

TEST REPORT

No. 2014RFB0008

For

Client: Haier Telecom(Qingdao) Co.,Ltd.

Production: WCDMA/GSM Dual-Mode Digital

Mobile Phone

Model Name: W867

Hardware Version: W83 MB B

Software Version: Haier_W867_W83B_M00_S09_131114

FCC ID: SG71401W867

Issued date: 2014-02-24

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn.

CONTENTS

1.	GENERAL INFORMATION	3
1.1	Notes	3
1.2	STATEMENTS	3
1.3	TESTING LABORATORY INFORMATION	4
1.3.1.	Testing Location	4
1.3.2.	Testing Environment	4
1.3.3.	Project data	4
1.3.4.	Signature	4
1.4	DETAILS OF APPLICANT OR MANUFACTURER	5
1.4.1.	Applicant Information	5
1.4.2.	Manufacturer Information	5
2.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
2.1.	ABOUT EUT	5
2.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
2.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
3.	REFERENCE DOCUMENTS	6
3.1.	REFERENCE DOCUMENTS FOR TESTING	6
4.	SUMMARY OF TEST RESULTS	7
5.	TEST RESULT	9
5.1.	PEAK OUTPUT POWER-CONDUCTED	9
5.2.	FREQUENCY BAND EDGES-CONDUCTED	14
5.3.	CONDUCTED EMISSION	20
5.4.	RADIATED EMISSION	30
5.5.	TIME OF OCCUPANCY (DWELL TIME)	43
5.6.	20DB BANDWIDTH	53
5.7.	CARRIER FREQUENCY SEPARATION	58
5.8.	NUMBER OF HOPPING CHANNELS	60
6.	TEST EQUIPMENTS AND ANCILLARIES USED FOR TESTS	65
7.	TEST ENVIRONMENT	67
ΔΝΝΕ	X A DEVIATIONS FROM PRESCRIBED TEST METHODS	69

1. General Information

1.1 Notes

All reported tests were carried out on a sample equipment to demonstrate limited compliance with the section 3.

Report No.: 2014RFB0008

The test results of this test report relate exclusively to the item(s) tested as specified in section 5.

The following deviation from, additions to, or exclusions from the test specifications have been made. See section 3.

1.2 Statements

The product W867, supporting BT, manufactured by Haier Telecom(Qingdao) Co.,Ltd. is a new product for testing.

ECIT has verified that the compliance of the tested device specified in section 5 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 5 of this test report.

1.3 Test Laboratory

1.3.1. Testing Location

Company Name:

ECIT Shanghai, East China Institute of Telecommunications

Address:

7F, G Area, No. 668, Beijing East Road, Huangpu District, Shanghai,

Report No.: 2014RFB0008

P. R. China

Postal Code:

200001

Telephone:

86-21-63843300

Fax:

86-21-63843301

FCC Registration NO.:

489729

1.3.2. Testing Environment

Normal Temperature:

15-35℃

Extreme Temperature:

N/A

Relative Humidity:

20-75%

1.3.3. Project data

Project Leader:

Gong Yujuan

Testing Start Date:

01-20, 2014

Testing End Date:

02-20, 2014

1.3.4. Signature

Wang Daming

(Prepared this test report)

Liu lianguan

(Reviewed this test report)

Zheng Zhongbin

Director of the laboratory

(Approved this test report)

1.4 Details of applicant or manufacturer

1.4.1. Applicant Information

Company Name: Haier Telecom(Qingdao) Co.,Ltd.

No.1, Haier Road, Haier information Property

Zone, Qingdao, P.R. China

Report No.: 2014RFB0008

Tel: (+86)0532-88936599-226

Country: China

1.4.2. Manufacturer Information

Company Name: Haier Telecom(Qingdao) Co.,Ltd.

Address /Post: No.1, Haier Road, Haier information Property

Zone,Qingdao,P.R.China

Tel: (+86)0532-88936599-226

Country: China

2. Equipment Under Test (EUT) and Ancillary Equipment (AE)

2.1. About EUT

EUT Description WCDMA/GSM Dual-Mode Digital Mobile Phone

Model name W867

Bluetooth Frequency 2402MHz-2480MHz
Bluetooth Channel Channel78

Bluetooth Modulation GMSK;π/4 DQPSK;8DPSK

Nominal Voltage 3.8V Extreme High Voltage 4.2V Extreme Low Voltage 3.6V

Note: Photographs of EUT are shown in ANNEX A of this test report.

2.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N02	863098020002317	W83_MB_B	Haier_W867_W83B_	2014-01-20
			M00 S09 131114	

^{*}EUT ID: is used to identify the test sample in the lab internally.

2.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	RF cable	
AE2		

3. Reference Documents

3.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

9	3	
Reference	Title	
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5MHz, and 5725-5850MHz.	
	Methods of Measurement of Radio-Noise Emissions from	
ANSI C63.4	Low-Voltage Electrical and Electronic Equipment in the	2009
	Range of 9KHz to 40GHz	
DA 00 705	Filing and Measurement Guidelines for Frequency Hopping	0000
DA 00-705	Spread Spectrum Systems	2000

Report No.: 2014RFB0008

4. Summary of Test Results

A brief summary of the tests carried out is shown as following.

Measurement Items	Sub-clause of Part15C	Sub-claus e of IC	Verdict
Maximum Peak Output Power	15.247(a)	/	Р
Peak Power Spectral Density	15.247(d)	/	Р
Occupied 6dB Bandwidth	15.247(d)	/	Р
Band Edges Compliance	15.247(b)	/	Р
Transmitter Spurious Emission-Conducted	15.247	/	Р
Transmitter Spurious Emission-Radiated	15.247,15.209,	/	Р

Report No.: 2014RFB0008

Please refer to part 5 for detail.

The measurements are according to Public notice DA 00-705 and ANSI C63.4.

Terms used in Verdict column

Р	Pass, the EUT complies with the essential requirements in the standard.		
NP	Not Perform, the test was not performed by ECIT.		
NA	Not Applicable, the test was not applicable.		
F	Fail, the EUT does not comply with the essential requirements in the standard.		

Test Conditions

Tnom	Normal temperature
Tmin	Low Temperature
Tmax	High Temperature
Vnom	Normal Voltage
Vmin	Low Voltage
Vmax	High Voltage
Hnom	Norm Humidity
Anom	Norm Air Pressure

For this report, all the test case listed above are tested under Normal Temperature and Normal Voltage, and also under norm humidity, the specific conditions as following:

East China Institute of Telecommunications

Report No.: 2014RFB0008

Temperature	Tnom	22°C
Voltage	Vnom	3.8V
Humidity	Hnom	32%
Air Pressure	Anom	1010hPa

Note:

- a. All the test data for each data were verified, but only the worst case was reported.
- b.The GFSK, $\pi/4$ DQPSK and 8DPSK were set in DH1 for GFSK, 2-DH1 for $\pi/4$ DQPSK, 3-DH1 for 8DPSK.
- c.The DC and low frequency voltages' measurement uncertainty is ±2%.

5. Test result

5.1. Peak Output Power-Conducted

Measurement Limit

Standard	Limit (dBm)
FCC Part 15.247(b)(1)	< 30

The measurement is according to Public notice DA 00-705 and ANSI C63.4.

