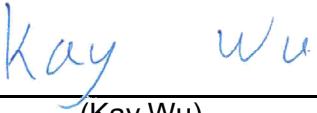
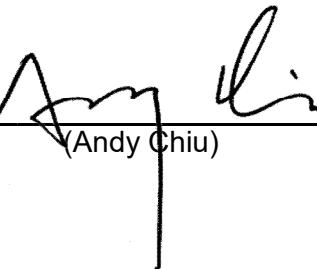


# FCC DFS Test Report


## FCC ID: SI5VRE3000

This report concerns: Class II Permissive Change


Type of device: Master Device

**Project No.** : 1807T004A  
**Equipment** : Verizon 5G Home Wi-Fi Extender  
**Test Model** : VRE3000  
**Series Model** : N/A  
**Applicant** : U-MEDIA Communications, Inc.  
**Address** : 9F, No.1, Jin-shan 7th St. Hsinchu Taiwan

**Date of Receipt** : Aug. 03, 2018  
**Date of Test** : Aug. 03, 2018 ~ Dec. 22, 2018  
**Issued Date** : Dec. 24, 2018  
**Tested by** : BTL Inc.

**Testing Engineer** :   
(Kay Wu)

**Technical Manager** :   
(James Chiu)

**Authorized Signatory** :   
(Andy Chiu)

## B T L I N C .

No.18, Ln. 171, Sec. 2, Jiuzong Rd.,  
Neihu Dist., Taipei City 114, Taiwan (R.O.C.)  
TEL: +886-2-2657-3299 FAX: +886-2-2657-3331



## Declaration

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacturer's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

**BTL** is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements in all the possible configurations as representative of its intended use.

## Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

## CONTENTS

|                                                                                                                |     |
|----------------------------------------------------------------------------------------------------------------|-----|
| REPORT ISSUED HISTORY                                                                                          | 4   |
| 1 CERTIFICATION                                                                                                | 5   |
| 2 GENERAL INFORMATION                                                                                          | 6   |
| 2.1 DESCRIPTION OF EUT                                                                                         | 6   |
| 2.2 DESCRIPTION OF ANTENNA PORT                                                                                | 9   |
| 2.3 EIRP POWER                                                                                                 | 10  |
| 2.4 MANUFACTURER STATEMENT                                                                                     | 10  |
| 3 TECHNICAL REQUIREMENTS                                                                                       | 11  |
| 3.1 APPLICABILITY                                                                                              | 11  |
| 3.2 DFS DETECTION THRESHOLDS                                                                                   | 12  |
| 3.3 RESPONSE REQUIREMENTS                                                                                      | 12  |
| 4 RADAR TEST WAVEFORMS                                                                                         | 13  |
| 4.1 SHORT PULSE RADAR TEST WAVEFORMS                                                                           | 13  |
| 4.2 LONG PULSE RADAR TEST WAVEFORM                                                                             | 14  |
| 4.3 FREQUENCY HOPPING RADAR TEST WAVEFORM                                                                      | 15  |
| 5 TEST PROCEDURES                                                                                              | 16  |
| 5.1 MEASUREMENT SYSTEM                                                                                         | 16  |
| 5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL                                                               | 17  |
| 6 LIST OF MEASURING EQUIPMENTS                                                                                 | 18  |
| 7 TEST RESULT                                                                                                  | 19  |
| 7.1 SUMMARY OF TEST RESULTS                                                                                    | 19  |
| 7.2 TEST MODES                                                                                                 | 19  |
| 7.3 DFS DETECTION THRESHOLD LEVEL                                                                              | 19  |
| 7.4 RADAR WAVEFORM CALIBRATION RESULT                                                                          | 20  |
| 7.5 CHANNEL LOADING TEST RESULT                                                                                | 23  |
| 7.6 U-NII DETECTION BANDWIDTH                                                                                  | 24  |
| 7.7 CHANNEL AVAILABILITY CHECK TIME                                                                            | 34  |
| 7.8 IN-SERVICE MONITORING FOR CHANNEL MOVE TIME, CHANNEL<br>CLOSING TRANSMISSION TIME AND NON-OCCUPANCY PERIOD | 40  |
| 7.9 SUCCESSFUL DETECTION RATE                                                                                  | 46  |
| 7.10 STATISTICAL PERFORMANCE CHECK                                                                             | 52  |
| 8 EUT TEST PHOTO                                                                                               | 124 |

## REPORT ISSUED HISTORY

| Report Version | Description                               | Issued Date   |
|----------------|-------------------------------------------|---------------|
| R00            | Original Issue.                           | Sep. 18, 2018 |
| R01            | Revised report to address TCB's comments. | Oct. 31, 2018 |
| R02            | Revised report to address TCB's comments. | Dec. 24, 2018 |

## 1 CERTIFICATION

Equipment : Verizon 5G Home Wi-Fi Extender  
Brand Name : Verizon  
Test Model : VRE3000  
Series Model : N/A  
Applicant : U-MEDIA Communications, Inc.  
Manufacturer : U-MEDIA Communications, Inc.  
Address : No. 90, Kuang Fu Nth.Rd., Hsinchu Industrial Park, Hu Kou, Hsinchu, 303, Taiwan  
Date of Test : Aug. 03, 2018 ~ Dec. 22, 2018  
Test Sample : Engineering Sample  
Standard(s) : FCC Part15, Subpart E (§15.407)  
FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

The above equipment has been tested and found in compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-2-1807T004A) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

**Test results included in this report is only for the RLAN 5GHz DFS part.**

## 2 GENERAL INFORMATION

### 2.1 DESCRIPTION OF EUT

|                       |                                |                                                                |         |                          |        |
|-----------------------|--------------------------------|----------------------------------------------------------------|---------|--------------------------|--------|
| Equipment             | Verizon 5G Home Wi-Fi Extender |                                                                |         |                          |        |
| Brand Name            | Verizon                        |                                                                |         |                          |        |
| Test Model            | VRE3000                        |                                                                |         |                          |        |
| Series Model          | N/A                            |                                                                |         |                          |        |
| Model Difference      | N/A                            |                                                                |         |                          |        |
| Product Specification | Operation Frequency            | UNII-2A: 5260 MHz to 5320 MHz<br>UNII-2C: 5500 MHz to 5700 MHz |         |                          |        |
|                       | Modulation Type                | OFDM                                                           |         |                          |        |
|                       | RF Chips                       | The EUT contains two RF Chips which functions are as below     |         |                          |        |
|                       |                                | Chip                                                           | 2.4 GHz | 5 GHz                    | Chains |
|                       |                                | MT7615N                                                        | NO      | YES<br>UNII-1<br>UNII-2A | 4T4R   |
|                       |                                | MT7615DN                                                       | YES     | YES<br>UNII-2C<br>UNII-3 | 2T2R   |
|                       | Operation Mode                 | Master Device                                                  |         |                          |        |
|                       | Bridge or MESH Modes           | No support.                                                    |         |                          |        |

#### NOTE:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- (2) Channel List:

| UNII-2A                                                     |                 |                                             |                 |                       |                 |
|-------------------------------------------------------------|-----------------|---------------------------------------------|-----------------|-----------------------|-----------------|
| IEEE 802.11a<br>IEEE 802.11n (HT20)<br>IEEE 802.11ac (HT20) |                 | IEEE 802.11n (HT40)<br>IEEE 802.11ac (HT40) |                 | IEEE 802.11ac (VHT80) |                 |
| Channel                                                     | Frequency (MHz) | Channel                                     | Frequency (MHz) | Channel               | Frequency (MHz) |
| 52                                                          | 5260            | 54                                          | 5270            | 58                    | 5290            |
| 56                                                          | 5280            | 62                                          | 5310            |                       |                 |
| 60                                                          | 5300            |                                             |                 |                       |                 |
| 64                                                          | 5320            |                                             |                 |                       |                 |

| UNII-2C                                                     |                 |                                             |                 |                       |                 |
|-------------------------------------------------------------|-----------------|---------------------------------------------|-----------------|-----------------------|-----------------|
| IEEE 802.11a<br>IEEE 802.11n (HT20)<br>IEEE 802.11ac (HT20) |                 | IEEE 802.11n (HT40)<br>IEEE 802.11ac (HT40) |                 | IEEE 802.11ac (VHT80) |                 |
| Channel                                                     | Frequency (MHz) | Channel                                     | Frequency (MHz) | Channel               | Frequency (MHz) |
| 100                                                         | 5500            | 102                                         | 5510            | 106                   | 5530            |
| 104                                                         | 5520            | 110                                         | 5550            | 122                   | 5610            |
| 108                                                         | 5540            | 118                                         | 5590            | 138                   | 5690            |
| 112                                                         | 5560            | 126                                         | 5630            |                       |                 |
| 116                                                         | 5580            | 134                                         | 5670            |                       |                 |
| 120                                                         | 5600            |                                             |                 |                       |                 |
| 124                                                         | 5620            |                                             |                 |                       |                 |
| 128                                                         | 5640            |                                             |                 |                       |                 |
| 132                                                         | 5660            |                                             |                 |                       |                 |
| 136                                                         | 5680            |                                             |                 |                       |                 |
| 140                                                         | 5700            |                                             |                 |                       |                 |

(3) Table for Filed Antenna:

Group 1:  
UNII-2A:

| Ant. | Brand      | Model            | Type | Connector | Gain (dBi) |
|------|------------|------------------|------|-----------|------------|
| JC1  | Galtronics | 02102142-06808Ax | PCB  | iPEX      | 3.4        |
| JC3  | Galtronics | 02102142-06808Ax | PCB  | iPEX      | 3.4        |
| JC4  | Galtronics | 02102142-06808Ax | PCB  | iPEX      | 3.4        |
| JC5  | Galtronics | 02102142-06808Ax | PCB  | iPEX      | 3.4        |

UNII-2C:

| Ant. | Brand      | Model            | Type | Connector | Gain (dBi) |
|------|------------|------------------|------|-----------|------------|
| JC6  | Galtronics | 02102140-06808Ax | PCB  | iPEX      | 3.5        |
| JC7  | Galtronics | 02102140-06808Ax | PCB  | iPEX      | 3.5        |

Group 2:

UNII-2A:

| Ant. | Brand      | Model            | Type | Connector | Gain (dBi) |
|------|------------|------------------|------|-----------|------------|
| JC1  | Galtronics | 02102142-06808Cx | PCB  | iPEX      | 3.1        |
| JC3  | Galtronics | 02102142-06808Cx | PCB  | iPEX      | 3.1        |
| JC4  | Galtronics | 02102142-06808Cx | PCB  | iPEX      | 3.1        |
| JC5  | Galtronics | 02102142-06808Cx | PCB  | iPEX      | 3.1        |

UNII-2C:

| Ant. | Brand      | Model            | Type | Connector | Gain (dBi) |
|------|------------|------------------|------|-----------|------------|
| JC6  | Galtronics | 02102140-06808Bx | PCB  | iPEX      | 2.8        |
| JC7  | Galtronics | 02102140-06808Bx | PCB  | iPEX      | 2.8        |

NOTE:

(a) The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and receivers (UNII-2A: 4T4R, UNII-2C: 2T2R). 2.4 GHz and 5GHz can transmit simultaneously.

