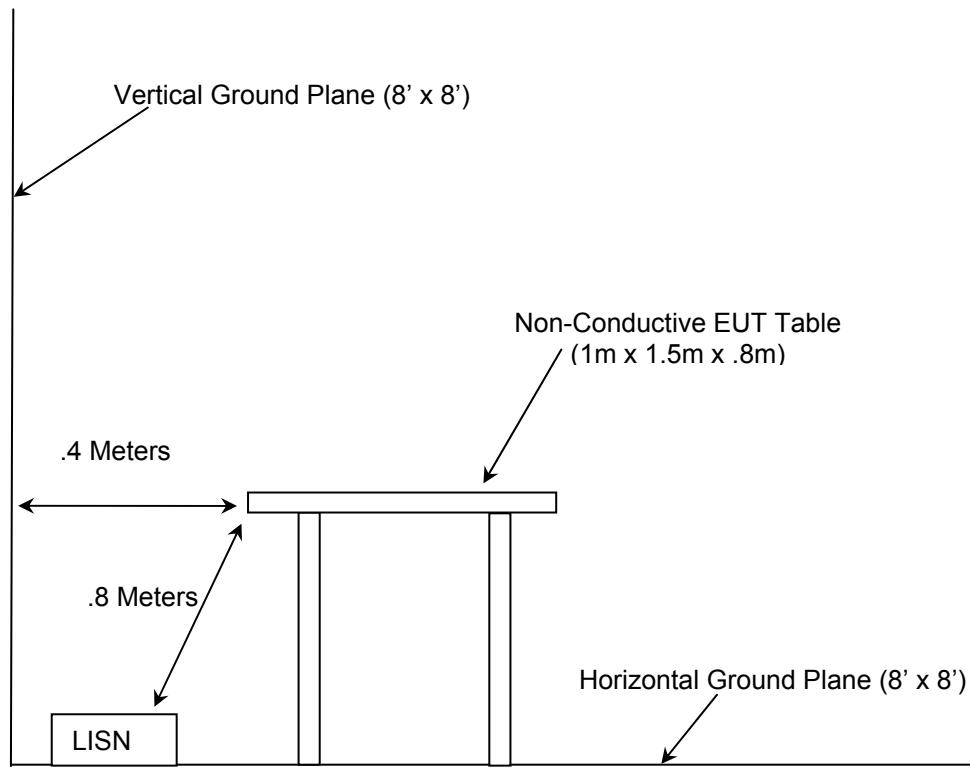


Figure 2.4-1: AC Mains Conducted EMI Site

3.0 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ❖ ANSI C63.4-2003: Method of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the 9KHz to 40GHz
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2008
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2008
- ❖ Industry Canada Radio Standards Specification: RSS-210 - Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, Issue 7 June 2007
- ❖ Industry Canada Radio Standards Specification: RSS-GEN – General Requirements and Information for the Certification of Radiocommunication Equipment, Issue2, June 2007.

4.0 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment

Equipment Calibration Information					
ACS#	Mfg.	Eq. type	Model	S/N	Cal. Due
3	Rohde & Schwarz	ESMI-Display	839379/011	Spectrum Analyzer	10/26/08
4	Rohde & Schwarz	ESMI-Receiver	833827/003	Spectrum Analyzer	10/26/08
22	Agilent	8449B	3008A00526	Pre-Amplifier	10/25/08
30	Spectrum Technologies	DRH-0118	970102	Antenna	05/07/09
291	Florida RF Cables	SMRE-200W-12.0-SMRE	NA	Cables	11/21/08 (See Note1)
292	Florida RF Cables	SMR-290AW-480.0-SMR	NA	Cables	11/21/08 (See Note1)
422	Florida RF Cables	SMS-200AW-72.0-SMR	NA	Cables	02/25/09 (See Note1)
282	Microwave Circuits	H2G020G4	74541	Filter	02/25/09 (See Note1)
73	TEC	PA 102	44927	Pre-Amplifier	12/19/08
338	Hewlett Packard	8449B	3008A01111	Amplifier	10/24/08
25	Chase	Antennas	CBL6111	1043	08/22/09
431	Solar Electronics	9408-50-R-25-N-Lisn	084701	LISN	6/19/09
324	ACS	Belden	8214	Cables	7/28/09
168	Hewlett Packard	Attenuators	11947A	44829	02/18/09 (See Note2)
283	Rohde & Schwarz	FSP40	1000033	Spectrum Analyzer	11/09/08

Note1: Items characterized on an annual cycle. The date shown indicates the next characterization due date.

