Honeywell

Multinode 2.4 GHz 802.15.4 DSSS Radio. C2PC

Report No. HONE0054

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: May 14, 2010 Honeywell

Model: Multinode 2.4 GHz 802.15.4 DSSS Radio. C2PC

Emissions											
Test Description	Specification	Test Method	Pass/Fail								
Spurious Radiated Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass								

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834B-2).

Approved By:

Don Facteau, IS Manager

QAIVN

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

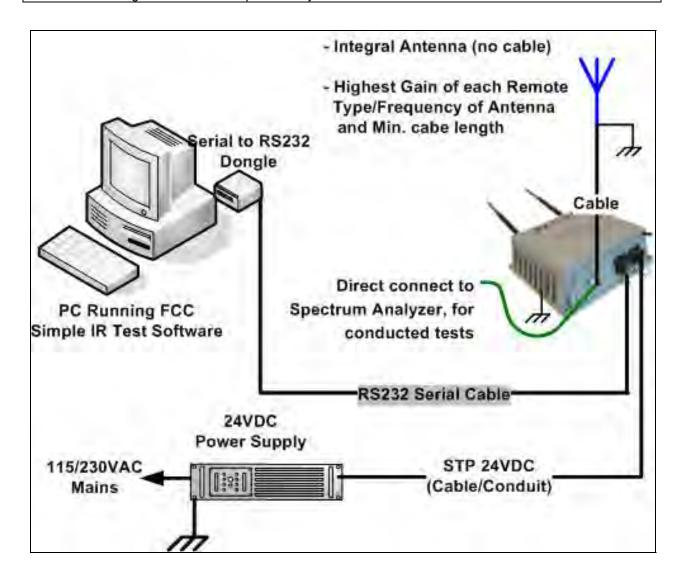
Company Name:	Honeywell
Address:	2500 W. Union Hills Road
City, State, Zip:	Phoenix, AZ 85027
Test Requested By:	David Shipley
Model:	Multinode 2.4 GHz 802.15.4 DSSS Radio. C2PC
First Date of Test:	May 14, 2010
Last Date of Test:	May 14, 2010
Receipt Date of Samples:	May 14, 2010
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description	of the EUT (Equipment Under Test):
2.4 GHz DSSS Radio	

Testing Objective:	
To demonstrate compliance to FCC 15.247 spurious radiated emissions requirements	

Configurations


Revision 9/21/05

CONFIGURATION 1 HONE0054

EUT

Description

Refer to the configuration document provided by the client below.

	Equipment modifications											
Item	Date	Test	Modification	Note	Disposition of EUT							
1	5/14/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.							

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmittting	at 24/5 MHz	<u>z</u>
Transmittting	at 2440 MHz	Z

Transmittting at 2405 MHz

POWER SETTINGS INVESTIGATED

Battery

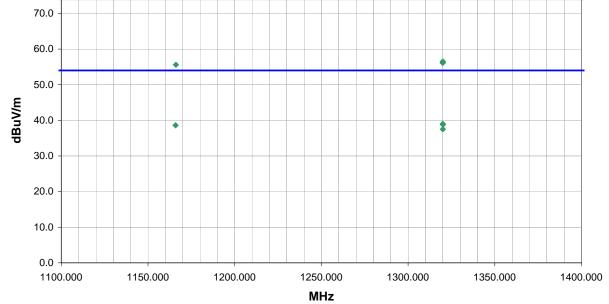
FREQUENCY RANGE INV	'ESTIGATED		
Start Frequency	30 MHz	Stop Frequency	26000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
High Pass Filter	Micro-Tronics	HPM50111	HGC	11/20/2009	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	5/3/2010	13
Antenna, Horn	EMCO	3160-09	AHN	NCR	0
OC floating Cable	N/A	18-26GHz RE Cables	OCK	5/3/2010	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVP	12/21/2009	13
Antenna, Horn	EMCO	3160-08	AHK	NCR	0
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVL	4/11/2010	13
Antenna, Horn	ETS	3160-07	AHX	NCR	0
OC11 Cables	N/A	12-18GHz RE Cables	ocs	4/11/2010	13
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVJ	9/10/2009	13
Antenna, Horn	EMCO	3115	AHB	9/11/2009	24
OC11 Cables	N/A	1-8GHz RE Cables	OCR	3/19/2010	13
Spectrum Analyzer	Agilent	E4440A	AFA	2/9/2010	13
Antenna, Biconilog	EMCO	3142	AXJ	2/24/2010	13
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	3/31/2010	13

