



Choose Scandinavian trust

# Wireless Test report- 408608-1TRFWL

**408608-1TRFWL**

Date of issue: December 24, 2020

Applicant:

**Blinq Wireless, Inc**

Product:

**Base station**

Model:

**FW6-B41-00-WW**

FCC ID:

**ROR0009**

Specifications:


◆ **FCC 47 CFR Part 27**

Miscellaneous Wireless Communications Services

[www.nemko.com](http://www.nemko.com)

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

*FCC Part 27; Date: May 2015*



---

Test location

|                        |                                                                                    |                                                               |
|------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Company name           | Nemko Canada Inc.                                                                  |                                                               |
| Facilities             | Cambridge site:<br>1-130 Saltsman Drive<br>Cambridge, Ontario<br>Canada<br>N3E 0B2 |                                                               |
|                        | Tel: +1 519 650 4811                                                               |                                                               |
| Test site registration | <b>Organization</b><br>FCC/ISED                                                    | <b>Recognition numbers and location</b><br>CA0101 (Cambridge) |
| Website                | <a href="http://www.nemko.com">www.nemko.com</a>                                   |                                                               |

|                    |                                                                                     |
|--------------------|-------------------------------------------------------------------------------------|
| Tested by          | Fahar A Sukkoor, Wireless/EMC Specialist                                            |
| Reviewed by        | Tarek Elkholy, EMC/RF Specialist                                                    |
| Review date        | December 24, 2020                                                                   |
| Reviewer signature |  |

---

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

---

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

## Table of contents

|                                                                   |           |
|-------------------------------------------------------------------|-----------|
| <b>Table of contents .....</b>                                    | <b>3</b>  |
| <b>Section 1. Report summary .....</b>                            | <b>4</b>  |
| 1.1    Applicant and manufacturer .....                           | 4         |
| 1.2    Test specifications .....                                  | 4         |
| 1.3    Statement of compliance .....                              | 4         |
| 1.4    Exclusions .....                                           | 4         |
| 1.5    Test report revision history .....                         | 4         |
| <b>Section 2. Summary of test results.....</b>                    | <b>5</b>  |
| 2.1    FCC Part 27 test results .....                             | 5         |
| <b>Section 3. Equipment under test (EUT) details .....</b>        | <b>6</b>  |
| 3.1    Sample information.....                                    | 6         |
| 3.2    EUT information .....                                      | 6         |
| 3.3    Technical information .....                                | 6         |
| 3.4    Product description and theory of operation .....          | 6         |
| 3.5    EUT exercise details.....                                  | 7         |
| 3.6    EUT setup diagram .....                                    | 7         |
| <b>Section 4. Engineering considerations.....</b>                 | <b>8</b>  |
| 4.1    Modifications incorporated in the EUT.....                 | 8         |
| 4.2    Technical judgment .....                                   | 8         |
| 4.3    Deviations from laboratory tests procedures .....          | 8         |
| <b>Section 5. Test conditions.....</b>                            | <b>9</b>  |
| 5.1    Atmospheric conditions .....                               | 9         |
| 5.2    Power supply range.....                                    | 9         |
| <b>Section 6. Measurement uncertainty.....</b>                    | <b>10</b> |
| 6.1    Uncertainty of measurement .....                           | 10        |
| <b>Section 7. Test equipment .....</b>                            | <b>11</b> |
| 7.1    Test equipment list.....                                   | 11        |
| <b>Section 8. Testing data .....</b>                              | <b>12</b> |
| 8.1    FCC 27.50(h) Peak output power.....                        | 12        |
| 8.2    FCC 27.53(m) Emission limits .....                         | 16        |
| 8.3    FCC 27.54 Frequency stability .....                        | 26        |
| 8.4    FCC 2.1049 Emission bandwidth .....                        | 27        |
| <b>Section 9. Block diagrams of test set-ups .....</b>            | <b>29</b> |
| 9.1    Radiated emissions set-up for frequencies below 1 GHz..... | 29        |
| 9.2    Radiated emissions set-up for frequencies above 1 GHz..... | 29        |
| 9.3    Conducted emissions set-up .....                           | 30        |

## Section 1. Report summary

---

### 1.1 Applicant and manufacturer

---

|                 |                             |
|-----------------|-----------------------------|
| Company name    | Blinq Wireless, Inc.        |
| Address         | 140 Renfrew Drive Suite 200 |
| City            | Markham                     |
| Province/State  | ON                          |
| Postal/Zip code | L3R 6B3                     |
| Country         | Canada                      |

### 1.2 Test specifications

---

FCC 47 CFR Part 27

Miscellaneous Wireless Communications Services

### 1.3 Statement of compliance

---

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

### 1.4 Exclusions

---

None

### 1.5 Test report revision history

---

| Revision # | Details of changes made to test report |
|------------|----------------------------------------|
| TRF        | Original report issued                 |

## Section 2. Summary of test results

---

### 2.1 FCC Part 27 test results

---

| Part      | Test description                          | Verdict |
|-----------|-------------------------------------------|---------|
| §27.50(h) | Peak output power at RF antenna connector | Pass    |
| §27.53(m) | Emission limits                           | Pass    |
| §27.54    | Frequency stability                       | Pass    |
| §2.1049   | Occupied bandwidth                        | Pass    |

Notes: None

## Section 3. Equipment under test (EUT) details

---

### 3.1 Sample information

---

|                        |                   |
|------------------------|-------------------|
| Receipt date           | November 26, 2020 |
| Nemko sample ID number | 1                 |

### 3.2 EUT information

---

|                  |                     |
|------------------|---------------------|
| Product name     | Base station        |
| Model            | FW6-B41-00-WW       |
| Serial number    | 6010102-20370009    |
| Software version | Version 2.1.3_42384 |

### 3.3 Technical information

---

|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency band                          | 2496-2690 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Frequency Min (MHz)                     | 2501 (10 MHz) & 2506 (20 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Frequency Max (MHz)                     | 2685 (10MHz) & 2680 (20 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RF power Min (W /EIRP)                  | 426.58 (10 MHz), 693.43 (20 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RF power Max (W, /EIRP)                 | 1000 (10 MHz), 1025.65 (20 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Field strength, Units @ distance        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Measured BW (MHz) (26 dB)               | 9.80 (10 MHz), 19.57 (20 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Type of modulation                      | OFDM using QPSK and 64 QAM modulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Emission classification (F1D, G1D, D1D) | W7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Power requirements                      | 48 V <sub>DC</sub> via 120Vac power adaptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MIMO type                               | 2 x 2 with completely uncorrelated type of signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Antenna information                     | 1)21.9dBi / 10.5deg Azimuth BW ( MBA6F-V2A from CCI Products)<br>2)21.5dBi / 12.8deg Azimuth BW (MBA3F-E3A from CCI Products)<br>3) Common Sectorial Antennae ( MTI-344075-ND, MT-344036/NV from MTI Wireless Edge Limited) <ul style="list-style-type: none"> <li>• Antenna gain 15dB<sub>i</sub>/16dB<sub>i</sub>/17dB<sub>i</sub></li> <li>• Azimuth BW: 60Deg/65Deg/90Deg</li> </ul> All antenna referred above are sufficiently uncorrelated.<br>The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator. |

### 3.4 Product description and theory of operation

---

The BLiNQ FW-600 system is a tri-sector and tri-carrier Long-Term Evolution (LTE) Evolved Node B (eNB) with the capability to operate in the following bands:41, 42, 43, 46 and 48. With a distinctive feature set and integration level, the FW-600 brings an ideal solution to an “install anywhere” micro-base transceiver station (micro-BTS) that fully serves private networks, fixed wireless access and mobility use cases

### 3.5 EUT exercise details

The EUT was controlled from laptop via Ethernet using Tera term. Link

Power settings table:

| BW(MHz)               | 10    | 20    |
|-----------------------|-------|-------|
| FW600- Sector 0 Power | 39dBm | 39dBm |
| FW600- Sector 1 Power | 39dBm | 39dBm |
| FW600- Sector 2 Power | 39dBm | 39dBm |

"Note: 1. With 10MHz bandwidth carrier, power setting is limited to 36dBm if the carrier is occupying 5MHz from low and high band edges 2496MHz and 2690MHz, respectively. With 20MHz bandwidth carrier power setting is limited to 38dBm if the carrier is occupying 5MHz from low and high band edges 2496MHz and 2690MHz respectively.

### 3.6 EUT setup diagram

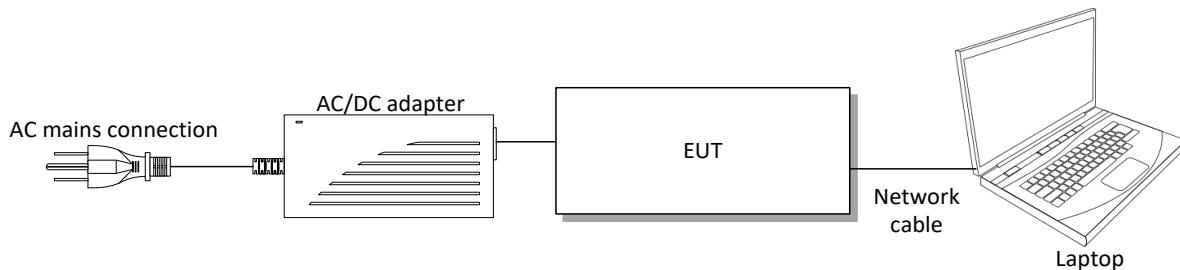



Figure 3.6-1: Setup diagram

Table 3.6-1: EUT support equipment

| Description   | Brand name    | Model/Part number | Serial number |
|---------------|---------------|-------------------|---------------|
| Power adaptor | Mean Well     | HLG-600H-48       | RB99055873    |
| laptop        | Dell Latitude | E6440             | FA002914      |

## Section 4. Engineering considerations

---

### 4.1 Modifications incorporated in the EUT

---

There were no modifications performed to the EUT during this assessment.

### 4.2 Technical judgment

---

Measurements results are provided for one sector. All three sectors of EUT have identical emission and power output characteristics as declared by manufacturer.

