

Page 1 of 24

APPLICATION CERTIFICATION On Behalf of Chuango Security Technology Corporation

Pet-Immune PIR Motion Detector Model No.: MD9100

FCC ID: RJY-MD9100

Prepared for : Chuango Security Technology Corporation.

Address : 6-17, Overseas Students Pioneer Park, No. 108, Jia

Economic & Technological Development Zone, Fuzhou

350015,China

Prepared by : Accurate Technology Co., Ltd.

Address : F1, Bldg. A&D, Changyuan New Material Port, Keyuan

Rd., Science & Industry Park, Nanshan District

Shenzhen 518057, P.R. China

Tel: +86-755-26503290 Fax: +86-755-26503396

Report No. : ATE20150622
Date of Test : Apr 01-13,2015
Date of Report : Apr 13,2015

TABLE OF CONTENTS

Description	Page

Test R	Report Certification	
1. G	ENERAL INFORMATION	4
1.1.	Description of Device (EUT)	4
1.2.	Description of Test Facility	5
1.3.	Measurement Uncertainty	5
2. M	EASURING DEVICE AND TEST EQUIPMENT	6
3. St	UMMARY OF TEST RESULTS	7
4. Tl	HE FIELD STRENGTH OF RADIATION EMISSION	8
4.1.	Block Diagram of Test Setup.	8
4.2.	The Field Strength of Radiation Emission Measurement Limits	
4.3.	Configuration of EUT on Measurement	
4.4.	Operating Condition of EUT	
4.5.	Test Procedure	10
4.6.	The Field Strength of Radiation Emission Measurement Results	11
5. 20	DDB BANDWIDTH	16
5.1.	Block Diagram of Test Setup	
5.2.	The Limit of 20dB Bandwidth	
5.3.	EUT Configuration on Measurement	
5.4.	Operating Condition of EUT	
5.5.	Test Procedure(20dB Bandwidth)	16
5.6.	Measurement Result	17
6. Tl	RANSMISSION TIME MEASUREMENT	18
6.1.	Block Diagram of Test Setup.	18
6.2.	Release Time Measurement	
6.3.	secondsEUT Configuration on Measurement	18
6.4.	Operating Condition of EUT	18
6.5.	Test Procedure	
6.6.	Measurement Result	
7. A	VERAGE FACTOR MEASUREMENT	20
7.1.	Block Diagram of Test Setup	20
7.2.	Average factor Measurement procedure according to ANSI C63.10-2013	20
7.3.	EUT Configuration on Measurement	20
7.4.	Operating Condition of EUT	
7.5.	Test Procedure	
7.6.	Measurement Result	
8. Al	NTENNA REQUIREMENT	24
8.1.	The Requirement	24
8.2	Antanna Construction	24

Report No.: ATE20150622 Page 3 of 24

Test Report Certification

Applicant : Chuango Security Technology Corporation

Manufacturer : Chuango Security Technology Corporation

EUT Description : Pet-Immune PIR Motion Detector

(A) MODEL NO.: MD9100

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 3.0V (powered by Battery)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.231e ANSI C63.10-2013

The device described above is tested by ACCURATE TECHNOLOGY CO., LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.231. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO., LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO., LTD.

Date of Test :	Apr 01-13,2015
Date of Report :	Apr 13,2015
Prepared by :	2-2 shary
	(Eric Zhang, Engineer)
Approved & Authorized Signer :	Lemb
	(Sean Liu, Manager)

Page 4 of 24

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Pet-Immune PIR Motion Detector

Model Number : MD9100

Power Supply : DC 3.0V (powered by battery)

Modulation: : ASK Operation Frequency : 915MHz

Applicant : Chuango Security Technology Corporation

Address : 6-17, Overseas Students Pioneer Park, No. 108, Jia

Economic & Technological Development Zone, Fuzhou

350015,China

Manufacturer : Chuango Security Technology Corporation

Address : 6-17, Overseas Students Pioneer Park, No. 108, Jia

Economic & Technological Development Zone, Fuzhou

350015,China Apr 01,2015

Date of sample

received

Date of Test : Apr 01-13,2015

Page 5 of 24

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO., LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

