

Product Integrity Laboratory

5151-47th Street, NE Calgary, Alberta T3J 3R2 Tel: (403) 568-6605 Fax: (403) 568-6970

Certification Test Report

CFR 47 FCC Part 15, Subpart C Section 15.225 Industry Canada RSS 210, Issue 6

Wireless Dynamics Inc. FCC ID # SHFSDID1020 IC ID # 5998A-SDID1020

Project Code CG-225

(Report CG-225-1)

Revision: 0

November 28, 2005

Prepared for: Wireless Dynamics Inc.

Author: Glen Moore/ Kuganesan Pararajasingam

Approved by: Nick Kobrosly

Director of Operations

Confidentiality Statement: This report and the information contained herein represent the results of testing articles/products identified and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from National Technical Systems ("NTS") and the customer.

Report Summary NTS Canada

Product Integrity Laboratory

5151-47th Street, N.E. Calgary Alberta T3J 3R2

Accreditation Numbers: FCC 101386

IC 46405-3978 File # IC3978-2

Standards Council of Canada Accredited Laboratory No. 440

Performed For: Wireless Dynamics Inc.

220, 3636-23rd Street NE

Calgary, T2E8Z5

Canada

Customer Representative: Carlos Aguirre Charo

RF Engineer

EUT Description:

EUT Description	Manufacturer	Model	Revision	Serial Number
13.56 MHz SDID Card	Wireless Dynamics Inc.	SDID1020	А	24, 29

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

Confidential Page 2 of 28 November 23, 2005

Test Summary

ndix	Test/Requirement	Devia	tions* f	rom:	Dece / Feil	Applicable Rule
Appendix	Description	Base Standard	Test Basis	NTS Procedure	Pass / Fail	Parts
Α	Radiated E-Field Emissions 30 MHz – 1 GHz	No	No	No	PASS	FCC 15.209, RSS 210 A2.6
В	Conducted Voltage Emissions 150 kHz – 30 MHz AC Power Leads	No	No	No	PASS	15.207, RSS 210
С	Radiated H-Field Emissions 9 kHz – 30 MHz	No	No	No	PASS	FCC 15.209 , 15.225, RSS 210 Issue 6 A2.6
D	Frequency Stability	No	No	No	PASS	FCC 15.225, RSS 210 A2.6

Test Result:	The product presented for testing complied with test requirements as shown above	∕e.
Prepared By:	Kuganesan Pararajasingam EMC Engineer	
Checked By:	Glen Moore EMC Manager	

Table of Contents

REPORT	Γ SUMMARY	2
TEST SU	JMMARY	3
REGIST	ER OF REVISIONS	5
1.0	INTRODUCTION	6
	Purpose	6
2.0	EUT DESCRIPTION	6
	CONFIGURATION	
2.2	Mode of Operation	6
3.0	SUPPORT EQUIPMENT	
	CONFIGURATION	
	CABLES	
	DICES	
	DIX A: RADIATED EMISSIONS 30 MHZ – 1 GHZ	
APPEND	DIX B: CONDUCTED EMISSIONS 150 KHZ – 30 MHZ	.12
	DIX C: RADIATED H-FIELD EMISSIONS 9 KHZ - 30 MHZ	
APPEND	DIX D: FREQUENCY STABILITY	.23
APPEND	DIX E: TEST EQUIPMENTS	.25
	DOCUMENT	

Emissions Test Report

Wireless Dynamics Inc. FCC ID # SHFSDID1020 IC ID # 5998A-SDID1020

REGISTER OF REVISIONS

Revision	Date	Description of Revisions
0	November 23, 2005	Draft release for review
1	November 28, 2005	Release to TCB following internal review

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this document is to describe the tests applied by NTS Canada to demonstrate compliance of the SDID1020 from Wireless Dynamics Inc. to FCC Part 15 Subpart C section 15.225 for Intentional Radiator and the equivalent sections of Industry Canada's RSS 210 Issue 5

2.0 EUT DESCRIPTION

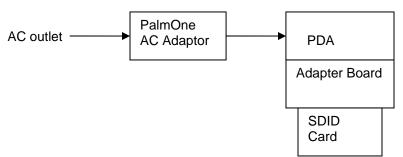
2.1 CONFIGURATION

Description of EUT

Description of Et	Name	Model	Revision	Serial Number	
EUT	SDID Card SDID1020 N/A 24/29				
Classification	Low Power Transmitter				
Size (m)	NA				
Weight	NA				
Power	3.1 VDC				
Description	13.56 MHz RFID Reader				

2.2 MODE OF OPERATION

The SDID1020 was tested while in a Reader/Writer mode with worst case results reported. For Radiated emissions the EUT was checked in three orthogonal planes with worst case results reported. The EUT was also check all available data rates for worst case. For testing purposes the SDID card was plugged into an extender board to present a worst case emissions signature (no shielding from host system).