## (b) For UNII-2A:

All JC1, JC3, JC4 and JC5 can be used as transmitting/receiving antenna.

JC1, JC3, JC4 and JC5 could transmit/receive simultaneously.

The C1 + JC3 + JC4 + JC5 generated the worst case, so it was selected to test and record in the report.

For UNII-2C:

All JC6 and JC7 can be used as transmitting/receiving antenna.

JC6 and JC7 could transmit/receive simultaneously.

The C6 + JC7 generated the worst case, so it was selected to test and record in the report.

## (c) The EUT UNII-2A (N mode &amp; AC mode) is with beamforming function.

The UNII-2A beamforming gain is 4.46 dB.

The EUT UNII-2A (A mode) and UNII-2C does not support beamforming function.

## (d) For Conducted Output Power (CDD mode)

For **UNII-2A**:

For  $N_{ANT} = 4 < 5$ ,

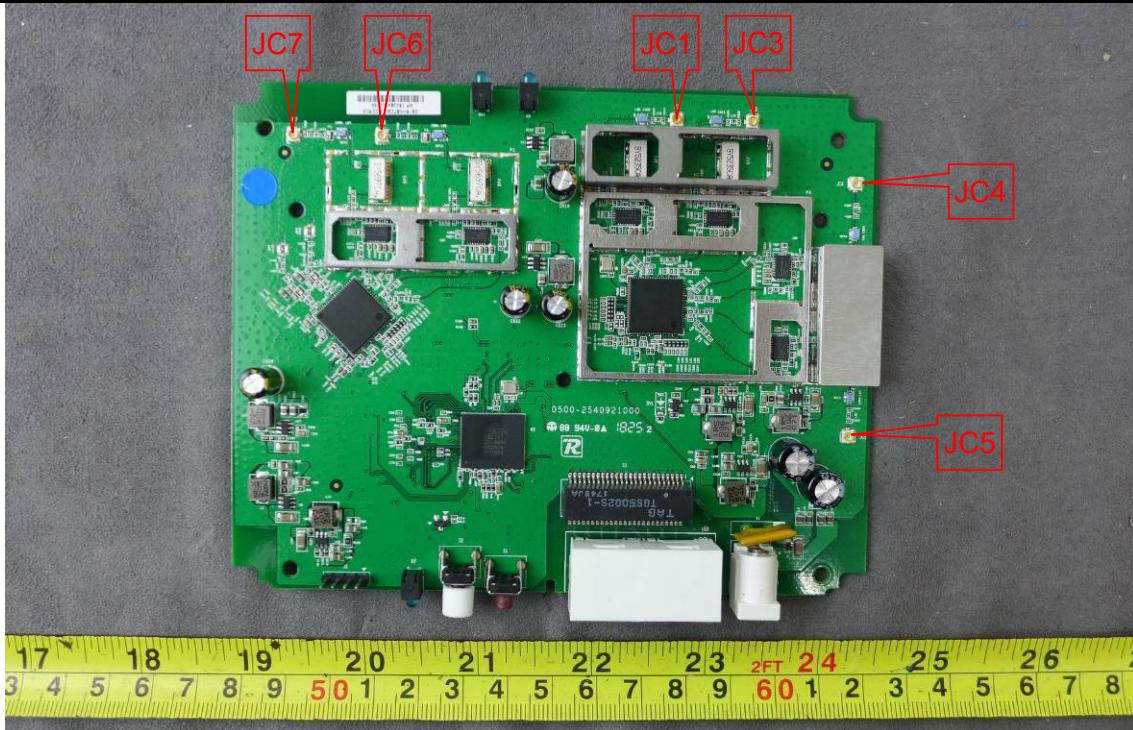
Direction gain =  $G_{ANT} + 0 = 3.4 + 0 = 3.4$  dBi.

For **UNII-2C**:

For  $N_{ANT} = 2 < 5$ ,

Direction gain =  $G_{ANT} + 0 = 3.5 + 0 = 3.5$  dBi.

## (e) For Conducted Output Power (beamforming mode)


For **UNII-2A** (N mode & AC mode in beamforming mode):

Directional Gain =  $G_{ANT} + 10\log(N_{ANT}/N_{SS}) = 3.4$  dBi +  $10\log(4/1) = 9.42$  dBi.

For **UNII-2C**: does not support beamforming function.

## 2.2 DESCRIPTION OF ANTENNA PORT

| Frequency | Antenna Port          |
|-----------|-----------------------|
| UNII-2A   | JC1, JC3, JC4 and JC5 |
| UNII-2C   | JC6 and JC7           |



### 2.3 EIRP POWER

|           |         |
|-----------|---------|
| Test Mode | UNII-2A |
|-----------|---------|

#### CCD Mode

| Frequency (MHz) | Maximum Conducted Power (dBm) | Antenna Gain (dBi) | Maximum EIRP Power (dBm) | Maximum EIRP Power (mW) | Remark   |
|-----------------|-------------------------------|--------------------|--------------------------|-------------------------|----------|
| 5260 to 5320    | 17.82                         | 3.4                | 21.22                    | 132.4342                | NOTE (1) |

#### Beamforming Mode

| Frequency (MHz) | Maximum Conducted Power (dBm) | Antenna Gain (dBi) | Beamforming Gain (dB) | Maximum EIRP Power (dBm) | Maximum EIRP Power (mW) | Remark   |
|-----------------|-------------------------------|--------------------|-----------------------|--------------------------|-------------------------|----------|
| 5260 to 5320    | 13.09                         | 9.42               | 4.46                  | 26.97                    | 497.7371                | NOTE (1) |

|           |         |
|-----------|---------|
| Test Mode | UNII-2C |
|-----------|---------|

| Frequency (MHz) | Maximum Conducted Power (dBm) | Antenna Gain (dBi) | Maximum EIRP Power (dBm) | Maximum EIRP Power (mW) | Remark   |
|-----------------|-------------------------------|--------------------|--------------------------|-------------------------|----------|
| 5500 to 5700    | 21.67                         | 3.5                | 25.17                    | 328.8516                | NOTE (1) |

#### NOTE:

(1) EIRP Power (dBm) = Conducted Power (dBm) + Antenna Gain (dBi).  

$$\text{Power (mW)} = 1 \text{ mW} * 10^{(\text{dBm} / 10)}$$

### 2.4 MANUFACTURER STATEMENT

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user.

The manufacturer is permitted to select the first channel either manually or randomly. The manufacturer may also block DFS channels from use.

The intention of the uniform spreading is to provide, on aggregate, a uniform loading of the spectrum. The UUT using the bands 5250 to 5350MHz and 5470 to 5600 MHz channels so that the probability of selecting a given channel shall be the same for channels. The UUT will select channel by random mode and remember this channel when detect radar signal, so that will select unused channel by random mode.

### 3 TECHNICAL REQUIREMENTS

#### 3.1 APPLICABILITY

According to FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02, the following tables are applicable.

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

| Requirement                            | Operational Mode |                                |                             |
|----------------------------------------|------------------|--------------------------------|-----------------------------|
|                                        | Master           | Client Without Radar Detection | Client With Radar Detection |
| <i>Non-Occupancy Period</i>            | Yes              | Not required                   | Yes                         |
| <i>DFS Detection Threshold</i>         | Yes              | Not required                   | Yes                         |
| <i>Channel Availability Check Time</i> | Yes              | Not required                   | Not required                |
| <i>U-NII Detection Bandwidth</i>       | Yes              | Not required                   | Yes                         |

Table 2: Applicability of DFS requirements during normal operation

| Requirement                              | Operational Mode                             |                                |
|------------------------------------------|----------------------------------------------|--------------------------------|
|                                          | Master Device or Client with Radar Detection | Client Without Radar Detection |
| <i>DFS Detection Threshold</i>           | Yes                                          | Not required                   |
| <i>Channel Closing Transmission Time</i> | Yes                                          | Yes                            |
| <i>Channel Move Time</i>                 | Yes                                          | Yes                            |
| <i>U-NII Detection Bandwidth</i>         | Yes                                          | Not required                   |

| Additional requirements for devices with multiple bandwidth modes                                                                                                                                                                                                                                                                                            | Master Device or Client with Radar Detection | Client Without Radar Detection                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| <i>U-NII Detection Bandwidth and Statistical Performance Check</i>                                                                                                                                                                                                                                                                                           | All BW modes must be tested                  | Not required                                         |
| <i>Channel Move Time and Channel Closing Transmission Time</i>                                                                                                                                                                                                                                                                                               | Test using widest BW mode available          | Test using the widest BW mode available for the link |
| <i>All other tests</i>                                                                                                                                                                                                                                                                                                                                       | Any single BW mode                           | Not required                                         |
| <b>Note:</b> Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency. |                                              |                                                      |

### 3.2 DFS DETECTION THRESHOLDS

According to FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02, the following table is required.

**Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection**

| Maximum Transmit Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Value<br>(See Notes 1, 2, and 3) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| EIRP $\geq$ 200 milliwatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -64 dBm                          |
| EIRP $<$ 200 milliwatt and power spectral density $<$ 10 dBm/MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -62 dBm                          |
| EIRP $<$ 200 milliwatt that do not meet the power spectral density requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -64 dBm                          |
| <p><b>Note 1:</b> This is the level at the input of the receiver assuming a 0 dBi receive antenna.</p> <p><b>Note 2:</b> Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.</p> <p><b>Note 3:</b> EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.</p> |                                  |

### 3.3 RESPONSE REQUIREMENTS

According to FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02, the following table is required.

**Table 4: DFS Response Requirement Values**

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| <i>Non-occupancy period</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum 30 minutes                                                                                        |
| <i>Channel Availability Check Time</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 seconds                                                                                                |
| <i>Channel Move Time</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 seconds<br>See Note 1.                                                                                 |
| <i>Channel Closing Transmission Time</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.<br>See Notes 1 and 2. |
| <i>U-NII Detection Bandwidth</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.                                   |
| <p><b>Note 1:</b> <i>Channel Move Time</i> and the <i>Channel Closing Transmission Time</i> should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.</p> <p><b>Note 2:</b> The <i>Channel Closing Transmission Time</i> is comprised of 200 milliseconds starting at the beginning of the <i>Channel Move Time</i> plus any additional intermittent control signals required to facilitate a <i>Channel</i> move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.</p> <p><b>Note 3:</b> During the <i>U-NII Detection Bandwidth</i> detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.</p> |                                                                                                           |

## 4 RADAR TEST WAVEFORMS

According to FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02, the following parameters are required.

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

### 4.1 SHORT PULSE RADAR TEST WAVEFORMS

Table 5 – Short Pulse Radar Test Waveforms

| Radar Type                                                                                                                                  | Pulse Width (μsec) | PRI (μsec)                                                                                                                                                    | Number of Pulses                                                                                                                      | Minimum Percentage of Successful Detection | Minimum Number of Trials |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|
| 0                                                                                                                                           | 1                  | 1428                                                                                                                                                          | 18                                                                                                                                    | See Note 1                                 | See Note 1               |
| 1                                                                                                                                           | 1                  | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a                                                                     | Roundup $\left\lceil \left( \frac{1}{360} \right) \cdot \left( \frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}} \right) \right\rceil$ | 60%                                        | 30                       |
|                                                                                                                                             |                    | Test B: 15 unique PRI values randomly selected within the range of 518-3066 μsec, with a minimum increment of 1 μsec, excluding PRI values selected in Test A |                                                                                                                                       |                                            |                          |
| 2                                                                                                                                           | 1-5                | 150-230                                                                                                                                                       | 23-29                                                                                                                                 | 60%                                        | 30                       |
| 3                                                                                                                                           | 6-10               | 200-500                                                                                                                                                       | 16-18                                                                                                                                 | 60%                                        | 30                       |
| 4                                                                                                                                           | 11-20              | 200-500                                                                                                                                                       | 12-16                                                                                                                                 | 60%                                        | 30                       |
| Aggregate (Radar Types 1-4)                                                                                                                 |                    |                                                                                                                                                               |                                                                                                                                       | 80%                                        | 120                      |
| <b>Note 1:</b> Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. |                    |                                                                                                                                                               |                                                                                                                                       |                                            |                          |

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

**Table 5a - Pulse Repetition Intervals Values for Test A**

| Pulse Repetition Frequency Number | Pulse Repetition Frequency (Pulses Per Second) | Pulse Repetition Interval (Microseconds) |
|-----------------------------------|------------------------------------------------|------------------------------------------|
| 1                                 | 1930.5                                         | 518                                      |
| 2                                 | 1858.7                                         | 538                                      |
| 3                                 | 1792.1                                         | 558                                      |
| 4                                 | 1730.1                                         | 578                                      |
| 5                                 | 1672.2                                         | 598                                      |
| 6                                 | 1618.1                                         | 618                                      |
| 7                                 | 1567.4                                         | 638                                      |
| 8                                 | 1519.8                                         | 658                                      |
| 9                                 | 1474.9                                         | 678                                      |
| 10                                | 1432.7                                         | 698                                      |
| 11                                | 1392.8                                         | 718                                      |
| 12                                | 1355                                           | 738                                      |
| 13                                | 1319.3                                         | 758                                      |
| 14                                | 1285.3                                         | 778                                      |
| 15                                | 1253.1                                         | 798                                      |
| 16                                | 1222.5                                         | 818                                      |
| 17                                | 1193.3                                         | 838                                      |
| 18                                | 1165.6                                         | 858                                      |
| 19                                | 1139                                           | 878                                      |
| 20                                | 1113.6                                         | 898                                      |
| 21                                | 1089.3                                         | 918                                      |
| 22                                | 1066.1                                         | 938                                      |
| 23                                | 326.2                                          | 3066                                     |

## 4.2 LONG PULSE RADAR TEST WAVEFORM

**Table 6 – Long Pulse Radar Test Waveform**

| Radar Type | Pulse Width (μsec) | Chirp Width (MHz) | PRI (μsec) | Number of Pulses per Burst | Number of Bursts | Minimum Percentage of Successful Detection | Minimum Number of Trials |
|------------|--------------------|-------------------|------------|----------------------------|------------------|--------------------------------------------|--------------------------|
| 5          | 50-100             | 5-20              | 1000-2000  | 1-3                        | 8-20             | 80%                                        | 30                       |

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

#### 4.3 FREQUENCY HOPPING RADAR TEST WAVEFORM

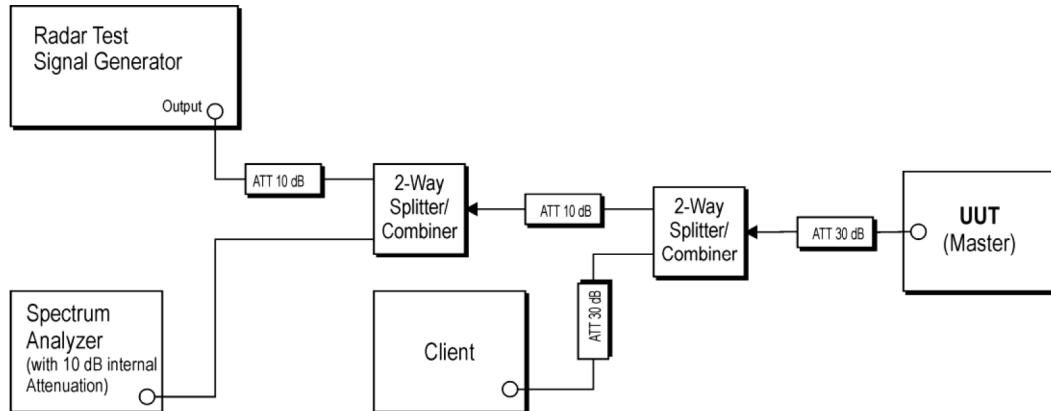
**Table 7 – Frequency Hopping Radar Test Waveform**

| Radar Type | Pulse Width (μsec) | PRI (μsec) | Pulses per Hop | Hopping Rate (kHz) | Hopping Sequence Length (msec) | Minimum Percentage of Successful Detection | Minimum Number of Trials |
|------------|--------------------|------------|----------------|--------------------|--------------------------------|--------------------------------------------|--------------------------|
| 6          | 1                  | 333        | 9              | 0.333              | 300                            | 70%                                        | 30                       |

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:<sup>4</sup>

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

## 5 TEST PROCEDURES


The test procedures follow the descriptions of the FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02, section 7.

The conducted test procedure and setup are used for this testing.

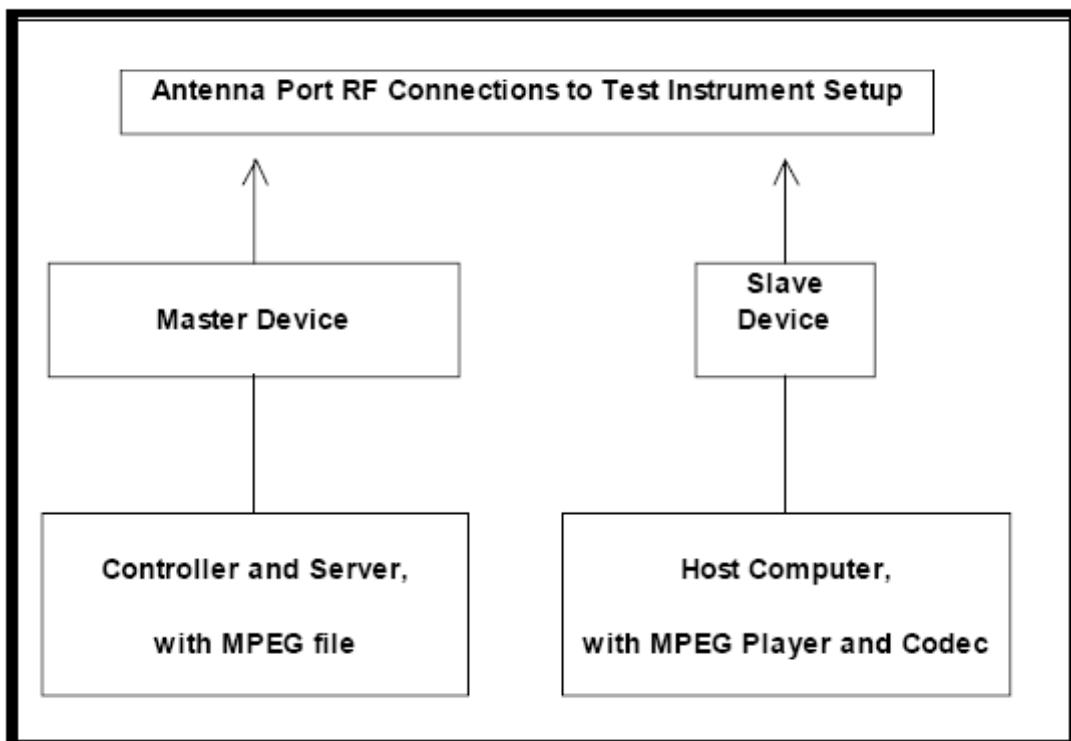
### 5.1 MEASUREMENT SYSTEM

1. Master device and client device are set up by conduction method as the following configuration.
2. The client device is connected to notebook and to access an IP address on wireless connection with the master device.
3. Then the master device is connected to another notebook to access an IP address.
4. Finally, let the two IP addresses run traffic with each other through the Run flow software “Lan test” to reach 17% channel loading as below.