Note2: Items verified on an annual cycle. The date shown indicates the next verification due date.

5.0 SUPPORT EQUIPMENT

Table 5-1: Support Equipment

Item	Equipment Type	Manufacturer	Model Number	Serial Number	FCC ID
1	EUT	Itron	Cell Relay Pole, Ethernet	PMCRFCC16754939	SK9PMCR1

6.0 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAMS

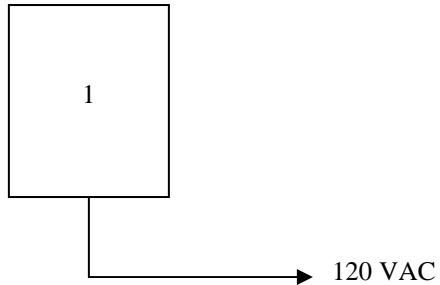


Figure 6.0-1: EUT Test Setup – Part 15.249

*See Test Setup photographs for additional detail.

7.0 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC: Section 15.203

The Cell Relay Pole, Ethernet utilizes an Omni-directional Antenna for the 2.4GHz portion of the radio. The antenna utilizes a bulkhead stud mount and hardware for secure permanent installation thus satisfying 15.203.

7.2 Power Line Conducted Emissions – FCC: Section 15.207 IC: RSS-Gen 7.2.2

7.2.1 Test Methodology

ANSI C63.4 sections 6 and 7 were the guiding documents for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss

Margin = Applicable Limit - Corrected Reading

7.2.2 Test Results

Results of the test are shown below in and Table 7.2-1.

Table 7.2-1: Conducted EMI Results

Frequency (MHz)	Uncorrected Reading (dBuV)		Total Correction Factor (dB)	Corrected Level (dBuV)		Limit (dBuV)		Margin (dB)		Line
	Quasi-Peak	Average		Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average	
Line 1										
0.18	30.7	29.5	9.82	40.52	39.32	64.49	54.49	24.0	15.2	GND
0.24	27.1	23.3	9.81	36.91	33.11	62.10	52.10	25.2	19.0	GND
0.44	31.8	22.7	9.90	41.70	32.60	57.06	47.06	15.4	14.5	GND
0.56	30.5	21.9	9.90	40.40	31.80	56.00	46.00	15.6	14.2	GND
1.46	25.7	21.9	9.90	35.60	31.80	56.00	46.00	20.4	14.2	GND
2.13	17.5	9.2	9.90	27.40	19.10	56.00	46.00	28.6	26.9	GND
Line 2										
0.18	37.5	29.3	9.82	47.32	39.12	64.49	54.49	17.2	15.4	GND
0.24	26.7	23.1	9.81	36.51	32.91	62.10	52.10	25.6	19.2	GND
0.44	31.5	22.8	9.90	41.40	32.70	57.06	47.06	15.7	14.4	GND
0.54	29.3	20.7	9.90	39.20	30.60	56.00	46.00	16.8	15.4	GND
0.67	27.4	20.2	9.90	37.30	30.10	56.00	46.00	18.7	15.9	GND
1.46	25	21.5	9.90	34.90	31.40	56.00	46.00	21.1	14.6	GND

7.3 Radiated Emissions – FCC: Section 15.109(Unintentional Radiation) IC: RSS-210 2.6

7.3.1 Test Methodology

Radiated emissions tests were performed over the frequency range of 30MHz to 12.5GHz. Measurements of the radiated field strength were made at a distance of 3m from the boundary of the equipment under test (EUT) and the receiving antenna. The antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000 MHz a Quasi-peak detector was enabled and measurements were taken with the Spectrum Analyzer's resolution bandwidth set to 120 KHz. For frequencies above 1000MHz, average measurements were made using an average detector and peak detector with RBW of 1 MHz.