Test Condition:

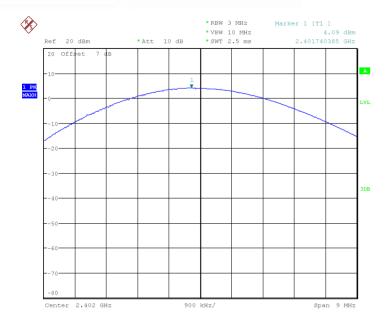
Hopping Mode	RBW	VBW	Span	Sweeptime
Hopping OFF	3MHz	10MHz	5MHz	2.5ms

Measurement Results:

For GFSK

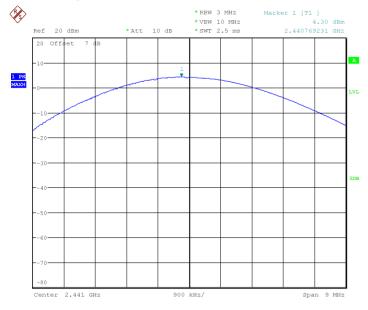
Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz	Conclusion
Peak Conducted	4.091	4.297	3.634	D
Output Power (dBm)	Fig.1	Fig.2	Fig.3	F

For $\pi/4$ DQPSK

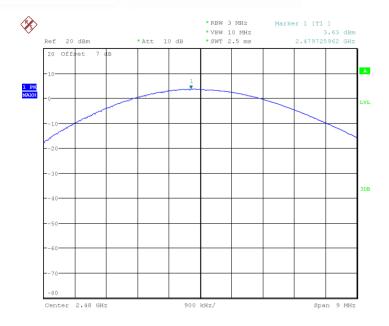

Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	3.283	3.428	2.68	D
	Fig.4	Fig.5	Fig.6	F

For 8DPSK

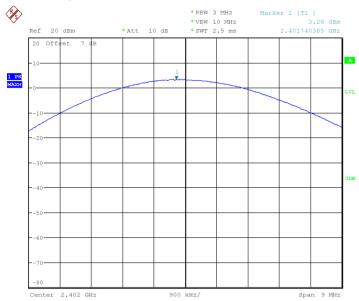
Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz	Conclusion
Peak Conducted Output Power	3.283	3.435	2.672	P
(dBm)	Fig.7	Fig.8	Fig.9	Г


Conclusion: PASS
Test graphs an below

Date: 10.FEB.2014 10:38:54


Fig.1 Peak Conducted Output Power CH0, DH1

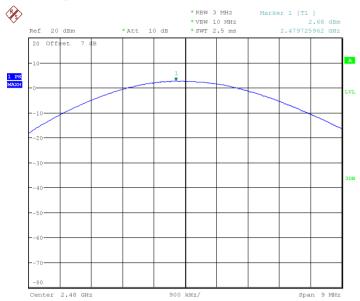
Date: 10.FEB.2014 10:39:06


Fig.2 Peak Conducted Output Power CH39, DH1

Date: 10.FEB.2014 10:39:18

Fig.3 Peak Conducted Output Power CH78, DH1

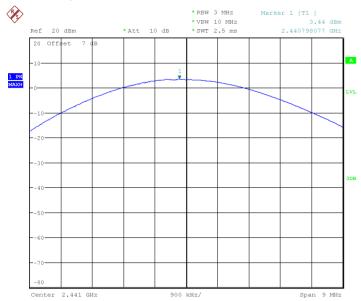
Date: 10.FEB.2014 10:39:29


Fig.4 Peak Conducted Output Power CH0, 2DH1

Date: 10.FEB.2014 10:39:41


Fig.5 Peak Conducted Output Power CH39, 2DH1

Date: 10.FEB.2014 10:39:53


Fig.6 Peak Conducted Output Power CH78, 2DH1

Date: 10.FEB.2014 10:40:04

Fig.7 Peak Conducted Output Power CH0, 3DH1

Date: 10.FEB.2014 10:40:16

Fig.8 Peak Conducted Output Power CH39, 3DH1

Date: 10.FEB.2014 10:40:28

Fig.9 Peak Conducted Output Power CH78, 3DH1

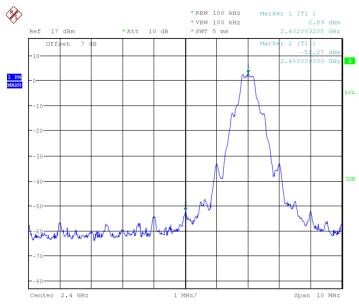
5.2. Frequency Band Edges-Conducted

Measurement result:

For GFSK

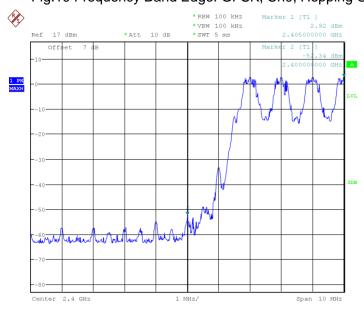
Channel	Hopping	Band Edge	Power (dBc)	Conclusion
0	Hopping OFF	Fig.10	-52.267	Р
0	Hopping ON	Fig.11	-52.337	Р
70	Hopping OFF	Fig.12	-53.062	Р
78	Hopping ON	Fig.13	-54.274	Р

For $\pi/4$ DQPSK


Channel	Hopping	Band Edge	Power (dBc)	Conclusion
0	Hopping OFF	Fig.14	-52.289	Р
0	Hopping ON	Fig.15	-53.55	Р
70	Hopping OFF	Fig.16	-60.603	Р
78	Hopping ON	Fig.17	-61.301	Р

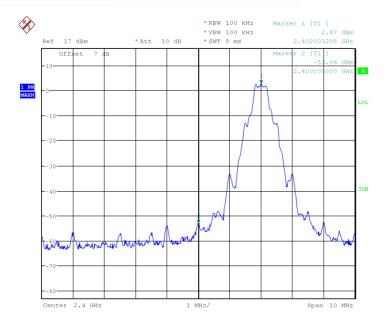
For 8DPSK

Channel	Hopping	Band Edge Power (dBc)	Conclusion
---------	---------	-----------------------	------------

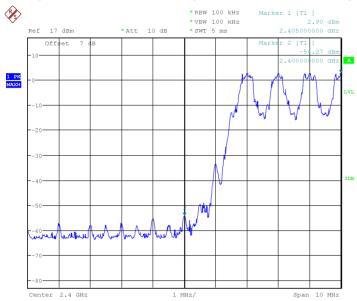

0	Hopping OFF	Fig.18	-59.957	Р
0	Hopping ON	Fig.19	-60.945	Р
70	Hopping OFF	Fig.20	-59.816	Р
78	Hopping ON	Fig.21	-61.602	Р

Conclusion: PASS
Test graphs an below

Date: 10.FEB.2014 10:41:33


Fig.10 Frequency Band Edge: GFSK, Ch0, Hopping OFF

Date: 10.FEB.2014 10:43:37


Fig.11 Frequency Band Edge: GFSK, Ch0, Hopping ON

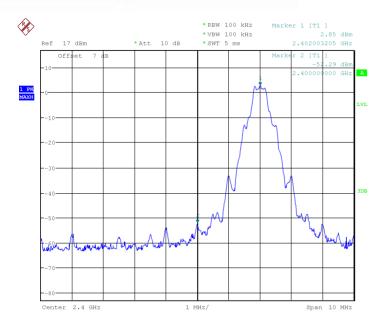

Date: 10.FEB.2014 10:44:11

Fig.12 Frequency Band Edge: GFSK, Ch78, Hopping OFF

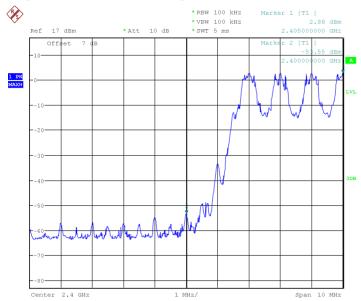
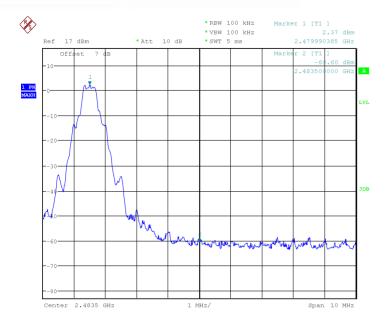
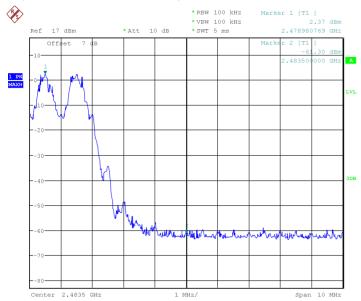