The following test setup is used for this testing.



*Figure 2: Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master*


## 5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL

A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from -64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device. Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

The output power range and antenna gain had been taken into account.



## 6 LIST OF MEASURING EQUIPMENTS

| Dynamic Frequency Selection (DFS) |                             |               |              |            |                  |
|-----------------------------------|-----------------------------|---------------|--------------|------------|------------------|
| Item                              | Kind of Equipment           | Manufacturer  | Type No.     | Serial No. | Calibrated until |
| 1                                 | Spectrum Analyzer           | Keysight      | N9010A       | MY54200240 | Aug. 26, 2019    |
| 2                                 | MXG Vector Signal Generator | Agilent       | N5182B       | MY51350711 | May 28, 2019     |
| 3                                 | 10dB Attenuators            | Mini-Circuits | VAT-10+      | N/A        | May 14, 2019     |
| 4                                 | 10dB Attenuators            | Mini-Circuits | VAT-10+      | N/A        | May 14, 2019     |
| 5                                 | 30dB Attenuators            | Mini-Circuits | VAT-30+      | N/A        | May 14, 2019     |
| 6                                 | 30dB Attenuators            | Mini-Circuits | VAT-30+      | N/A        | May 14, 2019     |
| 7                                 | POWER SPLITTER              | Mini-Circuits | ZFRSC-123-S+ | N/A        | May 14, 2019     |
| 8                                 | POWER SPLITTER              | Mini-Circuits | ZFRSC-123-S+ | N/A        | May 14, 2019     |

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

## 7 TEST RESULT

### 7.1 SUMMARY OF TEST RESULTS

| FCC Part15, Subpart E (§15.407) |                                                                     |             |           |        |
|---------------------------------|---------------------------------------------------------------------|-------------|-----------|--------|
| FCC Clause No                   | Description                                                         | Test Result | Judgement | Remark |
| §15.407(h)(2)                   | U-NII Detection Bandwidth                                           | 7.6         | Pass      | -----  |
| §15.407(h)(2)                   | Initial Channel Availability Check Time                             | 7.7         | Pass      | -----  |
| §15.407(h)(2)                   | Radar Burst at the Beginning of the Channel Availability Check Time | 7.7         | Pass      | -----  |
| §15.407(h)(2)                   | Radar Burst at the End of the Channel Availability Check Time       | 7.7         | Pass      | -----  |
| §15.407(h)(2)                   | In-Service Monitoring for Channel Move Time                         | 7.8         | Pass      | -----  |
| §15.407(h)(2)                   | In-Service Monitoring for Channel Closing Transmission Time         | 7.8         | Pass      | -----  |
| §15.407(h)(2)                   | In-Service Monitoring for Non-Occupancy Period                      | 7.8         | Pass      | -----  |
| §15.407(h)(2)                   | Statistical Performance Check                                       | 7.9<br>7.10 | Pass      | -----  |
| §15.407(h)(2)                   | Uniform Spreading                                                   | 2.4         | Pass      | -----  |

### 7.2 TEST MODES

| Test Mode | Description                         |
|-----------|-------------------------------------|
| 1         | Master with injection at the Master |

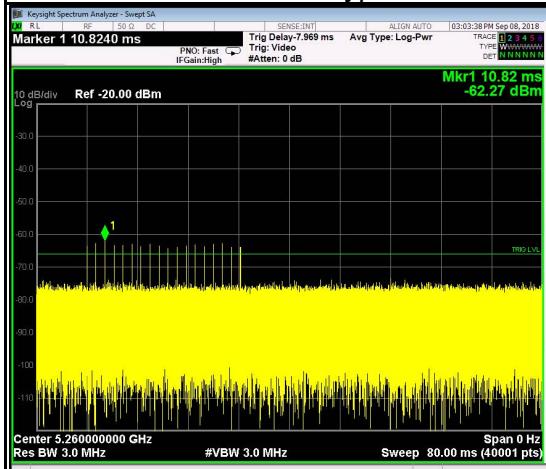
NOTE: The EUT contains two RF Chips. Band UNII-2A is controlled by MT7615N; band UNII-2C is controlled by MT7615DN.

### 7.3 DFS DETECTION THRESHOLD LEVEL

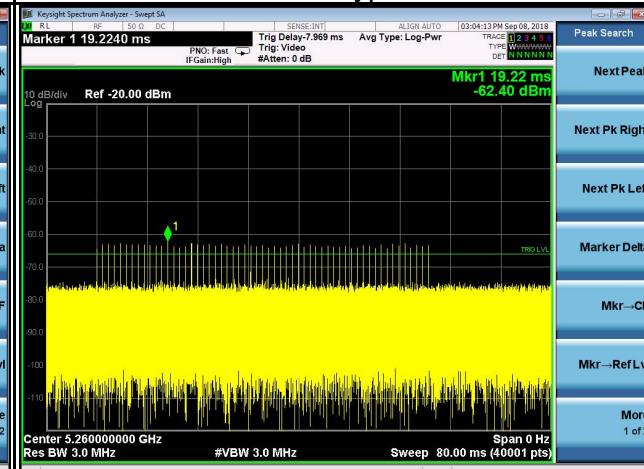
For band UNII-2A:

The maximum transmit power is < 200 milliwatt and the power spectral density is < 10 dBm/MHz, so the DFS detection threshold level is  $-64 \text{ dBm} + 3.4 \text{ dBi} = -60.6 \text{ dBm}$  that had been taken into account the output power range and antenna gain.

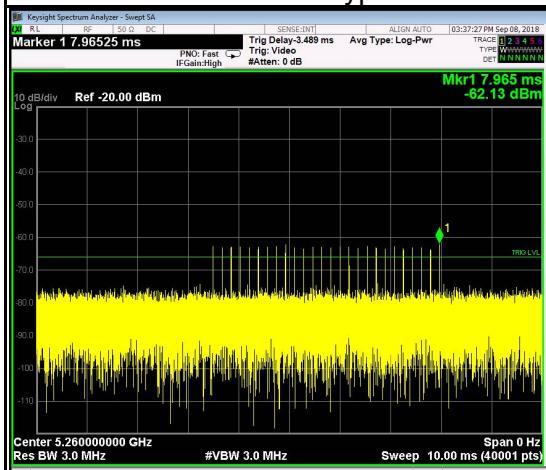
For band UNII-2C:


The maximum transmit power is < 200 milliwatt and the power spectral density is < 10 dBm/MHz, so the DFS detection threshold level is  $-64 \text{ dBm} + 3.5 \text{ dBi} = -60.5 \text{ dBm}$  that had been taken into account the output power range and antenna gain.

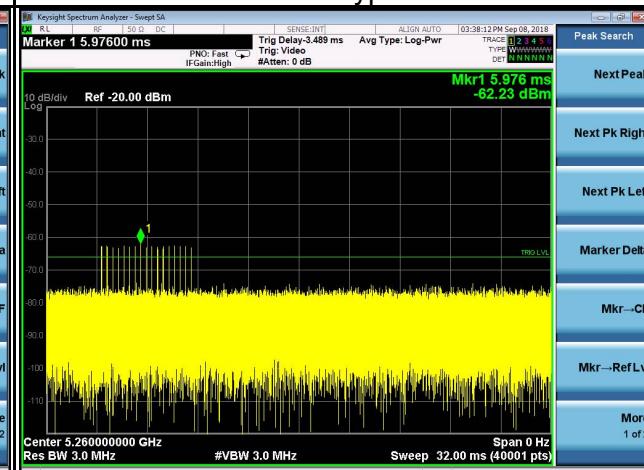
## 7.4 RADAR WAVEFORM CALIBRATION RESULT


For U11-2A

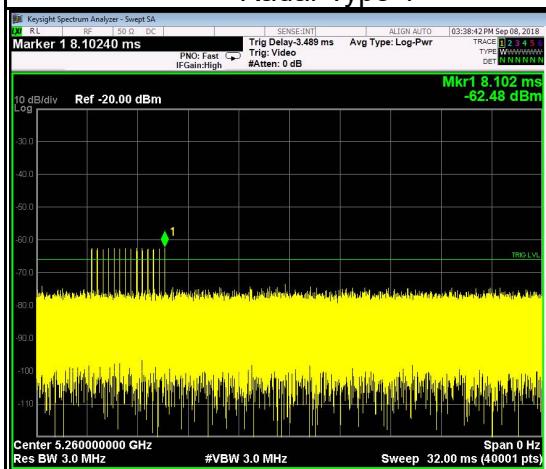
### Calibrated DFS Detection Threshold Level Plot


