

OET 65

TEST REPORT

Product Name	handheld marine radio
Model	HM360
FCC ID	RIPHM360
Client	Shenzhen Jiuzhou Himunication Technology Co.,Ltd

TA Technology (Shanghai) Co., Ltd.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 2 of 73

GENERAL SUMMARY

Product Name	handheld marine radio	Model	HM360
FCC ID	RIPH M360	Report No.	RXA1212-1162SAR01R5
Client	Shenzhen Jiuzhou Himunication Technology Co.,Ltd		
Manufacturer	Shenzhen Jiuzhou Himunication Technology Co.,Ltd		
Reference Standard(s)	<p>IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.</p> <p>SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.</p> <p>KDB 447498 D01 Mobile Portable RF Exposure v05: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies</p> <p>Tracking Number: 868998</p>		
Conclusion	<p>This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards.</p> <p>General Judgment: Pass</p>		
Comment	<p>The test result only responds to the measured sample.</p>		

Approved by 和伟中

Director

Revised by 凌致宏

SAR Manager

Performed by 张易

SAR Engineer

(Stamp)

Date of issue: March 19th, 2013

TA Technology (Shanghai) Co., Ltd.
Test Report

TABLE OF CONTENT

1. General Information	5
1.1. Notes of the Test Report.....	5
1.2. Testing Laboratory.....	5
1.3. Applicant Information	6
1.4. Manufacturer Information.....	6
1.5. Information of EUT.....	7
1.6. The Maximum SAR _{1g} Values	8
1.7. Test Date	8
2. SAR Measurements System Configuration.....	9
2.1. SAR Measurement Set-up	9
2.2. DASY5 E-field Probe System	10
2.2.1. ES3DV3 Probe Specification	10
2.2.2. E-field Probe Calibration	11
2.3. Other Test Equipment	11
2.3.1. Device Holder for Transmitters	11
2.3.2. Phantom	12
2.4. Scanning Procedure	12
2.5. Data Storage and Evaluation	14
2.5.1. Data Storage.....	14
2.5.2. Data Evaluation by SEMCAD	14
3. Laboratory Environment.....	16
4. Tissue-equivalent Liquid	17
4.1. Tissue-equivalent Liquid Ingredients.....	17
4.2. Tissue-equivalent Liquid Properties	18
5. System check and verification.....	19
5.1. Description of System Check	19
5.2. System verification.....	20
5.3. SAR system validation and verification requirements below 300 MHz.....	21
6. Operational Conditions during Test	23
6.1. General Description of Test Procedures	23
6.2. Test Configuration	23
6.2.1. Face-Held Configuration	23
6.2.2. Body-Worn Configuration	23
6.3. Measurement Variability.....	24
7. Test Results	25
7.1. Conducted Power Results	25
7.2. SAR Test Results	26
8. 100MHz to 700MHz Measurement Uncertainty	28
9. Main Test Instruments	30

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 4 of 73

ANNEX A: Test Layout	31
ANNEX B: System Validation Results	33
ANNEX C: Graph Results	37
ANNEX D: Probe Calibration Certificate	43
ANNEX E: D300V3 Dipole Calibration Certificate	56
ANNEX F: DAE4 Calibration Certificate	64
ANNEX G: The EUT Appearances and Test Configuration	69
ANNEX H: Permit but Ask.....	72

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 5 of 73

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: <http://www.ta-shanghai.com>

E-mail: yangweizhong@ta-shanghai.com

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 6 of 73

1.3. Applicant Information

Company: Shenzhen Jiuzhou Himunication Technology Co.,Ltd
Address: B712,7F,Jiuzhou Electric Building,southern No.12 Road,Hi-Tech Industrial Park,Nanshan District,Shenzhen,China 518057
City: Shenzhen
Postal Code: 518057
Country: P. R. China

