

TEST REPORT

Application No.:	KSCR2407001449AT
FCC ID:	ROR2002
Applicant:	Blinq Networks Inc.
Address of Applicant:	140 Renfrew Drive, Suite 200, Markham, L3R 6B3, Canada
Manufacturer:	Blinq Networks Inc.
Address of Manufacturer:	140 Renfrew Drive, Suite 200, Markham, L3R 6B3, Canada
Factory:	VVDN Technologies Private Limited
Address of Factory:	Plot No: CP-07, Sector 8, IMT Manesar, Gurugram, Haryana
Equipment Under Test (EUT):	
EUT Name:	PCW-400i
Model No.:	PCW-400i
Standard(s) :	47 CFR Part 15, Subpart C 15.247
Date of Receipt:	2024-07-31
Date of Test:	2024-12-05 to 2024-12-26
Date of Issue:	2025-02-12
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Revision Record			
Version	Description	Date	Remark
00	Original	2025-02-12	/

Authorized for issue by:			
Tested By			
		Eric Liu /Project Engineer	
Approved By			
		Terry Hou /Reviewer	

2 Test Summary

Radio Spectrum Technical Requirement					
Item	Standard	Method	Requirement	Result	Test Lab*
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	Pass	N/A

Radio Spectrum Matter Part					
Item	Standard	Method	Requirement	Result	Test Lab*
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass	A
Conducted Average Output Power		ANSI C63.10 (2013) Section 11.9.2	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass	A
Minimum 6dB Bandwidth		ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass	A
Power Spectrum Density		ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass	A
Conducted Band Edges Measurement		ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass	A
Conducted Spurious Emissions		ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass	A
Radiated Emissions which fall in the restricted bands		ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	B
Radiated Spurious Emissions Below 1GHz		ANSI C63.10 (2013) Section 6.4,6.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	B
Radiated Spurious Emissions Above 1GHz		ANSI C63.10 (2013) Section 6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	B

3 Contents

	Page
1 COVER PAGE.....	1
2 Test Summary.....	3
3 Contents.....	4
4 General Information.....	5
4.1 Details of E.U.T.	5
4.2 Description of Support Units	5
4.3 Power level setting using in test:.....	5
4.4 Measurement Uncertainty.....	6
4.5 Test Location.....	7
4.6 Test Facility	7
4.7 Deviation from Standards	8
4.8 Abnormalities from Standard Conditions	8
5 Equipment List.....	9
6 Radio Spectrum Technical Requirement	11
6.1 Antenna Requirement.....	11
7 Radio Spectrum Matter Test Results	13
7.1 Conducted Emissions at AC Power Line (150kHz-30MHz).....	13
7.2 Conducted Average Output Power.....	17
7.3 Minimum 6dB Bandwidth	19
7.4 Power Spectrum Density	20
7.5 Conducted Band Edges Measurement.....	21
7.6 Conducted Spurious Emissions	23
7.7 Radiated Emissions which fall in the restricted bands.....	25
7.8 Radiated Spurious Emissions Below 1GHz	28
7.9 Radiated Spurious Emissions Above 1GHz.....	30
8 Test Setup Photo	32
9 EUT Constructional Details (EUT Photos)	32

4 General Information

4.1 Details of E.U.T.

Power supply:	44-57V DC by POE
Test Voltage:	120V, 60Hz
Operation Frequency:	802.11b/g/n(HT20)/ax(HEW20)/be(EHT): 2412MHz to 2462MHz 802.11n(HT40)/ax(HEW40)/be(EHT): 2422MHz to 2452MHz
Modulation Type:	802.11b: DSSS (CCK, DQPSK, DBPSK), 802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK), 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM) 802.11be: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM, 4096QAM)
Number of Channels:	802.11b/g/n(HT20)/ax(HEW20)/be(EHT):11 802.11n(HT40)/ax(HEW40)/be(EHT):7
Channel Spacing:	5MHz
Antenna Type:	Metal Antenna
Antenna Gain:	ANT1: 6.22dBi (Provided by the manufacturer) ANT2: 6.22dBi (Provided by the manufacturer) Directional gain: 6.22dBi (The transmitted signal is uncorrelated)

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Notebook	ThinkPad	K27	EB24537645
POE	PROCET	PT-PSE106GBR-10	--