3.0 SUPPORT EQUIPMENT

3.1 CONFIGURATION

All support equipment information was supplied by the client and was verified by NTS.

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Note: To present the worst case test configuration an extender board (passive) was used to expose the SDID1020 card, so that the emission level would not be dependent on the shielding of this device.

PDA

Position	Qty	Model #	P/N	Serial Number
10m Support Room	1	Zire72 Palm1	NA	00V9A7C456RN

PalmOne AC Adaptor

Position	Qty	Description	P/N	Serial Number
10m Support Room	1	R3W005-500	163-5877B-US	NA

Adaptor Board

Position	Qty	Description	P/N	Serial Number
10m Support Room	1	SD Extend 300	NA	F100061RevA

3.2 CABLES

Support Cable List

ıtity		Ro	uting		Cable
Quantity	Model	From	То	Description	Length (m)
1	Power	PalmOne AC Adaptor	PDA	Unshielded	0.9
1	Power	AC Mains	PalmOne AC Adaptor	Unshielded, Permanent connection to power supply	1.8

Confidential Page 7 of 28 November 23, 2005

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Emissions Test Report

Wireless Dynamics Inc. FCC ID # SHFSDID1020 IC ID # 5998A-SDID1020

APPENDICES

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Confidential Page 8 of 28 November 23, 2005

APPENDIX A: RADIATED EMISSIONS 30 MHZ - 1 GHZ

A.1. Base Standard & Test Basis

Base Standard	CFR Title 47 – Telecommunications, Chapter I - FCC Part 15.209 – Radio Frequency Devices
Test Basis	ANSI C63.4 - 2003 Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
Test Method	NTS Radiated Emissions Test Method E001R7

A.2. Specifications

Frequency	FCC Part 15 10-m Limit (Quasi-Peak)
RALI-	
MHz	dBμV/m
30 - 88	dBμV/m 29.54
	•
30 - 88	29.54

Notes: Limit extrapolated from 3m using 10m Limit = 3m Limit $-20 * log_{10}(10/3)$

A.3. Measurement Uncertainty

Radiated Emissions 30 MHz – 1 GHz	Measurement Uncertainty	Expanded Uncertainty (K=2)		
(dB)	+2.32/-2.36	+4.65/-4.72		

A.4. Deviations

Deviation	Time &	Description and	De			
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
none						

A.5. Test Method

The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a motorized turntable. The emission levels were maximized by rotating the turntable through 360 degrees, a measurement antenna was positioned at a distance of 10meters as measured from the closest point of the EUT, and scanned from 1-4 meters.

A spectrum analyzer with peak detection was used to find the maximum field strength during the scans. The EUT was tested in 3 orthogonal planes, with the worst case results being reported.

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Test Results

Compliant. The worst case emission level at 10m was 25.11dB μ V/m at 81.38MHz with a margin of 4.43dB.

A.6. Sample Calculation

Emission Level = Measured Level + Correction Factors Margin = Limit – Emission Level

A.7. Test Data

Product Integrity Laboratory V2.5	Project Number: Model: Comments:		120VA0	C, Zire72 (PDA), PDA	on Vertical	Upright pos	Deniz RE02c-10m sition, SDiD		code 10	0% ASK	fast
Standard	FCC15_B		Measu	rement Di	stance		10	meters				
Antenna	CL	Frequenc y	AF	CL+LNA	Total CF	Detector	Measured Value	Corrected Value	Limit	Margin	Mast Height	Turntable Angle
Horizontal		MHz	dB/m	dB	dB/m		dBu∀	dBuV/m	dBuV/m	dB	cm	degrees
2701 RX BiCon Hpol	10M Total Link Factor	81.39	7.65	-24.48	-16.83	QP	33.84	17.01	29.54	12.53	400.0	7.0
Vertical												
2701 RX BiCon Vpol	10M Total Link Factor	40.68	12.20	-24.99	-12.79	QP	24.82	12.03	29.54	17.52	100.0	28.5
2701 RX BiCon Vpol	10M Total Link Factor	81.38	7.70	-24.48	-16.78	QP	41.89	25.11	29.54	4.43	115.4	104.3
2701 RX BiCon Vpol	10M Total Link Factor	114.57	12.16	-24.09	-11.93	QP	20.91	8.98	33.06	24.09	106.2	20.8
2701 RX BiCon Vpol	10M Total Link Factor	120.11	12.30	-24.01	-11.71	QP	25.46	13.75	33.06	19.32	335.2	262.0
2701 RX BiCon Vpol	10M Total Link Factor	911.47	21.10	-20.79	0.31	QP	26.73	27.04	35.56	8.52	163.6	16.8
Positive Margin ind	Positive Margin indicates a Pass											