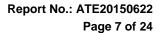
(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)



2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2015	One Year
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2015	One Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2015	One Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2015	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2015	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2015	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2015	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan. 15, 2015	One Year
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2015	One Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2015	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 11, 2015	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 11, 2015	One Year

3. SUMMARY OF TEST RESULTS

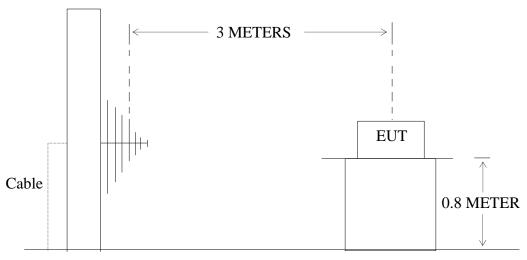
FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	N/A
Section 15.231(e)	Radiated Emission	Compliant
Section 15.231(c)	20dB Bandwidth	Compliant
Section 15.231(e)	Release Time Measurement	Compliant
Section 15.203	Antenna Requirement	Compliant

All normal using modes of the normal function were tested but only the worst test data of the worst mode is recorded by this report.

4. THE FIELD STRENGTH OF RADIATION EMISSION

4.1.Block Diagram of Test Setup

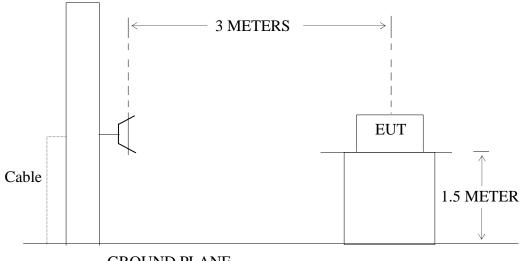
4.1.1.Block diagram of connection between the EUT and simulators

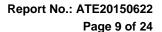

EUT

(EUT: Pet-Immune PIR Motion Detector)

4.1.2.Semi-Anechoic Chamber Test Setup Diagram

Below 1GHz


ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS


GROUND PLANE

Above 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

4.2. The Field Strength of Radiation Emission Measurement Limits

4.2.1. Radiation Emission Measurement Limits According to FCC 15.231e

Funda- mental fre- quency (MHz)	Field strength of fun- damental (microvolts/ meter)	Field strength of spu- rious emission (microvolts/meter)
40.66- 40.70. 70-130 130-174 174-260 260-470 Above 470	1,000	100 50 50 to 150 ¹ 150 150 to 500 ¹ 500

¹ Linear interpolations

4.3. Configuration of EUT on Measurement

The following equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in TX mode measure it.

Page 10 of 24

4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 120 kHz in 30-1000 MHz, and 1 MHz in 1000-10000 MHz.

The frequency range from 30 MHz to 10000 MHz is checked.

Report No.: ATE20150622 Page 11 of 24

4.6. The Field Strength of Radiation Emission Measurement Results **PASS.**

The frequency range 30MHz to 10000MHz is investigated.

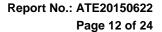
Date of Test:	Apr 07, 2015	Temperature:	25°C
EUT:	Pet-Immune PIR Motion Detector	Humidity:	50%
Model No.:	MD9100	Power Supply:	DC 3.0V
Test Mode:	TX	Test Engineer:	Star

Frequency	Reading	Factor	Average	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	(dBµV/m)	Corr.	Factor				T		T	
	PEAK	(dB)	(dB)	AV	PEAK	AV	PEAK	AV	PEAK	
915	84.23	-5.88	-6.62	71.73	78.35	73.98	93.98	-2.25	-15.63	
1830	61.63	-9.83	-6.62		51.80	54	74		-22.20	
2745	56.84	-6.23	-6.62		50.61	54	74	-	-23.39	Horizontal
3660	52.05	-2.44	-6.62		49.61	54	74		-24.39	
915	81.25	-5.88	-6.62	68.75	75.37	73.98	93.98	-5.23	-18.61	
1830	61.50	-9.83	-6.62		54.67	54	74		-19.33	X7 (* 1
2745	58.09	-6.23	-6.62		51.86	54	74		-22.14	Vertical
3660	54.15	-2.44	-6.62		51.71	54	74		-22.29	