4.3 Power level setting using in test:

Channel	11B		11G	
	Ant 1	Ant 2	Ant 1	Ant 2
L	23	23	23	23
M	23	23	23	23
H	23	23	22	22
Channel	11N20		11N40	
	Ant 1	Ant 2	Ant 1	Ant 2
L	23	23	23	23
M	23	23	23	23
H	22	22	21	21
Channel	11BE20		11BE40	
	Ant 1	Ant 2	Ant 1	Ant 2
L	23	23	23	23
M	23	23	23	23
H	22	22	22	22

4.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	8.4×10^{-8}
2	Timeout	2s
3	Duty Cycle	0.37%
4	Occupied Bandwidth	3%
5	RF Conducted Power	0.6dB
6	RF Power Density	2.9dB
7	Conducted Spurious Emissions	0.75dB
8	RF Radiated Power	5.2dB (Below 1GHz) 5.9dB (Above 1GHz)
9	Radiated Spurious Emission Test	4.2dB (Below 30MHz) 4.5dB (30MHz-1GHz) 5.1dB (1GHz-18GHz) 5.4dB (Above 18GHz)
10	Temperature Test	1°C
11	Humidity Test	3%
12	Supply Voltages	1.5%
13	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.5 Test Location

Lab A:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

Lab B:

Conducted Emissions at AC Power Line (150kHz-30MHz); Radiated Emissions; Radiated Emissions which fall in the restricted bands test at:

SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd.

No.2,Tongsheng Road,Wuzhong District,Suzhou,Jiangsu,China

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

Note:

1.SGS is not responsible for wrong test results due to incorrect information (e.g., max. internal working frequency, antenna gain, cable loss, etc) is provided by the applicant. (If applicable).

2.SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (If applicable).

3. Sample source: sent by customer.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

• **A2LA**

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• **FCC**

Compliance Certification Services (Kunshan) Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• **ISED**

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 2324E

• **VCCI**

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

Lab B:

• **A2LA (Certificate No. 6336.01)**

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 6336.01.

• **Innovation, Science and Economic Development Canada**

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0120.

IC#: 27594.

• **FCC –Designation Number: CN1312**

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. has been recognized as

an accredited testing laboratory.

Designation Number: CN1312.

Test Firm Registration Number: 717327

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

5 Equipment List

Lab A:

Item	Equipment	Manufacturer	Model	Inventory No	Cal Date	Cal. Due Date
Conducted Emission at Mains Terminals						
1	EMI Test Receive	R&S	ESCI	KS301101	01/15/2024	01/14/2025
2	LISN	R&S	ENV216	KS301197	01/15/2024	01/14/2025
3	LISN	Schwarzbeck	NNLK 8129	KS301091	01/15/2024	01/14/2025
4	Pulse Limiter	R&S	ESH3-Z2	KUS1902E001	01/15/2024	01/14/2025
5	CE test Cable	Thermax	/	CZ301102	01/15/2024	01/14/2025
6	Test Software	ESE	E3_V 6.111221a	/	N.C.R	N.C.R
RF Conducted Test						
1	Spectrum Analyzer	Keysight	N9020A	KUS1911E004-2	08/01/2024	07/31/2025
2	Spectrum Analyzer	Keysight	N9020A	KUS2001M001-2	08/01/2024	07/31/2025
3	Spectrum Analyzer	Keysight	N9030B	KSEM021-1	01/15/2024	01/14/2025
4	Signal Generator	R&S	SMBV100B	KSEM032	03/19/2024	03/18/2025
5	Signal Generator	R&S	SMW200A	KSEM020-1	08/02/2024	08/01/2025
6	Signal Generator	Agilent	N5182A	KUS2001M001-1	08/01/2024	07/31/2025
7	Signal Generator	Agilent	E8257C	KS301066	08/06/2024	08/05/2025
8	Radio Communication Test Station	Anritsu	MT8000A	KSEM001-1	08/01/2024	07/31/2025
9	Radio Communication Analyzer	Anritsu	MT8821C	KSEM002-1	03/19/2024	03/18/2025
10	Universal Radio Communication Tester	R&S	CMW500	KUS1911E004-1	08/12/2024	08/11/2025
11	Switcher	TST	FY562	KUS2001M001-4	01/15/2024	01/14/2025
12	Conducted Test Cable	Thermax	RF01-RF04	CZ301111-CZ301120	01/15/2024	01/14/2025
13	Temp. / Humidity Chamber	TERCHY	MHK-120AK	KS301190	08/26/2024	08/25/2025
14	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-5	03/19/2024	03/18/2025
15	Software	BST	TST-PASS	/	NCR	NCR