A.8. Tested By

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci Function: EMC Engineer

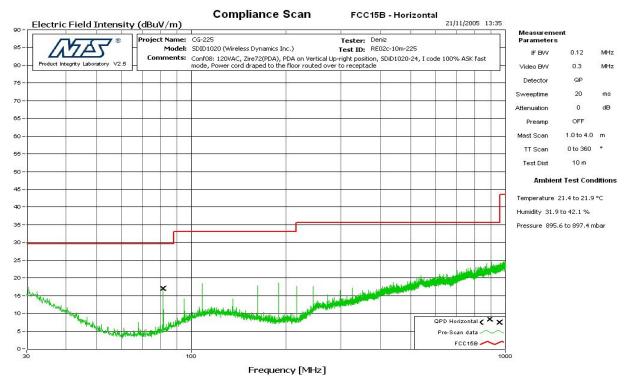


Figure 1 RE - Horizontal – 30 MHz – 1 GHz

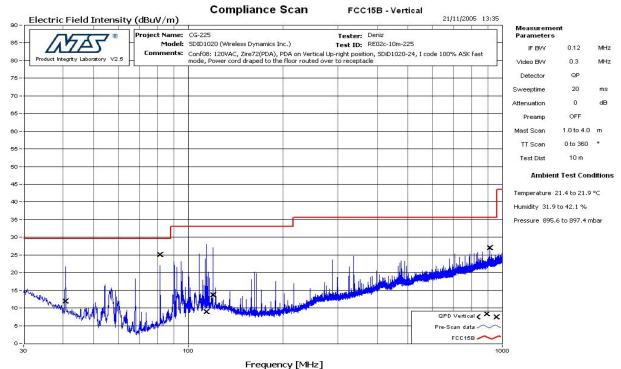


Figure 2 RE - Vertical - 30 MHz - 1 GHz

APPENDIX B: CONDUCTED EMISSIONS 150 KHZ - 30 MHZ

B.1. Base Standard & Test Basis

Base Standard	CFR Title 47 – Telecommunications, Chapter I - FCC Part 15.207 – Radio Frequency Devices, RSS 210 Issue 6
Test Basis	ANSI C63.4 - 2003 Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
Test Method	NTS Conducted Emissions Test Method E011R1

B.2. Specifications

Frequency	Limit				
rrequeries	Quasi-Peak	Average			
MHz	dBμV	dBμV			
0.150 - 0.500	66 to 56 ¹	56 to 46 ¹			
0.500 - 5.00	56	46			
5.00 - 30.00	60	50			

Note 1: decrease with the logarithm of the frequency

B.3. Measurement Uncertainty

Conducted Current Emissions 150 kHz – 30 MHz	Measurement Uncertainty	Expanded Uncertainty (K=2)		
(dB)	+1.21/-1.33	+2.41/-2.66		

B.4. Deviations

Deviation	lustification of	Time 9 Description and	De			
Number			Base Standard	Test Basis	NTS Procedure	Approval
none						

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

B.5. Test Results

Compliant. The worst case emission level was 46.15dB μ V at 0.332MHz with a margin of 3.26dB.

B.6. Sample Calculation

Correction Factor = LISN Correction Factor + Cable Loss Corrected Value = Measurement + Correction Factor Margin = Limit – Corrected Emission Level

B.7. Test Data

duct Integrity poratory V2.5		Project Numbe Model: Comments:	SDiD1020 (Wi Conf08:E- 120	reless Dynamics Ino VAC, Zire72 (PDA), aped to the floor rou	PDA on Vert		Tester: Test ID: sition, SDiD1020	Deniz CE02tc-10m-22: -24, I code 100%	_
ındard:	FCC15_B								
Voltage/Line	LISN/Lead	Frequency	Measurement Detector	Measured Value	CF	Corrected Value	Limit Detector Type	Limit	Margin
		MHz		dBu∀	dB	dBu∀		dBu∨	dB
Phase1	LISN A1	0.16	QP	31.4	11.71	43.11	QP	65.52	22.40
Phase1	LISN A1	0.17	QP	30.9	11.58	42.48	QP	64.96	22.48
Phase1	LISN A1	0.19	QP	29.83	11.35	41.18	QP	63.83	22.65
Phase1	LISN A1	0.29	QP	27.01	10.90	37.91	QP	60.48	22.58
Neutral	LISN A1	0.32	QP	27.19	10.84	38.03	QP	59.78	21.76
Neutral	LISN A1	13.56	QP	34.55	11.72	46.27	QP	60.00	13.73
Neutral	LISN A4	0.16	QP	31.35	11.69	43.04	QP	65.62	22.57
Neutral	LISN A4	0.20	QP	29.73	11.27	41.00	QP	63.56	22.56
Neutral	LISN A4	0.25	QP	27.87	11.00	38.87	QP	61.72	22.85
Neutral	LISN A4	0.34	QP	26.71	10.78	37.49	QP	59.27	21.78
Neutral	LISN A4	0.35	QP	26.27	10.76	37.03	QP	59.01	21.98
Neutral	TT LISN A4	13.56	QP	35.87	11.42	47.29	QP	60.00	12.71
Phase1	LISN A1	0.16	Avg	14.92	11.74	26.66	Avg	55.62	28.95
Phase1	LISN A1	0.23	Avq	13.32	11.12	24.44	Avq	52.42	27.99
Phase1	LISN A1	0.32	Avg	12.74	10.84	23.58	Avg	49.77	26.19
Phase1	LISN A1	0.35	Avg	12.18	10.78	22.96	Avg	48.95	25.99
Phase1	LISN A1	0.60	Avg	10.96	10.62	21.58	Avg	46.00	24.42
Phase1	LISN A1	13.56	Avq	33.54	11.72	45.26	Avq	50.00	4.74
Neutral	LISN A4	0.15	Avg	15.1	11.75	26.85	Avg	55.84	28.98
Neutral	LISN A4	0.18	Avq	14.39	11.43	25.82	Avq	54.44	28.62
Neutral	LISN A4	0.33	Avg	35.36	10.79	46.15	Avg	49.41	3.26
Neutral	LISN A4	0.35	Avg	12.33	10.76	23.09	Avg	49.01	25.92
Neutral	LISN A4	0.60	Avq	11.04	10.59	21.63	Avg	46.00	24.37
Neutral	LISN A4	13.56	Avg	34.83	11.63	46.46	Avg	50.00	3.54