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor


Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

- 3. The spectral diagrams display the measurement of peak values.
- 4. The EUT is tested radiation emission in three axes(X,Y,Z). The worst emissions are reported in three axes.
- 5. Average value= PK value + Average Factor (duty factor)
- 6. If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.
- 7. Pulse Desensitization Correction Factor

Pulse Width (PW) = 0.6ms

2/PW = 2/0.6ms = 3.33kHz

RBW (100 kHz) > 2/PW (3.33 kHz) Therefore PDCF is not needed

Site: 1# Chamber

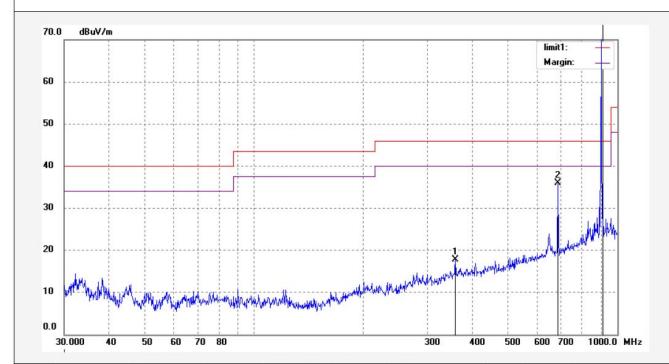
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ran Rd, Tel:+86-0755-26503290 R.China Fax:+86-0755-26503396

Job No.: ricky 2015 #144 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3V

 Test item:
 Radiation Test
 Date: 2015/04/07


 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 10:24:16

EUT: Pet-Immune PIR Motion Detector Engineer Signature: Ricky

Mode: TX Distance: 3m

Model: MD9100 Manufacturer: Chuango

Note: Report No.:ATE20150622

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	358.4497	33.78	-15.96	17.82	46.00	-28.18	peak		7	
2	686.6340	46.03	-10.02	36.01	46.00	-9.99	peak		0	
3	915.0000	84.23	-5.88	78.35	93.98	-15.63	peak			

4 0 0 U D 4 TE TE O UNIO L 0 O V 0 O L T D

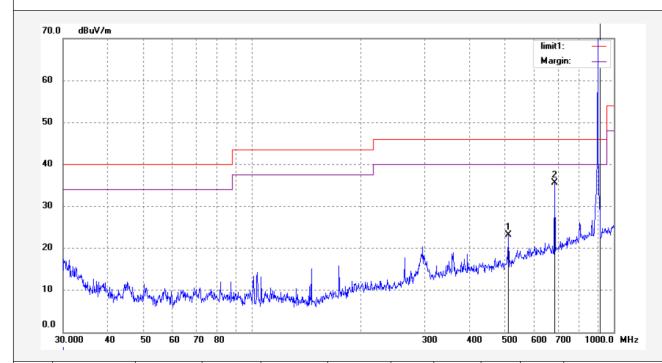
Report No.: ATE20150622 Page 13 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.:ricky 2015 #145Polarization:VerticalStandard:FCC Class B 3M RadiatedPower Source:DC 3V

 Test item:
 Radiation Test
 Date: 2015/04/07


 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 10:25:17

EUT: Pet-Immune PIR Motion Detector Engineer Signature: Ricky

Mode: TX Distance: 3m

Model: MD9100 Manufacturer: Chuango

Note: Report No.:ATE20150622

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	511.1487	36.87	-13.68	23.19	46.00	-22.81	peak			
2	686.6340	45.64	-10.02	35.62	46.00	-10.38	peak			
3	915.0000	81.25	-5.88	75.37	93.98	-18.61	peak			