All measurements are shown in QPSK modulation as it is considered worst case scenario. 64QAM modulation is checked for emission and spurious characteristics

### 4.3 Deviations from laboratory tests procedures

---

No deviations were made from laboratory procedures.

## Section 5. Test conditions

---

### 5.1 Atmospheric conditions

---

|                   |               |
|-------------------|---------------|
| Temperature       | 15–30 °C      |
| Relative humidity | 20–75 %       |
| Air pressure      | 860–1060 mbar |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

### 5.2 Power supply range

---

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages  $\pm 5\%$ , for which the equipment was designed.

## Section 6. Measurement uncertainty

---

### 6.1 Uncertainty of measurement

---

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of  $K = 2$  with 95% certainty.

| Test name                         | Measurement uncertainty, dB |
|-----------------------------------|-----------------------------|
| All antenna port measurements     | 0.55                        |
| Conducted spurious emissions      | 1.13                        |
| Radiated spurious emissions       | 3.78                        |
| AC power line conducted emissions | 3.55                        |

## Section 7. Test equipment

---

### 7.1 Test equipment list

---

*Table 7.1-1: Equipment list*

| Equipment                    | Manufacturer       | Model no. | Asset no. | Cal cycle | Next cal. |
|------------------------------|--------------------|-----------|-----------|-----------|-----------|
| 3 m EMI test chamber         | TDK                | SAC-3     | FA003012  | 1 year    | Oct 10/21 |
| Flush mount turntable        | SUNAR              | FM2022    | FA003006  | —         | NCR       |
| Controller                   | SUNAR              | SC110V    | FA002976  | —         | NCR       |
| Antenna mast                 | SUNAR              | TLT2      | FA003007  | —         | NCR       |
| Receiver/spectrum analyzer   | Rohde & Schwarz    | ESR26     | FA002969  | 1 year    | Nov 12/21 |
| Spectrum analyzer            | Rohde & Schwarz    | FSW43     | FA002971  | 1 year    | Nov 13/21 |
| Temperature chamber          | Espec              | EPX-4H    | FA003033  | 1 year    | VOU       |
| Radiated Emissions cable set | Huber + Suhner Inc | —         | FA003047  | —         | NCR       |
| Radiated Emissions cable set | Huber + Suhner Inc | —         | FA003044  | —         | NCR       |
| Preamp (1–18 GHz)            | ETS-Lindgren       | 124334    | FA002956  | 1 year    | Mar 18/21 |
| Bilog antenna (20–2000 MHz)  | Sun AR             | JB1       | FA003009  | 1 year    | Sep 17/21 |
| Horn antenna (1–18 GHz)      | Electro-Metrics    | 3115      | FA000649  | 1 year    | Sep 11/21 |
| Horn Antenna (18 -40 GHz)    | ETS-Lindgren       | 3116B     | FA002948  | 1 year    | Mar 07/21 |

Note: NCR - no calibration required, VOU - verify on use

## Section 8. Testing data

### 8.1 FCC 27.50(h) Peak output power

#### 8.1.1 Definitions and limits

(1) Main, booster and base stations.

(i) The maximum EIRP of a main, booster or base station shall not exceed  $33 \text{ dBW} + 10\log(X/Y) \text{ dBW}$ , where X is the actual channel width in MHz and Y is either 6 MHz if prior to transition or the station is in the MBS following transition or 5.5 MHz if the station is in the LBS and UBS following transition, except as provided in paragraph (h)(1)(ii) of this section.

(ii) If a main or booster station sectorizes or otherwise uses one or more transmitting antennas with a non-omnidirectional horizontal plane radiation pattern, the maximum EIRP in dBW in a given direction shall be determined by the following formula:  $\text{EIRP} = 33 \text{ dBW} + 10 \log(X/Y) \text{ dBW} + 10 \log(360/\text{beamwidth}) \text{ dBW}$ , where X is the actual channel width in MHz, Y is either (i) 6 MHz if prior to transition or the station is in the MBS following transition or (ii) 5.5 MHz if the station is in the LBS and UBS following transition, and beamwidth is the total horizontal plane beamwidth of the individual transmitting antenna for the station or any sector measured at the half-power points.

(2) Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

(3) For television transmission, the peak power of the accompanying aural signal must not exceed 10 percent of the peak visual power of the transmitter. The Commission may order a reduction in aural signal power to diminish the potential for harmful interference.

(4) For main, booster and response stations utilizing digital emissions with non-uniform power spectral density (e.g. unfiltered QPSK), the power measured within any 100 kHz resolution bandwidth within the 6 MHz channel occupied by the non-uniform emission cannot exceed the power permitted within any 100 kHz resolution bandwidth within the 6 MHz channel if it were occupied by an emission with uniform power spectral density, i.e., if the maximum permissible power of a station utilizing a perfectly uniform power spectral density across a 6 MHz channel were 2000 watts EIRP, this would result in a maximum permissible power flux density for the station of  $2000/60 = 33.3$  watts EIRP per 100 kHz bandwidth. If a non-uniform emission were substituted at the station, station power would still be limited to a maximum of 33.3 watts EIRP within any 100 kHz segment of the 6 MHz channel, irrespective of the fact that this would result in a total 6 MHz channel power of less than 2000 watts EIRP.

(i) Peak transmit power shall be measured over any interval of continuous transmission using instrumentation calibrated in terms of rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

#### 8.1.2 Test summary

|               |                  |
|---------------|------------------|
| Test date     | December 7, 2020 |
| Test engineer | Fahar A Sukkoor  |
| Verdict       | Pass             |

#### 8.1.3 Observations, settings and special notes

Test results are taken with QPSK modulation as considering worst case scenario.

Spectrum analyzer settings were:

|                      |                                        |
|----------------------|----------------------------------------|
| Resolution bandwidth | 500 – 1000 kHz                         |
| Video bandwidth      | 1 – 3 MHz                              |
| Detector mode        | RMS                                    |
| Trace mode           | Power averaging over channel bandwidth |

#### 8.1.4 Test data

---

##### **EIRP limit line calculations.**

###### For 21.9dBi / 10.5deg Azimuth BW ( MBA6F-V2A from CCI Products)

$$\text{EIRP}_{10 \text{ MHz}} = 63 + 10 \times \log_{10} (10 / 5.5) + 10 \times \log_{10} (360 / 10.5) = 80.95 \text{ dBm}$$

$$\text{EIRP}_{20 \text{ MHz}} = 63 + 10 \times \log_{10} (20 / 5.5) + 10 \times \log_{10} (360 / 10.5) = 83.96 \text{ dBm}$$

$$\text{EIRP}_{10 \text{ MHz}} = 63 + 10 \times \log_{10} (10 / 6) + 10 \times \log_{10} (360 / 10.5) = 80.57 \text{ dBm}$$

$$\text{EIRP}_{20 \text{ MHz}} = 63 + 10 \times \log_{10} (20 / 6) + 10 \times \log_{10} (360 / 10.5) = 83.58 \text{ dBm}$$

###### For 21.5dBi / 12.8deg Azimuth BW (MBA3F-E3A from CCI Products):

$$\text{EIRP}_{10 \text{ MHz}} = 63 + 10 \times \log_{10} (10 / 5.5) + 10 \times \log_{10} (360 / 12.8) = 80.09 \text{ dBm}$$

$$\text{EIRP}_{20 \text{ MHz}} = 63 + 10 \times \log_{10} (20 / 5.5) + 10 \times \log_{10} (360 / 12.8) = 83.10 \text{ dBm}$$

$$\text{EIRP}_{10 \text{ MHz}} = 63 + 10 \times \log_{10} (10 / 6) + 10 \times \log_{10} (360 / 12.8) = 79.71 \text{ dBm}$$

$$\text{EIRP}_{20 \text{ MHz}} = 63 + 10 \times \log_{10} (20 / 6) + 10 \times \log_{10} (360 / 12.8) = 82.72 \text{ dBm}$$

Since EUT is used as a base station, EIRP limits are applicable.

As per manufacturer declaration base station is utilizing digital emissions with uniform power spectral density, hence power spectral density requirement is not applicable.

As per manufacturer declaration, for all other antennae listed in section 3.3 shall be used with same maximum power settings as antenna MBA6F-V2A.

### 8.1.1 Test data

**Table 8.1-1:** EIRP measurements results for 10 MHz channel bandwidth with 21.9dBi / 10.5deg MBA6F-V2A from CCI Products antenna

| Frequency, MHz | Bandwidth, MHz | Ch 1/2 | Output power, dBm | Antenna gain, dBi | EIRP, dBm | Limit, , dBm | Margin, dB |
|----------------|----------------|--------|-------------------|-------------------|-----------|--------------|------------|
| 2501           | 10(low)        | 1      | 36.72             | 20.9              | 57.62     | 80.95        | 23.33      |
|                |                | 2      | 36.95             | 20.9              | 57.85     | 80.95        | 23.10      |
| 2593           | 10(mid)        | 1      | 39.00             | 20.9              | 59.90     | 80.57        | 20.67      |
|                |                | 2      | 39.10             | 20.9              | 60.00     | 80.57        | 20.57      |
| 2685           | 10(high)       | 1      | 35.80             | 20.9              | 56.70     | 80.95        | 24.25      |
|                |                | 2      | 36.99             | 20.9              | 57.89     | 80.95        | 23.06      |
| 2506           | 10(low)        | 1      | 39.04             | 20.9              | 59.94     | 80.95        | 21.01      |
|                |                | 2      | 38.88             | 20.9              | 59.78     | 80.95        | 21.17      |
| 2680           | 10(high)       | 1      | 38.99             | 20.9              | 59.89     | 80.95        | 21.06      |
|                |                | 2      | 39.04             | 20.9              | 59.94     | 80.95        | 21.01      |

Note: 1 dB cable loss to EIRP is added to antenna gain.