#### Radar Type 0

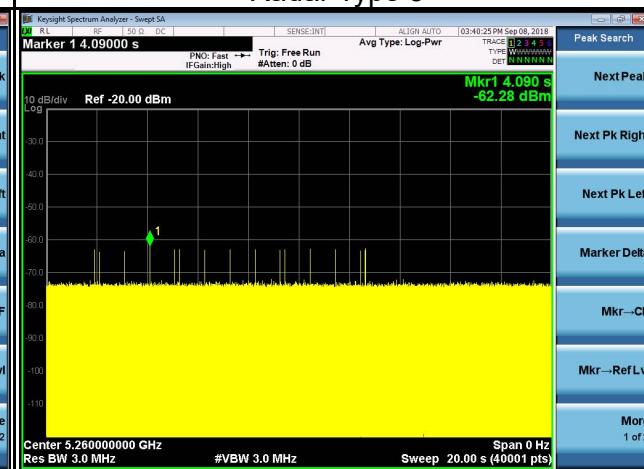


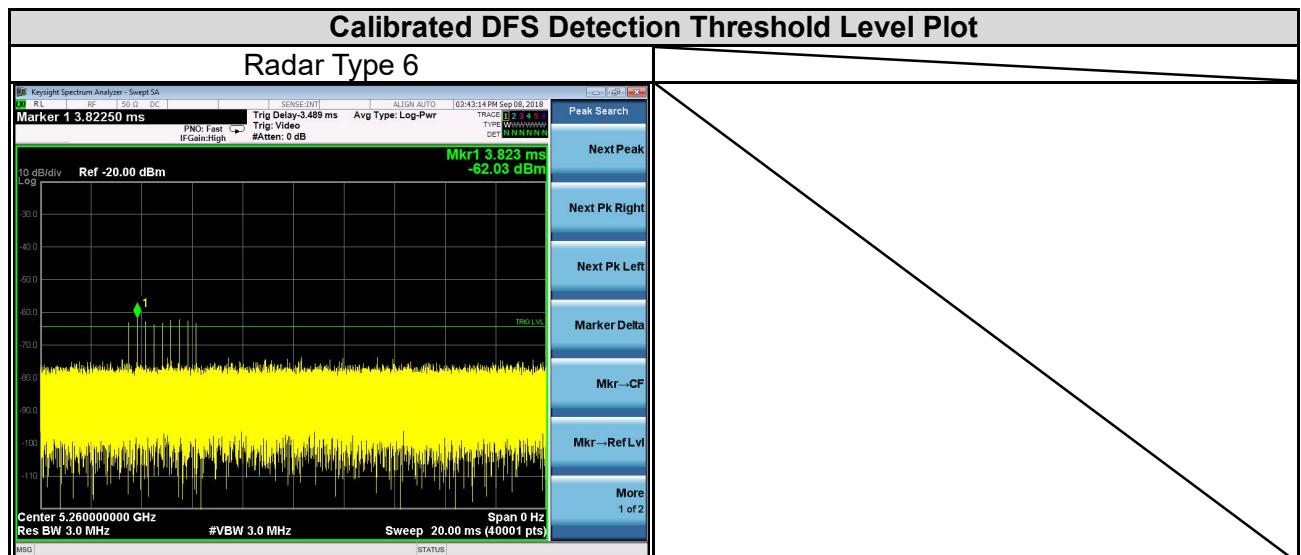

#### Radar Type 1



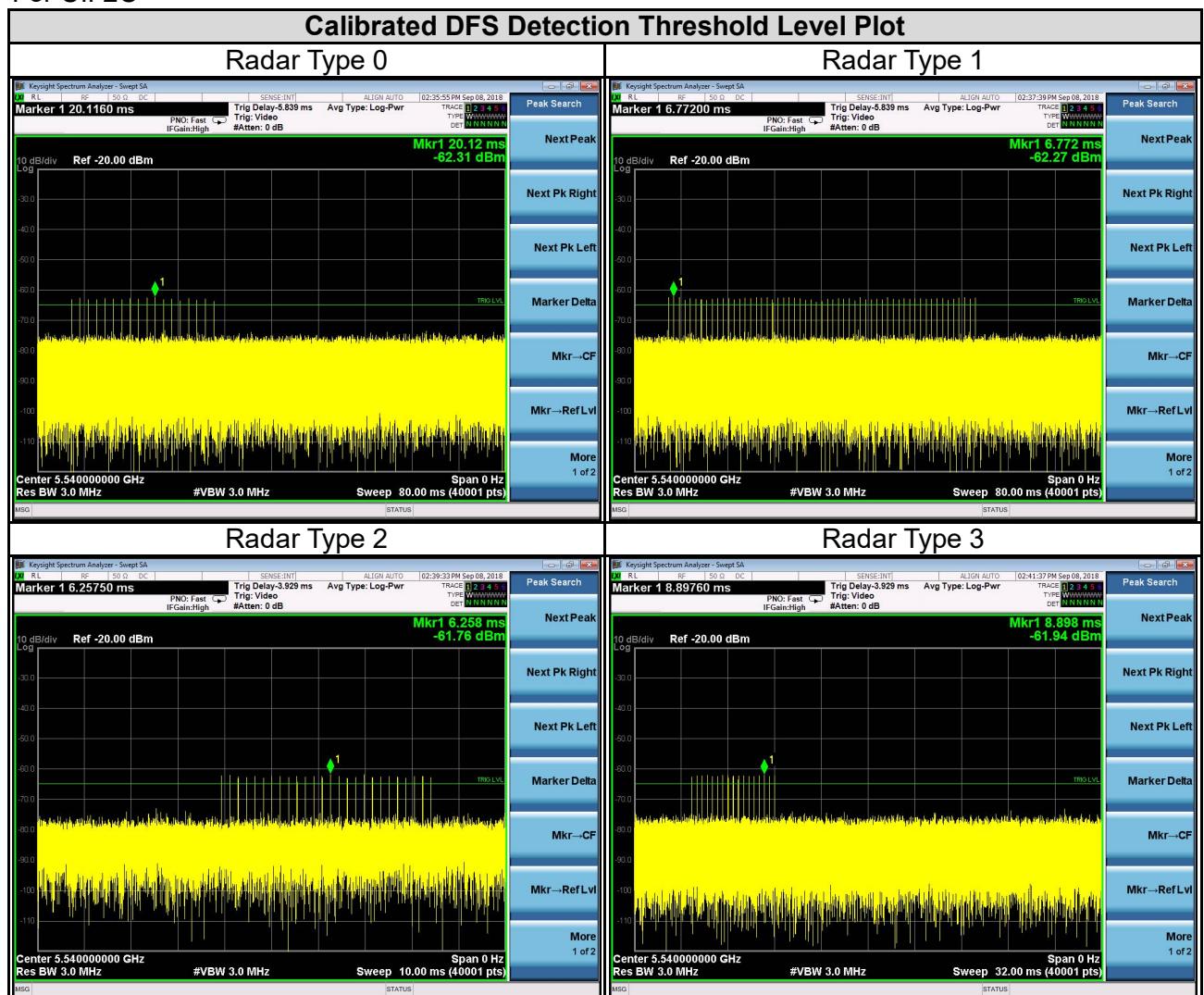

#### Radar Type 2

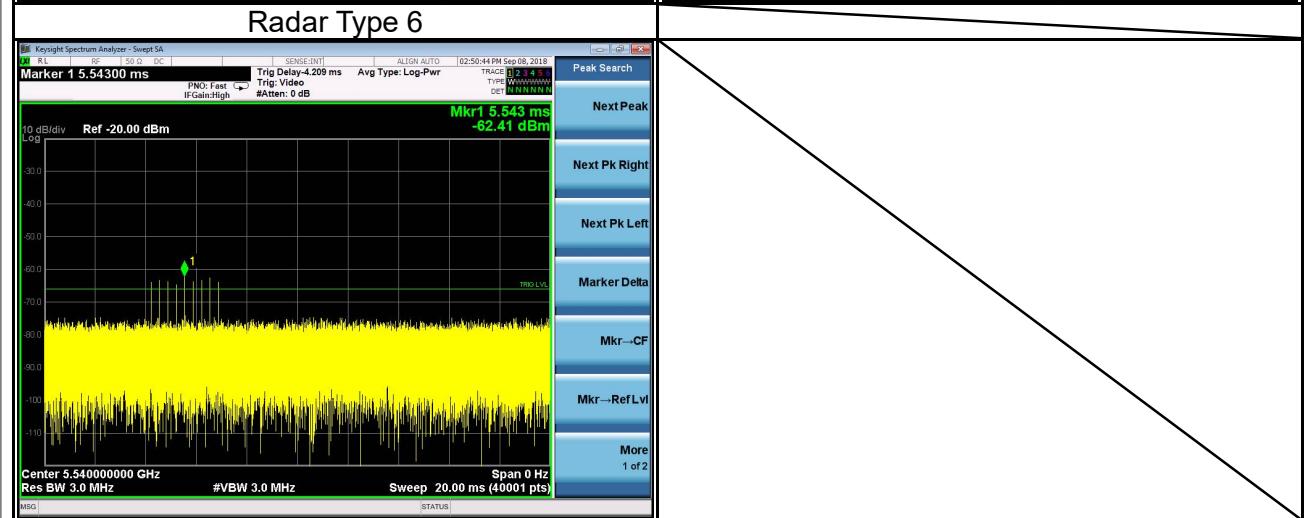
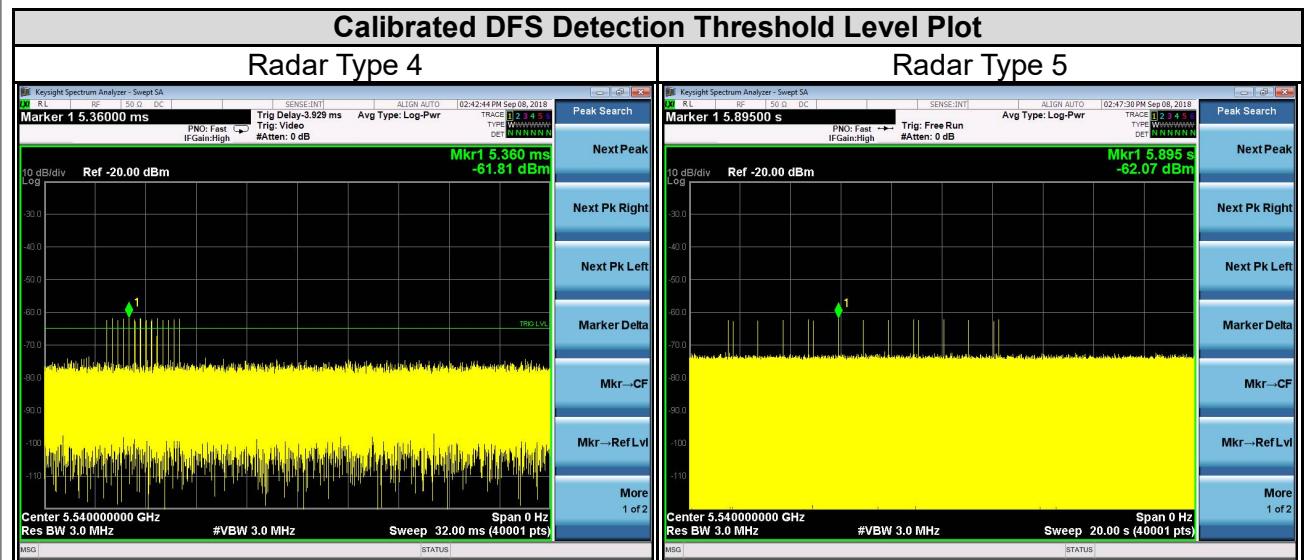