B.8. Tested By

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci Function: EMC Engineer

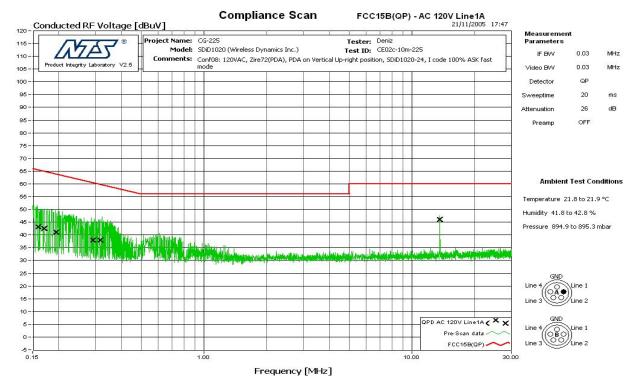


Figure 3 CE –Line A1 – 150 kHz – 30 MHz (QP Detector)

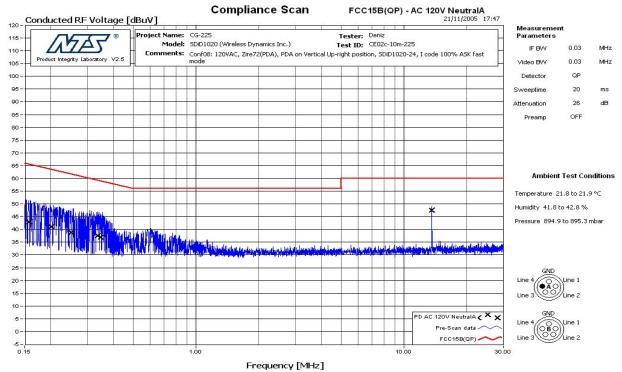


Figure 4 CE –Return A2 – 150 kHz – 30 MHz (QP Detector)

CG-225 Rev: 10Model: SDID1020

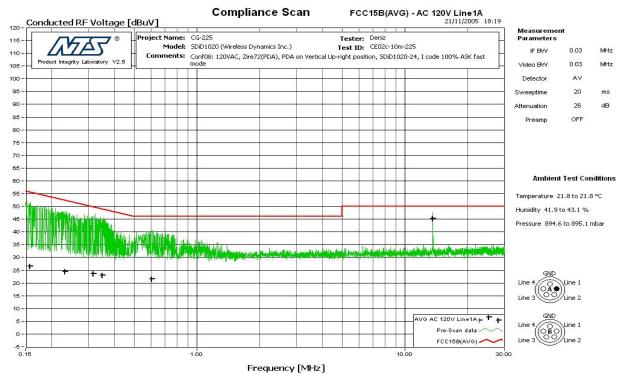


Figure 5 CE -Line A1 - 150 kHz - 30 MHz (Average Detector)

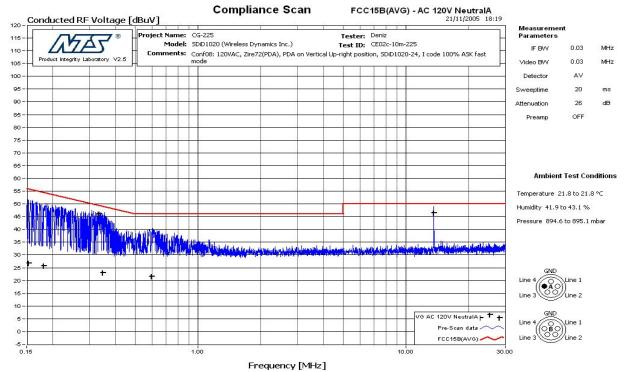


Figure 6 CE –Return A2 – 150 kHz – 30 MHz (Average Detector)