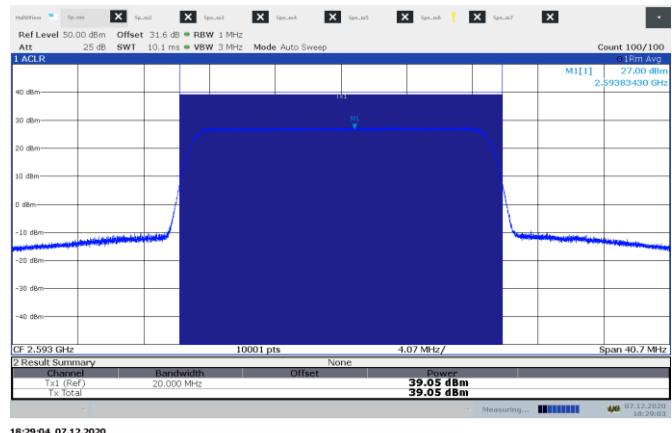
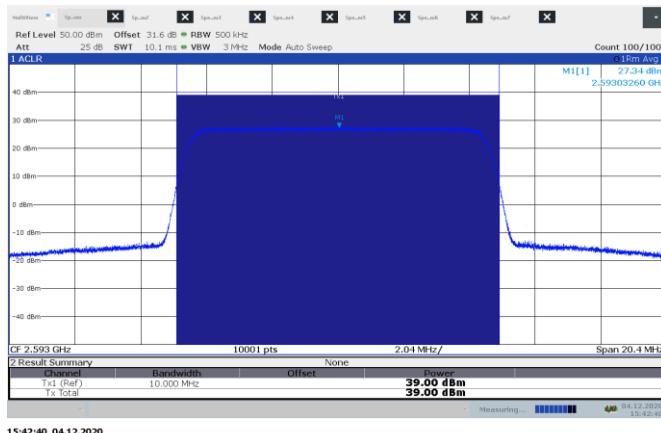
**Table 8.1-2:** EIRP measurements results for 20 MHz channel bandwidth with 21.9dBi / 10.5deg MBA6F-V2A from CCI Products antenna

| Frequency, MHz | Bandwidth, MHz | Ch 1/2 | Output power, dBm | Antenna gain, dBi | EIRP, dBm | Limit, , dBm | Margin, dB |
|----------------|----------------|--------|-------------------|-------------------|-----------|--------------|------------|
| 2506           | 20(low)        | 1      | 38.17             | 20.9              | 59.07     | 83.96        | 24.89      |
|                |                | 2      | 37.91             | 20.9              | 58.81     | 83.96        | 25.15      |
| 2593           | 20(mid)        | 1      | 39.21             | 20.9              | 60.11     | 83.58        | 23.47      |
|                |                | 2      | 39.05             | 20.9              | 59.95     | 83.58        | 23.63      |
| 2680           | 20(high)       | 1      | 37.95             | 20.9              | 58.85     | 83.96        | 25.11      |
|                |                | 2      | 38.73             | 20.9              | 59.63     | 83.96        | 24.33      |
| 2511           | 20(low)        | 1      | 38.99             | 20.9              | 59.89     | 83.96        | 24.07      |
|                |                | 2      | 38.74             | 20.9              | 59.64     | 83.96        | 24.32      |
| 2675           | 20(high)       | 1      | 38.90             | 20.9              | 59.80     | 83.96        | 24.16      |
|                |                | 2      | 39.03             | 20.9              | 59.93     | 83.96        | 24.03      |

Note: 1 dB cable loss to EIRP is added to antenna gain.

**Table 8.1-3:** EIRP measurements results for 10 MHz channel bandwidth with 21.5dBi / 12.8deg MBA3F-E3A from CCI Products antenna

| Frequency, MHz | Bandwidth, MHz | Ch 1/2 | Output power, dBm | Antenna gain, dBi | EIRP, dBm | Limit, , dBm | Margin, dB |
|----------------|----------------|--------|-------------------|-------------------|-----------|--------------|------------|
| 2501           | 10(low)        | 1      | 36.72             | 20.5              | 57.22     | 80.09        | 22.87      |
|                |                | 2      | 36.95             | 20.5              | 57.45     | 80.09        | 22.64      |
| 2593           | 10(mid)        | 1      | 39.00             | 20.5              | 59.50     | 79.71        | 20.21      |
|                |                | 2      | 39.10             | 20.5              | 59.60     | 79.71        | 20.11      |
| 2685           | 10(high)       | 1      | 35.80             | 20.5              | 56.30     | 80.09        | 23.79      |
|                |                | 2      | 36.99             | 20.5              | 57.49     | 80.09        | 22.60      |
| 2506           | 10(low)        | 1      | 39.04             | 20.5              | 59.54     | 80.09        | 20.55      |
|                |                | 2      | 38.88             | 20.5              | 59.38     | 80.09        | 20.71      |
| 2680           | 10(high)       | 1      | 38.99             | 20.5              | 59.49     | 80.09        | 20.60      |
|                |                | 2      | 39.04             | 20.5              | 59.54     | 80.09        | 20.55      |



Note: 1 dB cable loss to EIRP is added to antenna gain.

**Table 8.1-4:** EIRP measurements results for 20 MHz channel bandwidth with 21.5dBi / 12.8deg MBA3F-E3A from CCI Products :antenna

| Frequency, MHz | Bandwidth, MHz | Ch 1/2 | Output power, dBm | Antenna gain, dBi | EIRP, dBm | Limit, , dBm | Margin, dB |
|----------------|----------------|--------|-------------------|-------------------|-----------|--------------|------------|
| 2506           | 20(low)        | 1      | 38.17             | 20.5              | 58.67     | 83.10        | 24.43      |
|                |                | 2      | 37.91             | 20.5              | 58.41     | 83.10        | 24.69      |
| 2593           | 20(mid)        | 1      | 39.21             | 20.5              | 59.71     | 82.72        | 23.01      |
|                |                | 2      | 39.05             | 20.5              | 59.55     | 82.72        | 23.17      |
| 2680           | 20(high)       | 1      | 37.95             | 20.5              | 58.45     | 83.10        | 24.65      |
|                |                | 2      | 38.73             | 20.5              | 59.23     | 83.10        | 23.87      |
| 2511           | 20(low)        | 1      | 38.99             | 20.5              | 59.49     | 83.10        | 23.61      |
|                |                | 2      | 38.74             | 20.5              | 59.24     | 83.10        | 23.86      |
| 2675           | 20(high)       | 1      | 38.90             | 20.5              | 59.40     | 83.10        | 23.70      |
|                |                | 2      | 39.03             | 20.5              | 59.53     | 83.10        | 23.57      |

Note: 1 dB cable loss to EIRP is added to antenna gain.

### 8.1.1 Test data



## 8.2 FCC 27.53(m) Emission limits

### 8.2.1 Definitions and limits

For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels.

(1) Prior to the transition, and thereafter, solely within the MBS, for analog operations with an EIRP in excess of  $-9 \text{ dBW}$ , the signal shall be attenuated at the channel edges by at least 38 dB relative to the peak visual carrier, then linearly sloping from that level to at least 60 dB of attenuation at 1 MHz below the lower band edge and 0.5 MHz above the upper band edge, and attenuated at least 60 dB at all other frequencies.

(2) For digital base stations, the attenuation shall be not less than  $43 + 10 \log (P) \text{ dB}$ , unless a documented interference complaint is received from an adjacent channel licensee with an overlapping Geographic Service Area. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS No. 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Provided that a documented interference complaint cannot be mutually resolved between the parties prior to the applicable deadline, then the following additional attenuation requirements shall apply:

- (i) If a pre-existing base station suffers harmful interference from emissions caused by a new or modified base station located 1.5 km or more away, within 24 hours of the receipt of a documented interference complaint the licensee of the new or modified base station must attenuate its emissions by at least  $67 + 10 \log (P) \text{ dB}$  measured at 3 megahertz, above or below, from the channel edge of its frequency block and shall immediately notify the complaining licensee upon implementation of the additional attenuation. No later than 60 days after the implementation of such additional attenuation, the licensee of the complaining base station must attenuate its base station emissions by at least  $67 + 10 \log (P) \text{ dB}$  measured at 3 megahertz, above or below, from the channel edge of its frequency block of the new or modified base station.
- (ii) If a pre-existing base station suffers harmful interference from emissions caused by a new or modified base station located less than 1.5 km away, within 24 hours of receipt of a documented interference complaint the licensee of the new or modified base station must attenuate its emissions by at least  $67 + 10 \log (P) - 20 \log (\text{Dkm}/1.5) \text{ dB}$  measured at 3 megahertz, above or below, from the channel edge of its frequency block of the complaining licensee, or if both base stations are co-located, limit its undesired signal level at the pre-existing base station receiver(s) to no more than  $-107 \text{ dBm}$  measured in a 5.5 megahertz bandwidth and shall immediately notify the complaining licensee upon such reduction in the undesired signal level. No later than 60 days after such reduction in the undesired signal level, the complaining licensee must attenuate its base station emissions by at least  $67 + 10 \log (P) \text{ dB}$  measured at 3 megahertz, above or below, from the channel edge of its frequency block of the new or modified base station.
- (iii) If a new or modified base station suffers harmful interference from emissions caused by a pre-existing base station located 1.5 km or more away, within 60 days of receipt of a documented interference complaint the licensee of each base station must attenuate its base station emissions by at least  $67 + 10 \log (P) \text{ dB}$  measured at 3 megahertz, above or below, from the channel edge of its frequency block of the other licensee.
- (iv) If a new or modified base station suffers harmful interference from emissions caused by a pre-existing base station located less than 1.5 km away, within 60 days of receipt of a documented interference complaint: (a) The licensee of the new or modified base station must attenuate its OOB Emissions by at least  $67 + 10 \log (P) - 20 \log (\text{Dkm}/1.5) \text{ dB}$  measured at 3 megahertz above or below, from the channel edge of its frequency block of the other licensee, or if the base stations are co-located, limit its undesired signal level at the other base station receiver(s) to no more than  $-107 \text{ dBm}$  measured in a 5.5-megahertz bandwidth; and (b) the licensee causing the interference must attenuate its emissions by at least  $67 + 10 \log (P) \text{ dB}$  measured at 3 megahertz, above or below, from the channel edge of its frequency block of the new or modified base station.
- (v) For all fixed digital user stations, the attenuation factor shall be not less than  $43 + 10 \log (P) \text{ dB}$  at the channel edge.