1.4. Manufacturer Information

Company: Shenzhen Jiuzhou Himunication Technology Co.,Ltd
Address: B712,7F,Jiuzhou Electric Building,southern No.12 Road,Hi-Tech Industrial Park,Nanshan District,Shenzhen,China 518057
City: Shenzhen
Postal Code: 518057
Country: P. R. China

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 7 of 73

1.5. Information of EUT

General Information

Device Type:	Portable Device
Exposure Category:	Uncontrolled Environment / General Population
State of Sample:	Prototype Unit
Product Name:	handheld marine radio
S/N:	/
Hardware Version:	ver: 1.200
Software Version:	ver: 1.318
Antenna Type:	External Antenna
Device Operating Configurations:	
Test Modulation:	FM (Analog)
Operating Frequency Range(s):	156.025 MHz -157.425 MHz (VHF)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 8 of 73

Auxiliary Equipment Details

Name	Model	Manufacturer	S/N	Note
Battery	703448	Grepow	/	/

Equipment Under Test (EUT) is a handheld marine radio. SAR is tested for 156.025 MHz -157.425 MHz. The EUT has an external antennas that is used for Tx/Rx.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum SAR_{1g} Values

Mode	Test Position	Frequency (MHz)	Limit SAR _{1g} 1.6 W/kg
			Reported SAR _{1g} (W/kg)
VHF	Face-held	156.05MHz	0.302
VHF	Body-Worn	156.05MHz	1.576

1.7. Test Date

The test performed on February 21, 2013.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

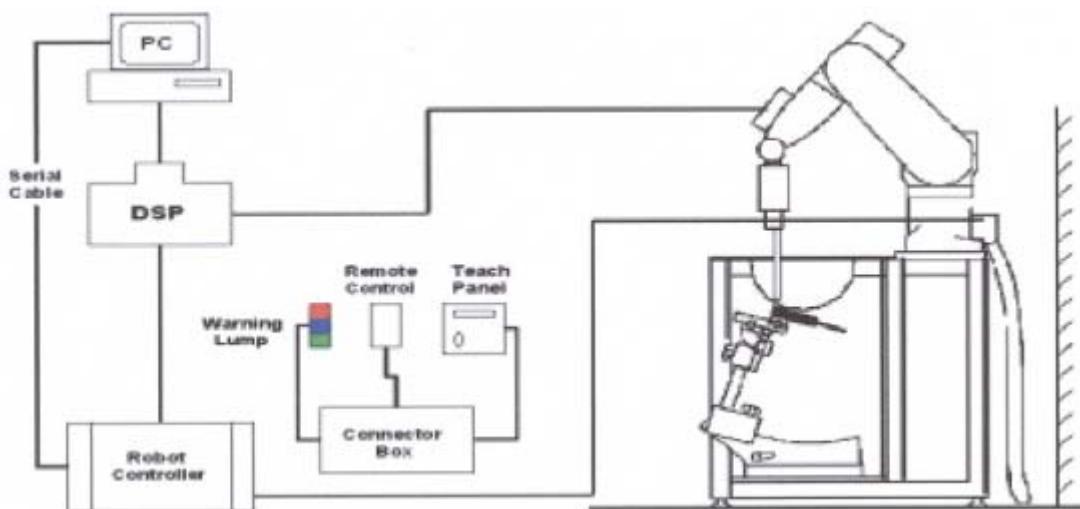


Figure 1. SAR Lab Test Measurement Set-up

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. ES3DV3 Probe Specification

Construction Symmetrical design with triangular core
Interleaved sensors
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to 4 GHz
Linearity: ± 0.2 dB
(30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)
 ± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g Linearity:
 ± 0.2 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)
Tip diameter: 3.9 mm (Body: 12 mm)
Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz
Dosimetry in strong gradient fields
Compliance tests of mobile phones

Figure 2. ES3DV3 E-field Probe

Figure 3. ES3DV3 E-field probe

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.

Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:
 σ = Simulated tissue conductivity,
 ρ = Tissue density (kg/m³).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the different positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material. The amount of dielectric material

has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Figure 4. Device Holder

2.3.2. Phantom

Phantom for compliance testing of handheld andbody-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Shell Thickness	2±0.2 mm
Filling Volume	Approx. 30 liters
Dimensions	190×600×0 mm (H x L x W)

Figure 5.ELI4 Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. $\pm 5\%$.
- The “surface check” measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)
- Area Scan
The Area Scan is used as a fast scan in two dimensions to find the area of high field values

TA Technology (Shanghai) Co., Ltd.

Test Report

before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

- **Zoom Scan**

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

- **Spatial Peak Detection**

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01

Frequency	Maximum Area Scan Resolution (mm) ($\Delta x_{area}, \Delta y_{area}$)	Maximum Zoom Scan Resolution (mm) ($\Delta x_{zoom}, \Delta y_{zoom}$)	Maximum Zoom Scan Spatial Resolution (mm) $\Delta z_{zoom}(n)$	Minimum Zoom Scan Volume (mm) (x,y,z)
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension “.DAE4”. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

TA Technology (Shanghai) Co., Ltd.

Test Report

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

$Norm_i$ = sensor sensitivity of channel i (i = x, y, z)
[mV/(V/m)²] for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (p \cdot 1000)$$

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 16 of 73

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with **P_{pwe}** = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 2: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.	

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, sugar, salt, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 3 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in table 3 below for 300 MHz. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at 300,150MHz frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Table 3: Composition of the Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Head) 300/150MHz		
Water	37.56		
Sugar	55.32		
Salt	5.95		
Preventol	0.19		
Cellulose	0.98		
Dielectric Parameters	$f=300\text{MHz}$	$\epsilon=45.3$	$\sigma=0.87$
Target Value	$f=150\text{MHz}$	$\epsilon=52.3$	$\sigma=0.76$

MIXTURE%	FREQUENCY(Body) 300/150MHz		
Water	49.48		
Sugar	47.4		
Salt	2.32		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters	$f=300\text{MHz}$	$\epsilon=58.2$	$\sigma=0.92$
Target Value	$f=150\text{MHz}$	$\epsilon=61.9$	$\sigma=0.8$

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 18 of 73

4.2. Tissue-equivalent Liquid Properties

Table 4: Dielectric Performance of Tissue Simulating Liquid

Frequency	Test Date	Temp °C	Measured Dielectric Parameters		Target Dielectric Parameters		Limit (Within ±5%)	
			ϵ_r	$\sigma(\text{s/m})$	ϵ_r	$\sigma(\text{s/m})$	Dev $\epsilon_r(\%)$	Dev $\sigma(\%)$
150MHz (head)	2013-02-21	21.5	49.9	0.78	52.30	0.76	-4.59	2.63
300MHz (head)	2013-02-21	21.5	45.8	0.86	45.30	0.87	1.10	-1.15
150MHz (body)	2013-02-21	21.5	61.9	0.83	61.9	0.80	0.00	3.75
300MHz (body)	2013-02-21	21.5	57.34	0.912	58.20	0.92	-1.48	-0.87

5. System check and verification

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 398 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 5.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