Date: 10.FEB.2014 10:46:15

Fig.13 Frequency Band Edge: GFSK, Ch78, Hopping ON

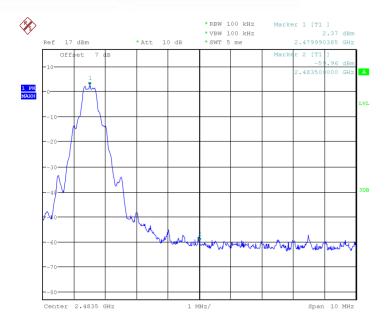
Date: 10.FEB.2014 10:46:49


Fig.14 Frequency Band Edge: $\pi/4$ DQPSK, Ch0, Hopping OFF

Date: 10.FEB.2014 10:48:53


Fig.15 Frequency Band Edge: $\pi/4$ DQPSK, Ch0, Hopping ON

Date: 10.FEB.2014 10:49:28


Fig.16 Frequency Band Edge: π/4 DQPSK, Ch78, Hopping OFF

Date: 10.FEB.2014 10:51:32

Fig.17 Frequency Band Edge: $\pi/4$ DQPSK, Ch78, Hopping ON

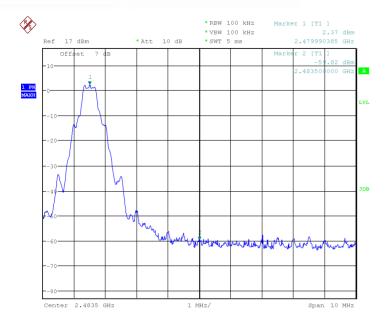

Date: 10.FEB.2014 10:52:06

Fig.18 Frequency Band Edge: 8DPSK, Ch0, Hopping OFF

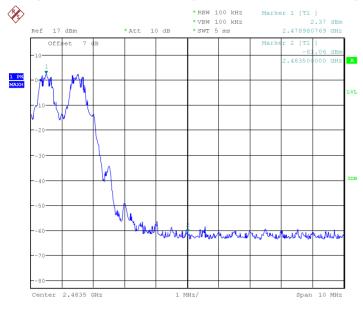

Date: 10.FEB.2014 10:54:10

Fig.19 Frequency Band Edge: 8DPSK, Ch0, Hopping ON

Date: 10.FEB.2014 10:54:45

Fig.20 Frequency Band Edge: 8DPSK, Ch78, Hopping OFF

Date: 10.FEB.2014 10:56:48

Fig.21 Frequency Band Edge: 8DPSK, Ch78, Hopping ON

5.3. Conducted Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part15.247 (d)	20dB below peak output power in 100KHz bandwidth

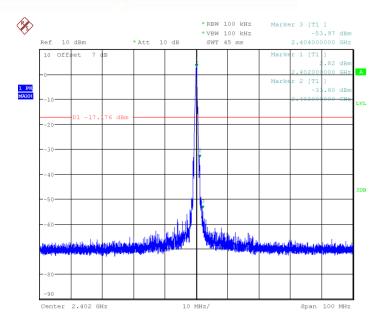
The measurement is according to Public notice DA 00-705 and ANSI C63.4

Measurement Results:

For GFSK

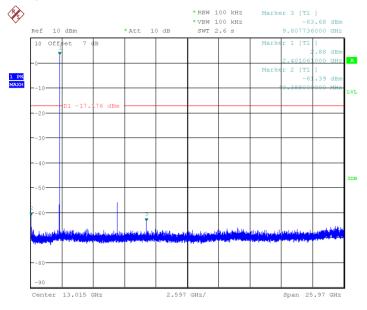
Channel	Frequency Range	Test Results	Conclusion
Ch0 2402MU-	Center Freq.	Fig.22	Р
Ch0 2402MHz	30MHz~26GHz	Fig.23	Р
Ch20 2444MH-	Center Freq.	Fig.24	Р
Ch39 2441MHz	30MHz~26GHz	Fig.25	Р
Ch70 2400MU-	Center Freq.	Fig.26	Р
Ch78 2480MHz	30MHz~26GHz	Fig.27	Р

For $\pi/4$ DQPSK

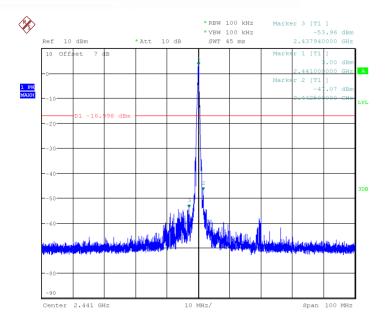

Channel	Frequency Range	Test Results	Conclusion
Ch0 2402MHz	Center Freq.	Fig.28	Р
Chu 2402MH2	30MHz~26GHz	Fig.29	Р
Ch20 2444MU-	Center Freq.	Fig.30	Р
Ch39 2441MHz	30MHz~26GHz	Fig.31	Р
Ch70 2400MU-	Center Freq.	Fig.32	Р
Ch78 2480MHz	30MHz~26GHz	Fig.33	Р

For 8DPSK

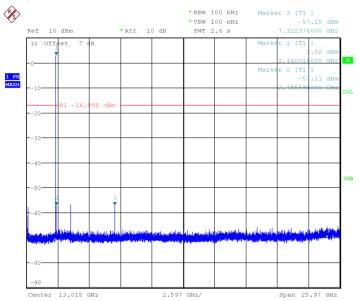
Channel	Frequency Range	Test Results	Conclusion
Ch0 2402MHz	Center Freq.	Fig.34	Р
CHO 2402IVITIZ	30MHz~26GHz	Fig.35	Р
Ch20 2444MU-	Center Freq.	Fig.36	Р
Ch39 2441MHz	30MHz~26GHz	Fig.37	Р
Ch79 2490MU-	Center Freq.	Fig.38	Р
Ch78 2480MHz	30MHz~26GHz	Fig.39	Р


Conclusion: PASS Test graphs as below

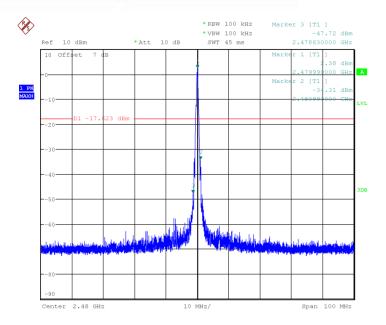
Date: 10.FEB.2014 10:57:40


Fig.22 Conducted spurious emission: GFSK, Ch0, 2402MHz

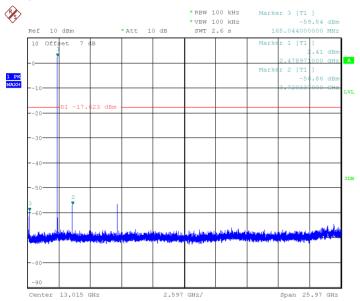
Date: 10.FEB.2014 10:58:02


Fig.23 Conducted spurious emission: GFSK, Ch0, 30MHz~26GHz

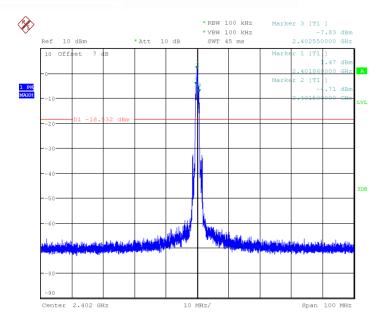
Date: 10.FEB.2014 10:58:26


Fig.24 Conducted spurious emission: GFSK, Ch39, 2441MHz

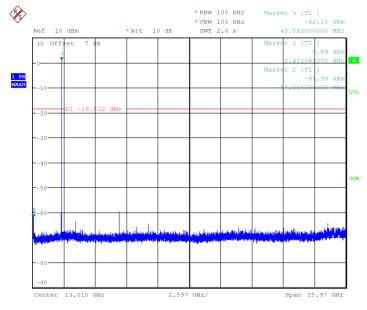
Date: 10.FEB.2014 10:58:49


Fig.25 Conducted spurious emission: GFSK, Ch39, 30MHz~26GHz

Date: 10.FEB.2014 10:59:13


Fig.26 Conducted spurious emission: GFSK, Ch78, 2480MHz

Date: 10.FEB.2014 10:59:35


Fig.27 Conducted spurious emission: GFSK, Ch78, 30MHz~26GHz

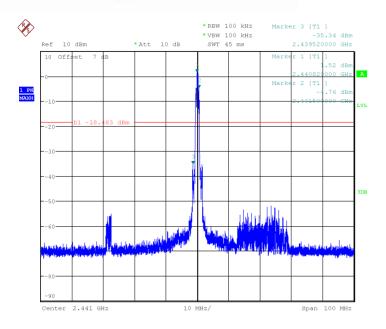

Date: 10.FEB.2014 10:59:59

Fig.28 Conducted spurious emission: $\pi/4$ DQPSK, Ch0, 2402MHz

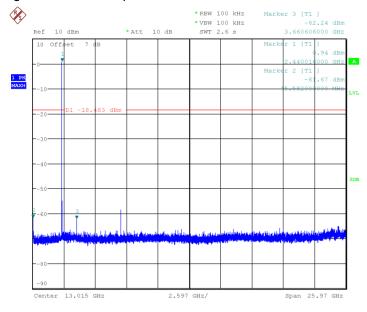
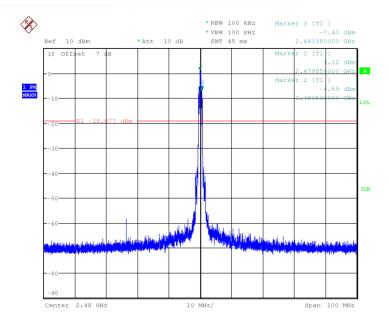
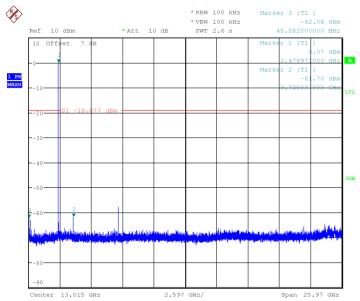