MEASUREMENT BANDWIDTHS												
	Frequency Range Peak Data Quasi-Peak Data Average											
	(MHz)	(kHz)	(kHz)	(kHz)								
	0.01 - 0.15	1.0	0.2	0.2								
	0.15 - 30.0	10.0	9.0	9.0								
	30.0 - 1000	100.0	120.0	120.0								
	Above 1000	1000.0	N/A	1000.0								
	Measurements were made u	sing the bandwidths and dete	ctors specified. No video filte	r was used.								


MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

N	NORTHWEST																									PS.	A 2008.07.2	
	EMC				SP	UR	IOU	S R	AD	IA٦	ſΕľ) E	MI:	SS	101	NS	D/	4T	A S	HEET EMI 2009.8.2								
		UT: M	ultino	de 2.4	4 GHz	802.1	5.4 D	SSS F	Radio	. C2F	PC										Work Order: HONE0054							
Se	erial Num	ber: N	one																						05/14			
			loneywell															Temp										
			David Shipley																	umid								
		ect: N		I.																	Baro	metr						
TEST	Tested SPECIFIO			un									Р	owe	r: B		y 1etho	od.				•	Job S	ite:	001	i 		
FCC 1	5.247:20	10	10															յս 10:2	nna									
TEST	PARAME	TERS																										
Anten	na Heigh	t(s) (m)	1 -	- 4								Test	t Dis	tanc	e (m	1)	1		3								
COMM	MENTS Left Hand	(0)														<u> </u>	,											
EUT O Transi DEVIA	The duty PERATIN mittting a ATIONS F viations.	-					n a 41	msec	awe	ii tim	ie: 20	viog(41m	S/10	ums) = 7	./aE	5.										
Run #				1		Т															J#	0.						
Confic	guration	#		1																	Gen	The						
Result	te			Pass														Sin	natui	~	10							
	80.0																	9										
	70.0																											
	60.0					•														•								
ш	50.0																											
dBuV/m	40.0 -					•														*								
	30.0																					_				_	_	

Freq	Amplitude	Factor	Azimuth	Height	Duty Cycle	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	Correction Factor	(dB)	Folanty	Detector	(dB)	dBuV/m	dBuV/m	(dB)
	, ,			, ,								
1319.998	34.1	-7.4	125.0	1.2	7.7	20.0	V-Horn	AV	0.0	39.0	54.0	-15.0
1320.092	33.9	-7.4	127.0	1.2	7.7	20.0	V-Horn	AV	0.0	38.8	54.0	-15.2
1165.910	34.4	-8.1	150.0	1.2	7.7	20.0	H-Horn	AV	0.0	38.6	54.0	-15.4
1320.054	32.6	-7.4	227.0	1.2	7.7	20.0	H-Horn	AV	0.0	37.5	54.0	-16.5
1320.020	43.9	-7.4	227.0	1.2	0.0	20.0	H-Horn	PK	0.0	56.5	74.0	-17.5
1320.030	43.6	-7.4	125.0	1.2	0.0	20.0	V-Horn	PK	0.0	56.2	74.0	-17.8
1319.980	43.5	-7.4	127.0	1.2	0.0	20.0	V-Horn	PK	0.0	56.1	74.0	-17.9
1166.100	43.7	-8.1	150.0	1.2	0.0	20.0	H-Horn	PK	0.0	55.6	74.0	-18.4