Lab B:

Equipment	Manufacturer	Model No.	Inventory No.	Cal Date	Cal Due Date
Semi-Anechoic Chamber	Brilliant-emc	N/A	SUWI-04-02-02	11/25/2024	11/24/2027
Temperature and humidity meter	MingGao	TH101B	SUWI-01-01-13	2/8/2024	2/7/2025
Signal Analyzer	ROHDE&SCHWARZ	FSW43	SUWI-01-02-04	5/8/2024	5/7/2025
Signal Analyzer	KEYSIGHT	N9020A	SUWI-01-02-06	11/21/2024	11/20/2025
Test receiver	ROHDE&SCHWARZ	ESR7	SUWI-01-10-01	2/1/2024	1/31/2025
Receiving antenna	SCHWRZBECK MESS-ELEKTRONIK	VULB 9168	SUWI-01-11-04	11/25/2023	11/24/2025
Receiving antenna	SCHWRZBECK MESS-ELEKTRONIK	BBHA 9120D	SUWI-01-11-05	11/25/2023	11/24/2025
Receiving antenna	SCHWRZBECK MESS-ELEKTRONIK	BBHA 9170	SUWI-01-11-03	5/12/2023	5/11/2025
Active Loop Antenna	SCHWRZBECK MESS-ELEKTRONIK	FMZB 1519B	SUWI-01-21-01	5/13/2023	5/12/2025
Amplifier	Tonscend	TAP9K3G32	SUWI-01-14-06	11/19/2024	11/24/2025
Amplifier	Tonscend	TAP01018050	SUWI-01-14-04	11/19/2024	11/24/2025
Amplifier	Tonscend	TAP30M7G30	SUWI-01-14-05	11/19/2024	11/24/2025
Measurement Software	Tonscend	JS32-RE	SUWI-02-09-04	NCR	NCR
Measurement Software		V4.0.0.0			
Measurement Software	Tonscend	JS32-RSE	SUWI-02-09-06	NCR	NCR
Measurement Software		4.0.0.1			

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The ANT1 and ANT2 is Metal antenna, and no consideration of replacement. The best case gain of the ANT1 is 6.22dBi. and ANT2 is 6.22dBi.

Antenna location: Refer to internal photo.

Directional Gain Calculations for MIMO:

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

Basic methodology with NANT transmit antennas, each with the same directional gain GANT dBi, being driven by NANT transmitter outputs of equal power. Directional gain is to be computed as follows:

- If any transmit signals are correlated with each other,
Directional gain = GANT + 10 log(NANT) dBi
- If all transmit signals are completely uncorrelated with each other,
Directional gain = GANT

Unequal antenna gains, with equal transmit powers. For antenna gains given by G1, G2, ..., GN dBi

- If transmit signals are correlated, then
Directional gain = $10 \log[(10G1/20 + 10G2/20 + \dots + 10GN/20)^2 / NANT]$ dBi [Note the “20”s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]
- If all transmit signals are completely uncorrelated, then
Directional gain = $10 \log[(10G1/10 + 10G2/10 + \dots + 10GN/10) / NANT]$ dBi

Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain.

All antennas have the same gain:

Operation Frequency	ANT5(WIFI0) (dBi)	ANT6(WIFI1) (dBi)	Directional gain For Power(dBi)	Directional gain For PSD(dBi)
2400 MHz to 2483.5 MHz	6.22	6.22	6.22	6.22

2400 MHz to 2483.5 MHz:

Power Limit Reduction = Directional gain – 6dBi, (Directional gain < 6dBi) = 0.22

PSD Limit Reduction = Directional gain – 6dBi, (Directional gain < 6dBi) = 0.22

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.207

Test Method: ANSI C63.10 (2013) Section 6.2

Measurement Distance: 3m

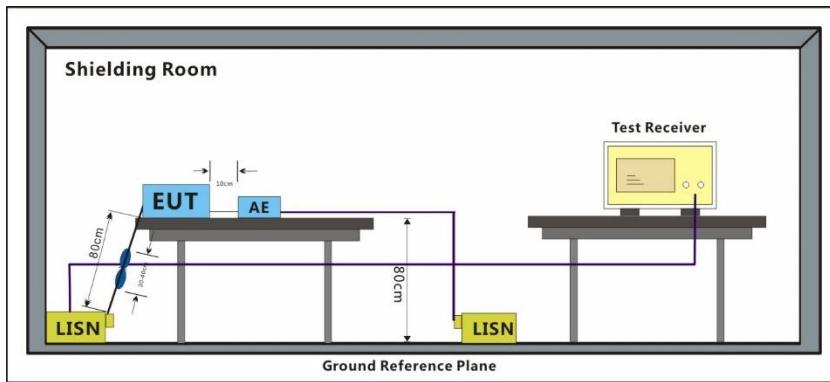
Limit:

Frequency of emission(MHz)	Conducted limit(dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

Detector: Peak for pre-scan (9kHz resolution bandwidth) 0.15M to 30MHz

7.1.1 E.U.T. Operation


Operating Environment:

Temperature: 22.5 °C Humidity: 46 % RH Atmospheric Pressure: 1010 mbar

7.1.2 Test Mode Description

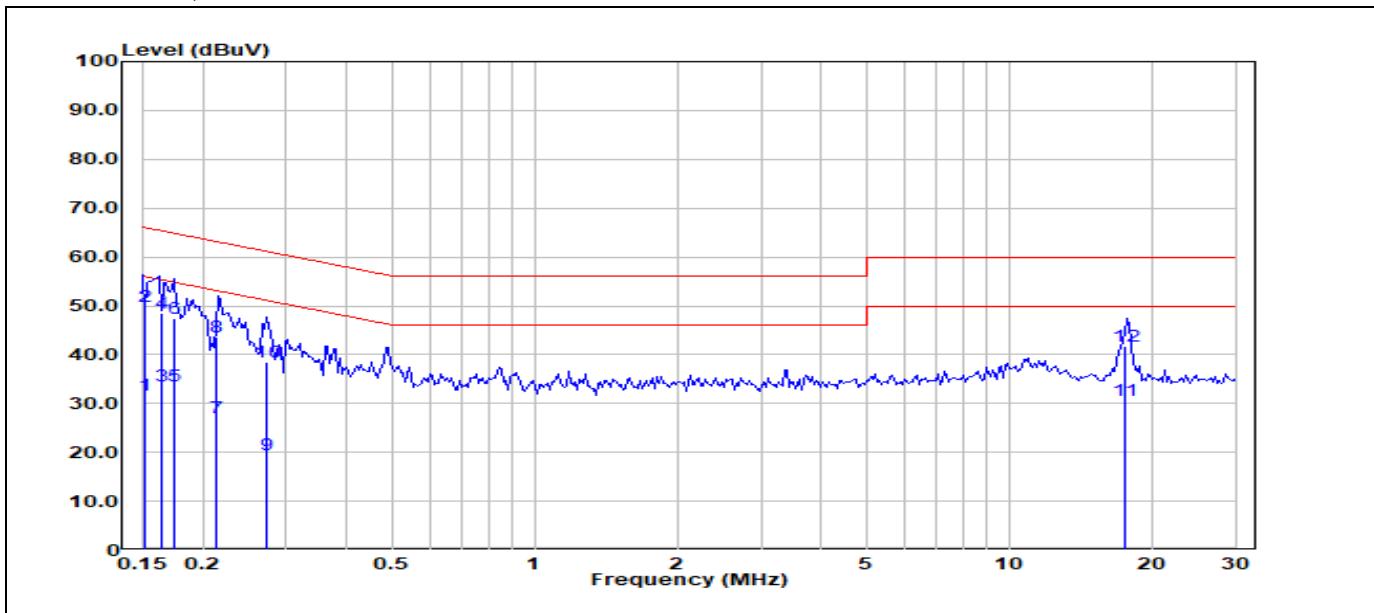
Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11be(EHT20); data rate @ MCS0 is the worst case of IEEE 802.11be(EHT40) , final test modes are considering the modulation and worse data rates. Only the data of worst case is recorded in the report.