Date: 10.FEB.2014 11:00:22

Fig.29 Conducted spurious emission: $\pi/4$ DQPSK, Ch0, 30MHz~26GHz

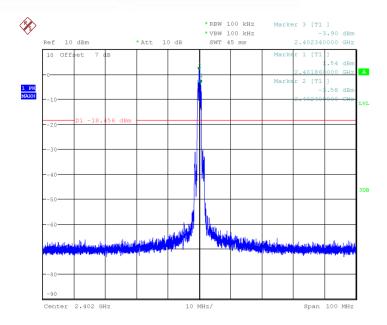
Date: 10.FEB.2014 11:00:46


Fig.30 Conducted spurious emission: $\pi/4$ DQPSK, Ch39, 2441MHz

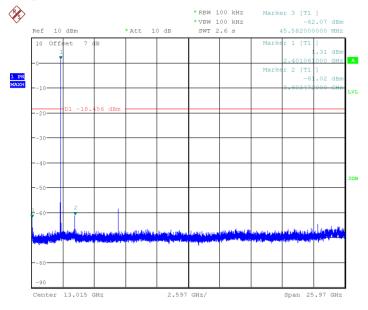
Date: 10.FEB.2014 11:01:08


Fig.31 Conducted spurious emission: $\pi/4$ DQPSK, Ch39, 30MHz~26GHz

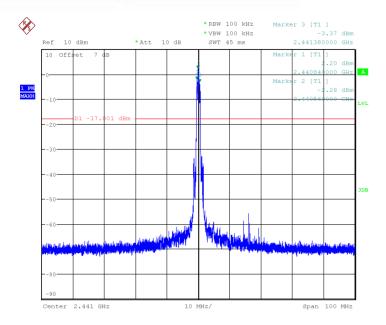
Date: 10.FEB.2014 11:01:32


Fig.32 Conducted spurious emission: $\pi/4$ DQPSK, Ch78, 2480MHz

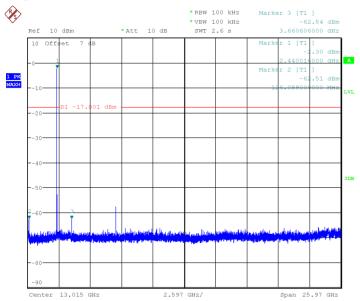
Date: 10.FEB.2014 11:01:54


Fig.33 Conducted spurious emission: $\pi/4$ DQPSK, Ch78, 30MHz~26GHz

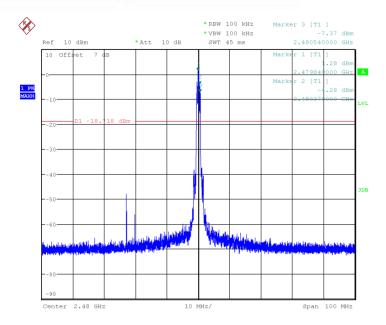
Date: 10.FEB.2014 11:02:19


Fig.34 Conducted spurious emission: 8DPSK, Ch0, 2402MHz

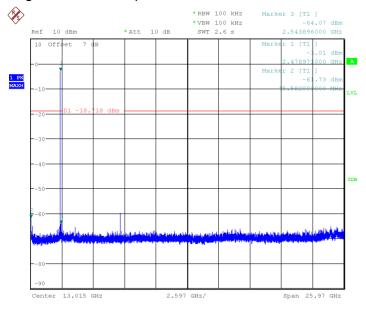
Date: 10.FEB.2014 11:02:41


Fig.35 Conducted spurious emission: 8DPSK, Ch0, 30MHz~26GHz

Date: 10.FEB.2014 11:03:05


Fig.36 Conducted spurious emission: 8DPSK, Ch39, 2441MHz

Date: 10.FEB.2014 11:03:27


Fig.37 Conducted spurious emission: 8DPSK, Ch39, 30MHz~26GHz

Date: 10.FEB.2014 11:03:51

Fig.38 Conducted spurious emission: 8DPSK, Ch78, 2480MHz

Date: 10.FEB.2014 11:04:14

Fig.39 Conducted spurious emission: 8DPSK, Ch78, 30MHz~26GHz

5.4. Radiated Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

The measurement is according to Public notice DA 00-705 and ANSI C63.4 **Limit in restricted band:**

Frequency of emission (MHz)	Field strength (uV/m)	Field strength (dBuV/m)
30~88	100	40
88~216	150	43.5
216~960	200	46
Above 960	500	54

Test condition:

Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a nonconducting platform, the top of which is 80 cm above the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, but it may be larger or smaller to accommodate various sized EUTs. For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also ANSI C63.4-2009 section 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time (s)
30~1000	100KHz/300KHz	5
1000~4000	1MHz/1MHz	15
4000~18000	1MHz/1MHz	40
18000~26500	1MHz/1MHz	20

Measurement Results:

A "reference path loss" is established and A_{Rpi} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss. The measurement results are obtained as described below:

Result= $P_{Mea} + A_{Rpi}$

For GFSK

Channel	Frequency Range	Test Results	Conclusion
	30MH~1GHz	Fig.40	Р
Ch0 2402MHz	1GHz~3GHz	Fig.41	Р
	3GHz~18GHz	Fig.42	Р
Power	2.38GHz~2.4GHz	Fig.43	Р
Power	2.45GHz~2.5GHz	Fig.44	Р
All channels	18GHz~26GHz	Fig.45	Р

For $\pi/4$ DQPSK

Channel	Frequency Range	Test Results	Conclusion
	30MH~1GHz	Fig.46	Р
Ch0 2402MHz	1GHz~3GHz	Fig.47	Р
	3GHz~18GHz	Fig.48	Р
Power	2.38GHz~2.4GHz	Fig.49	Р
Power	2.45GHz~2.5GHz	Fig.50	Р
All channels	18GHz~26GHz	Fig.51	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
	30MH~1GHz	Fig.52	Р
Ch0 2402MHz	1GHz~3GHz	Fig.53	Р
	3GHz~18GHz	Fig.54	Р
Power	2.38GHz~2.4GHz	Fig.55	Р
Power	2.45GHz~2.5GHz	Fig.56	Р
All channels	18GHz~26GHz	Fig.57	Р

GFSK Ch0 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
43.799964	29.4	0.61	28.79	V
47.11112	33.7	0.86	32.84	V

50.89618	29.1	1.11	27.99	V
59.249916	27.6	1.36	26.24	V

GFSK Ch0 1GHz-3GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2104.2252	48.8	12.82	35.98	Н
2357.05	52.8	12.64	40.16	V

GFSK Ch0 3GHz-18GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
16756.10013	48.7	7.1	41.6	V
17551.3438	50.6	11.93	38.67	V

$\pi/4$ DQPSK Ch0 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
42.476088	27.1	0.61	26.49	V
46.870836	32.7	1.61	31.09	V

π/4 DQPSK Ch0 1GHz-3GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2544.5872	52.1	12.82	39.28	Н
2817.8494	54.3	12.64	41.66	V

π/4 DQPSK Ch0 3GHz-18GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
16678.03113	48.9	7.1	41.8	V
17193.339	50.3	10.73	39.57	V

8DPSK 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
43.37854	25.6	0.61	24.99	V

44.227168	27	0.86	26.14	V
46.564432	29.5	1.11	28.39	V

8DPSK 1GHz-3GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2175.8136	49.5	12.82	36.68	Н
2346.3844	51.6	12.64	38.96	V

8DPSK 3GHz-18GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
16069.5574	51.1	7.1	44	V
16637.27547	48.7	8.72	39.98	Н

All Ch 18GHz~26.5GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
19525.786000	49.0	6.97	42.03	V
20684.980000	47.7	6.97	40.73	Н
22119.789000	45.3	3.05	42.05	V
23627.899000	43.8	3.05	40.75	Н
24606.319000	43.4	3.05	40.35	V
25244.558000	43.6	3.05	40.55	Н

Conclusion: PASS
Test graphs as below:

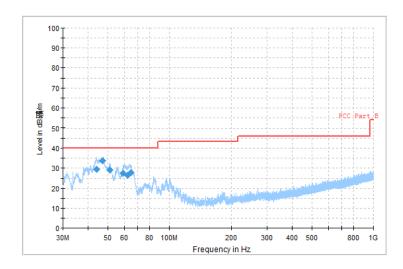


Fig.40 Radiated emission: GFSK, Ch0, 30MHz~1GHz

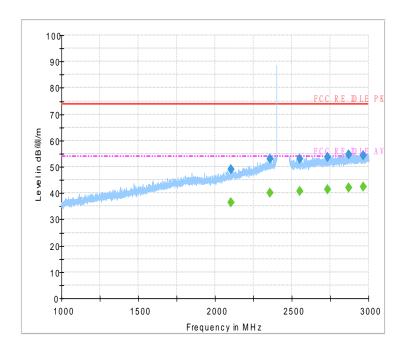


Fig.41 Radiated emission: GFSK, Ch0, 1GHz~3GHz

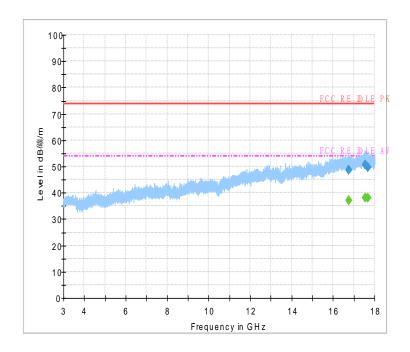


Fig.42 Radiated emission: GFSK, Ch0, 3GHz~18GHz

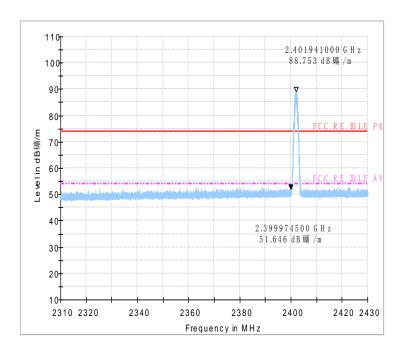


Fig.43 Radiated emission (Power): GFSK, low channel

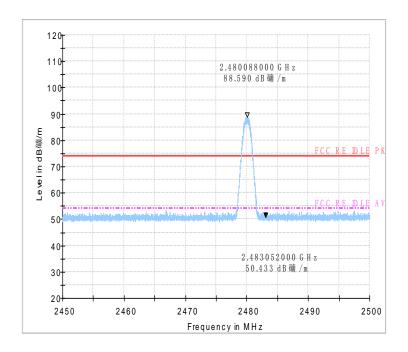


Fig.44 Radiated emission (Power): GFSK, high channel

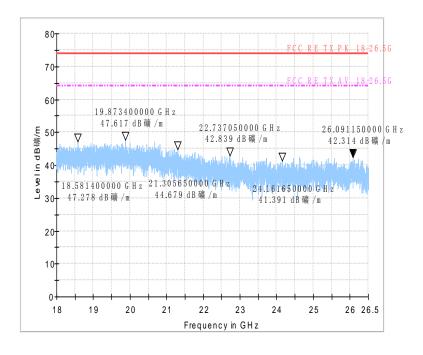


Fig.45 Radiated emission: GFSK, 18 GHz - 26 GHz

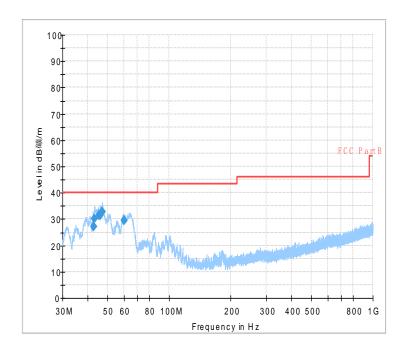


Fig.46 Radiated emission: $\pi/4$ DQPSK, Ch0, 30MHz~1GHz

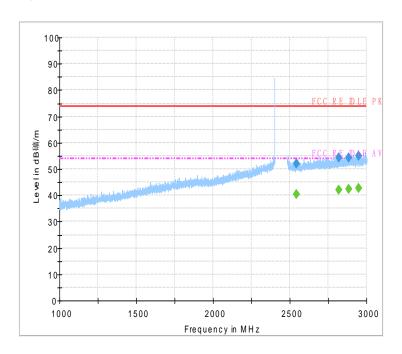


Fig.47 Radiated emission: $\pi/4$ DQPSK, Ch0, 1GHz~3GHz

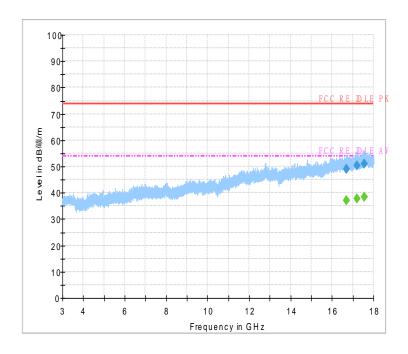


Fig.48 Radiated emission: $\pi/4$ DQPSK, Ch0, 3GHz~18GHz

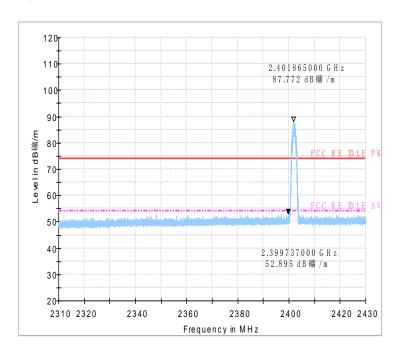


Fig.49 Radiated emission (Power): GFSK, low channel

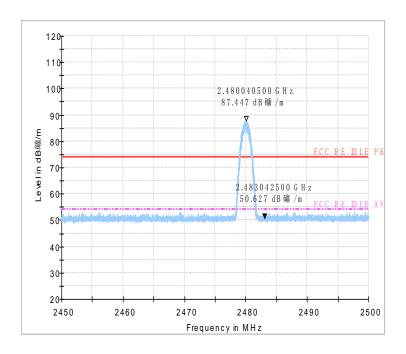


Fig.50 Radiated emission (Power): GFSK, high channel

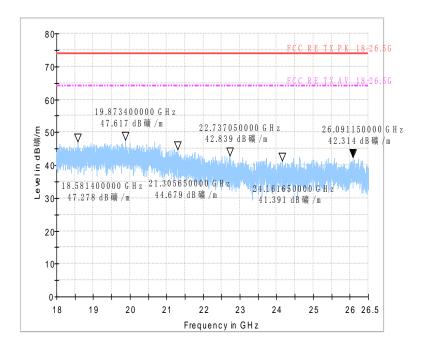


Fig.51 Radiated emission: GFSK, 18 GHz - 26 GHz

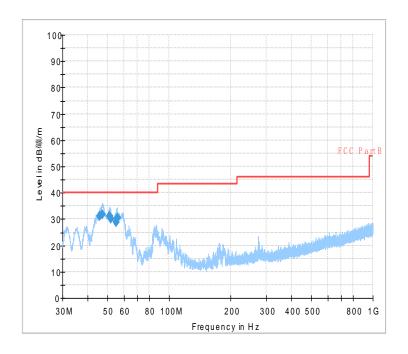


Fig.52 Radiated emission: 8DPSK, Ch0, 30MHz~1GHz

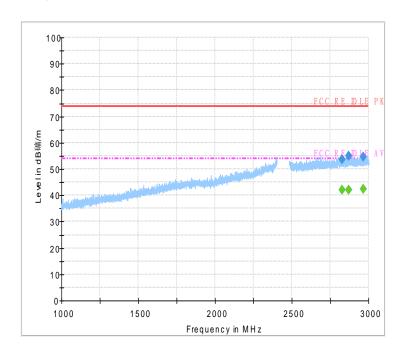


Fig.53 Radiated emission: 8DPSK, Ch0, 1GHz~3GHz

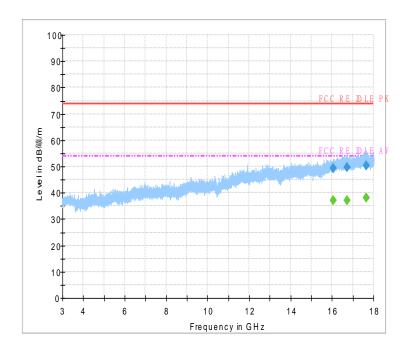


Fig.54 Radiated emission: 8DPSK, Ch0, 3GHz~18GHz

Fig.55 Radiated emission (Power): GFSK, low channel

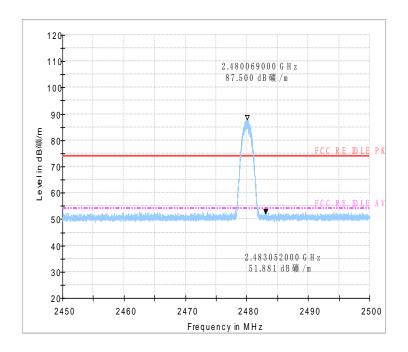


Fig.56 Radiated emission (Power): GFSK, high channel

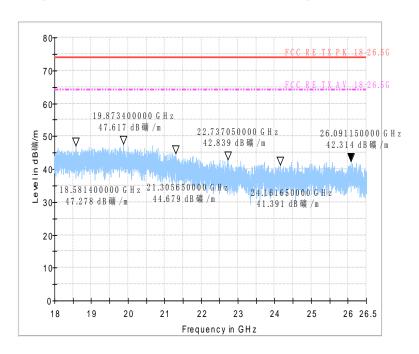


Fig.57 Radiated emission: GFSK, 18 GHz - 26 GHz

5.5. Time Of Occupancy (Dwell Time)

Measurement Limit:

Standard	Limit (ms)
FCC 47CFR Part 15.247 (a) (1) (iii)	< 400

The measurement is according to Public notice DA 00-705 and ANSI C63.4

Measurement Result:

For GFSK

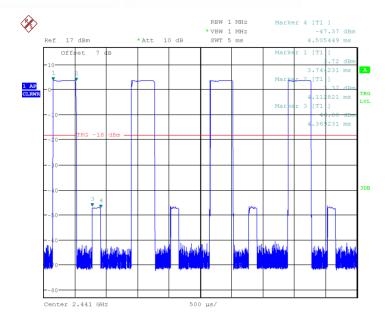