#### Radar Type 3



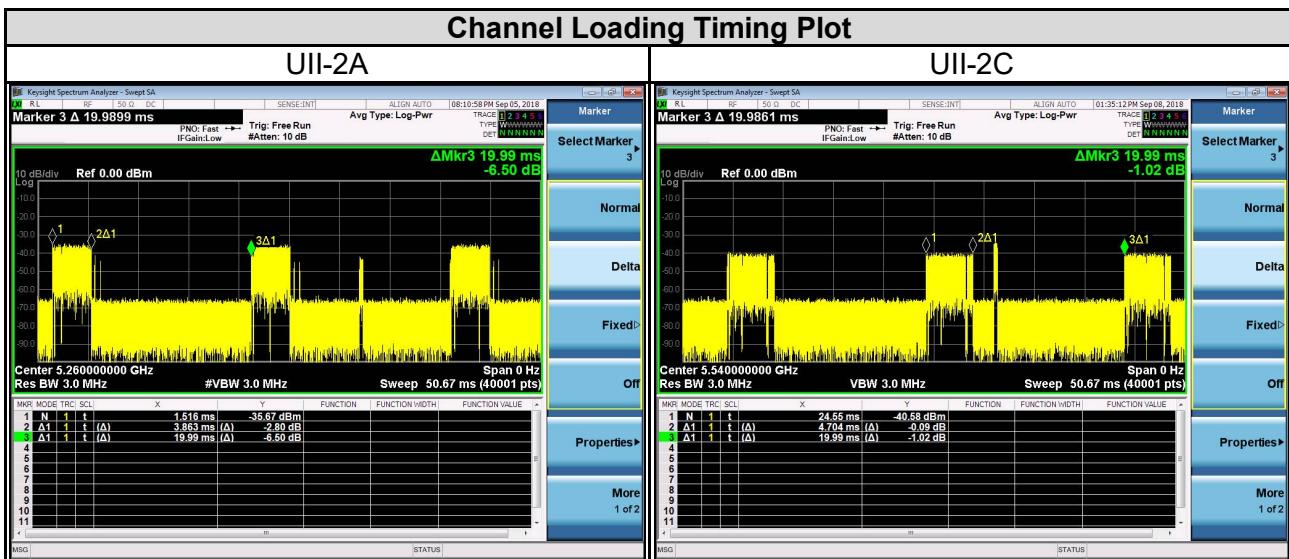

#### Radar Type 4






#### Radar Type 5






For UII-2C





## 7.5 CHANNEL LOADING TEST RESULT

Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17 % or greater. For example, channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the Time On / (Time On + Off Time). This can be done with any appropriate channel BW and modulation type.



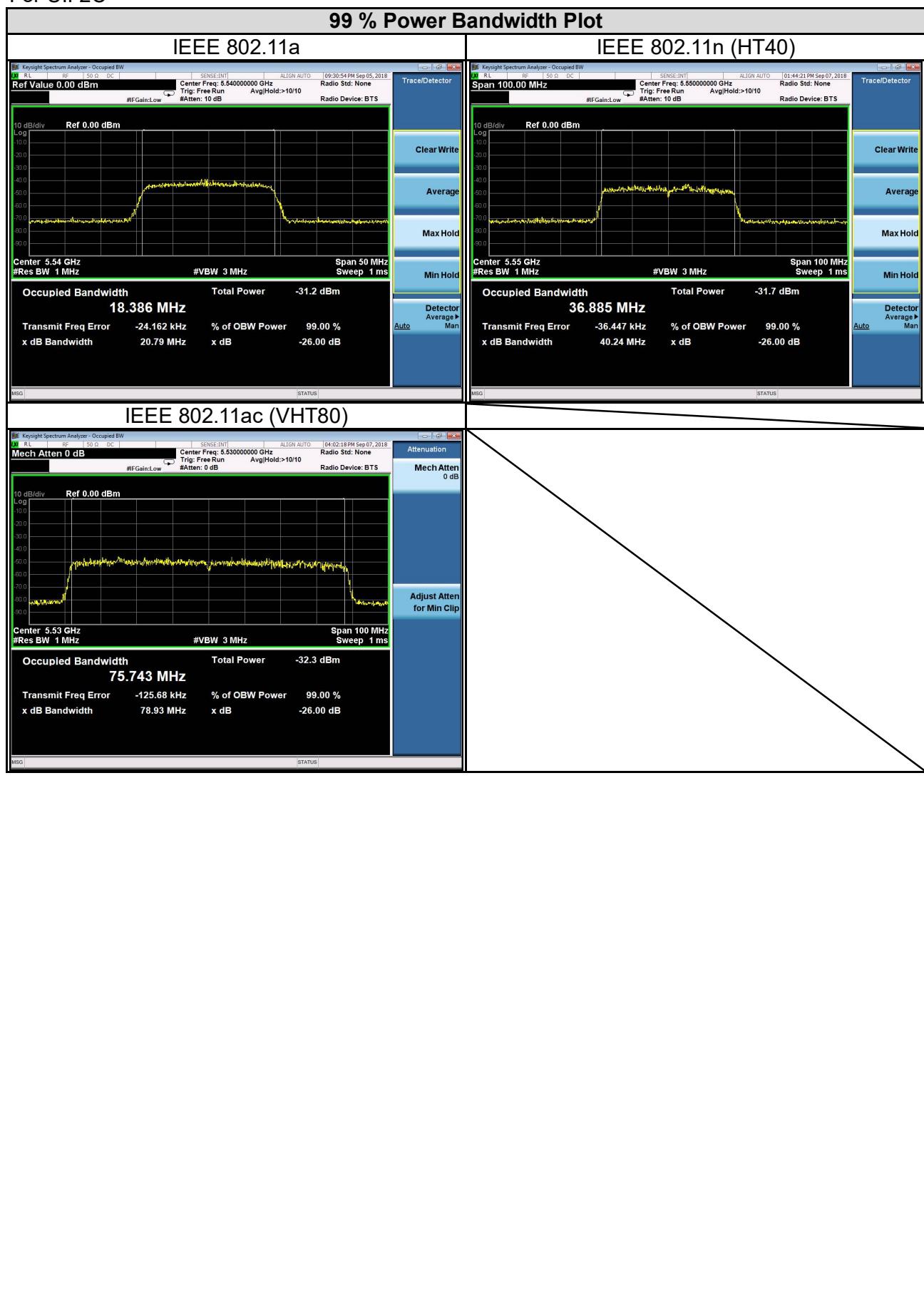
| Test Mode | Single Time On (ms) | Number of Time On | Total Time On (ms) | Time On + Off Time (ms) | Channel Loading Ratio (%) | Required Ratio (%) |
|-----------|---------------------|-------------------|--------------------|-------------------------|---------------------------|--------------------|
| UII-2A    | 3.863               | 1                 | 3.863              | 19.99                   | 19.32                     | ≥ 17%              |
| UII-2C    | 4.704               | 1                 | 4.704              | 19.99                   | 23.53                     | ≥ 17%              |

## 7.6 U-NII DETECTION BANDWIDTH

For UII-2A



| Test Mode                                                  |      | IEEE 802.11a |   |   |   |   |   |   |   |    |                    |
|------------------------------------------------------------|------|--------------|---|---|---|---|---|---|---|----|--------------------|
| Detection Bandwidth test transmission                      |      | 20 MHz       |   |   |   |   |   |   |   |    |                    |
| EUT FREQUENCY                                              |      | 5260 MHz     |   |   |   |   |   |   |   |    |                    |
| EUT power bandwidth                                        |      | 18.43 MHz    |   |   |   |   |   |   |   |    |                    |
| Detection Bandwidth limit(100% of EUT 99% Power bandwidth) |      | 18.43 MHz    |   |   |   |   |   |   |   |    |                    |
| Detection Bandwidth(5270(FH)-5250(FL))                     |      | 20 MHz       |   |   |   |   |   |   |   |    |                    |
| Test Result                                                | PASS |              |   |   |   |   |   |   |   |    |                    |
| Radar Freq (MHz)                                           | 1    | 2            | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Detection Rate (%) |
| 5249                                                       | 0    | 0            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0                  |
| 5250(FL)                                                   | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5251                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5252                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5253                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5254                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5255                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5256                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5257                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5258                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5259                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5260                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5261                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5262                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5263                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5264                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5265                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5266                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5267                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5268                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5269                                                       | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5270(FH)                                                   | 1    | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5271                                                       | 0    | 0            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0                  |


| Test Mode                                                  | IEEE 802.11n (HT40)                                |   |   |   |   |   |   |   |   |    |                    |
|------------------------------------------------------------|----------------------------------------------------|---|---|---|---|---|---|---|---|----|--------------------|
| Detection Bandwidth test transmission                      | 40 MHz                                             |   |   |   |   |   |   |   |   |    |                    |
| EUT FREQUENCY                                              | 5270 MHz                                           |   |   |   |   |   |   |   |   |    |                    |
| EUT power bandwidth                                        | 36.731 MHz                                         |   |   |   |   |   |   |   |   |    |                    |
| Detection Bandwidth limit(100% of EUT 99% Power bandwidth) | 36.731 MHz                                         |   |   |   |   |   |   |   |   |    |                    |
| Detection Bandwidth(5289(FH)-5251(FL))                     | 38 MHz                                             |   |   |   |   |   |   |   |   |    |                    |
| Test Result                                                | PASS                                               |   |   |   |   |   |   |   |   |    |                    |
|                                                            | DFS Detection Trials (1=Detection, 0=No Detection) |   |   |   |   |   |   |   |   |    |                    |
| Radar Freq (MHz)                                           | 1                                                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Detection Rate (%) |
| 5249                                                       | 0                                                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0                  |
| 5250                                                       | 0                                                  | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1  | 40                 |
| 5251(FL)                                                   | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5252                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5253                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5254                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5255                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5256                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5257                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5258                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5259                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5260                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5261                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5262                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5263                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5264                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5265                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5266                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5267                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5268                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5269                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5270                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5271                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5272                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5273                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5274                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5275                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5276                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5277                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5278                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5279                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5280                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5281                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5282                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5283                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5284                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5285                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5286                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5287                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5288                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5289(FH)                                                   | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5290                                                       | 0                                                  | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0  | 30                 |
| 5291                                                       | 0                                                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0                  |

|           |                       |
|-----------|-----------------------|
| Test Mode | IEEE 802.11ac (VHT80) |
|-----------|-----------------------|