7.1.3 Test Setup Diagram



7.1.4 Measurement Procedure and Data

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 μ H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Remark: Level=Read Level+ Cable Loss+ LISN Factor

Test Mode: 00; Line: Live line

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor(dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.1538	14.29	20.24	34.53	55.79	-21.26	Average
2	0.1538	30.50	20.24	50.74	65.79	-15.05	QP
3	0.1708	17.63	20.16	37.79	54.92	-17.13	Average
4	0.1708	31.60	20.16	51.76	64.92	-13.16	QP
5	0.1929	10.32	20.08	30.40	53.91	-23.51	Average
6	0.1929	26.34	20.08	46.42	63.91	-17.49	QP
7	0.2328	7.25	20.06	27.31	52.35	-25.04	Average
8	0.2328	22.16	20.06	42.22	62.35	-20.13	QP
9	3.7950	5.29	19.89	25.18	46.00	-20.82	Average
10	3.7950	19.38	19.89	39.27	56.00	-16.73	QP
11	17.8110	8.11	19.76	27.87	50.00	-22.13	Average
12	17.8110	23.20	19.76	42.96	60.00	-17.04	QP

Test Mode: 00; Line: Neutral Line

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor(dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.1502	11.55	20.18	31.73	55.99	-24.26	Average
2	0.1502	29.77	20.18	49.95	65.99	-16.04	QP
3	0.1631	13.53	20.16	33.69	55.30	-21.61	Average
4	0.1631	28.43	20.16	48.59	65.30	-16.71	QP
5	0.1740	13.38	20.15	33.53	54.77	-21.24	Average
6	0.1740	27.35	20.15	47.50	64.77	-17.27	QP
7	0.2140	6.91	20.11	27.02	53.05	-26.03	Average
8	0.2140	23.41	20.11	43.52	63.05	-19.53	QP
9	0.2723	-0.45	20.09	19.64	51.05	-31.41	Average
10	0.2723	18.47	20.09	38.56	61.05	-22.49	QP
11	17.5590	10.69	19.83	30.52	50.00	-19.48	Average
12	17.5590	22.00	19.83	41.83	60.00	-18.17	QP

7.2 Conducted Average Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)

Test Method: ANSI C63.10 (2013) Section 11.9.2

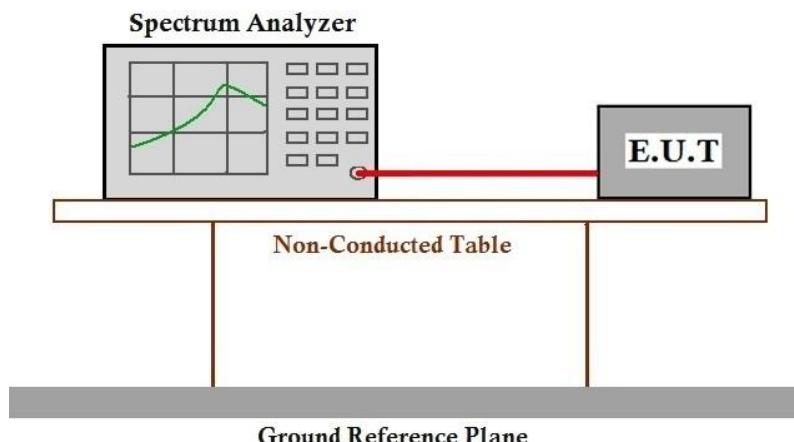
Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
902-928	1 for ≥ 50 hopping channels
	0.25 for $25 \leq$ hopping channels < 50
	1 for digital modulation
2400-2483.5	1 for ≥ 75 non-overlapping hopping channels
	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C


Humidity: 48 % RH

Atmospheric Pressure: 1010 mbar

7.2.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)/ax(HEW20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40)/ax(HEW40), final test modes are considering the modulation and worse data rates. Only the data of worst case is recorded in the report.

7.2.3 Test Setup Diagram

7.2.4 Measurement Procedure and Data

Note: Since the verify power the same operating range bandwidth and smaller power can be covered by the higher power.

Please Refer to Appendix for Details

7.3 Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)

Test Method: ANSI C63.10 (2013) Section 11.8.1

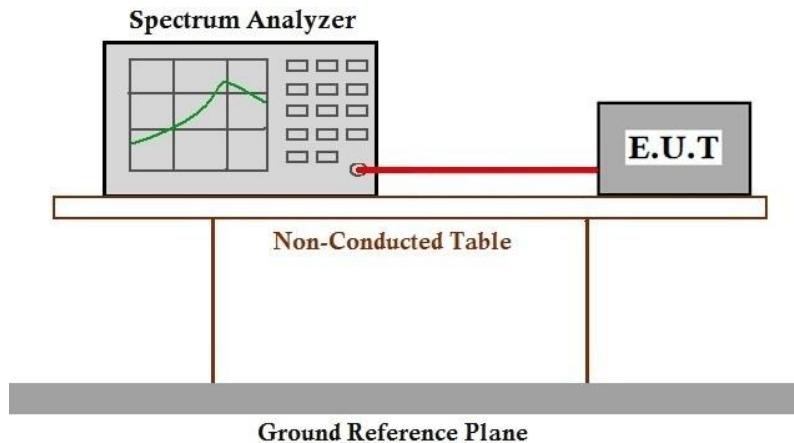
Limit:

≥500 kHz

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C


Humidity: 48 % RH

Atmospheric Pressure: 1010 mbar

7.3.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)/ax(HEW20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40)/ax(HEW40), final test modes are considering the modulation and worse data rates. Only the data of worst case is recorded in the report.

7.3.3 Test Setup Diagram

7.3.4 Measurement Procedure and Data

Please Refer to Appendix for Details

7.4 Power Spectrum Density

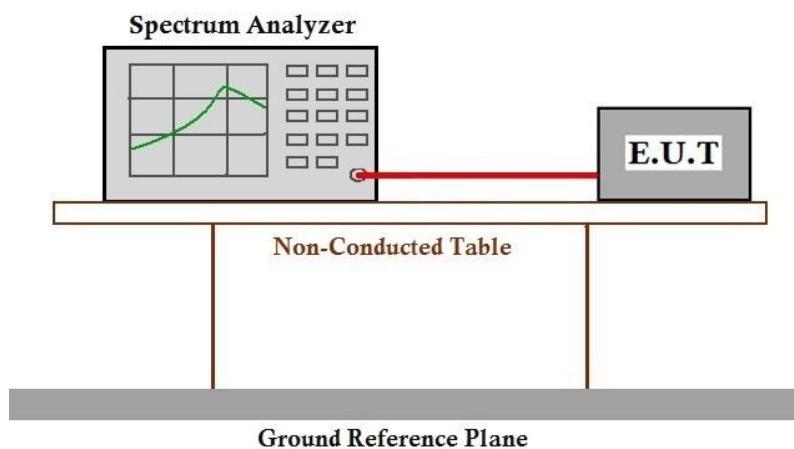
Test Requirement 47 CFR Part 15, Subpart C 15.247(e)

Test Method: ANSI C63.10 (2013) Section 11.10.2

Limit:

≤8dBm in any 3 kHz band during any time interval of continuous transmission

7.4.1 E.U.T. Operation


Operating Environment:

Temperature: 22 °C Humidity: 48 % RH Atmospheric Pressure: 1010 mbar

7.4.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)/ax(HEW20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40)/ax(HEW40), final test modes are considering the modulation and worse data rates. Only the data of worst case is recorded in the report.

7.4.3 Test Setup Diagram

7.4.4 Measurement Procedure and Data

Please Refer to Appendix for Details

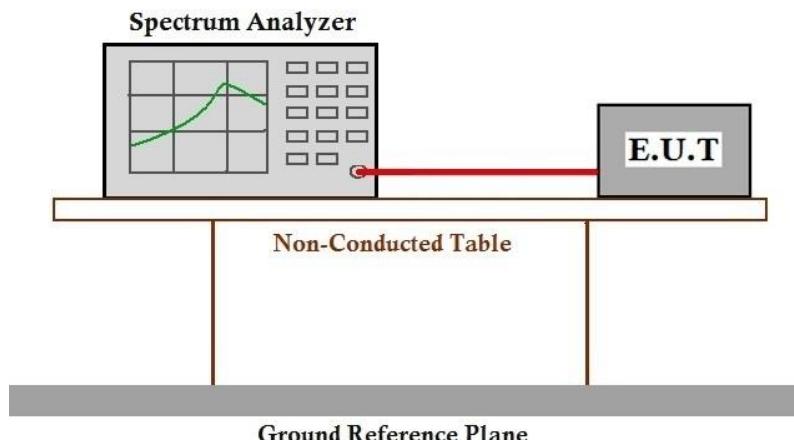
7.5 Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.13.3.2

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.5.1 E.U.T. Operation


Operating Environment:

Temperature: 22 °C Humidity: 48 % RH Atmospheric Pressure: 1010 mbar

7.5.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)/ax(HEW20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40)/ax(HEW40), final test modes are considering the modulation and worse data rates. Only the data of worst case is recorded in the report.