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

APPENDIX C: RADIATED H-FIELD EMISSIONS 9 KHZ - 30 MHZ

C.1. Base Standard & Test Basis

Base Standard	CFR Title 47 – Telecommunications, Chapter I - FCC Part 15.209 and Part 15.225 – Radio Frequency Devices, RSS 210 Issue 6,
Test Basis	ANSI C63.4 - 2003 Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
Test Method	NTS Radiated H-Field Emissions Test Method 28.2, Rev 1.0

C.2. Specifications

Frequency	Lim	Limit			
(F)	Field Strength	Distance	Limit at 10m		
MHz	μV/m	m	dBμV/m		
0.009 - 0.49	2400/ F(kHz)	300	107.6 to 72.9 ¹		
0.49 - 1.705	24000/ F(kHz)	30	52.9 to 42.1 ¹		
1.705 – 13.11	30	30	48.6		
13.11 – 13.41	106	30	59.6		
13.41 – 13.553	334	30	69.6		
13.553 - 13.567	15848	30	103.1		
13.567 - 13.71	334	30	69.6		
13.71 - 14.01	106	30	59.6		
14.01 – 30	30	30	48.6		

Notes:

- 1. decrease with the logarithm of the frequency.
- 2. Limit is extrapolated from 300m and 30 to 10m by adding 59.1dB and 19.1dB respectively.

C.3. Measurement Uncertainty

Radiated H-Field Emissions 9kHz – 30MHz	Measurement Uncertainty	Expanded Uncertainty (K=2)		
(DB)	+2.15/-2.19	+4.30/-4.38		

C.4. Deviations

Deviation	Time 8	Time & Description and		Deviation Reference				
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval		
none								

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

C.5. Test Method

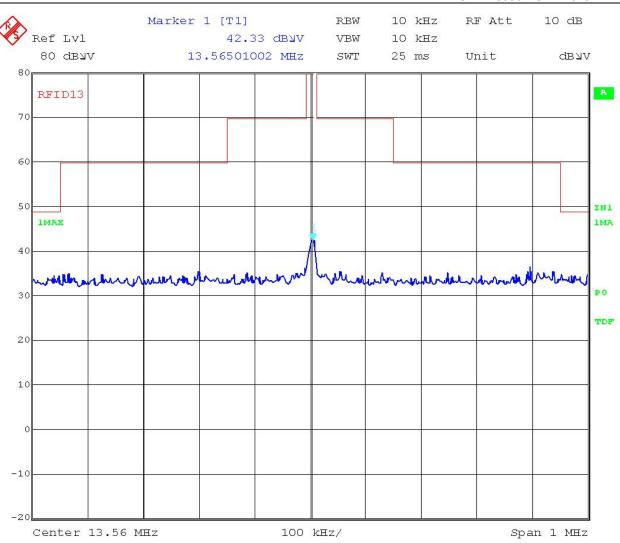
The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a motorized turntable. The fundamental field strength was maximized by rotating the turntable through 360 degrees. The receive Loop antenna was positioned at a distance of 3 meters as measured from the closest point of the EUT and 1 meter above the ground plane. A spectrum analyzer with peak detection was used to find the maximum field strength during the scans. The EUT was tested in 3 orthogonal planes and alldata rates (1.6 kbps (I Code SLI slow mode, 100% and 10 % ASK), 26 kbps (I Code SLI fast mode, 100% and 10 % ASK), 106 kbps (14443A/B), 212 kbps (14443A/B), 424 kbps (14443A/B), 848 kbps (14443A/B) with the worst case results being reported.