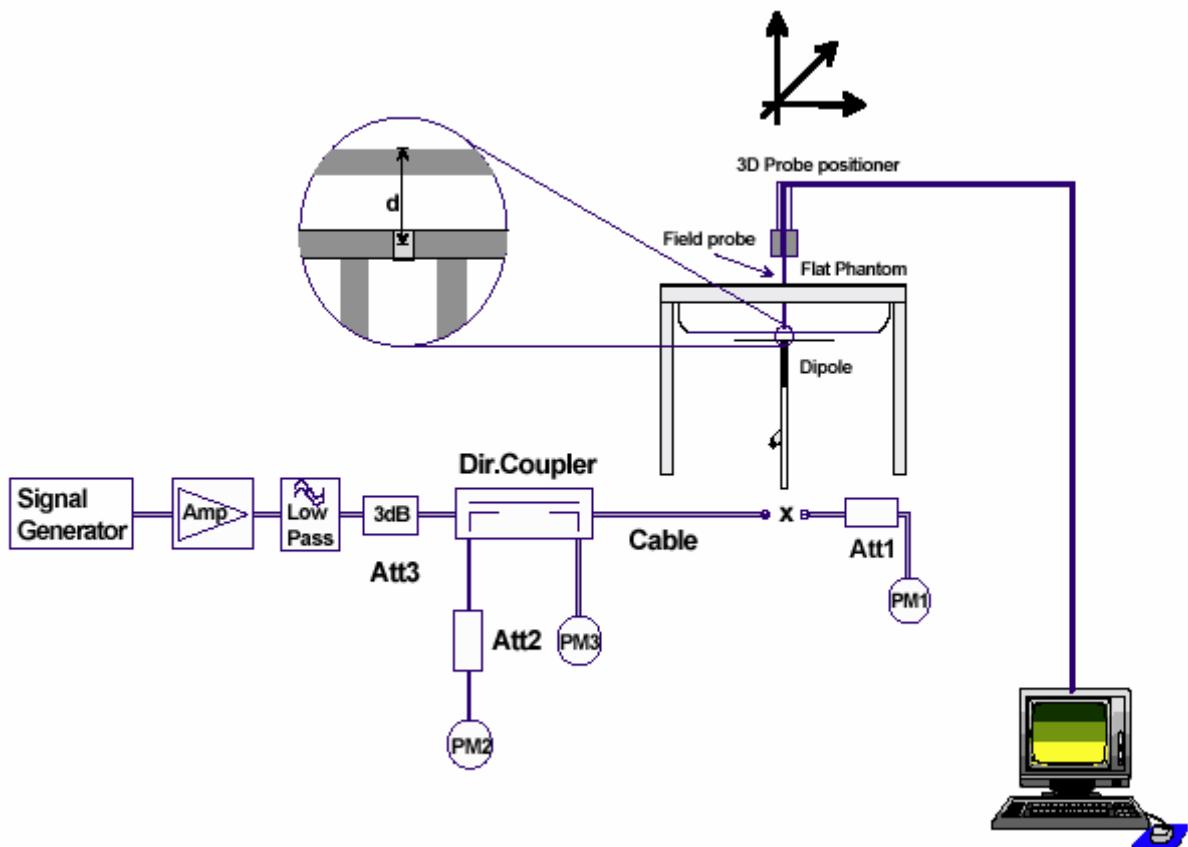


Figure 6. System Check Set-up

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 20 of 73

Table 5: System Check for Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		Temp	398mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10% Deviation)
		ϵ_r	$\sigma(\text{s/m})$					
300MHz (head)	2013-02-21	45.8	0.86	21.5	1.21	3.04	2.88	5.55
300MHz (body)	2013-02-21	57.34	0.912	21.5	1.16	2.914	2.84	2.61

Note: 1. The graph results see ANNEX B.
2. Target Value used derives from the calibration certificate.

5.2. System verification

When products are introduced in new frequency bands, reference dipoles may not be available within the probe calibration or test device frequency range. Sometimes the reference dipole, test device and probe calibration frequencies could be substantially misaligned, hence, SAR measurement accuracy may not be easily confirmed.

These two system verification alternatives are described in the following and should only be used when a required reference dipole is unavailable. All results and analyses must be included in the SAR report to justify the use of these system verification alternatives, including dipole return loss plots, probe conversion factors, tissue dielectric parameter measurements, coefficient of variation calculations etc. The same SAR probe and tissue dielectric media used with the dipole for system verification must also be used for device testing. These interim procedures may be performed by the test laboratory. When both alternatives are not applicable, a KDB inquiry is required to resolve the system validation and verification issues, before any device testing, to ensure the measurement results are acceptable.