Page 14 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2015 #146 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

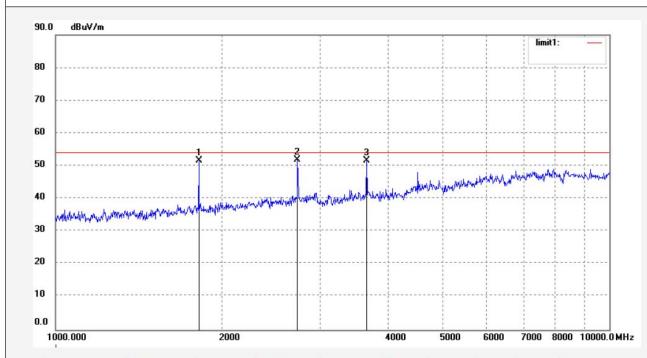
Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Pet-Immune PIR Motion Detector

Mode: TX

Model: MD9100 Manufacturer: Chuango

Report No.:ATE20150622 Note:


Polarization: Vertical

Power Source: DC 3V

Date: 2015/04/07 Time: 10:29:46

Engineer Signature: Ricky

Distance: 3m

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

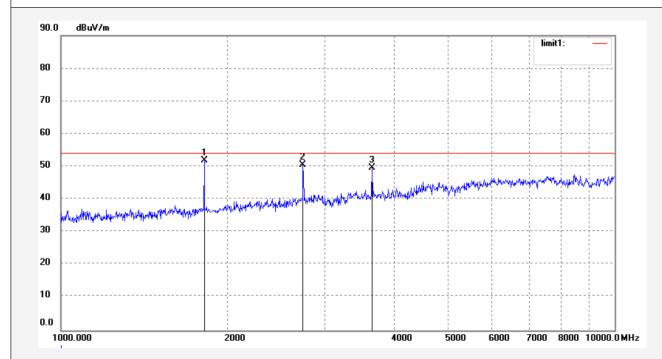
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20150622

Page 15 of 24

Job No.: ricky 2015 #147 Polarization:Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3V

 Test item:
 Radiation Test
 Date: 2015/04/07

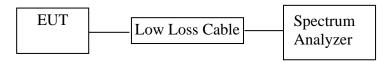

 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 10:30:38

EUT: Pet-Immune PIR Motion Detector Engineer Signature: Ricky

Mode: TX Distance: 3m

Model: MD9100 Manufacturer: Chuango

Note: Report No.:ATE20150622


No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1830.728	61.63	-9.83	51.80	54.00	-2.20	peak			
2	2745.643	56.84	-6.23	50.61	54.00	-3.39	peak			
3	3660.981	52.05	-2.44	49.61	54.00	-4.39	peak			

Page 16 of 24

5. 20DB BANDWIDTH

5.1.Block Diagram of Test Setup

(EUT: Pet-Immune PIR Motion Detector)

5.2. The Limit of 20dB Bandwidth

The bandwidth of emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the two points 20 dB down from the top of modulated carrier.

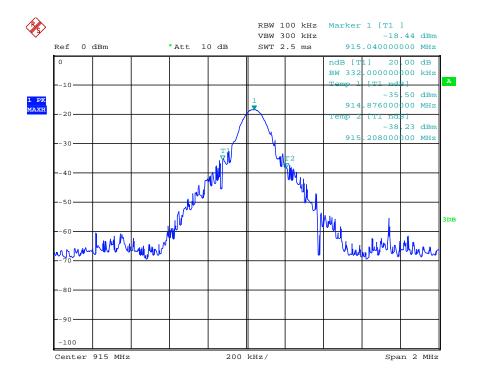
5.3.EUT Configuration on Measurement

The following equipment are installed on the bandwidth of emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX mode measure it.