C.6. Test Results

Compliant. The worst case fundamental field strength is $42.33dB\mu V/m$

C.7. Sample Calculation

Margin = Limit - Emission Level

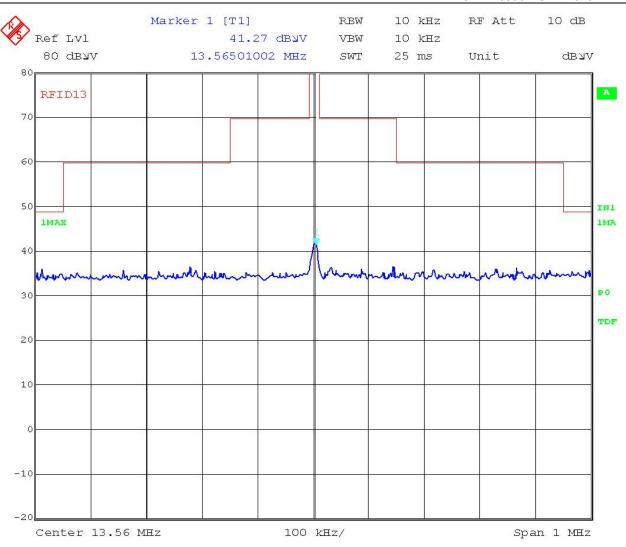

C.8. Test Data

Product Integrity Laboratory V2.5	Model: Comments:	CG-225 SDiD1020 (\ Conf08:E- 1: fast mode, F	20VAC,	Zire72 (F	PDA), PDA		Test ID: Upright posi			code 100	% ASK
Standard :	FCC Part 15	Measureme	ent Dist	ance :	10	meters	Measureme	ent Type :	H-Fi	eld	
	Antenna	Frequency	AF	CL	Total CF	Detector	Measured Value	Corrected Value	Limit	Margin	
	Parallel	MHz	dB/m	dB	dB/m		dBu∀	dBuV/m	dBuV/m	dB	
	R&S HFH2-Z2 Loop	0.03	19.40	0.12	19.52	Peak	24.61	44.13	97.27	53.14	
	R&S HFH2-Z2 Loop	13.55	20.34	0.60	20.94	Peak	13.68	34.62	69.55	34.93	
	R&S HFH2-Z2 Loop	13.56	20.34	0.60	20.94	Peak	21.39	42.33	103.08	60.75	
	R&S HFH2-Z2 Loop	13.57	20.34	0.59	20.93	Peak	20.49	41.42	69.55	28.13	
	Perpendicular										
	R&S HFH2-Z2 Loop	13.55	20.34	0.60	20.94	Peak	12.99	33.93	69.55	35.62	
	R&S HFH2-Z2 Loop	13.56	20.34	0.60	20.94	Peak	20.33	41.27	103.08	61.81	
	R&S HFH2-Z2 Loop	13.57	20.34	0.59	20.93	Peak	17.85	38.78	69.55	30.77	
Positive Margin indi	Positive Margin indicates a Pass										

C.9. Tested By

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci Function: EMC Engineer



Title: CG-225 SDID1020 (Wireless Dynamics Inc.) Parallel

Comment A: Conf08: 120VAC, Zire72 (PDA), PDA on Vertical UP-right position

Date: 21.Nov.2005 15:49:52

Figure 7 RE - Parallel – 13.06MHz – 14.06MHz

Title: CG-225 SDID1020 (Wireless Dynamics Inc.) Perpendicular Comment A: Conf08: 120VAC, Zire72(PDA), PDA on Vertical UP-right position Date: 21.NOV.2005 16:02:48