Channel	Packet	Dwell Time (ms)		Conclusion
	DH1	Fig.58	50,000)
	рпі	Fig.59	50.992	Р
20	39 DH3	Fig.60	178.067	Р
39		Fig.61		
	DUE	Fig.62	202 524	D
DH5	Fig.63	303.524	Р	

For π/4 DQPSK

Channel	Packet	Dwell Time (ms)		Conclusion
	op.u	Fig.64	54.004	0
	2DH1	Fig.65	51.801	Р
20	20112	Fig.66	178.067	Р
39	2DH3	Fig.67		
	2DH5	Fig.68	204 222	D
		Fig.69	304.333	Р

For 8DPSK

TOTODI OIL				
Channel	Packet	Dwell Time (ms)		Conclusion
	00114		FO C44	Р
	3DH1	Fig.71	52.611	P
20	3DH3	Fig.72	178.067	Р
39	39 3DH3	Fig.73		Г
3DH5	3DH5	Fig.74	304.333	Р
	Fig.75	304.333		


Note: the dwell time is Calculated of the sum of test time about 31.5 seconds.

Equation: dwell time = pusletime *(1600/N)/79*T. N is the number of timeslot; T is the time about 31.5s.

The time of DH5=2.9*(1600/6)/79*31.5=308.3ms.

Conclusion: PASS
Test graphs as below:

Date: 10.FEB.2014 11:04:54

Fig.58 Time of occupancy (Dwell Time): Ch39, Packet DH1

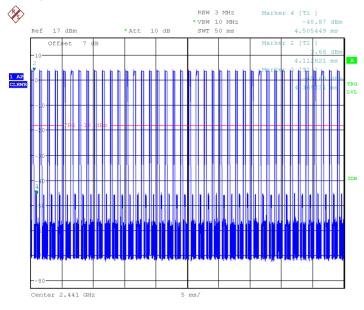
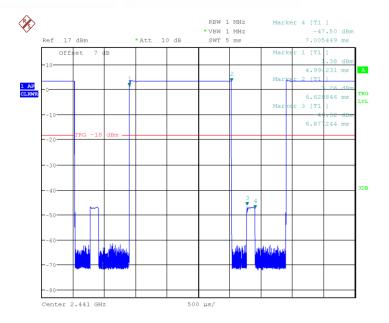



Fig.59 Number of Transmissions Measurement: Ch39, Packet DH1

Date: 10.FEB.2014 11:05:10

Fig.60 Time of occupancy (Dwell Time): Ch39, Packet DH3

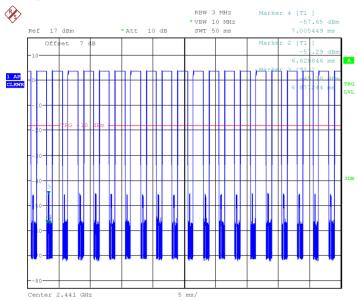
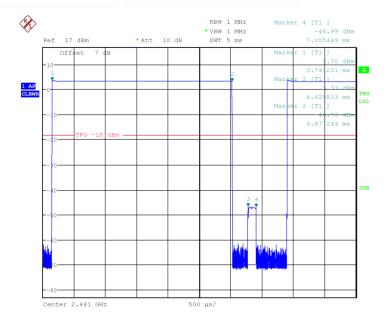



Fig.61 Number of Transmissions Measurement: Ch39, Packet DH3

Date: 10.FEB.2014 11:05:25

Fig.62 Time of occupancy (Dwell Time): Ch39, Packet DH5

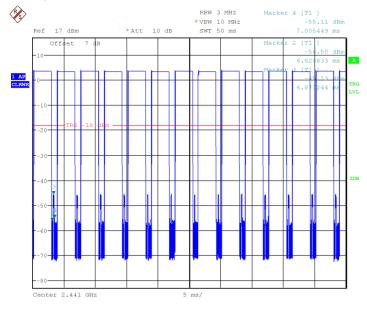
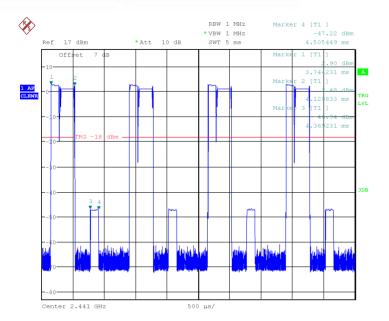



Fig.63 Number of Transmissions Measurement: Ch39, Packet DH5

Date: 10.FEB.2014 11:05:40

Fig.64 Time of occupancy (Dwell Time): Ch39,Packet 2-DH1

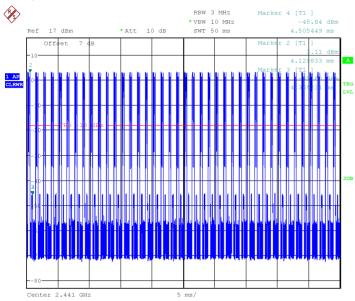
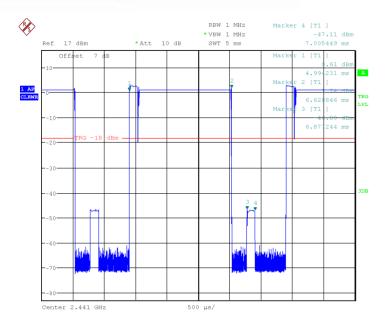



Fig.65 Number of Transmissions Measurement: Ch39, Packet 2-DH1

Date: 10.FEB.2014 11:05:56

Fig.66 Time of occupancy (Dwell Time): Ch39, Packet 2-DH3

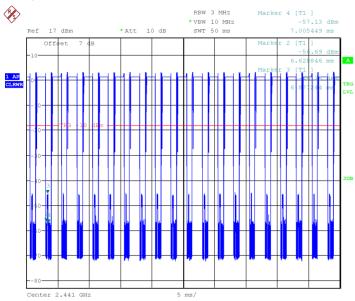
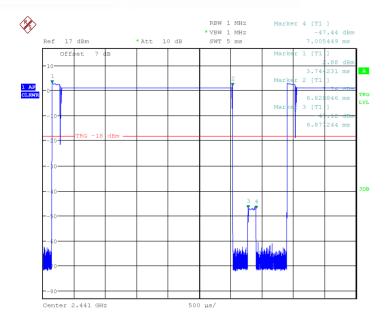