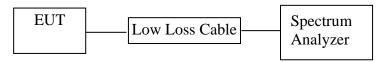
5.5.Test Procedure(20dB Bandwidth)


- 5.5.1.Set SPA Center Frequency = Fundamental frequency, RBW = 100 kHz, VBW = 300 kHz, Span = 1 MHz.
- 5.5.2.Set SPA Max hold, Mark peak, -20 dB.

5.6.Measurement Result

Frequency	20dB Bandwidth	Limit	Result
(MHz)	(MHz)	(MHz)	
915	0.332	4.575	Pass

Note:Limit=915*0.5%=4.575MHz


Date: 10.APR.2015 17:08:12

Page 18 of 24

6. TRANSMISSION TIME MEASUREMENT

6.1.Block Diagram of Test Setup

(EUT: Pet-Immune PIR Motion Detector)

6.2. Release Time Measurement

Devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not

be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds

6.3. seconds EUT Configuration on Measurement

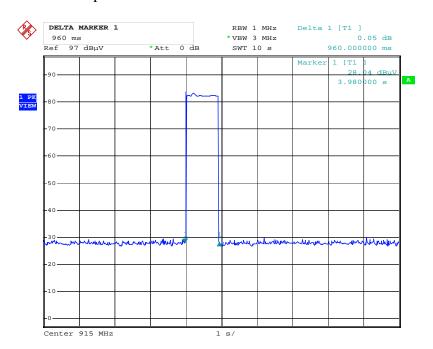
The following equipment are installed on Transmission Time Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

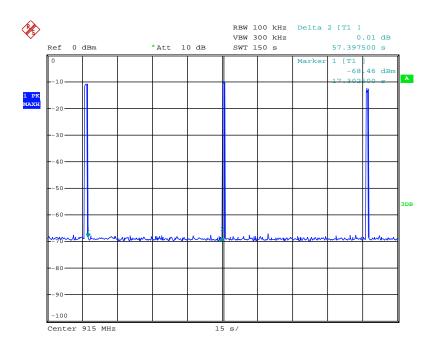
6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX mode measure it.

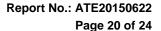
6.5. Test Procedure

- 6.5.1. Set SPA Center Frequency = Fundamental frequency, RBW = 100 kHz, VBW = 300 kHz, Span = 0 Hz.
- 6.5.2.Set EUT as normal operation.
- 6.5.3.Set SPA View. Delta Mark time.

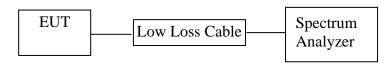

6.6. Measurement Result


Duration time = 0.96s

Silent time = 57.3975s>10s


Silent time = 57.3975s>30*0.96s=28.8s

Test result: pass


Date: 10.APR.2015 16:29:18

7. AVERAGE FACTOR MEASUREMENT

7.1.Block Diagram of Test Setup

(EUT: Pet-Immune PIR Motion Detector)

7.2. Average factor Measurement procedure according to ANSI C63.10-2013

ANSI C63.10-2013 Section 7.5

- 1. Adjust and configure any EUT switches, controls, or input data streams to ensure that the EUT is transmitting or encoded to obtain the "worst-case" pulse ON time.
- 2. Couple the final radio frequency output signal to the input of a spectrum analyzer. This may be performed by a radiated, direct connection (i.e., conducted) or by a "near-field" coupling method. The signal received shall be of sufficient level to trigger adequately the spectrum analyzer sweep display.
- 3. Adjust the center frequency of the spectrum analyzer to the center of the RF signal.
- 4. Set the spectrum analyzer for ZERO SPAN.
- 5. Adjust the SWEEP TIME to obtain at least a 100 ms period of time on the horizontal display axis of the spectrum analyzer.
- 6. If the pulse train is periodic (i.e., consists of a series of pulses that repeat in a characteristic pattern over a constant time period), and the period (T) is less than or equal to 100 ms, then:
- 1) Set the TRIGGER on the spectrum analyzer to capture at least one period of the pulse train, including any blanking intervals.
- 2) Determine the total maximum pulse "ON time" (tON) over one period of the pulse train. An example of a periodic pulse train and the associated period is shown in Figure 14. If the pulse train contains pulses of different widths, then tON is determined by summing the duration of all of the pulses within the pulse train [i.e., tON = (t1 + t2 + ...tn)].
- 3) The duty cycle is then determined by dividing the total maximum "ON time" by the period of the pulse train (tON/T).