7.3.2 Test Results

Results of the test are given in Table 7.3-1 below:

Table 7.3-1 – Radiated Emissions (Unintentional)

Frequency (MHz)	Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
30	-----	25.37	V	-8.20	-----	17.17	-----	40.0	-----	22.83
77.42	-----	35.19	V	-19.06	-----	16.13	-----	40.0	-----	23.87
117.3	-----	33.26	V	-12.56	-----	20.70	-----	43.5	-----	22.80
164.72	-----	37.25	V	-14.38	-----	22.87	-----	43.5	-----	20.63
232.62	-----	37.63	H	-14.36	-----	23.27	-----	46.0	-----	22.73
243.4	-----	36.69	H	-13.39	-----	23.30	-----	46.0	-----	22.70
249.86	-----	36.24	H	-12.81	-----	23.43	-----	46.0	-----	22.57
591.52	-----	28.80	H	-4.48	-----	24.32	-----	46.0	-----	21.68
596.91	-----	23.64	V	-3.27	-----	20.37	-----	46.0	-----	25.63
931.02	-----	20.57	H	1.54	-----	22.11	-----	46.0	-----	23.89

* Note: All emissions above 931.02MHz were not detected above the noise floor of the measurement equipment and therefore attenuated below the permissible limit.

7.4 Occupied Bandwidth – FCC: Section 15.215 IC: RSS-GEN 4.6.1

7.4.1 Test Methodology

The spectrum analyzer span was set to 2 to 3 times the estimated bandwidth of the emission. The RBW was to $\geq 1\%$ of the estimated emission bandwidth. The trace was set to max hold with a peak detector active. Bandwidth determined is the 99% bandwidth (OBW) for FCC and IC compliance. The 99% bandwidth is considered worst case when compared to the 20 dB bandwidth required in FCC Part 15.215.

7.4.2 Test Results

The 99% OBW was determined to be 2430 kHz. The frequency band designated under Part 15.249 is 2400-2483.5MHz, therefore the 99% OBW is contained within the frequency band designated under this rule part. Results are shown below in Table 7.4.2-1 and Figures 7.6.2-1 through 7.6.2-3.