Fig.67 Number of Transmissions Measurement: Ch39, Packet 2-DH3

Date: 10.FEB.2014 11:06:11

Fig.68 Time of occupancy (Dwell Time): Ch39,Packet 2-DH5

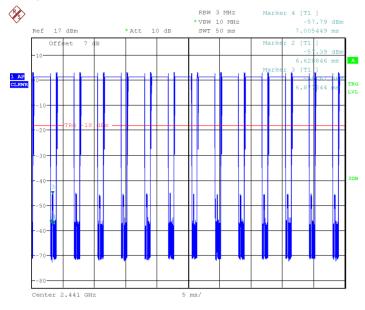
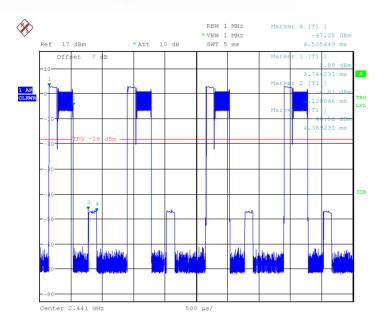



Fig.69 Number of Transmissions Measurement: Ch39, Packet 2-DH5

Date: 10.FEB.2014 11:06:27

Fig.70 Time of occupancy (Dwell Time): Ch39,Packet 3-DH1

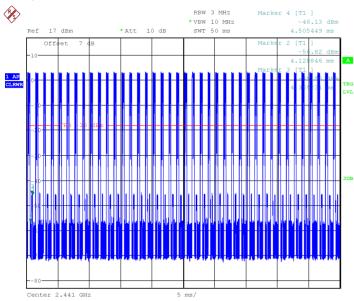
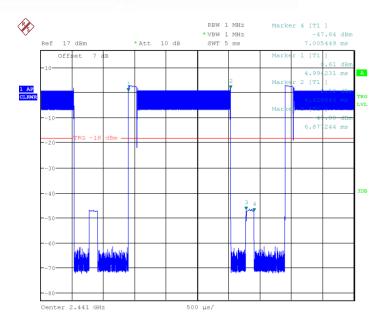
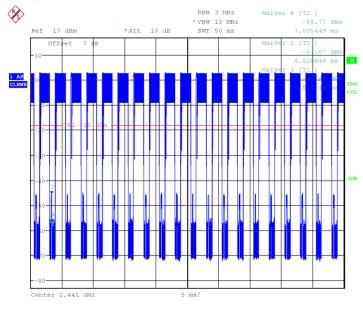
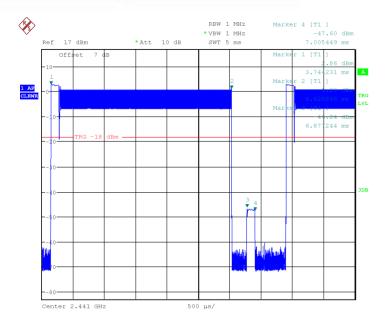
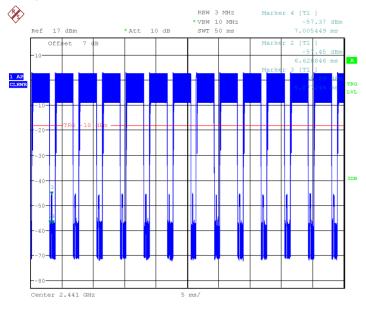



Fig.71 Number of Transmissions Measurement: Ch39, Packet 3-DH1

Date: 10.FEB.2014 11:06:42

Fig.72 Time of occupancy (Dwell Time): Ch39, Packet 3-DH3


Fig.73 Number of Transmissions Measurement: Ch39, Packet 3-DH3

Date: 10.FEB.2014 11:06:58

Fig.74 Time of occupancy (Dwell Time): Ch39, Packet 3-DH5

Date: 10.FEB.2014 11:07:05

Fig.75 Number of Transmissions Measurement: Ch39, Packet 3-DH5

5.6. 20dB Bandwidth

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (a) (1)	N/A

The measurement is according to Public notice DA 00-705 and ANSI C63.4.

Measurement Result:

Report No.: 2014RFB0008

For GFSK

Channel	20dB Bandwidth (KHz)		Conclusion
0	Fig.76	1029	Р
39	Fig.77	1029	Р
78	Fig.78	1029	Р

For $\pi/4$ DQPSK

Channel	20dB Bandwidth (KHz)		Conclusion
0	Fig.79	1091	Р
39	Fig.80	1091	Р
78	Fig.81	1087	Р

For 8DPSK

Channel	20dB Bandwidth (KHz)		Conclusion
0	Fig.82	1192	Р
39	Fig.83	1192	Р
78	Fig.84	1192	Р

Conclusion: PASS
Test graphs as below:

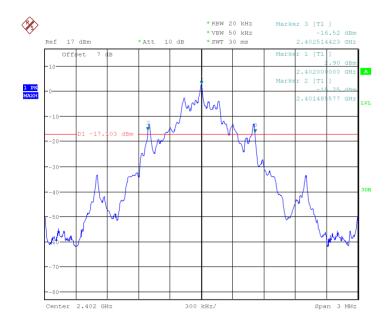


Fig.76 20dB Bandwidth: GFSK, Ch0

Date: 10.FEB.2014 11:08:00

Fig.77 20dB Bandwidth: GFSK, Ch39

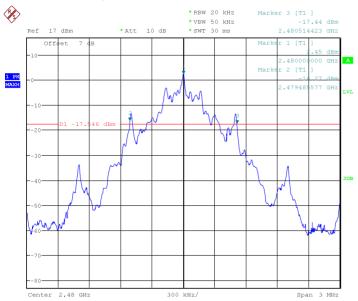
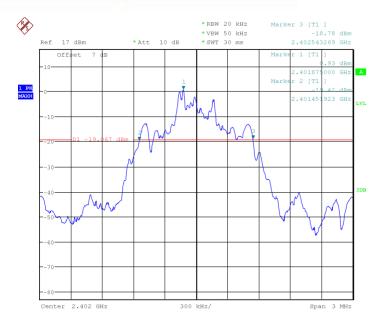



Fig.78 20dB Bandwidth: GFSK, Ch78

Date: 10.FEB.2014 11:08:27

Fig.79 20dB Bandwidth: $\pi/4$ DQPSK, Ch0

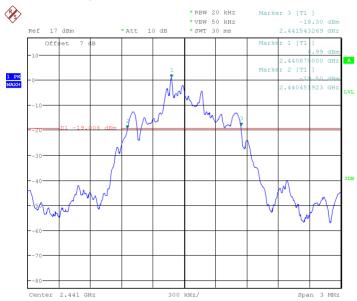
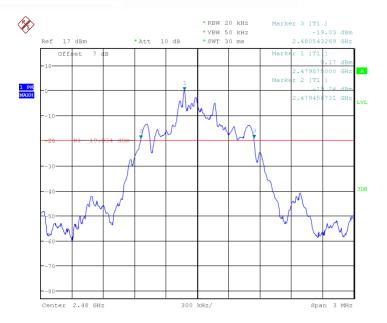
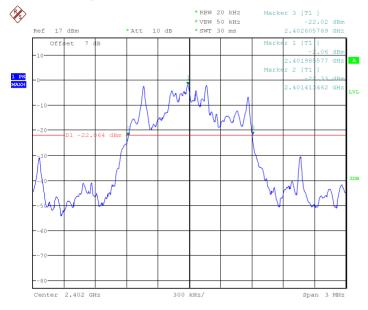
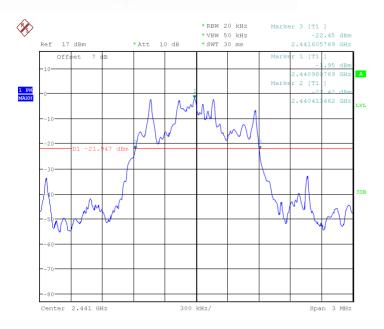
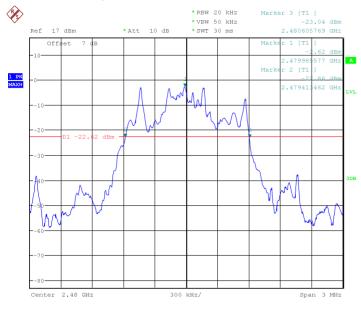



Fig.80 20dB Bandwidth: $\pi/4$ DQPSK, Ch39

Date: 10.FEB.2014 11:08:54

Fig.81 20dB Bandwidth: $\pi/4$ DQPSK, Ch78


Fig.82 20dB Bandwidth: 8DPSK, Ch0

Date: 10.FEB.2014 11:09:21

Fig.83 20dB Bandwidth: 8DPSK, Ch39

Date: 10.FEB.2014 11:09:35

Fig.84 20dB Bandwidth: 8DPSK, Ch78

5.7. Carrier Frequency Separation

Measurement Limit:

Standard	Limit (KHz)
FCC 47 CFR Part 15.247 (a) (1)	Over 25KHz or (2/3)*20dB bandwidth

The measurement is according to Public notice DA 00-705 and ANSI C63.4.