7.5.3 Test Setup Diagram

7.5.4 Measurement Procedure and Data

Please Refer to Appendix for Details

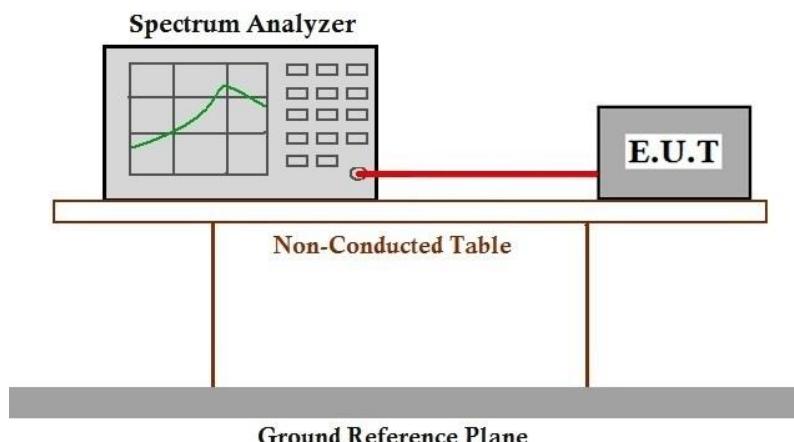
7.6 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.11

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.6.1 E.U.T. Operation


Operating Environment:

Temperature: 22 °C Humidity: 48 % RH Atmospheric Pressure: 1010 mbar

7.6.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)/ax(HEW20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40)/ax(HEW40), final test modes are considering the modulation and worse data rates. Only the data of worst case is recorded in the report.

7.6.3 Test Setup Diagram

7.6.4 Measurement Procedure and Data

Please Refer to Appendix for Details

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.5

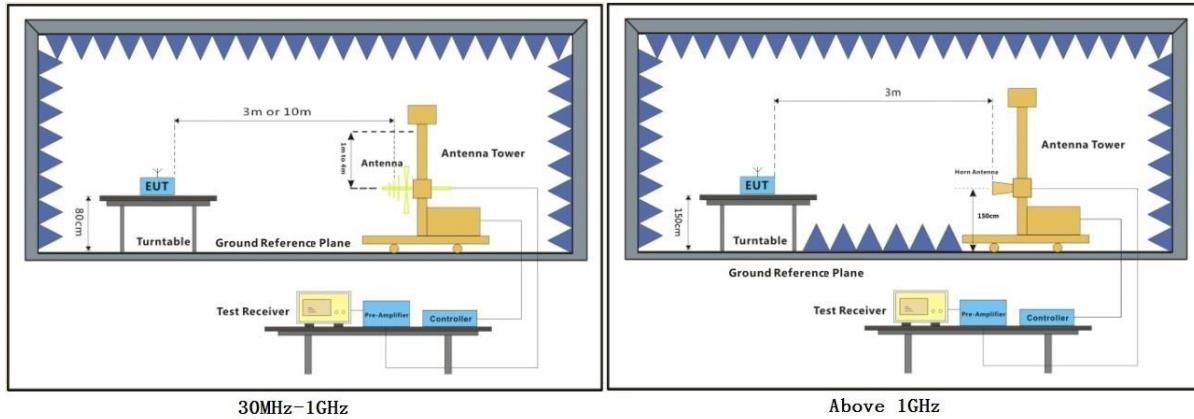
Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.7.1 E.U.T. Operation


Operating Environment:

Temperature: 20.5 °C Humidity: 51.3 % RH Atmospheric Pressure: 1010 mbar

7.7.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)/ax(HEW20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40)/ax(HEW40), final test modes are considering the modulation and worse data rates. Only the data of worst case is recorded in the report.

7.7.3 Test Setup Diagram

7.7.4 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Remark 3: This test item was investigated while operating in SISO and MIMO mode, however, it was determined that SISO antenna 1 operation for b/g modulation and MiMO antenna operation for n/ax modulation produced the worst emissions. So the emissions produced from other operation are not recorded in report.