NORTHWEST				PSA 2008.07.21							
EMC	SPURIOUS RADIATED EMISSIONS DATA SHEET										
EUT:	Multinode 2.4 GHz 802.15.4 DSSS Radio. C2PC	Work Order:	HONE0054								
Serial Number:	None		Date:	05/14/10							
Customer:	Honeywell		Temperature:	20.24							
Attendees:	David Shipley		Humidity:	50%							
Project:	None		Barometric Pres.:	1012.2							
Tested by:	Jaemi Suh	Power: Battery	Job Site:	OC11							
TEST SPECIFICATI	ONS	Test Method									

FCC 15.247:2010

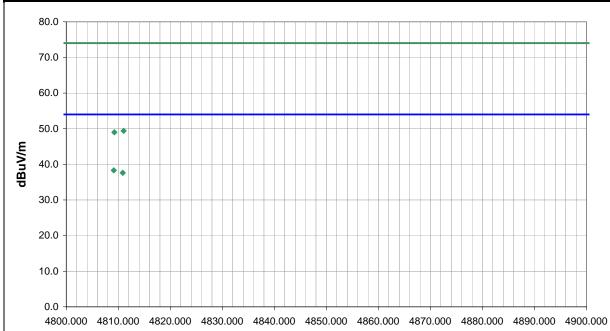
ANSI C63.10:2009

TEST PARAMETERS

Antenna Height(s) (m) 1 - 4 Test Distance (m) 3

COMMENTS

8dBi Left Hand Circular Polarized Flat Patch Antenna (Model# HG2409PCL). PC Power Level: 193 (16.3 dBm). 1m Cable. CC2420 CHIP PA level = -3 dBm. The duty cycle corr. factor is based on a 41msec dwell time: 20log(41ms/100ms) = 7.7dB.


EUT OPERATING MODES

Transmittting at 2405 MHz. X-Axis DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	2
Configuration #	1
Paculte	Pass

Signature

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
4809.136	34.1	4.2	176.0	1.2	3.0	0.0	H-Horn	AV	0.0	38.3	54.0	-15.7	
4810.857	33.4	4.2	141.0	1.2	3.0	0.0	V-Horn	AV	0.0	37.6	54.0	-16.4	
4811.024	45.2	4.2	141.0	1.2	3.0	0.0	V-Horn	PK	0.0	49.4	74.0	-24.6	
4809.239	44.8	4.2	176.0	1.2	3.0	0.0	H-Horn	PK	0.0	49.0	74.0	-25.0	
	(MHz) 4809.136 4810.857 4811.024	(MHz) (dBuV) 4809.136 34.1 4810.857 33.4 4811.024 45.2	(MHz) (dBuV) (dB) 4809.136 34.1 4.2 4810.857 33.4 4.2 4811.024 45.2 4.2	(MHz) (dBuV) (dB) (degrees) 4809.136 34.1 4.2 176.0 4810.857 33.4 4.2 141.0 4811.024 45.2 4.2 141.0	(MHz) (dBuV) (dB) (degrees) (meters) 4809.136 34.1 4.2 176.0 1.2 4810.857 33.4 4.2 141.0 1.2 4811.024 45.2 4.2 141.0 1.2	(MHz) (dBuV) (dB) (degrees) (meters) (meters) 4809.136 34.1 4.2 176.0 1.2 3.0 4810.857 33.4 4.2 141.0 1.2 3.0 4811.024 45.2 4.2 141.0 1.2 3.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) 4809.136 34.1 4.2 176.0 1.2 3.0 0.0 4810.857 33.4 4.2 141.0 1.2 3.0 0.0 4811.024 45.2 4.2 141.0 1.2 3.0 0.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (meters) Polarity 4809.136 34.1 4.2 176.0 1.2 3.0 0.0 H-Horn 4810.857 33.4 4.2 141.0 1.2 3.0 0.0 V-Horn 4811.024 45.2 4.2 141.0 1.2 3.0 0.0 V-Horn	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (meters) Polarity Detector 4809.136 34.1 4.2 176.0 1.2 3.0 0.0 H-Horn AV 4810.857 33.4 4.2 141.0 1.2 3.0 0.0 V-Horn AV 4811.024 45.2 4.2 141.0 1.2 3.0 0.0 V-Horn PK	Freq (MHz) Amplitude (dBuV) Factor (dBuV) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity Detector (dB) Adjustment (dB) 4809.136 34.1 4.2 176.0 1.2 3.0 0.0 H-Horn AV 0.0 4810.857 33.4 4.2 141.0 1.2 3.0 0.0 V-Horn AV 0.0 4811.024 45.2 4.2 141.0 1.2 3.0 0.0 V-Horn PK 0.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity Detector Adjustment (dB) Adjustment (dB)	(MHz) (dBuV) (dB) (degrees) (meters) (dB) H-Horn AV 0.0 38.3 54.0 4809.136 34.1 4.2 176.0 1.2 3.0 0.0 H-Horn AV 0.0 38.3 54.0 4810.857 33.4 4.2 141.0 1.2 3.0 0.0 V-Horn AV 0.0 37.6 54.0 4811.024 45.2 4.2 141.0 1.2 3.0 0.0 V-Horn PK 0.0 49.4 74.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (meters) Polarity (dB) Detector (dB) Adjustment (d