(3) Prior to transition and thereafter solely within the MBS, and notwithstanding paragraph (l)(2) of this section, the maximum out-of-band power of a digital transmitter operating on a single 6 MHz channel with an EIRP in excess of  $-9 \text{ dBW}$  employing digital modulation for the primary purpose of transmitting video programming shall be attenuated at the 6 MHz channel edges at least 25 dB relative to the licensed average 6 MHz channel power level, then attenuated along a linear slope to at least 40 dB at 250 kHz beyond the nearest channel edge, then attenuated along a linear slope from that level to at least 60 dB at 3 MHz above the upper and below the lower licensed channel edges, and attenuated at least 60 dB at all other frequencies.

(4) For mobile digital stations, the attenuation factor shall be not less than  $40 + 10 \log (P) \text{ dB}$  on all frequencies between the channel edge and 5 megahertz from the channel edge,  $43 + 10 \log (P) \text{ dB}$  on all frequencies between 5 megahertz and X megahertz from the channel edge, and  $55 + 10 \log (P) \text{ dB}$  on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less than  $43 + 10 \log (P) \text{ dB}$  on all frequencies between 2490.5 MHz and 2496 MHz and  $55 + 10 \log (P) \text{ dB}$  at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

## 8.2.2 Test summary

|               |                  |
|---------------|------------------|
| Test date     | December 7, 2020 |
| Test engineer | Fahar A Sukkoor  |
| Verdict       | Pass             |

## 8.2.3 Observations, settings and special notes

The testing was performed conducted on each antenna port as well as radiated with both ports operating simultaneously in MIMO mode and terminated with 50 Ohm loads. Spurious emissions were tested from 30 MHz to the 10th harmonic. Only critical plots provided in test data below. Spectrum analyzer settings:

|                         |                                                           |
|-------------------------|-----------------------------------------------------------|
| Resolution bandwidth    | 100 kHz (below 1 GHz) 1 MHz (conducted)                   |
| Video bandwidth         | 3 x RBW                                                   |
| Detector and trace mode | RMS Power averaging (conducted), Peak Max-hold (radiated) |

Spectrum analyser settings for band edge emissions (within 1 MHz right outside 2496–2690 MHz band)

|                      |               |
|----------------------|---------------|
| Resolution bandwidth | 100 kHz       |
| Video bandwidth      | 300kHz        |
| Detector mode        | RMS           |
| Trace mode           | Power Average |

## 8.2.4 Test data

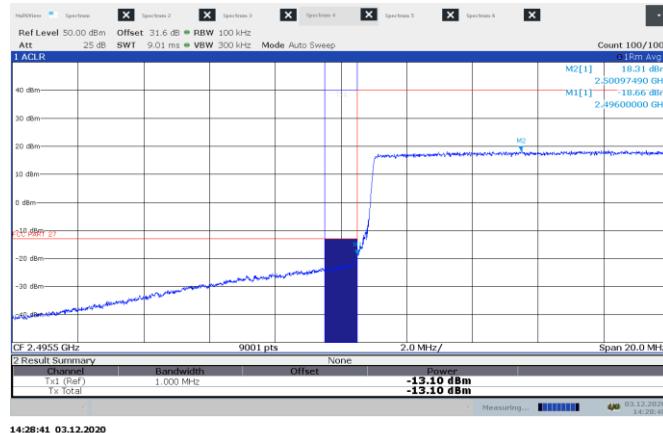
**Table 8.2-1: Band edge emission measurements at 2496 and 2690 MHz QPSK modulation results**

| Antenna port | Channel BW, MHz   | Frequency of max emission, MHz | Emission level, dBm/MHz | Limit, dBm/MHz | Margin, dB |
|--------------|-------------------|--------------------------------|-------------------------|----------------|------------|
| 1            | 10(low)           | 2496                           | -13.10                  | -13            | 0.10       |
| 2            | 10(low)           | 2496                           | -14.15                  | -13            | 1.15       |
| 1            | 10(high)          | 2690                           | -13.05                  | -13            | 0.05       |
| 2            | 10(high)          | 2690                           | -13.46                  | -13            | 0.46       |
| 1            | 10(low 2506 MHz)) | 2496                           | -14.34                  | -13            | 1.34       |
| 2            | 10(low 2506 MHz)) | 2496                           | -13.19                  | -13            | 0.19       |
| 1            | 10(high 2680 MHz) | 2690                           | -15.19                  | -13            | 2.19       |
| 2            | 10(high 2680 MHz) | 2690                           | -15.00                  | -13            | 2.00       |
| 1            | 20(low)           | 2496                           | -13.67                  | -13            | 0.67       |
| 2            | 20(low)           | 2496                           | -13.80                  | -13            | 0.80       |
| 1            | 20(high)          | 2690                           | -13.62                  | -13            | 0.62       |
| 2            | 20(high)          | 2690                           | -13.93                  | -13            | 0.93       |
| 1            | 20(low 2511 MHz)) | 2496                           | -13.97                  | -13            | 0.97       |
| 2            | 20(low 2511 MHz)) | 2496                           | -13.03                  | -13            | 0.03       |
| 1            | 20(high 2675 MHz) | 2690                           | -14.82                  | -13            | 1.82       |
| 2            | 20(high 2675 MHz) | 2690                           | -14.59                  | -13            | 1.59       |

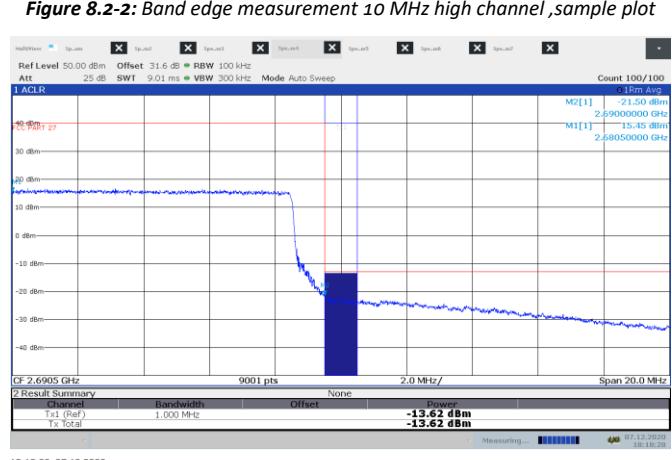
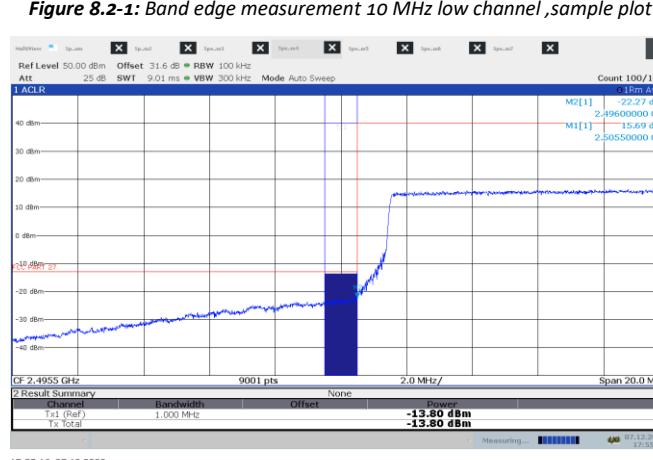
### 8.2.1 Test data

**Table 8.2-2:** Band edge emission measurements at 2496 and 2690 MHz 64 QAM modulation results

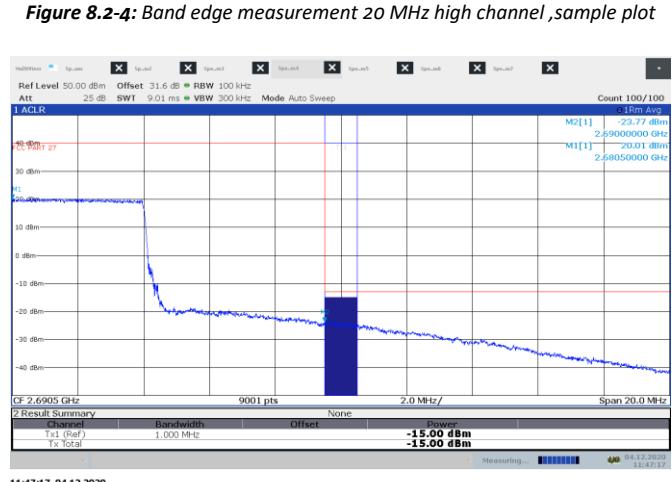
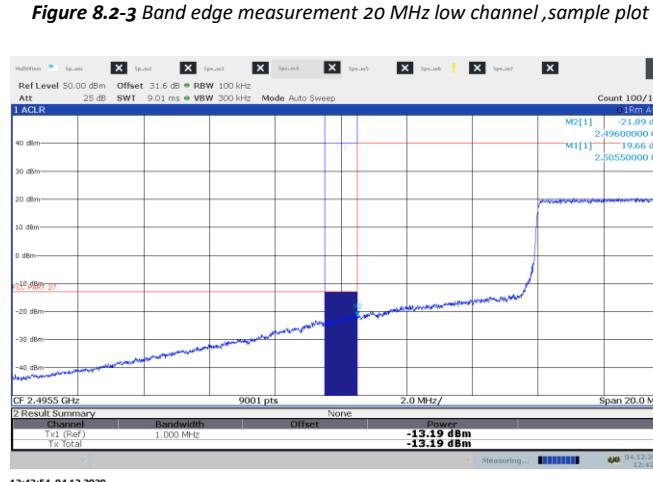
| Antenna port | Channel BW, MHz   | Frequency of max emission, MHz | Emission level, dBm/MHz | Limit, dBm/MHz | Margin, dB |
|--------------|-------------------|--------------------------------|-------------------------|----------------|------------|
| 1            | 10(low)           | 2496                           | -13.41                  | -13            | 0.41       |
| 2            | 10(low)           | 2496                           | -14.54                  | -13            | 1.54       |
| 1            | 10(high)          | 2690                           | -13.22                  | -13            | 0.22       |
| 2            | 10(high)          | 2690                           | -13.62                  | -13            | 0.62       |
| 1            | 10(low 2506 MHz)) | 2496                           | -14.04                  | -13            | 1.04       |
| 2            | 10(low 2506 MHz)) | 2496                           | -13.13                  | -13            | 0.13       |
| 1            | 10(high 2680 MHz) | 2690                           | -14.65                  | -13            | 1.65       |
| 2            | 10(high 2680 MHz) | 2690                           | -14.68                  | -13            | 1.68       |
| 1            | 20(low)           | 2496                           | -13.42                  | -13            | 0.42       |
| 2            | 20(low)           | 2496                           | -13.43                  | -13            | 0.43       |
| 1            | 20(high)          | 2690                           | -13.11                  | -13            | 0.11       |
| 2            | 20(high)          | 2690                           | -14.06                  | -13            | 1.06       |
| 1            | 20(low 2511 MHz)) | 2496                           | -13.10                  | -13            | 0.10       |
| 2            | 20(low 2511 MHz)) | 2496                           | -13.50                  | -13            | 0.50       |
| 1            | 20(high 2675 MHz) | 2690                           | -14.34                  | -13            | 1.34       |
| 2            | 20(high 2675 MHz) | 2690                           | -14.65                  | -13            | 1.65       |