Table 7.4.2-1

Frequency (MHz)	99% OBW (kHz)
2405	2430
2440	2410
2475	2410

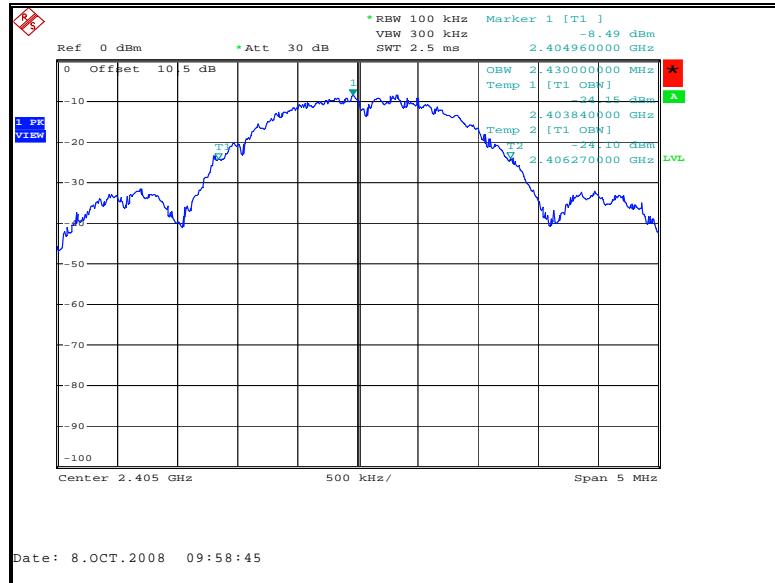


Figure 7.6.2-1: 99%OBW Low Channel

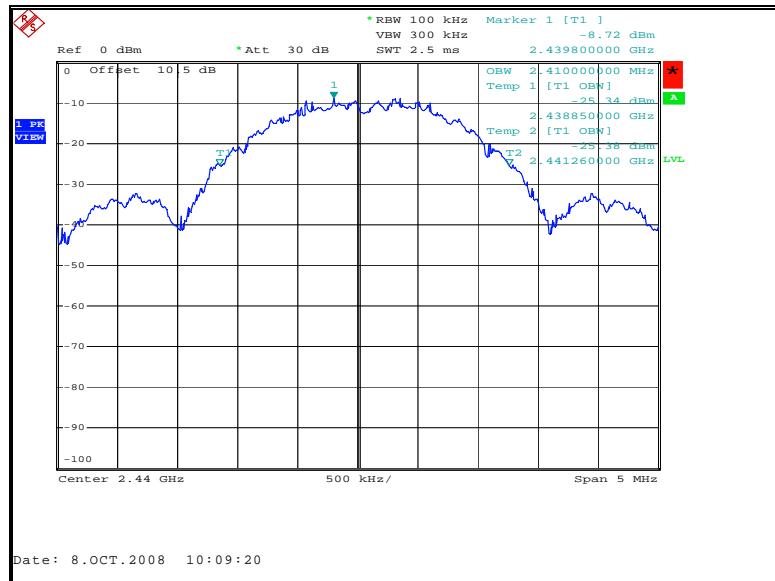


Figure 7.6.2-2: 99%OBW Mid Channel

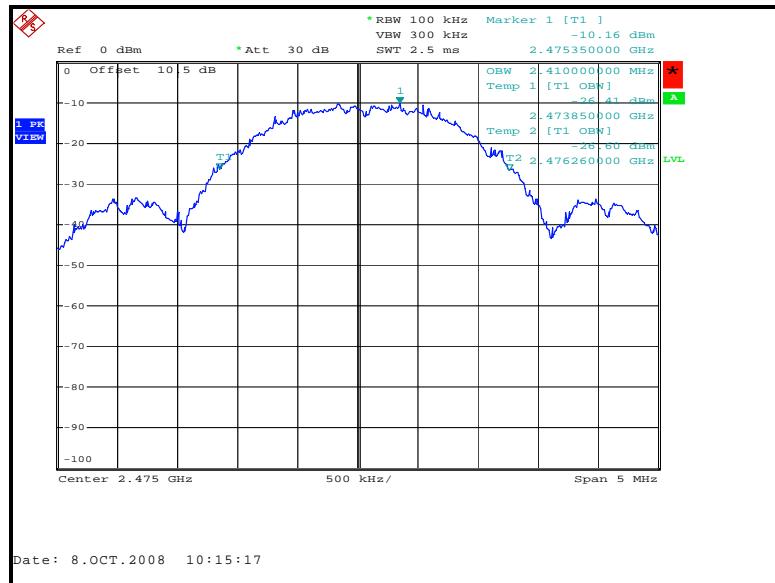


Figure 7.6.2-3: 99%OBW High Channel

7.5 Fundamental Field Strength – FCC: Section 15.249(a) IC: RSS-210 A2.9(a)

7.5.1 Test Methodology

Radiated emissions tests were made on the 3 channels in the 2400MHz to 2483.5MHz frequency range, the low channel being 2405 MHz, the middle channel being 2440 MHz, and the high channel being 2475 MHz.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. Peak measurements were made using peak detector with resolution bandwidth (RBW) of 1MHz and a video bandwidth (VBW) of 3MHz.

7.5.2 Duty Cycle Correction

For average radiated measurements, the measured level was reduced by a factor 11.37dB to account for the duty cycle of the EUT. The duty cycle was determined to be 27% or 27ms within a 100ms period. The duty cycle correction factor is determined using the formula: $20\log (0.27) = 11.37\text{dB}$. Additional justification of the duty cycle can be found in the Theory of Operation supplied with this filing.

7.5.3 Test Results

Results are shown below in table 7.4.2-1 below:

Table 7.4.2-1: Fundamental Field Strength

Frequency (MHz)	Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel										
2405	96.22	96.22	H	-0.89	95.33	83.96	114.0	94.0	18.65	10.02
2405	89.99	89.99	V	-1.07	88.92	77.55	114.0	94.0	25.06	16.43
Mid Channel										
2440	95.82	95.82	H	-0.71	95.11	83.73	114.0	94.0	18.87	10.25
2440	87.18	87.18	V	-0.90	86.28	74.91	114.0	94.0	27.70	19.07
High Channel										
2475	93.34	93.34	H	-0.54	92.80	81.43	114.0	94.0	21.18	12.55
2475	83.49	83.49	V	-0.73	82.76	71.38	114.0	94.0	31.22	22.60

7.5.4 Sample Calculation:

$$R_C = R_U + CF_T$$

Where:

CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

R_U = Uncorrected Reading

R_C = Corrected Level

AF = Antenna Factor

CA = Cable Attenuation

AG = Amplifier Gain

DC = Duty Cycle Correction Factor

Example Calculation

PEAK:

Corrected Level: $96.22 - 0.89 = 95.33\text{dBuV}$

Margin: $114\text{dBuV} - 95.33\text{dBuV} = 18.65\text{dB}$

AVERAGE:

Corrected Level: $96.22 - 0.89 - 11.27 = 83.96\text{dBuV}$

Margin: $94\text{dBuV} - 83.96\text{dBuV} = 10.02\text{dB}$

7.6 Band-Edge Compliance and Spurious Emissions – FCC: Section 15.249 IC: RSS-210 A2.9

7.6.1 Band-Edge Compliance – FCC: Section 15.249(d) IC: RSS-210 A2.9(b)

7.6.1.1 Test Methodology

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

The EUT was investigated at the low and high channels of operation to determine band-edge compliance. Band-edge compliance for the lower and upper band-edge was determined using the radiated mark-delta method as outlined in FCC DA 00-705. The radiated field strength of the fundamental emission was first determined and then the mark-delta method was used to determine the field strength of the band-edge emissions as compared to the emission limits of 15.209.

7.6.1.2 Test Results

Band-edge compliance is displayed in Tables 7.6.1.2-1 to 7.6.1.2-2 and Figures 7.6.1.2-1 – 7.6.1.2-2.

Table 7.6.1.2-1: Lower Band-edge Marker Delta Method

Frequency (MHz)	Uncorrected Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Fundamental Level (dBuV/m)		Marker- Delta (dB)	Band-Edge Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg		pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
2405	96.22	96.22	H	-0.89	95.33	83.96	40.51	54.82	43.45	74.0	54.0	19.18	10.55

Table 7.6.1.2-2: Upper Band-edge Marker Delta Method

Frequency (MHz)	Uncorrected Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Fundamental Level (dBuV/m)		Marker- Delta (dB)	Band-Edge Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg		pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
2475	93.34	93.34	H	-0.54	92.80	81.43	43.45	49.35	37.98	74.0	54.0	24.65	16.02

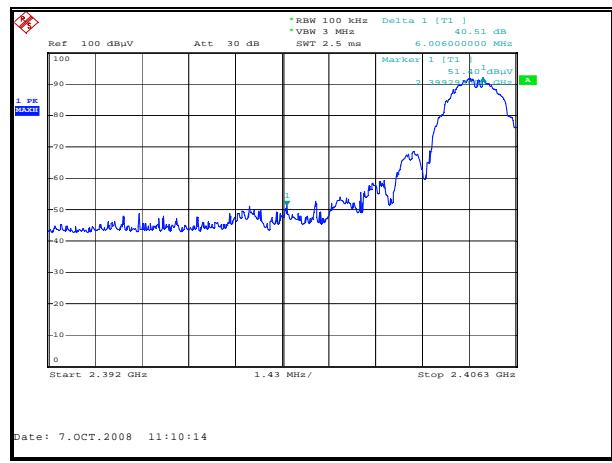


Figure 7.6.1.2-1 Lower Band-edge

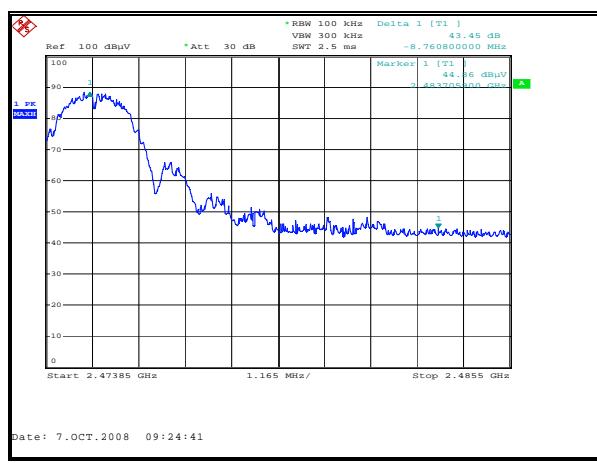


Figure 7.6.1.2-2 Upper Band-edge

7.6.2 Radiated Spurious Emissions – FCC: Section 15.249(a), (c) IC:RSS-210 A2.9(a)**7.6.2.1 Test Methodology**

Radiated emissions tests were made over the frequency range of 30MHz to 25 GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000MHz, peak measurements made with RBW and VBW of 1 MHz. The average emissions were further corrected by applying the duty cycle correction of the EUT to the peak measurements for comparison to the average limit.

7.6.2.2 Test Results

The magnitude of all emissions for low, mid, and high channel were below the noise floor of the measuring spectrum analyzer.

8.0 CONCLUSION

In the opinion of ACS, Inc. the Cell Relay Pole, Ethernet manufactured by Itron Inc. meet the requirements of FCC Part 15 subpart C and IC RSS-210.

END REPORT