1) Establishing a new SAR target for the dipole at an offset frequency

- a) The SAR probe must be calibrated at the offset frequency.
- b) The procedures must be repeated when a dipole is recalibrated to re-establish the SAR target at the offset frequency.
- c) The dipole must have a return loss of 15 dB or more at the offset frequency.
- d) The differences in target tissue dielectric parameters between the offset and tuned dipole frequencies must be $\leq 10\%$.
- e) The measured SAR at the offset frequency must be within 15% of the manufacturer calibrated SAR at the dipole's tuned frequency.
- f) The SAR, on a long term basis including all previous measurements after applying these procedures, should have a coefficient of variation $< 3\%$; that is, the standard deviation divided by the mean is < 0.03 .

2) Establishing a new SAR target at the tuned dipole frequency according to the probe calibration and tissue dielectric parameters required at an offset frequency required for device

testing

- a) When the conditions required in step 1) to establish a new SAR target for the dipole at an offset frequency can be satisfied, this alternative does not apply.
- b) The tissue dielectric parameters measured at the tuned dipole frequency must be within 10% of those required for device testing at the offset frequencies. This tissue parameter tolerance is expected to support an operating range of 120 MHz to 250 MHz or more above 300 MHz and 100 MHz or more below 300 MHz for the typical tissue-equivalent recipes.
- c) The SAR probe must be calibrated at the offset (device testing) frequency and the probe conversion factors at the tuned dipole frequency and device testing frequencies must be within 5% of each other.
- d) The dipole must have a return loss of 15 dB or more at the offset frequency.
- e) The new SAR target determined using the probe calibration and tissue-equivalent medium at the offset frequency must be within 15% of the calibrated SAR target at the tuned dipole frequency.
- f) The new SAR target must be established using 5 or more measurements, each reconfigured separately, with a coefficient of variation < 2%; that is, standard deviation divided by mean < 0.02. The coefficient of variation for all subsequent system verifications must be less than 3% and the mean must be within 15% of the original tuned dipole SAR target. All previous system verification data must be applied to compute the coefficient of variation; until the probe or dipole is recalibrated or a different tissue recipe is used, which requires the SAR target for the dipole to be reassessed.
- g) Continued use of this new SAR target and dipole combination for system verification to support SAR measurements required by similar test devices must use the same SAR probe, same probe calibration point and the same tissue-equivalent medium recipe used to establish the SAR target.

5.3. SAR system validation and verification requirements below 300 MHz

For SAR measurements in the 100 MHz to 300 MHz range, when dipoles or equivalent RF sources corresponding to the device frequency range are available from SAR system manufacturers for system validation and verification, the applicable sources must be used.¹⁶ When the required dipole sources are unavailable, the 300 MHz dipole defined in IEEE Std 1528-2003 are used in conjunction with these procedures to perform SAR system validation and verification. The test frequency range must be supported by the SAR measurement system. The SAR probe must be calibrated at 300 MHz and 150 MHz, or at 300 MHz and the applicable device measurement frequency, typically near 150 MHz. The tissue dielectric parameters in Supplement C 01-01 are interpolated and/or extrapolated to prepare tissue-equivalent media for the SAR measurements. The test laboratory must establish a new SAR target value for the 300 MHz dipole, using the 150 MHz SAR probe calibration point and 150 MHz tissue-equivalent dielectric parameters, and with the dipole transmitting at 300 MHz, according to the procedures required for establishing a new SAR target at the tuned dipole frequency according to the probe calibration and tissue dielectric parameters at an offset frequency. SAR system verification at 300 MHz is also required to support the test results. If any of the required conditions are not satisfied, a KDB inquiry must be submitted before device testing to determine the acceptable test requirements.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 22 of 73

Table 6: New SAR target value for Tissue Simulating Liquid

Offset Frequency	Test Date	Dielectric Parameters		Temp (°C)	New target SAR _{1g}	Target SAR _{1g}	Deviation (Within 15%)
		ε _r	σ(s/m)				
150MHz (head)	2013-02-21	49.9	0.78	21.5	1.02	1.13	-9.73%
150MHz (Body)	2013-02-21	61.9	0.83	21.5	1.06	1.14	-7.01%

Note: 1. The graph results see ANNEX B.
2. Target Value used derives from the calibration certificate.
3. New SAR target value for the 300 MHz dipole, using the 150 MHz SAR probe calibration point and 150 MHz tissue-equivalent dielectric parameters, and with the dipole transmitting at 300 MHz.