**Table 8.2-3:** Conducted spurious emission measurement results QPSK modulation results

| Antenna port | Channel BW, MHz  | Frequency of max emission, MHz | Emission level, dBm/MHz | Limit, dBm/MHz | Margin, dB |
|--------------|------------------|--------------------------------|-------------------------|----------------|------------|
| 1            | 10(low)          | 5003                           | -38.26                  | -13.00         | 25.26      |
| 1            | 10(mid)          | 5185                           | -33.72                  | -13.00         | 20.72      |
| 2            | 10(low 2506 MHz) | 5009                           | -36.44                  | -13.00         | 23.44      |
| 1            | 20(low)          | 25797                          | -30.23                  | -13.00         | 17.23      |



**Table 8.2-4:** Conducted spurious emission measurement results 64 QAM modulation results

| Antenna port | Channel BW, MHz    | Frequency of max emission, MHz | Emission level, dBm/MHz | Limit, dBm/MHz | Margin, dB |
|--------------|--------------------|--------------------------------|-------------------------|----------------|------------|
| 1            | 10(low)            | 5000                           | -38.79                  | -13.00         | 25.79      |
| 1            | 10(low 2506 MHz)   | 5009                           | -35.69                  | -13.00         | 22.69      |
| 1            | 10(high 2680 MHz)) | 5359                           | -43.43                  | -13.00         | 30.43      |
| 2            | 20(high)           | 25784                          | -29.78                  | -13.00         | 16.78      |



## 8.2.2 Test data



14:28:41 03.12.2020



17:55:16 07.12.2020



12:42:54 04.12.2020

### 8.2.3 Test data



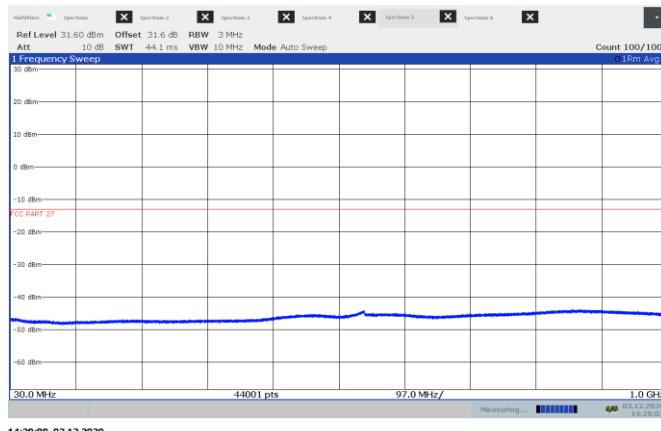

19:03:25 07.12.2020

Figure 8.2-7: Band edge measurement 20 MHz low channel 2511 MHz ,sample plot



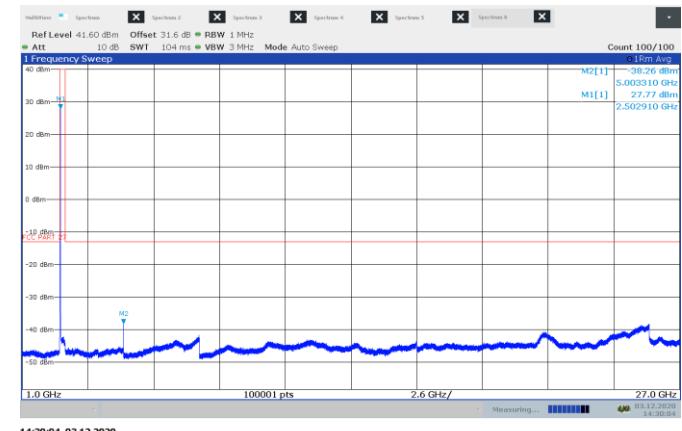

19:31:26 07.12.2020

Figure 8.2-8: Band edge measurement 20 MHz high channel 2675 MHz ,sample plot



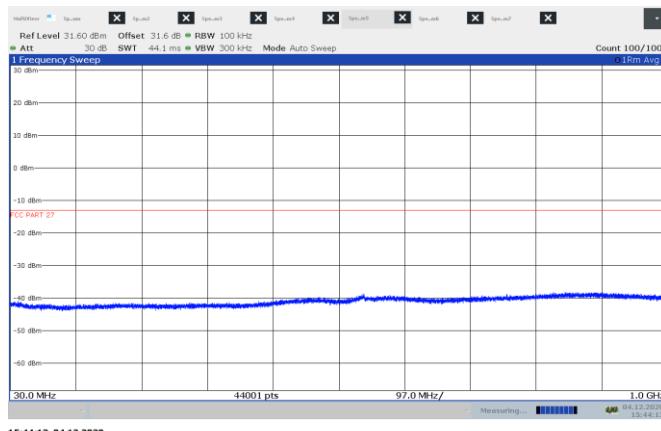

14:29:08 03.12.2020

Figure 8.2-9 Conducted spurious emissions 30 MHz -1 GHz at 10 MHz low channel ,sample plot



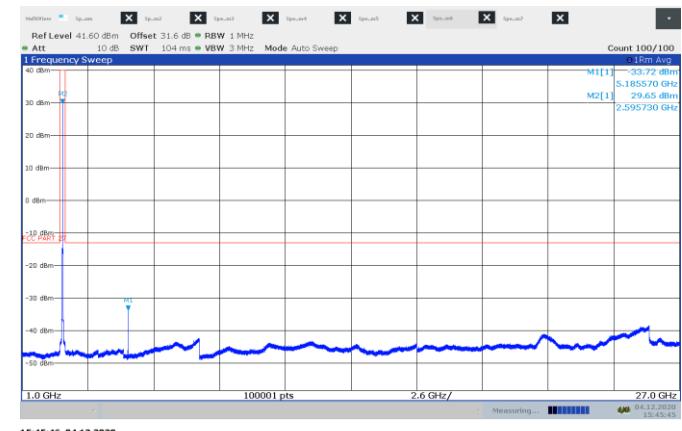

14:30:04 03.12.2020

Figure 8.2-10: Conducted spurious emissions 1 – 27 GHz at 10 MHz low channel ,sample plot



15:44:13 04.12.2020

Figure 8.2-11 Conducted spurious emissions 30 MHz -1 GHz at 10 MHz mid channel ,sample plot



15:45:46 04.12.2020

Figure 8.2-12: Conducted spurious emissions 30 MHz -1 GHz at 10 MHz mid channel ,sample plot

## 8.2.4 Test data

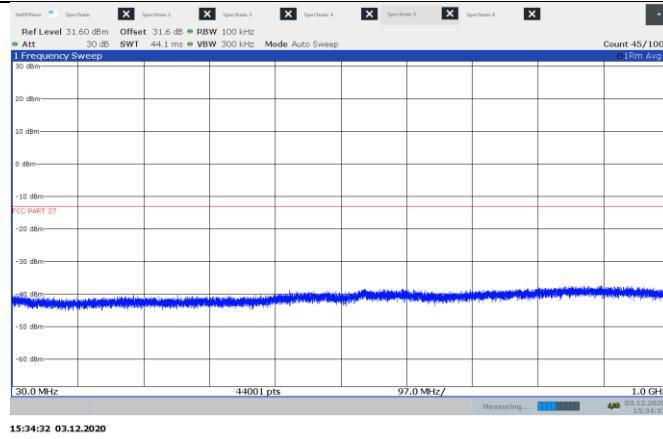



Figure 8.2-13: Conducted spurious emissions 30 MHz - 1 GHz at 10 MHz high channel ,sample plot

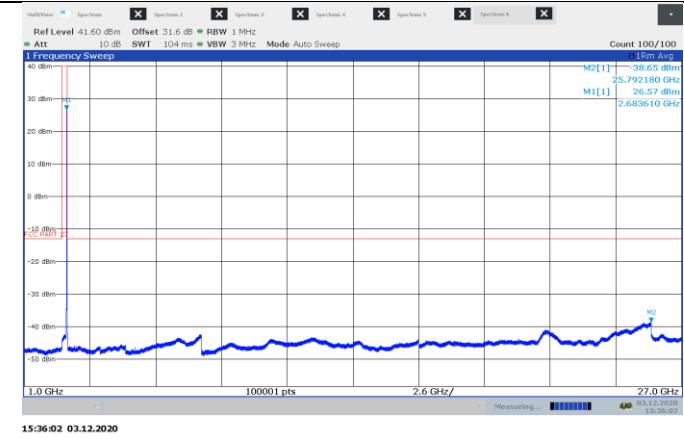



Figure 8.2-14: Conducted spurious emissions 1 - 27 GHz at 10 MHz high channel ,sample plot