MHz

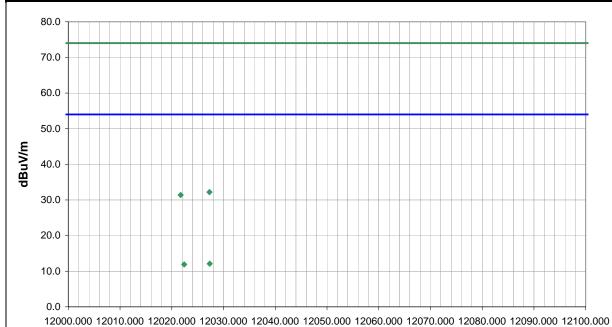
NORTHWEST	ODUDIOUS DADIATES E		NIC DATA OL		PSA 2008.07.21		
EMC	SPURIOUS RADIATED E	:MISSIC	DNS DATA SH	EEI	EMI 2009.8.29		
EU'	T: Multinode 2.4 GHz 802.15.4 DSSS Radio. C2PC			Work Order:	HONE0054		
Serial Numbe	r: None			Date:	05/14/10		
Custome	r: Honeywell	Temperature:	20.24				
Attendee	s: David Shipley	: David Shipley					
Projec	t: None			Barometric Pres.:	1012.2		
Tested b	y: Jaemi Suh	Power:	Battery	Job Site:	OC11		
TEST SPECIFICA	TIONS		Test Method				
FCC 15.247:2010			ANSI C63.10:2009				

TEST PARAMETERS

Antenna Height(s) (m) 1 - 4 Test Distance (m) 3

COMMENTS

8dBi Left Hand Circular Polarized Flat Patch Antenna (Model# HG2409PCL). PC Power Level: 193 (16.3 dBm). 1m Cable. CC2420 CHIP PA level = -3 dBm. The duty cycle corr. factor is based on a 41msec dwell time: 20log(41ms/100ms) = 7.7dB.


EUT OPERATING MODES

Transmittting at 2405. X-Axis
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	3
Configuration #	1
Poculto	Page

Signature

External Distance Compared to **Duty Cycle** Amplitude Factor Azimuth Height Polarity Adjustment Adjusted Spec. Limit Freq Attenuation Detector Correction Spec. (dBuV) (dB) (degrees) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) Factor V-Horn 41.1 1.0 PK 32.2 74.0 12027.290 -8.9 263.0 0.0 0.0 0.0 -41.8 12027.330 28.7 -8.9 263.0 1.0 7.7 0.0 V-Horn AV0.0 12.1 54.0 -41.9 12022.410 28.5 -8.9 283.0 1.9 7.7 0.0 H-Horn AV 0.0 11.9 54.0 -42.1 12021.730 40.3 -8.9 283.0 1.9 0.0 0.0 H-Horn PΚ 0.0 31.4 74.0 -42.6