Average factor in $dB = 20 \log (duty \text{ cycle})$

7.3.EUT Configuration on Measurement

The following equipment are installed on average factor Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

Report No.: ATE20150622 Page 21 of 24

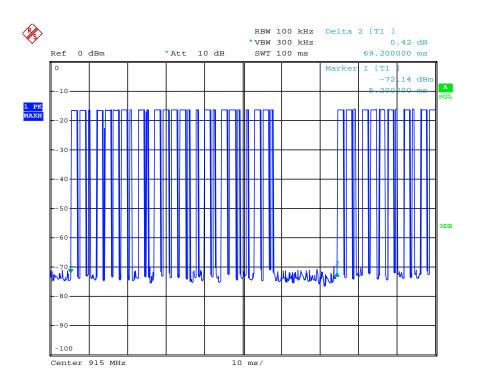
7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX mode measure it.

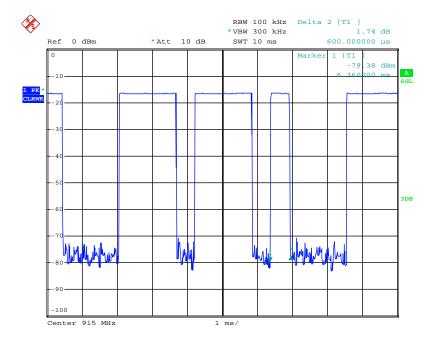
7.5.Test Procedure

- 7.5.1.The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation.
- 7.5.2.Set SPA Center Frequency = Fundamental frequency, RBW = 100 kHz, VBW = 300 kHz, Span = 0 Hz.
- 7.5.3.Set EUT as normal operation.
- 7.5.4.Set SPA View. Delta Mark time.

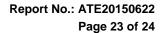
7.6. Measurement Result

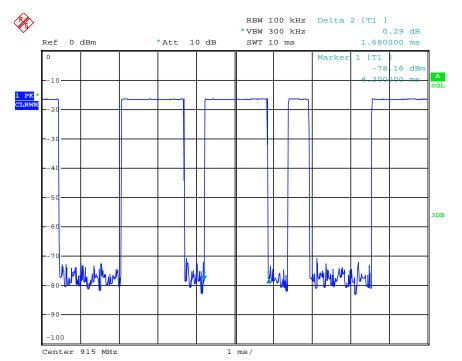

The duty cycle is simply the on time divided by the period:

Effective period of the cycle = 1.68*16+0.6*9ms=32.28 ms


DC = 32.28ms/69.2ms=46.65%

Therefore, the average factor is found by 20log0.4665= -6.62dB

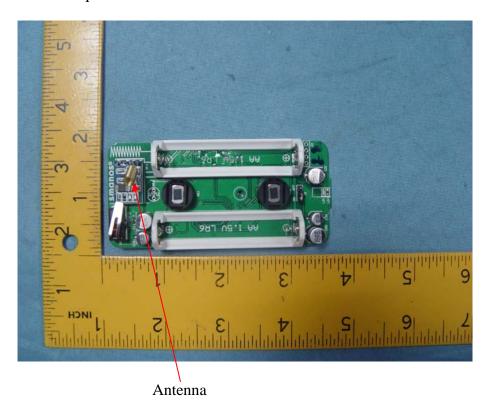



Date: 10.APR.2015 15:50:05

Date: 10.APR.2015 15:48:25

Date: 10.APR.2015 15:48:59

Page 24 of 24


8. ANTENNA REQUIREMENT

8.1. The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 9dBi. Therefore, the equipment complies with the antenna requirement of 15.203.

