9. RF EXPOSURE

9.1. **FCC RULES**

From FCC Rules §1.1310 (b) (1) Table 1, the device operates under Subpart Q of Part 101 and has an EIRP > 1640 W, therefore is subject to routine environmental evaluation.

The calculations of RF Exposure in this report do not consider the potential impact of any site related conditions therefore are provided for reference.

9.2. **FCC LIMITS**

From FCC $\S1.1310$ Table 1 (b), the maximum value of S = 1.0 mW/cm²

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500-100,000			1.0	30

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposures.

exposure or can not exercise control over their exposure.

9.3. EQUATIONS

FAR FIELD BOUNDARY

The far-field boundary is given in IEEE C95.3 Annex B.2 as:

$$R_{FarField} = (2 * D^2) / \lambda$$

where

R_{FarField} = Far-field boundary in m [or cm]

D = Largest Antenna Dimension, including the reflector, in meters [or cm]

DATE: APRIL 15, 2013

FCC ID: RY7HYBRID4GIGE70G

 λ = wavelength in meters [or cm]

FAR FIELD POWER DENSITY

Power density is given in IEEE C95.3 Annex B.2 Equation 37 as:

$$S = EIRP / (4\pi D^2)$$

where

S = Power density in W/m² [or mW/cm²]

EIRP = Equivalent Isotropic Radiated Power in W [or mW]

D = Separation distance in m [or cm]

IEEE C95.3 Annex B.2 Equation 37 is generally valid for distances greater than (0.5 D^2)/ λ

NEAR-FIELD POWER DENSITY

The maximum near-field power density is given in IEEE C95.3 Annex B.2, equation 38 as:

$$S = 4*P/A$$

where

P = Antenna Power in W [or mW]

A = Area of antenna in m^2 [or cm²]

9.5. FAR-FIELD CALCULATIONS

FAR FIELD BOUNDARY

The closest far-field boundary for a given antenna diameter is at the lowest frequency in each applicable band.

Frequency	Antenna	Antenna	Lambda	R (Far Field)	R (Far Field)
	Diameter	Diameter			
(GHz)	(feet)	(m)	(m)	(m)	(cm)
71	1	0.300	0.0042	42.60	4260

MAXIMUM FAR FIELD POWER DENSITY

The maximum far-field power density occurs at the closest far-field boundary:

Frequency	Far-Field	Maximum	Maximum	Power	
Band	Distance	EIRP	EIRP	Density	
(GHz)	(cm)	(dBm)	(mW)	(mW/cm^2)	
71-76	4260	67.01	5023426	0.022	

Page 26 of 30

9.6. RADIATING NEAR-FIELD CALCULATIONS

9.6.1. RADIATING NEAR-FIELD BASED ON FAR-FIELD CONDITIONS

APPLICABILITY OF IEEE C95.3 ANNEX B.2 EQUATION 37

The closest distance for which IEEE C95.3 Annex B.2 Equation 37 is generally valid is:

Frequency	Antenna	Antenna	Lambda	Distance for	Distance for	
	Diameter	Diameter		Validity of	Validity of	
				Equation 37	Equation 37	
(GHz)	(feet)	(m)	(m)	(m)	(cm)	
71	1	0.300	0.0042	10.65	1065	

At closer distances, the values predicted by Equation (37) are too large and near-field estimates must be used.

ESTIMATED RADIATED NEAR-FIELD POWER DENSITY ASSUMING FAR-FIELD CONDITIONS

The power density at the closest distance for which IEEE C95.3 Annex B.2 Equation 37 is generally valid is estimated as:

Frequency	Transition-Field	Transition-Field	Maximum	Maximum	Power
Band	Distance	Distance	EIRP	EIRP	Density
(GHz)	(m)	(cm)	(dBm)	(mW)	(mW/cm^2)
71-76	10.65	1065	67.01	5023426	0.353

Page 27 of 30