MHz

NORTHWEST				PSA 2008.07.21							
EMC	SPURIOUS RADIATED EMISSIONS DATA SHEET										
EUT:	Multinode 2.4 GHz 802.15.4 DSSS Radio. C2PC		Work Order:	HONE0054							
Serial Number:	None		Date:	05/14/10							
Customer:	Honeywell		Temperature:	20.24							
Attendees:	David Shipley		Humidity:	50%							
Project:	None		Barometric Pres.:	1012.2							
	Jaemi Suh	Power: Battery	Job Site:	OC11							
TEST SPECIFICAT	IONS	Test Method									

FCC 15.247:2010

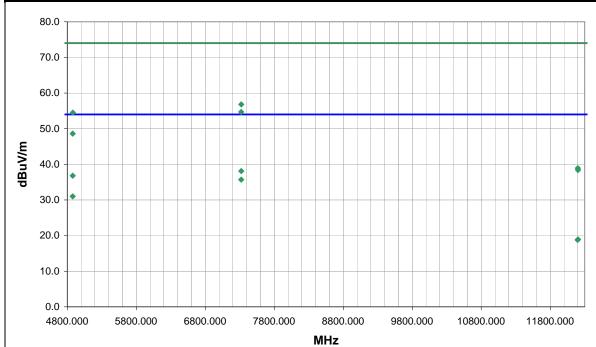
ANSI C63.10:2009

TEST PARAMETERS

Antenna Height(s) (m) 1 - 4 Test Distance (m) 3

COMMENTS

8dBi Left Hand Circular Polarized Flat Patch Antenna (Model# HG2409PCL). PC Power Level: 193 (16.3 dBm). 1m Cable. CC2420 CHIP PA level = -3 dBm. The duty cycle corr. factor is based on a 41msec dwell time: 20log(41ms/100ms) = 7.7dB.


EUT OPERATING MODES

Transmittting at 2440 MHz. X-Axis.
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	5
Configuration #	1
Doculto	Page

Signature

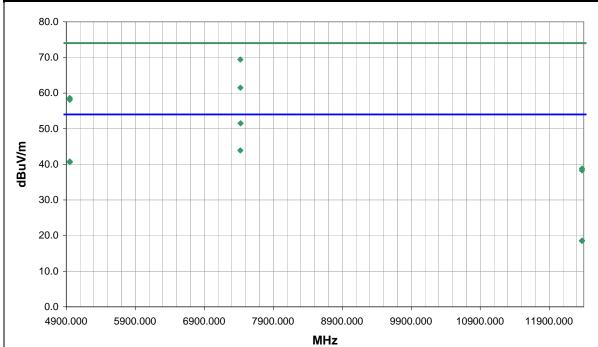
Freq	Amplitude	Factor	Azimuth	Height	Duty Cycle Correction	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	Factor	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
7321.519	35.8	10.0	165.0	1.2	7.7	0.0	V-Horn	AV	0.0	38.1	54.0	-15.9
7321.840	46.8	10.0	165.0	1.2	0.0	0.0	V-Horn	PK	0.0	56.8	74.0	-17.2
4879.103	40.2	4.3	212.0	1.0	7.7	0.0	V-Horn	AV	0.0	36.8	54.0	-17.2
7321.418	33.4	10.0	224.0	1.3	7.7	0.0	H-Horn	AV	0.0	35.7	54.0	-18.3
7321.180	44.7	10.0	224.0	1.3	0.0	0.0	H-Horn	PK	0.0	54.7	74.0	-19.3
4880.930	50.2	4.3	212.0	1.0	0.0	0.0	V-Horn	PK	0.0	54.5	74.0	-19.5
4879.067	34.4	4.3	191.0	1.0	7.7	0.0	H-Horn	AV	0.0	31.0	54.0	-23.0
4878.890	44.3	4.3	191.0	1.0	0.0	0.0	H-Horn	PK	0.0	48.6	74.0	-25.4
12203.910	35.0	-8.4	196.0	1.0	7.7	0.0	V-Horn	AV	0.0	18.9	54.0	-35.1
12200.170	47.3	-8.4	196.0	1.0	0.0	0.0	V-Horn	PK	0.0	38.9	74.0	-35.1
12197.170	34.9	-8.4	173.0	1.0	7.7	0.0	H-Horn	AV	0.0	18.8	54.0	-35.2
12202.140	46.8	-8.4	173.0	1.0	0.0	0.0	H-Horn	PK	0.0	38.4	74.0	-35.6