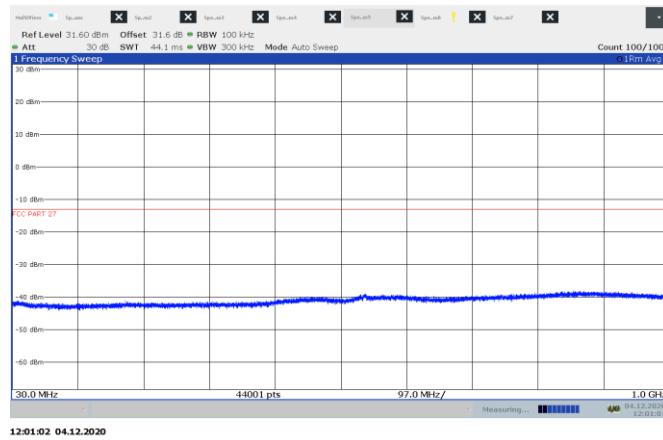



Figure 8.2-15 Conducted spurious emissions 30 MHz - 1 GHz at 10 MHz low 2506 MHz channel ,sample plot




Figure 8.2-16: Conducted spurious emissions 1 - 27 GHz at 10 MHz low 2506 MHz channel ,sample plot

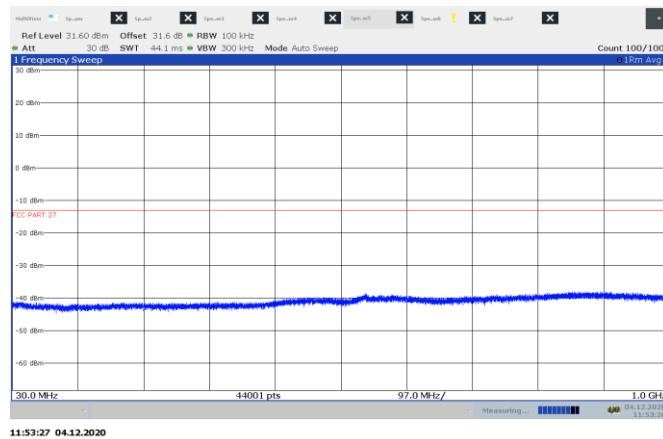



Figure 8.2-17 Conducted spurious emissions 30 MHz - 1 GHz at 10 MHz high 2680 MHz channel ,sample plot

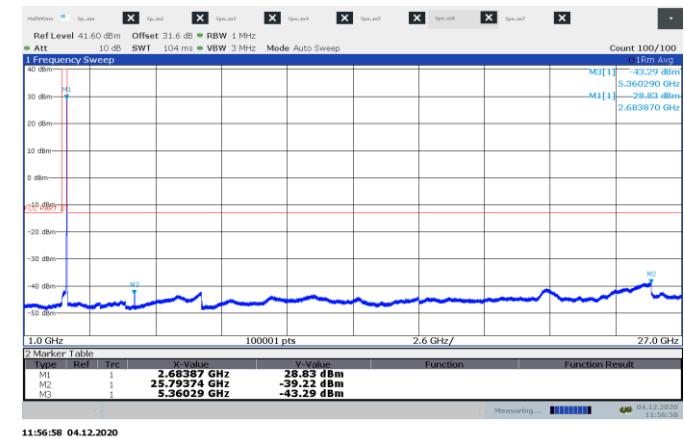



Figure 8.2-18: Conducted spurious emissions 1 - 27 GHz at 10 MHz high 2680 MHz channel ,sample plot

## 8.2.5 Test data

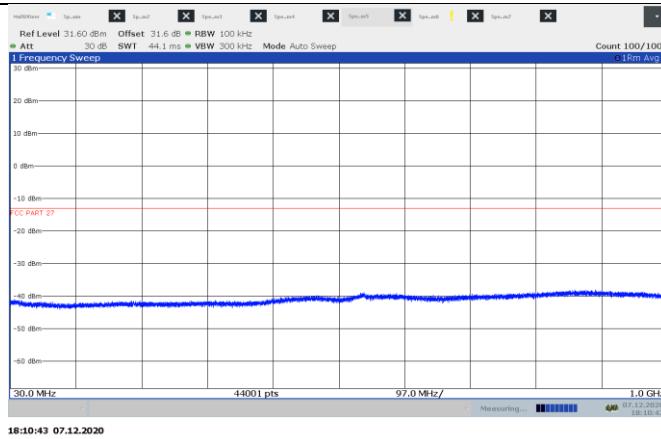



Figure 8.2-19: Conducted spurious emissions 30 MHz -1 GHz at 20 MHz low channel ,sample plot

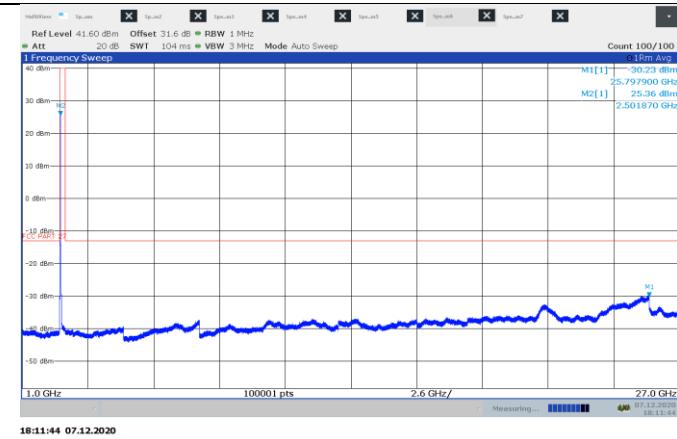



Figure 8.2-20: Conducted spurious emissions 1 - 27 GHz at 20 MHz low channel ,sample plot

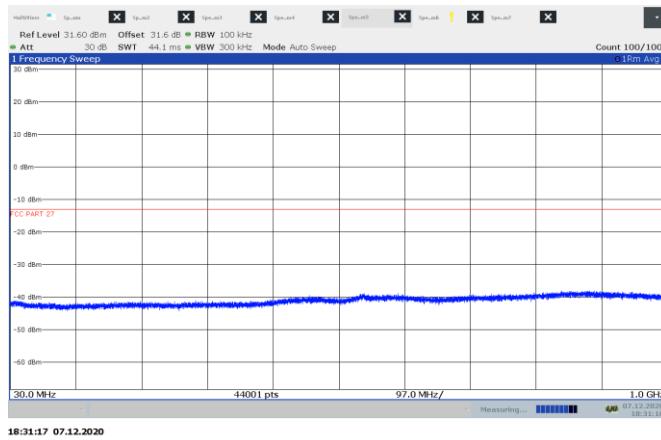



Figure 8.2-21 Conducted spurious emissions 30 MHz -1 GHz at 20 MHz mid channel ,sample plot

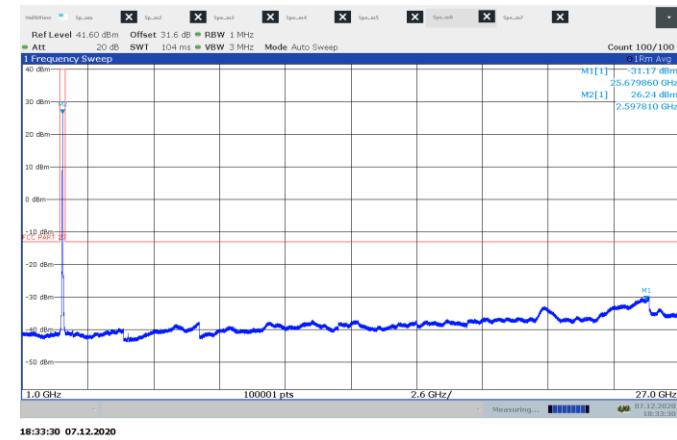



Figure 8.2-22: Conducted spurious emissions 1 - 27 GHz at 20 MHz mid channel ,sample plot

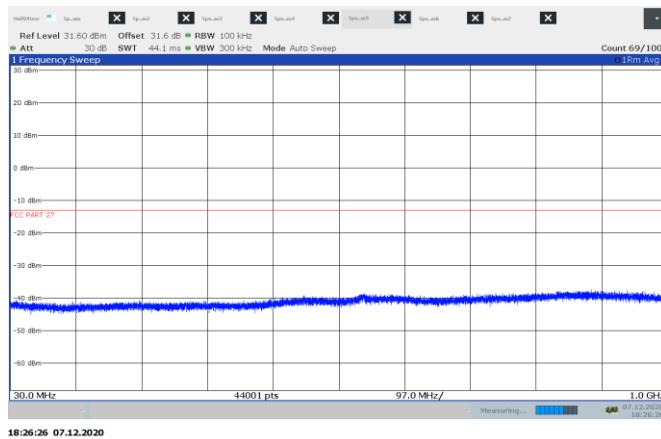



Figure 8.2-23 Conducted spurious emissions 30 MHz -1 GHz at 20 MHz high channel ,sample plot