Figure 8 RE - Perpendicular – 13.06MHz – 14.06MHz

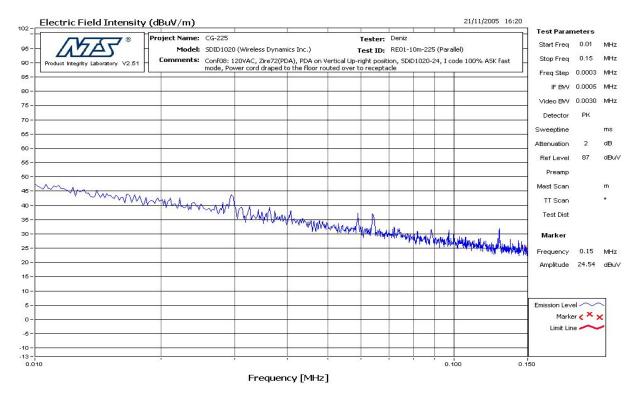


Figure 9 RE - Parallel - 9kHz - 150kHz

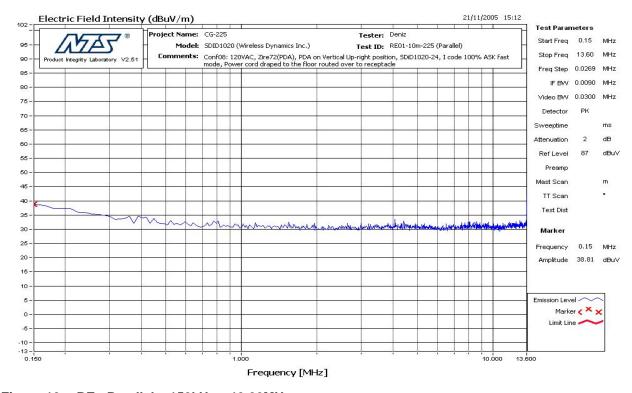


Figure 10 RE - Parallel - 150kHz - 13.06MHz

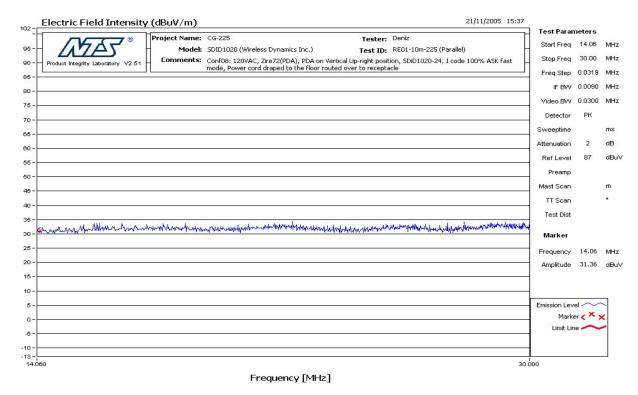


Figure 11 RE - Parallel - 14.06MHz - 30.0MHz

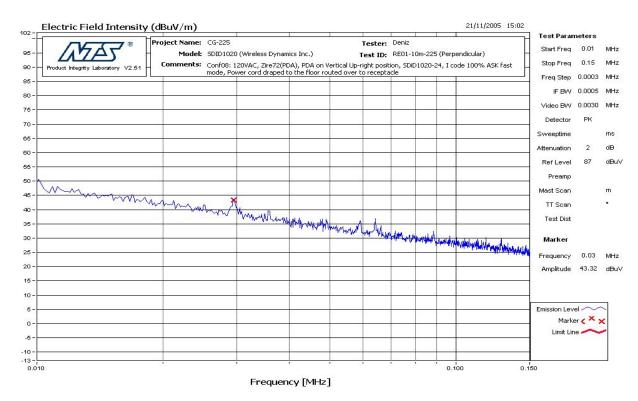


Figure 12 RE – Perpendicular – 9kHz – 150kHz

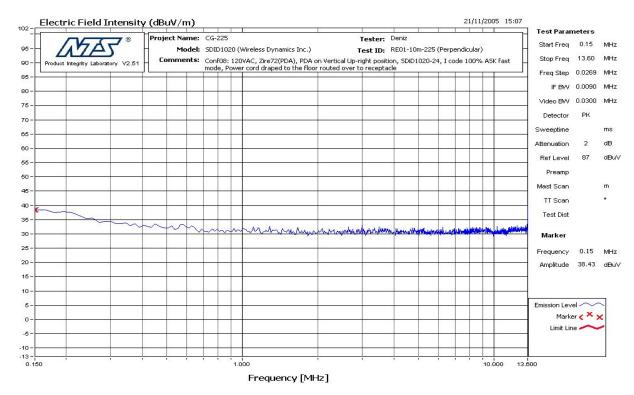


Figure 13 RE - Perpendicular – 150kHz – 13.06MHz

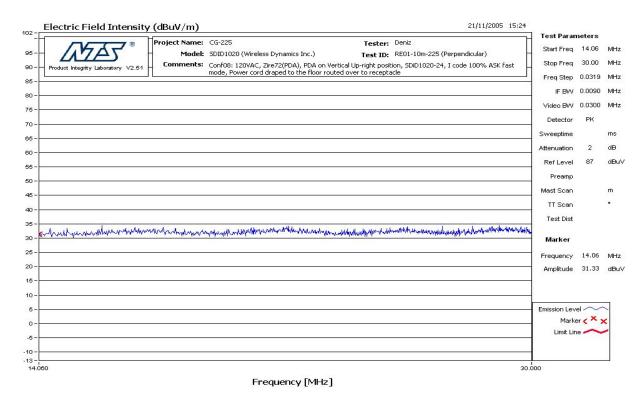


Figure 14 RE - Perpendicular – 14.06MHz – 30.0MHz

APPENDIX D: FREQUENCY STABILITY

D.1. Base Standard & Test Basis

Base Standard	CFR Title 47 – Telecommunications, Chapter I - FCC Part 15.225 – Radio Frequency Devices, RSS 210 Issue 6
Test Basis	ANSI C63.4 - 2003 Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
Test Method	ANSI C63.4 - 2003, 13.1.6 - Frequency Measurements

D.2. Specifications

Supply Voltage	Temperature	Maximum Tolerance
VAC	°C	kHz
120	20	1.356
138 (115%)	20	1.356
102 (85%)	20	1.356
120	-20	1.356
120	50	1.356

D.3. Deviations

Deviation	Time &	Description and	De	eviation Referen	ice	
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
none						

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

D.4. Test Results

Compliant. The maximum frequency tolerance was found to be 946.6Hz.

D.5. Sample Calculation

None

D.6. Test Data

Voltage (VDC)	Temperature (Celcius)	Frequency (MHz)
3.1	20	13.5609466
3.6	20	13.5609466
2.9 (end operating point)	20	13.5609466
3.1	-20	13.56070140
3.1	50	13.56070140

D.7. Tested By

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1;

Quality Manual.