NORTHWEST	COUDIQUE DADIATED E	MICCIA	ONG DATA OL		PSA 2008.07.21 EMI 2009.8.29						
EMC		OF ORIGINATED EMILOSISTIC DATA STILL									
EUT:	Multinode 2.4 GHz 802.15.4 DSSS Radio. C2PC			Work Order:	HONE0054						
Serial Number:	None			Date:	05/14/10						
Customer:	Honeywell	Temperature:	20.24								
Attendees:	David Shipley	Humidity:	50%								
Project:				Barometric Pres.:	1012.2						
	Jaemi Suh	Power:	Battery	Job Site:	OC11						
TEST SPECIFICATI	ONS		Test Method								
FCC 15.247:2010			ANSI C63.10:2009								

TEST PARAMETERS

Antenna Height(s) (m) 1 - 4 Test Distance (m) 3

8dBi Left Hand Circular Polarized Flat Patch Antenna (Model# HG2409PCL). PC Power Level: 193 (16.3 dBm). 1m Cable. CC2420 CHIP PA level = -3 dBm. The duty cycle corr. factor is based on a 41msec dwell time: 20log(41ms/100ms) = 7.7dB.


EUT OPERATING MODES

Transmittting at 2475. X-Axis
DEVIATIONS FROM TEST STANDARD

No deviations.

Run #	7
Configuration #	1
Poculto	Page

Signature

Freq	Amplitude	Factor	Azimuth	Height	Duty Cycle	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	Correction Factor	(dB)	. c.arity	Dotector	(dB)	dBuV/m	dBuV/m	(dB)
7426.342	42.9	16.3	131.0	1.0	7.7	0.0	V-Horn	AV	0.0	51.5	54.0	-2.5
7423.360	53.1	16.3	131.0	1.0	0.0	0.0	V-Horn	PK	0.0	69.4	74.0	-4.6
7423.629	35.3	16.3	212.0	1.0	7.7	0.0	H-Horn	AV	0.0	43.9	54.0	-10.1
7423.900	45.2	16.3	212.0	1.0	0.0	0.0	H-Horn	PK	0.0	61.5	74.0	-12.5
4950.897	41.2	7.3	230.0	1.0	7.7	0.0	H-Horn	AV	0.0	40.8	54.0	-13.2
4950.911	41.0	7.3	308.0	1.0	7.7	0.0	V-Horn	AV	0.0	40.6	54.0	-13.4
4951.000	51.3	7.3	230.0	1.0	0.0	0.0	H-Horn	PK	0.0	58.6	74.0	-15.4
4951.040	50.8	7.3	308.0	1.0	0.0	0.0	V-Horn	PK	0.0	58.1	74.0	-15.9
12375.340	46.7	-7.9	170.0	1.0	0.0	0.0	V-Horn	PK	0.0	38.8	74.0	-35.2
12375.290	34.2	-7.9	162.0	1.0	7.7	0.0	H-Horn	AV	0.0	18.6	54.0	-35.4
12375.060	34.1	-7.9	170.0	1.0	7.7	0.0	V-Horn	AV	0.0	18.5	54.0	-35.5
12374.680	46.2	-7.9	162.0	1.0	0.0	0.0	H-Horn	PK	0.0	38.3	74.0	-35.7