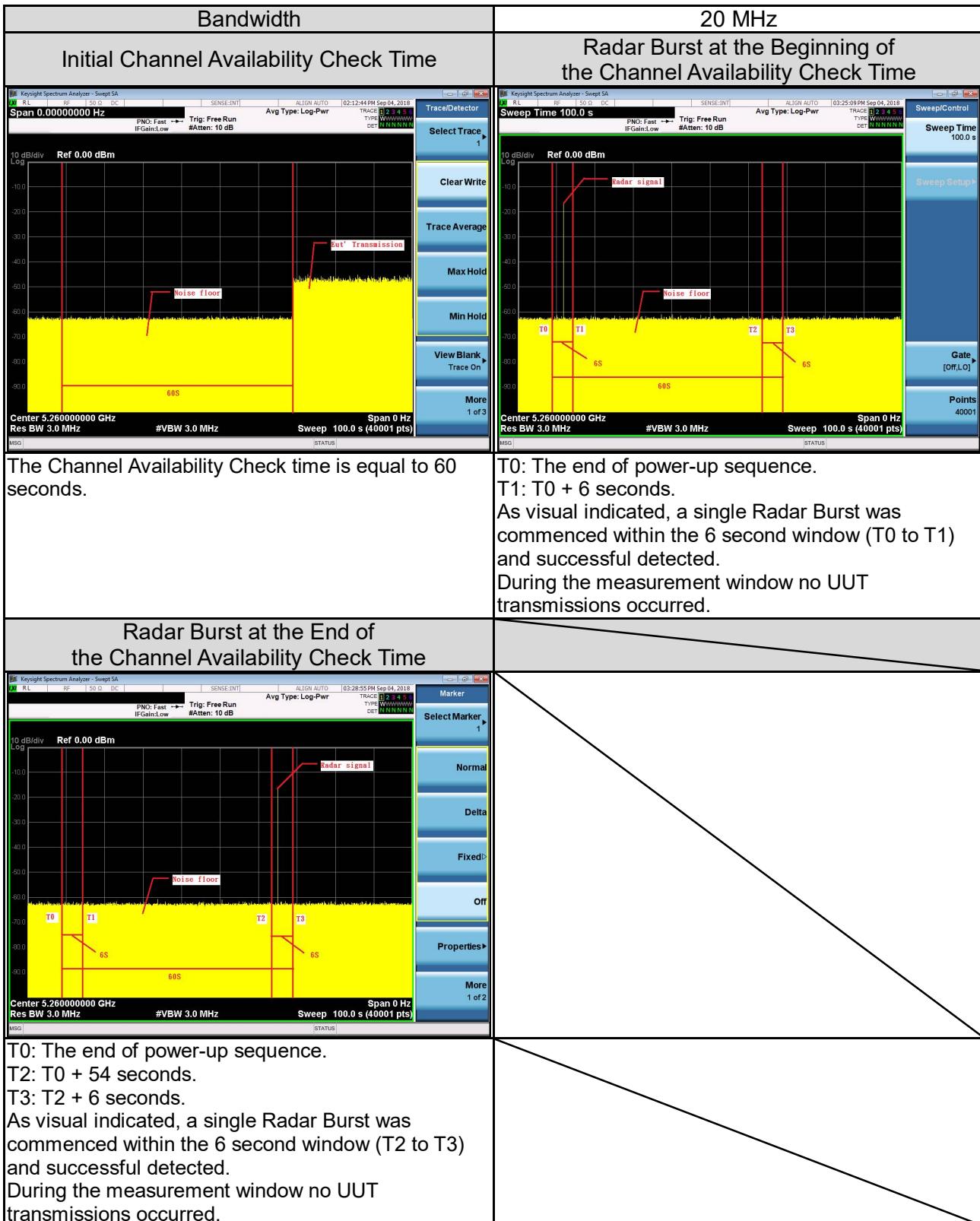
|                                                            |                                                    |            |   |   |   |   |   |   |   |    |                    |
|------------------------------------------------------------|----------------------------------------------------|------------|---|---|---|---|---|---|---|----|--------------------|
| Detection Bandwidth with test transmission                 |                                                    | 80 MHz     |   |   |   |   |   |   |   |    |                    |
| EUT FREQUENCY                                              |                                                    | 5290 MHz   |   |   |   |   |   |   |   |    |                    |
| EUT power bandwidth                                        |                                                    | 75.888 MHz |   |   |   |   |   |   |   |    |                    |
| Detection Bandwidth limit(100% of EUT 99% Power bandwidth) |                                                    | 75.888 MHz |   |   |   |   |   |   |   |    |                    |
| Detection Bandwidth(5330(FH)-5250(FL))                     |                                                    | 80 MHz     |   |   |   |   |   |   |   |    |                    |
| Test Result                                                | PASS                                               |            |   |   |   |   |   |   |   |    |                    |
|                                                            | DFS Detection Trials (1=Detection, 0=No Detection) |            |   |   |   |   |   |   |   |    |                    |
| Radar Freq (MHz)                                           | 1                                                  | 2          | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Detection Rate (%) |
| 5249                                                       | 0                                                  | 0          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0                  |
| 5250(FL)                                                   | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5251                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5252                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5253                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5254                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5255                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5256                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5257                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5258                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5259                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5260                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5261                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5262                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5263                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5264                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5265                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5266                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5267                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5268                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5269                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5270                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5271                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5272                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5273                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5274                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5275                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5276                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5277                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5278                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5279                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5280                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5281                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5282                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5283                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5284                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5285                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5286                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5287                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5288                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5289                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5290                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5291                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5292                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5293                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5294                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5295                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5296                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5297                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5298                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5299                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5300                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5301                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5302                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5303                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5304                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5305                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5306                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5307                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5308                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5309                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5310                                                       | 1                                                  | 1          | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |

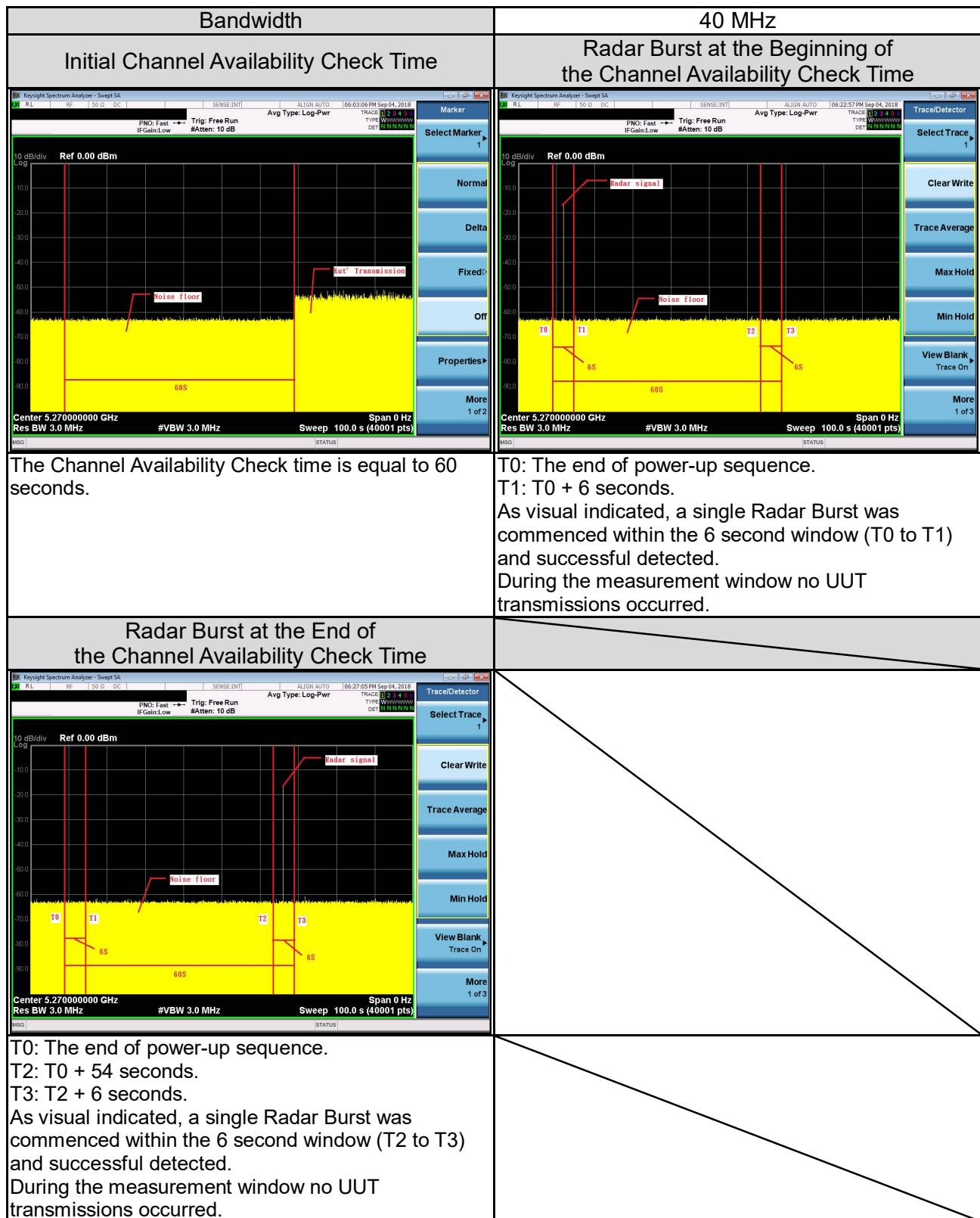
| Test Mode | IEEE 802.11ac (VHT80) |   |   |   |   |   |   |   |   |   |   |     |
|-----------|-----------------------|---|---|---|---|---|---|---|---|---|---|-----|
| 5311      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5312      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5313      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5314      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5315      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5316      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5317      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5318      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5319      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5320      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5321      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5322      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5323      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5324      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5325      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5326      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5327      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5328      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5329      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5330(FH)  | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5331      | 0                     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |

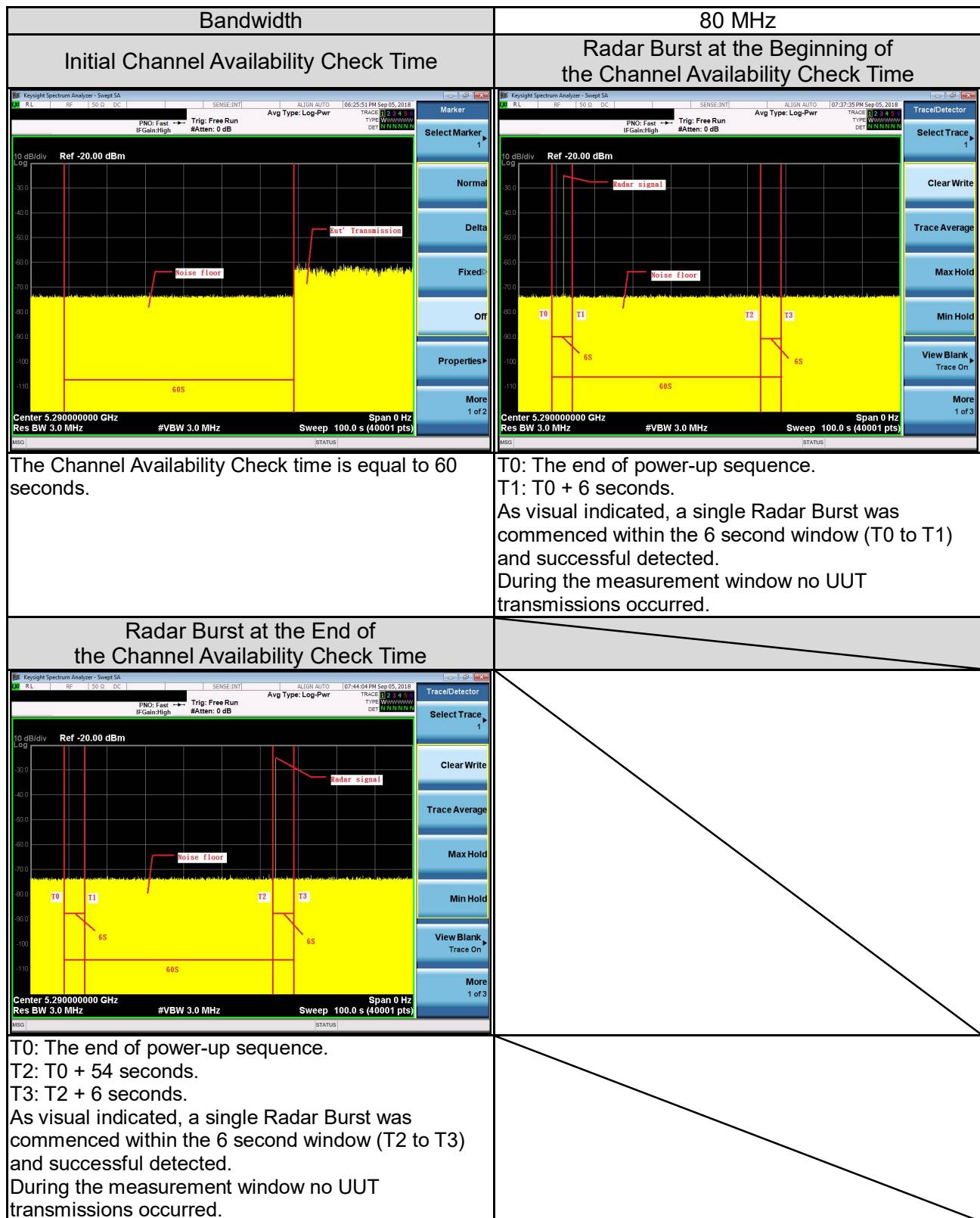
For UII-2C



| Test Mode                                                  | IEEE 802.11a                                        |   |   |   |   |   |   |   |   |     |
|------------------------------------------------------------|-----------------------------------------------------|---|---|---|---|---|---|---|---|-----|
| Detection Bandwidth test transmission                      | 20 MHz                                              |   |   |   |   |   |   |   |   |     |
| EUT FREQUENCY                                              | 5540 MHz                                            |   |   |   |   |   |   |   |   |     |
| EUT power bandwidth                                        | 18.386 MHz                                          |   |   |   |   |   |   |   |   |     |
| Detection Bandwidth limit(100% of EUT 99% Power bandwidth) | 18.386 MHz                                          |   |   |   |   |   |   |   |   |     |
| Detection Bandwidth(5550(FH)-5530(FL))                     | 20 MHz                                              |   |   |   |   |   |   |   |   |     |
| Test Result                                                | -                                                   |   |   |   |   |   |   |   |   |     |
|                                                            | DFS Detection Trials (1=Detection, 0= No Detection) |   |   |   |   |   |   |   |   |     |
| Radar Freq (MHz)                                           | 1                                                   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  |
| 5529                                                       | 0                                                   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |
| 5530(FL)                                                   | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5531                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5532                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5533                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5534                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5535                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5536                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5537                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5538                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5539                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5540                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5541                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5542                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5543                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5544                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5545                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5546                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5547                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5548                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5549                                                       | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5550(FH)                                                   | 1                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5551                                                       | 0                                                   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |


| Test Mode                                                  | IEEE 802.11n (HT40)                                |   |   |   |   |   |   |   |   |    |                    |
|------------------------------------------------------------|----------------------------------------------------|---|---|---|---|---|---|---|---|----|--------------------|
| Detection Bandwidth test transmission                      | 40 MHz                                             |   |   |   |   |   |   |   |   |    |                    |
| EUT FREQUENCY                                              | 5550 MHz                                           |   |   |   |   |   |   |   |   |    |                    |
| EUT power bandwidth                                        | 36.885 MHz                                         |   |   |   |   |   |   |   |   |    |                    |
| Detection Bandwidth limit(100% of EUT 99% Power bandwidth) | 36.885 MHz                                         |   |   |   |   |   |   |   |   |    |                    |
| Detection Bandwidth(5569(FH)-5531(FL))                     | 38 MHz                                             |   |   |   |   |   |   |   |   |    |                    |
| Test Result                                                | PASS                                               |   |   |   |   |   |   |   |   |    |                    |
|                                                            | DFS Detection Trials (1=Detection, 0=No Detection) |   |   |   |   |   |   |   |   |    |                    |
| Radar Freq (MHz)                                           | 1                                                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Detection Rate (%) |
| 5529                                                       | 0                                                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0                  |
| 5530                                                       | 0                                                  | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0  | 40                 |
| 5531(FL)                                                   | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5532                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5533                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5534                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5535                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5536                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5537                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5538                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5539                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5540                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5541                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5542                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5543                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5544                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5545                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5546                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5547                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5548                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5549                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5550                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5551                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5552                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5553                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5554                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5555                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5556                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5557                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5558                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5559                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5560                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5561                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5562                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5563                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5564                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5565                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5566                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5567                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5568                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5569(FH)                                                   | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5570                                                       | 0                                                  | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0  | 40                 |
| 5571                                                       | 0                                                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0                  |


| Test Mode                                                  | IEEE 802.11ac (VHT80)                              |   |   |   |   |   |   |   |   |    |                    |
|------------------------------------------------------------|----------------------------------------------------|---|---|---|---|---|---|---|---|----|--------------------|
| Detection Bandwidth test transmission                      | 80 MHz                                             |   |   |   |   |   |   |   |   |    |                    |
| EUT FREQUENCY                                              | 5530 MHz                                           |   |   |   |   |   |   |   |   |    |                    |
| EUT power bandwidth                                        | 75.743 MHz                                         |   |   |   |   |   |   |   |   |    |                    |
| Detection Bandwidth limit(100% of EUT 99% Power bandwidth) | 75.743 MHz                                         |   |   |   |   |   |   |   |   |    |                    |
| Detection Bandwidth(5570(FH)-5490(FL))                     | 80 MHz                                             |   |   |   |   |   |   |   |   |    |                    |
| Test Result                                                | PASS                                               |   |   |   |   |   |   |   |   |    |                    |
|                                                            | DFS Detection Trials (1=Detection, 0=No Detection) |   |   |   |   |   |   |   |   |    |                    |
| Radar Freq (MHz)                                           | 1                                                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Detection Rate (%) |
| 5489                                                       | 0                                                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0                  |
| 5490(FL)                                                   | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5491                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5492                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5493                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5494                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5495                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5496                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5497                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5498                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5499                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5500                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5501                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5502                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5503                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5504                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5505                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5506                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5507                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5508                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5509                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5510                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5511                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5512                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5513                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5514                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5515                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5516                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5517                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5518                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5519                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5520                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5521                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5522                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5523                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5524                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5525                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5526                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5527                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5528                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5529                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5530                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5531                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5532                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5533                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5534                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5535                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5536                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5537                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5538                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5539                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5540                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5541                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5542                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5543                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5544                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5545                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5546                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5547                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5548                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5549                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |
| 5550                                                       | 1                                                  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 100                |


| Test Mode | IEEE 802.11ac (VHT80) |   |   |   |   |   |   |   |   |   |   |     |
|-----------|-----------------------|---|---|---|---|---|---|---|---|---|---|-----|
| 5551      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5552      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5553      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5554      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5555      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5556      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5557      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5558      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5559      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5560      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5561      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5562      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5563      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5564      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5565      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5566      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5567      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5568      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5569      | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5570(FH)  | 1                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| 5571      | 0                     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |

## 7.7 CHANNEL AVAILABILITY CHECK TIME

For UII-2A