Name: Kuganesan Pararajasingam

Function: EMC Engineer

APPENDIX E: TEST EQUIPMENTS

E.1. Radiated Emissions 30 MHz – 1 GHz Measurement Equipment

Description	Manufacturer	Type/Model	Asset #	Cal Due	Cal Date			
10m ANECHOIC CHAMBER								
Bilog Antenna		CBL 6111B	260398	23APR06	23APR04			
	☐ Chase	CBL 6112B	260301	20, 11 1100	20, 11 110 1			
RF Cable	Suhner Succoflex	Ferrite bead loaded cable	260388	07JAN06	07JAN04			
	CONT	ROL ROOM						
Test Receiver	Rohde & Schwarz	ESAI	260110 / 260111	2FEB06	2FEB05			
Mast Controller	EMCO	2090	260165	N/A	N/A			
Multi Device Controller TT1 (Turntable)	07JAN06	07JAN04		N/A	N/A			
RF 10m East site Link								
- Cable 1	Suhner Succoflex	NA	263135					
- Cable 2	Suhner Succoflex	NA	263161	Suhner				
- Cable 3	Suhner Succoflex	NA	263162	Succoflex	NA			
- Cable 4	TDL	SMC-002	260162					
- Amplifier	Hewlett Packard	8447F	260164					

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

E.2. Conducted Emissions 10 kHz – 30 MHz Measurement Equipment

Description		Manufacturer	Type/Model	Serial #	Cal Due	Cal Date
		10m AN	ECHOIC CHAME	ER		
A LISN Link						
-LISN A Switch	⊠A	NA	NA	263177	07JAN06	07JAN04
-Cable Switch to Limiter	⊠A	NA	NA	263164		
	⊠ A1	Succoflex	NA	263168	07JAN06	07JAN04
- Cable	☐ A2	Succoflex	NA	263169	07JAN06	07JAN04
LISN to Switch	☐ A3	Succoflex	NA	263170	07JAN06	07JAN04
	⊠ A4	Succoflex	NA	263171	07JAN06	07JAN04
- Table Top LISN	⊠TT	EMCO	3825	260354	08JAN06	08JAN04
B LISN Link		<u> </u>				
-LISN B Switch	□в	NA	NA	263176	07JAN06	07JAN04
-Cable Switch to Limiter	□в	NA	NA	263165		
	☐ B1	Succoflex	NA	263172	07JAN06	07JAN04
- Cable	☐ B2	Succoflex	NA	263173	07JAN06	07JAN04
LISN to Switch	□ B3	Succoflex	NA	263174	07JAN06	07JAN04
	☐ B4	Succoflex	NA	263175	07JAN06	07JAN04
			NTROL ROOM			
		Rohde & Schwarz	ESAI	260110 / 260111		
Mast Controller		EMCO	2090	260166	N/A	N/A
Switch Matrix		TDL	SMC-002	260162	07JAN06	07JAN04
Cable Switch Matrix to Re	eceiver	NA	NA	263166	07JAN06	07JAN04
A LISN Link						
-LISN A Limiter	⊠A	NA	NA	263178	07JAN06	07JAN04
-Cable Switch to Limiter	⊠A	NA	NA	263164		
B LISN Link						
-LISN B Limiter	□в	NA	NA	263179	07JAN06	07JAN04
-Cable Switch to Limiter	□в	NA	NA	263194		

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

E.3. Radiated H-Field Emissions 10kHz – 30MHz Measurement Equipment

	Description	Manufacturer	Type/Model	Serial #	Cal Due	Cal Date			
10m ANECHOIC CHAMBER									
L	oop Antenna	R&S	HFH2-Z2	DE12245	09NOV05	09NOV04			
Loop	o Antenna Power Supply	NA	NA	263257	N/A	N/A			
Cable		Succoflex	NA	263136	08JAN06	08JAN04			
Cable	☐ H-Field site bulkhead to antenna	Succoflex	NA	263387	08JAN06	08JAN04			
		CON	TROL ROOM						
N	last Controller	EMCO	2090	260166	N/A	N/A			
	Device Controller T1 (Turntable)	EMCO	2090	260165	N/A	N/A			
1	Test Receiver	Rohde & Schwarz	ESAI	260110 / 260111	02FEB06	02FEB05			
⊠ RF 3	8m Center site Link								
- Cable	e 1	Succoflex	NA	263188	08JAN06	08JAN04			
- Cable	2	Succoflex	NA	263134					
☐ RF 1	0m H-Field site Link								
- Cable 1		Succoflex	NA	263184					
- Cable	2	Succoflex	NA	263189	08JAN06	08JAN04			
- Cable	3	Succoflex	NA	263167					
- Switc	h Matrix Controller	TDL	SMC-002	260162					

E.4. Frequency Stability Measurement Equipment

Description	Manufacturer	Type/Model	Serial #	Cal Due	Cal Date
Temperature Chamber	Thermotron Industries	SM-8C	17013-S	NA	NA
Data Acquisition/ Switch unit	Hewlett Packard	34970A	US37003408	24SEP05	24SEP04
Spectrum Analyzer 9k- 40GHz	Rohde & Schwarz	FSEK	260104	05APR06	05ARP05
DC Power Supply	Hewlett Packard	6632B	US36351938	NA	NA
RMS Multimeter	Fluke	87	69460888	10Jan06	10Jan05

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

END OF DOCUMENT