Table 7: The differences in tissue dielectric parameters between the offset and tuned dipole frequencies

Tissue type	Dielectric Parameters				Deviation (Within 10%)	
	300 MHz		150MHz			
	ε _r	σ(s/m)	ε _r	σ(s/m)	ε _r	σ(s/m)
Head tissue	45.8	0.86	49.9	0.78	8.95%	-9.30%
Body tissue	57.34	0.912	61.9	0.83	8.47%	-8.99%

6. Operational Conditions during Test

6.1. General Description of Test Procedures

The spatial peak SAR values were assessed for VHF systems. Batterys and accessories shall be specified by the manufacturer. The EUT batterys must be fully charged and checked periodically during the test to ascertain uniform power output.

6.2. Test Configuration

6.2.1. Face-Held Configuration

The front of the EUT is towards the phantom.

The front surface of the EUT is positioned at 25mm parallel to the flat phantom.

The surface of the EUT antenna is positioned at 41mm to the flat phantom.

6.2.2. Body-Worn Configuration

The back of the EUT is towards the phantom.

The belt clip of the EUT directed tightly to touch the bottom of the flat phantom.

The surface of the EUT antenna is positioned at 33mm to the flat phantom.

6.3. Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 25 of 73

7. Test Results

7.1. Conducted Power Results

Table 8: Conducted Power Measurement Results

Analog VHF (25KHz)	Conducted Power		
	156.050 MHz	156.800MHz	157.425MHz
Test Result (dBm)	36.76	36.67	36.46

TA Technology (Shanghai) Co., Ltd.
Test Report

7.2. SAR Test Results

7.2.1. VHF

Table 9: SAR Values (VHF)

Test Position	Frequency (MHz)	Channel Spacing (KHz)	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Drift $\pm 0.21\text{dB}$	Limit SAR_{1g} 1.6 W/kg					Graph Results	
						Drift (dB)	Measured SAR_{1g} (W/kg)		Scaling Factor	Reported SAR_{1g} (W/kg)		
							100%	50%		100%		
The EUT display towards phantom for 25 KHz(Analog, Face Held)												
towards phantom	156.05	25	37	36.76	0.025	0.566	0.283	1.06	0.600	0.300	Figure11	
The EUT display towards ground for 25 KHz(Analog, Body-Worn)												
towards ground	156.05	25	37	36.76	-0.095	2.910 (max.cube)	1.455	1.06	3.085	1.542	Figure12	
1st Repeated SAR Measurement Variability Results												
towards ground	156.05	25	37	36.76	0.064	2.760	1.380	1.06	2.917	1.458	Figure13	
2nd Repeated SAR Measurement Variability Results												
towards ground	156.05	25	37	36.76	0.036	2.710	1.355	1.06	2.864	1.432	Figure14	
<p>Note: 1. The EUT Radios with duty factors of 50% apply the maximum duty factor supported by the device to determine compliance.</p> <p>2. According to KDB447498 $N_c = \text{Round} \left\{ \left[100 \left(f_{\text{high}} - f_{\text{low}} \right) / f_c \right]^{0.5} \times \left(f_c / 100 \right)^{0.2} \right\}$, only one channel need to be tested. We choose the channel with maximum conducted output power to test.</p>												

Table 10: SAR Measurement Variability Results (VHF)

Test Position	Channel Spacing (KHz)	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	2 nd Repeated SAR (1g)	Ratio	3 rd Repeated SAR (1g)
towards ground	25	156.05	1.455	1.380	1.355	1.07	NA