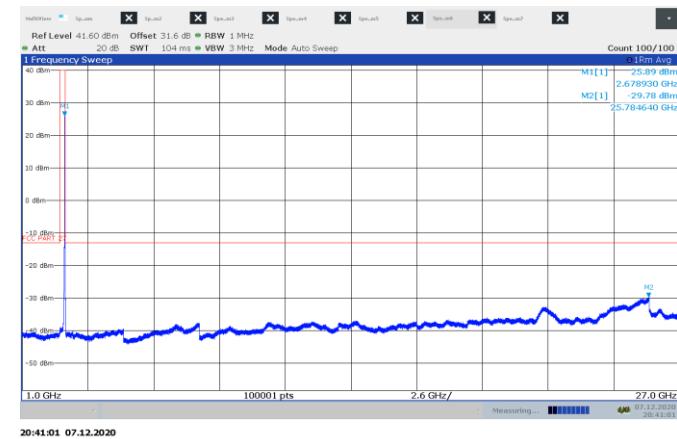
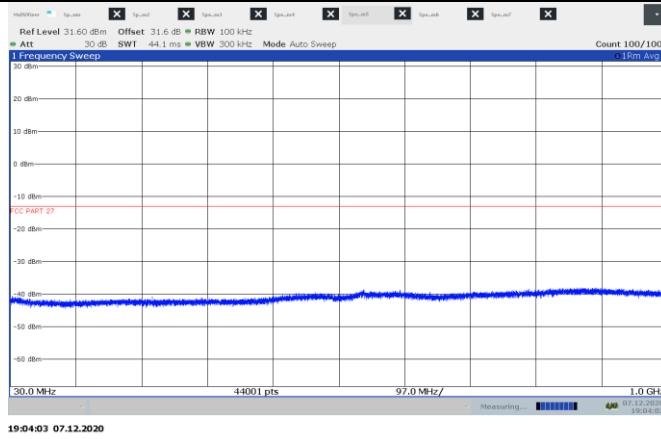
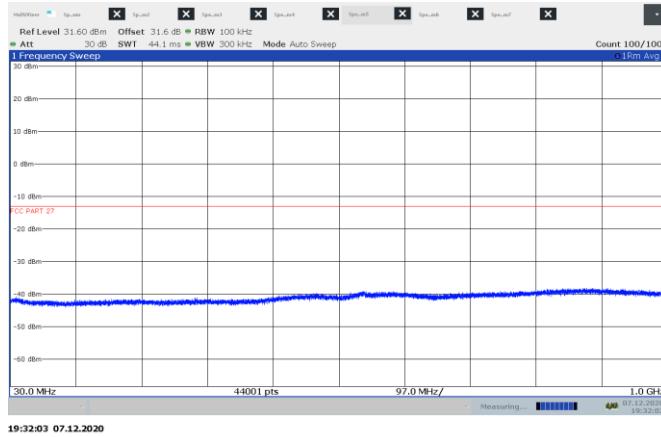
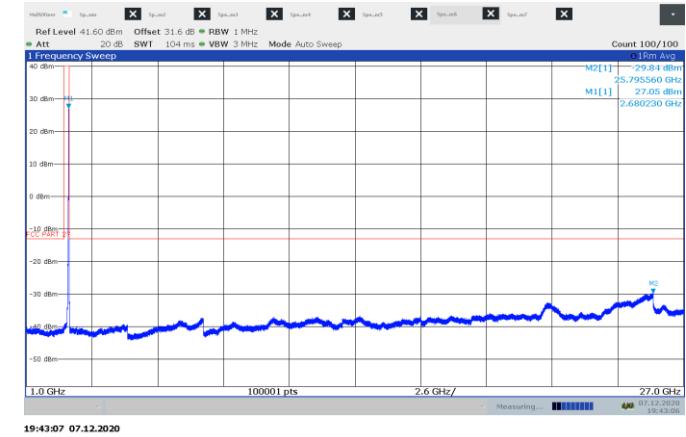





Figure 8.2-24: Conducted spurious emissions 1 - 27 GHz at 20 MHz high channel ,sample plot


### 8.2.6 Test data




**Figure 8.2-25:** Conducted spurious emissions 30 MHz -1 GHz at 20 MHz low 2511 MHz channel ,sample plot



**Figure 8.2-26:** Conducted spurious emissions 1 - 27 GHz at 20 MHz low 2511 MHz channel ,sample plot



**Figure 8.2-27** Conducted spurious emissions 30 MHz -1 GHz at 20 MHz high 2675 MHz channel ,sample plot



**Figure 8.2-28:** Conducted spurious emissions 1 - 27 GHz at 20 MHz high 2675 MHz channel ,sample plot

## 8.2.7 Test data

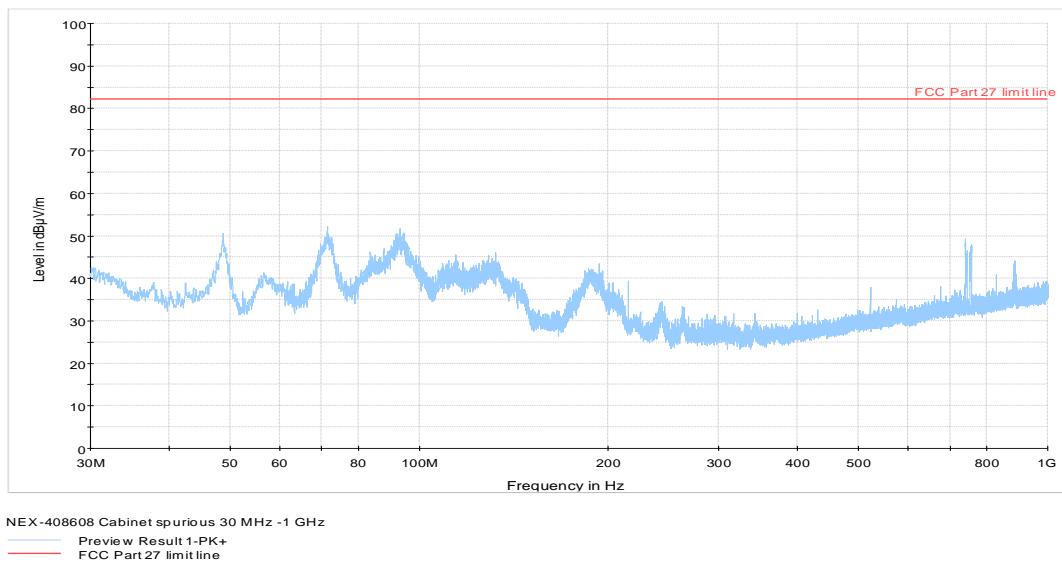



Figure 8.2-29: Cabinet spurious emissions 30 MHz – 1000 MHz

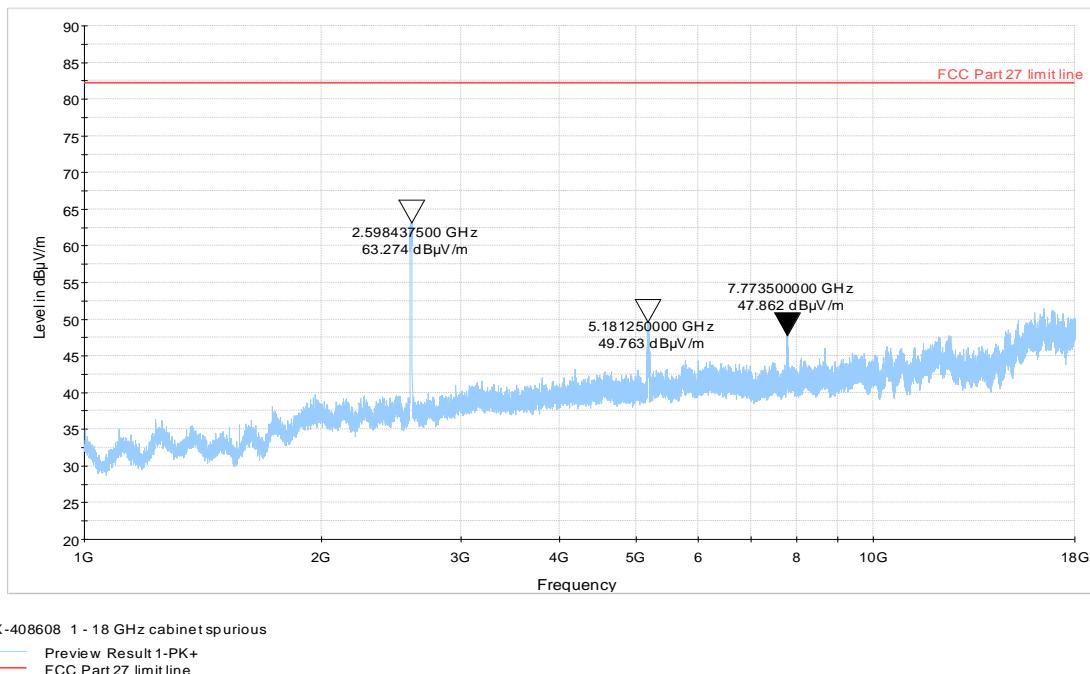
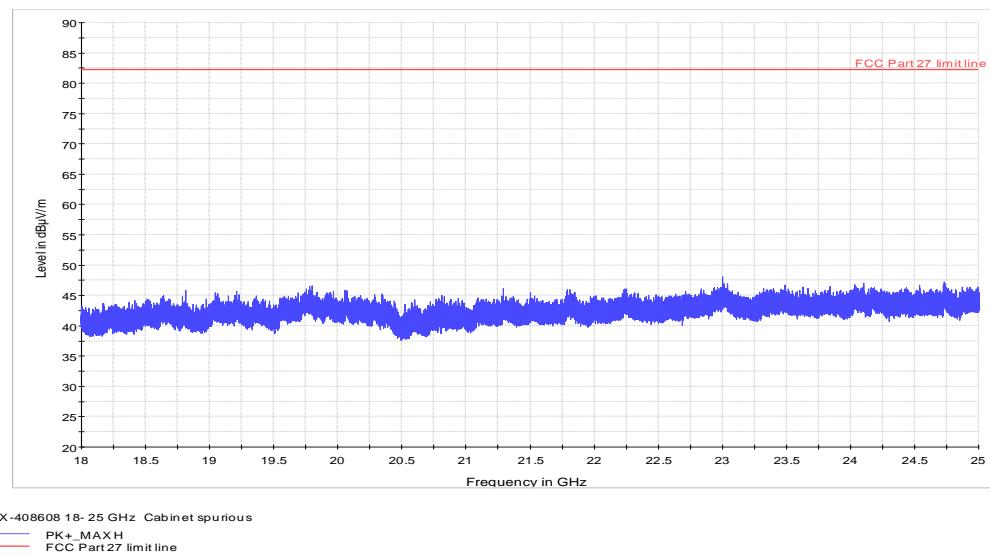




Figure 8.2-30: Cabinet spurious emissions 1 – 18 GHz

## 8.2.8 Test data

---



**Figure 8.2-31: Cabinet spurious emissions 18-25 GHz**

## 8.3 FCC 27.54 Frequency stability

### 8.3.1 Definitions and limits

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

### 8.3.2 Test summary

|               |                  |
|---------------|------------------|
| Test date     | December 7, 2020 |
| Test engineer | Fahar A Sukkoor  |
| Verdict       | Pass             |

### 8.3.3 Observations, settings, and special notes

|                      |                                  |
|----------------------|----------------------------------|
| Resolution bandwidth | $\geq 1\%$ of emission bandwidth |
| Video bandwidth      | $\geq 3 \times RBW$              |
| Frequency span       | Wider than emission bandwidth    |
| Detector mode        | Peak                             |

### 8.3.4 Test data

**Table 8.3-1: Frequency tolerance measurements**

| Test conditions | Frequency, Hz | Offset, Hz |
|-----------------|---------------|------------|
| +60 °C, Nominal | 2593002659    | -661       |
| +50 °C, Nominal | 2593002929    | -391       |
| +40 °C, Nominal | 2593003408    | 88         |
| +30 °C, Nominal | 2593003038    | -282       |
| +20 °C, +15 %   | 2593003093    | -227       |
| +20 °C, Nominal | 2593003320    | reference  |
| +20 °C, -15 %   | 2593002760    | -560       |
| +10 °C, Nominal | 2593003190    | -130       |
| 0 °C, Nominal   | 2593003096    | -224       |
| -10 °C, Nominal | 2593003049    | -271       |
| -20 °C, Nominal | 2593003388    | 68         |
| -30 °C, Nominal | 2593003342    | 22         |
| -40 °C, Nominal | 2593003007    | -313       |

Note: Measurement results show tolerance range is well below to stay with operating band.