Measurement Result:

For GFSK

Channel	Carrier separation (KHz)		Conclusion
39	Fig.85	1019.2308	Р

For $\pi/4$ DQPSK

Channel	Carrier separation (KHz)		Conclusion
39	Fig.86	985.5769	Р

For 8DPSK

Channel	Carrier separation (KHz)		Conclusion
39	Fig.87	1024.0385	Р

Conclusion: PASS
Test graphs as below:

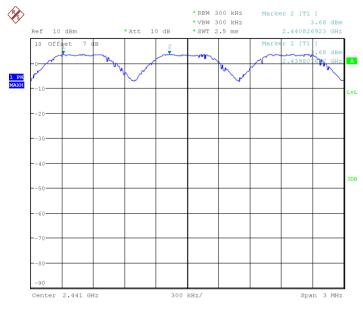
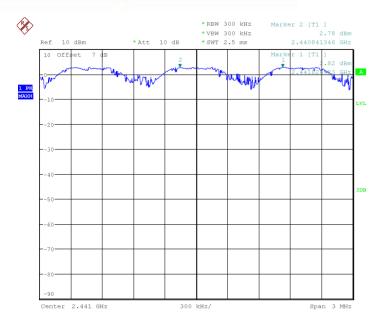
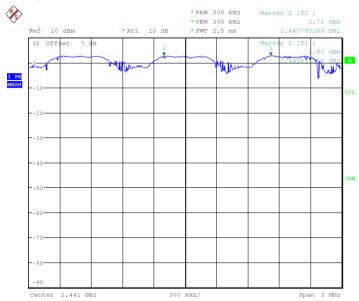




Fig.85 Carrier separation measurement: GFSK, Ch39

Date: 10.FEB.2014 11:12:24

Fig.86 Carrier separation measurement: π/4 DQPSK, Ch39

Date: 10.FEB.2014 11:13:35

Fig.87 Carrier separation measurement: 8DPSK, Ch39

5.8. Number Of Hopping Channels

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (a)(1)(iii)	At least 15 non-overlapping channels

The measurement is according to Public notice DA 00-705 and ANSI C63.4.

Measurement Result:

For GFSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.88	70	Р
40~78	Fig.89	79	Р

For $\pi/4$ DQPSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.90	70	Р
40~78	Fig.91	79	Р

For 8DPSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.92	70	Р
40~78	Fig.93	79	Р

Conclusion: PASS
Test graphs as below:

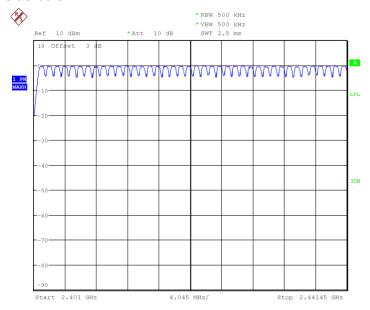
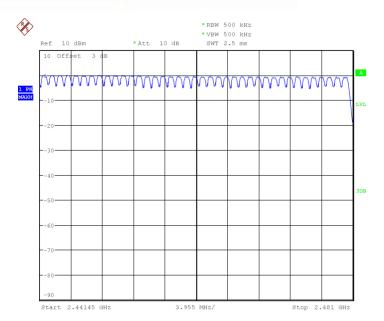



Fig.88 Number of hopping frequency: GFSK, Ch0~39

Date: 10.FEB.2014 11:18:11

Fig.89 Number of hopping frequency: GFSK, Ch40~78

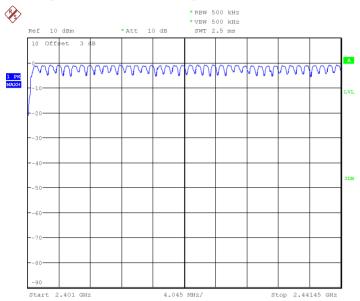
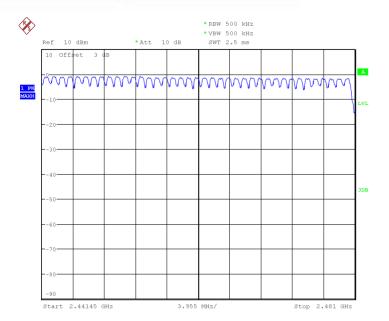



Fig.90 Number of hopping frequency: $\pi/4$ DQPSK, Ch0~39

Date: 10.FEB.2014 11:22:20

Fig.91 Number of hopping frequency: π/4 DQPSK, Ch40~78

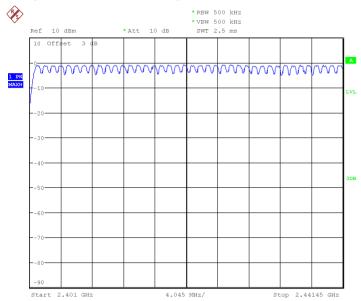


Fig.92 Number of hopping frequency: 8DPSK, Ch0~39

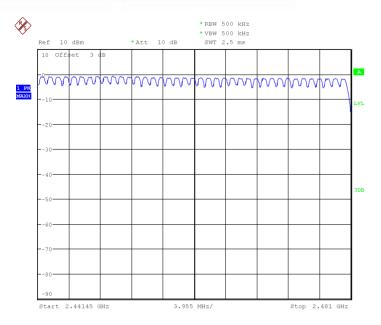


Fig.93 Number of hopping frequency: 8DPSK, Ch40~78

6. Test Equipments and Ancillaries Used For Tests

The test equipments and ancillaries used are as follows.

Conducted test system

No.	Equipment	Equipment Model	Serial	Manufacture	Calibration
	Equipment	Wiodei	Number	r	Due date
1	Vector Signal	FSQ26	101096	Rohde&Schw	2014-08-30
Į.	Analyzer	F3Q26	101096	arz	2014-06-30
2	DC Power	ZUP60-14	LOC-220Z00	TDL-Lambda	2044.00.20
2	Supply	ZUP60-14	6	TDL-Lambua	2014-08-30
2	Bluetooth	CBT32	100795	Rohde&Schw	2014 00 20
3	Tester	CD132	100785	arz	2014-08-30

Radiated emission test system

rtadiatod omi	SSION LEST SYS			1	
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date
1	Universal Radio Communicati on Tester	CMU200	123102	R&S	2014-08-30
2	Test Receiver	ESCI	101235	R&S	2014-08-30
3	Test Receiver	ESU40	100307	R&S	2014-10-29
4	Trilog Antenna	VULB9163	19-162515	Schwarzbeck	2014-11-11
5	Double Ridged Guide Antenna	ETS-3117	135885	ETS	2014-04-28
6	2-Line V-Network	ENV216	101380	R&S	2014-10-30

			-		
7	Single Phase Harmonic & Flicker	DPA500N	V112610998 8	EM Test	2014-10-28
8	Multifunction AC/DC Power Source	Netwave7	V112610998 9	EM Test	2014-10-28
9	Ultra Compact Simulator	UCS 500N7	V112610998 3	EM Test	2014-07-22
10	Motorized Variac	MV 2616	V112610998 7	EM Test	2014-07-22
11	Telecom Surge Module	TSurge7	V090210458 2	EM Test	2014-07-22
12	Audio Analyzer	UPV	101950	R&S	2014-08-30
13	Power Meter	NRP2	101804	R&S	2014-08-30
14	Signal Generator	SMB 100A	105563	R&S	2014-08-30
15	ESD Test Simulator	Dito	V112610998 2	EM Test	2014-10-31

Anechoic chamber

Fully anechoic chamber by Frankonia German.

7. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

along the conducted it. performance testing.	
Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Ground system resistance	< 0.5 Ω
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Report No.: 2014RFB0008

Fully-anechoic chamber1 (6.8 meters×3.08 meters×3.53 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

Fully-anechoic chamber2 (Tapered Section: 8.75 meters×3.66 meters, Rectangular Section: 7.32 meters×3.97 meters×3.66 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C , Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
Uniformity of field strength	Between 0 and 6 dB, from 30MHz to

ANNEX A Deviations from Prescribed Test Methods

No deviation from Prescribed Test Methods.	
*******END OF REPORT******	*