Please Refer to Appendix for Details

7.8 Radiated Spurious Emissions Below 1GHz

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.4,6.5

Measurement Distance: 3m

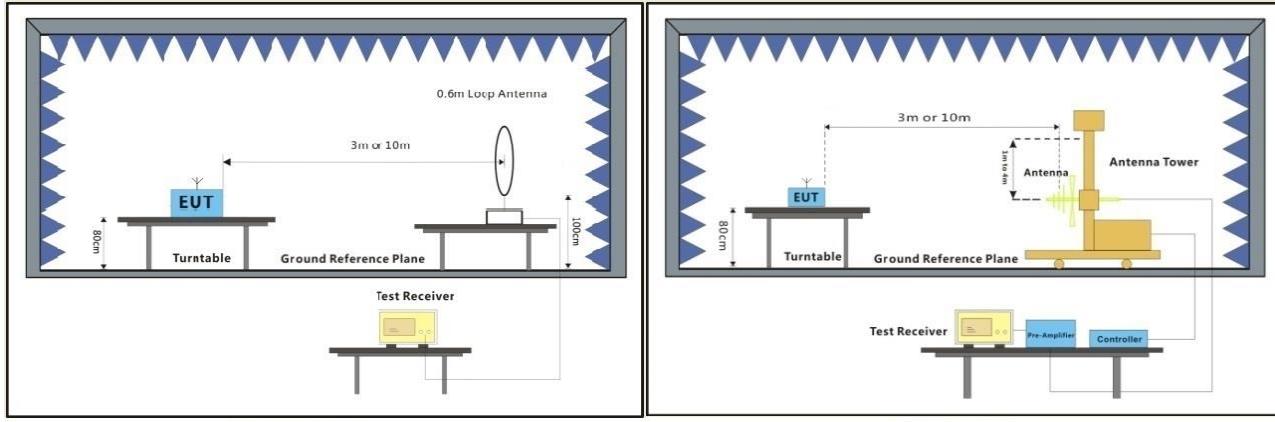
Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
960-1000	500	3

7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C


Humidity: 51.3 % RH

Atmospheric Pressure: 1010 mbar

7.8.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)/ax(HEW20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40)/ax(HEW40), final test modes are considering the modulation and worse data rates. Only the data of worst case is recorded in the report.

7.8.3 Test Setup Diagram

7.8.4 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete.

Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
3. This test item was investigated while operating in SISO and MIMO mode, however, it was determined that SISO antenna 1 operation for b/g modulation and MiMO antenna operation for n/ax modulation produced the worst emissions. So the emissions produced from other operation are not recorded in report.

Please Refer to Appendix for Details

7.9 Radiated Spurious Emissions Above 1GHz

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

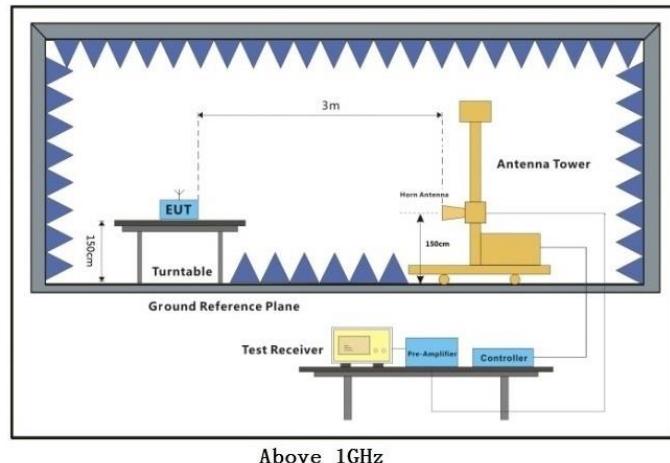
Test Method: ANSI C63.10 (2013) Section 6.6

Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
Above 1000	500	3

7.9.1 E.U.T. Operation


Operating Environment:

Temperature: 20.5 °C Humidity: 51.3 % RH Atmospheric Pressure: 1010 mbar

7.9.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)/ax(HE20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40)/ax(HE40), final test modes are considering the modulation and worse data rates. Only the data of worst case is recorded in the report.

7.9.3 Test Setup Diagram

7.9.4 Measurement Procedure and Data

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete.

Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 1GHz to 25GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
4. This test item was investigated while operating in SISO and MIMO mode, however, it was determined that SISO antenna 1 operation for b/g modulation and MiMO antenna operation for n modulation produced the worst emissions. So the emissions produced from other operation are not recorded in report.

Please Refer to Appendix for Details

8 Test Setup Photo

Refer to Appendix - Test Setup Photo for KSCR2407001449AT

9 EUT Constructional Details (EUT Photos)

Refer to Appendix - Photographs of EUT Constructional Details for KSCR2407001449AT

- End of the Report -