## 8.4 FCC 2.1049 Emission bandwidth

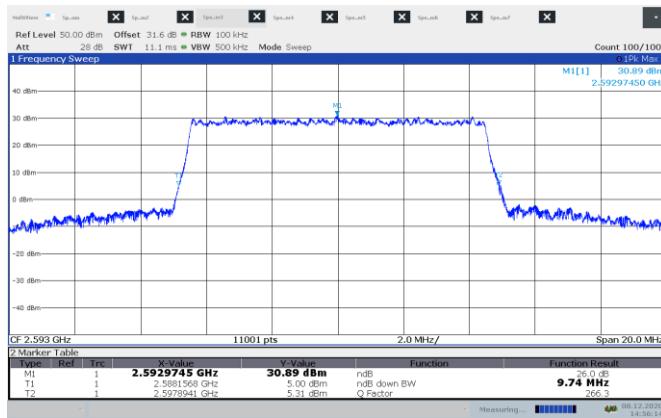
### 8.4.1 Definitions and limits

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

### 8.4.2 Test summary

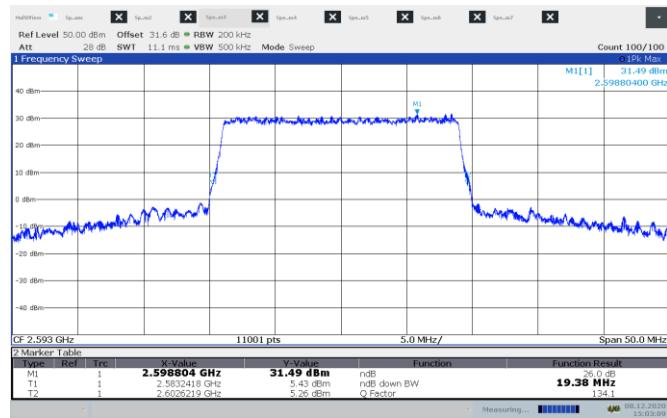
|               |                  |
|---------------|------------------|
| Test date     | December 3, 2020 |
| Test engineer | Fahar A Sukkoor  |
| Verdict       | Pass             |

### 8.4.3 Observations, settings and special notes


|                       |               |
|-----------------------|---------------|
| Resolution bandwidth: | 100 – 200 kHz |
| Video bandwidth:      | 300 – 500 kHz |
| Detector mode:        | Peak          |
| Trace mode:           | Max Hold      |

### 8.4.4 Test data

**Table 8.4-1: 26 dB BW results**

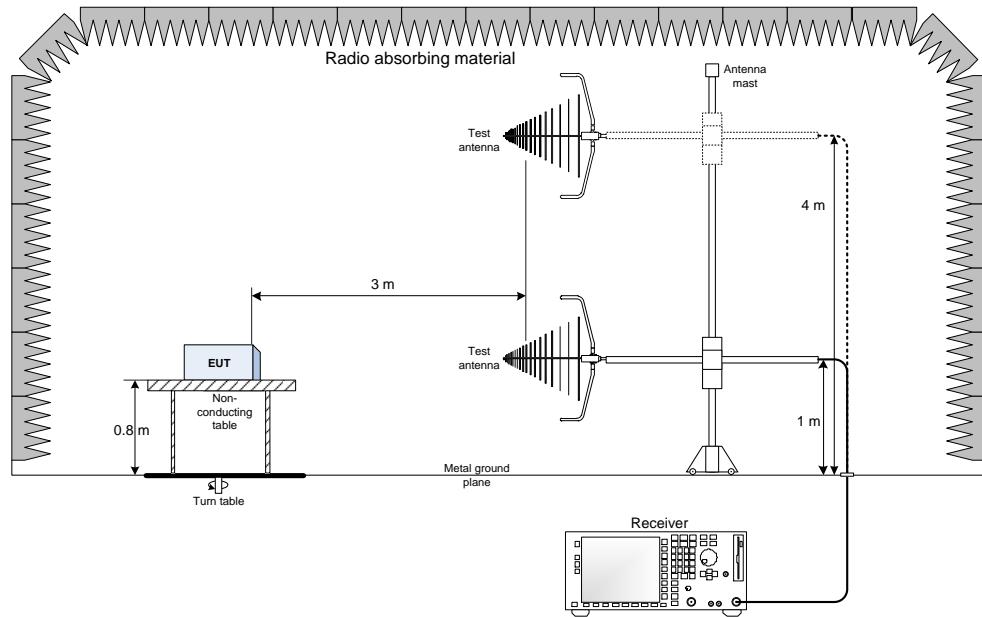

| Bandwidth, MHz | Frequency, MHz | Antenna port | 26 dB BW, MHz |
|----------------|----------------|--------------|---------------|
| 10(low)        | 2501           | 1            | 9.77          |
|                |                | 2            | 9.64          |
| 10(mid)        | 2593           | 1            | 9.74          |
|                |                | 2            | 9.76          |
| 10(high)       | 2685           | 1            | 9.76          |
|                |                | 2            | 9.75          |
| 10(low)        | 2506           | 1            | 9.70          |
|                |                | 2            | 9.76          |
| 10(high)       | 2680           | 1            | 9.80          |
|                |                | 2            | 9.75          |
| 20(low)        | 2506           | 1            | 19.32         |
|                |                | 2            | 19.28         |
| 20(mid)        | 2593           | 1            | 19.38         |
|                |                | 2            | 19.57         |
| 20(high)       | 2680           | 1            | 19.43         |
|                |                | 2            | 19.38         |
| 20(low)        | 2511           | 1            | 19.28         |
|                |                | 2            | 19.38         |
| 20(high)       | 2675           | 1            | 19.42         |
|                |                | 2            | 19.53         |

#### 8.4.5 Test data

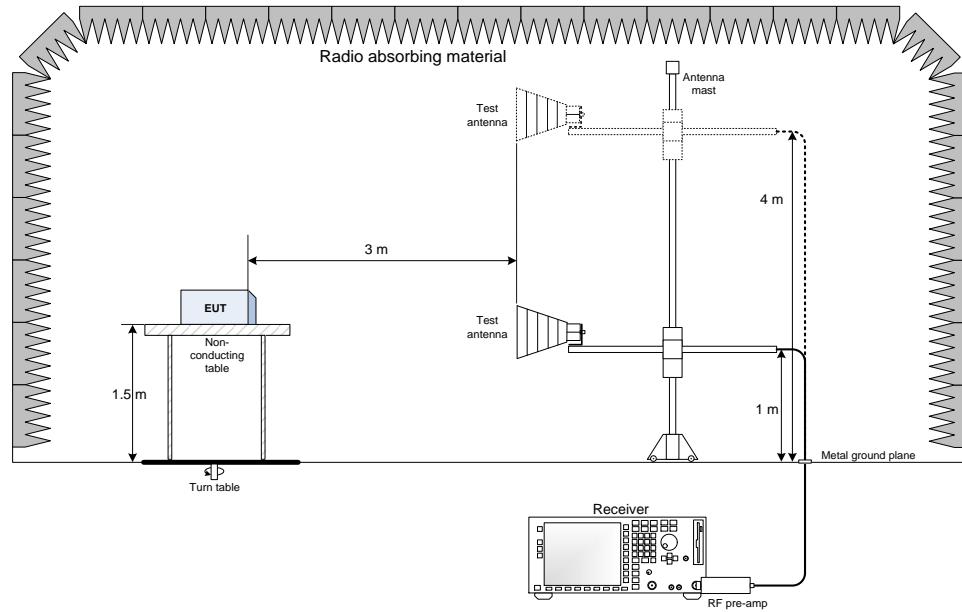


14:56:14 08.12.2020

Figure 8.4-1: 26 dB sample plot for 10 MHz channel

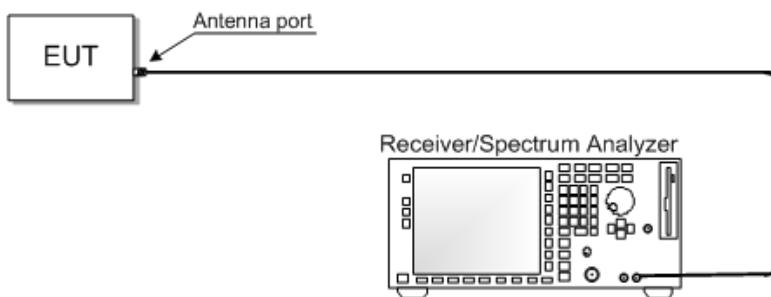



15:03:10 08.12.2020


Figure 8.4-2: 26 dB sample plot for 20 MHz channel

## Section 9. Block diagrams of test set-ups

### 9.1 Radiated emissions set-up for frequencies below 1 GHz




### 9.2 Radiated emissions set-up for frequencies above 1 GHz



### 9.3 Conducted emissions set-up

---