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 27 of 73

Table 11: SAR Values are scaled for the power drift

Limits	Reported 1 g Average (W/kg)		Power Drift (dB)	+ Power Drift 10^(dB/10)	Reported SAR _{1g} (W/kg) (include + power drift)		
	1.6				Duty Cycle		
Frequency	Duty Cycle		Power Drift(dB)		100%	50%	
	100%	50%			100%	50%	
The EUT display towards phantom for 25 KHz(Analog,Face Held)							
156.05MHz	0.600	0.300	0.025	1.006	0.604	0.302	
The EUT display towards ground for 25 KHz(Analog,Body-Worn)							
156.05MHz	3.085	1.542	0.095	1.022	3.153	1.576	
1st Repeated SAR Measurement Variability Results							
156.05MHz	2.917	1.458	0.064	1.015	2.961	1.480	
2nd Repeated SAR Measurement Variability Results							
156.05MHz	2.864	1.432	0.036	1.008	2.887	1.443	

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 28 of 73

8. 100MHz to 700MHz Measurement Uncertainty

No.	source	Type	Uncertainty Value (%)	Probability Distribution	k	c _i	Standard uncertainty u _i (%)	Degree of freedom V _{eff} or v _i
1	System repetivity	A	0.5	N	1	1	0.5	9
Measurement system								
2	-probe calibration	B	6.7	N	1	1	6.7	∞
3	-axial isotropy of the probe	B	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	- Hemispherical isotropy of the probe	B	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞
6	-boundary effect	B	1.9	R	$\sqrt{3}$	1	1.1	∞
7	-probe linearity	B	4.7	R	$\sqrt{3}$	1	2.7	∞
8	- System detection limits	B	1.0	R	$\sqrt{3}$	1	0.6	∞
9	-readout Electronics	B	1.0	N	1	1	1.0	∞
10	-response time	B	0	R	$\sqrt{3}$	1	0	∞
11	-integration time	B	4.32	R	$\sqrt{3}$	1	2.5	∞
12	-noise	B	0	R	$\sqrt{3}$	1	0	∞
13	-RF Ambient Conditions	B	3	R	$\sqrt{3}$	1	1.73	∞
14	-Probe Positioner Mechanical Tolerance	B	0.4	R	$\sqrt{3}$	1	0.2	∞
15	-Probe Positioning with respect to Phantom Shell	B	2.9	R	$\sqrt{3}$	1	1.7	∞
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	B	3.9	R	$\sqrt{3}$	1	2.3	∞
Test sample Related								
17	-Test Sample Positioning	A	2.9	N	1	1	2.9	71
18	-Device Holder Uncertainty	A	4.1	N	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	B	5.0	R	$\sqrt{3}$	1	2.9	∞
Physical parameter								
20	-phantom	B	4.0	R	$\sqrt{3}$	1	2.3	∞

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 29 of 73

21	-liquid conductivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.64	1.8	∞
22	-liquid conductivity (measurement uncertainty)	B	2.5	N	1	0.64	1.6	9
23	-liquid permittivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	B	2.5	N	1	0.6	1.5	9
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$					11.88	
Expanded uncertainty (confidence interval of 95 %)			$u_e = 2u_c$	N	k=2	23.76		

TA Technology (Shanghai) Co., Ltd.
Test Report

9. Main Test Instruments

Table 12: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 11, 2012	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 11, 2012	One year
04	Power sensor	Agilent N8481H	MY50350004	September 24, 2012	One year
05	Power sensor	E9327A	US40441622	September 23, 2012	One year
06	Signal Generator	HP 8341B	2730A00804	September 11, 2012	One year
07	Amplifier	IXA-020	0401	No Calibration Requested	
08	E-field Probe	ES3DV3	3189	June 22, 2012	One year
09	DAE	DAE4	905	June 21, 2012	One year
10	Validation Kit 300MHz	D300V3	1017	July 24, 2012	One year
11	Dual directional coupler	778D-012	50519	March 26, 2012	One year
12	Temperature Probe	JM222	AA1009129	March 15, 2012	One year
13	Hygrothermograph	WS-1	64591	September 27, 2012	One year

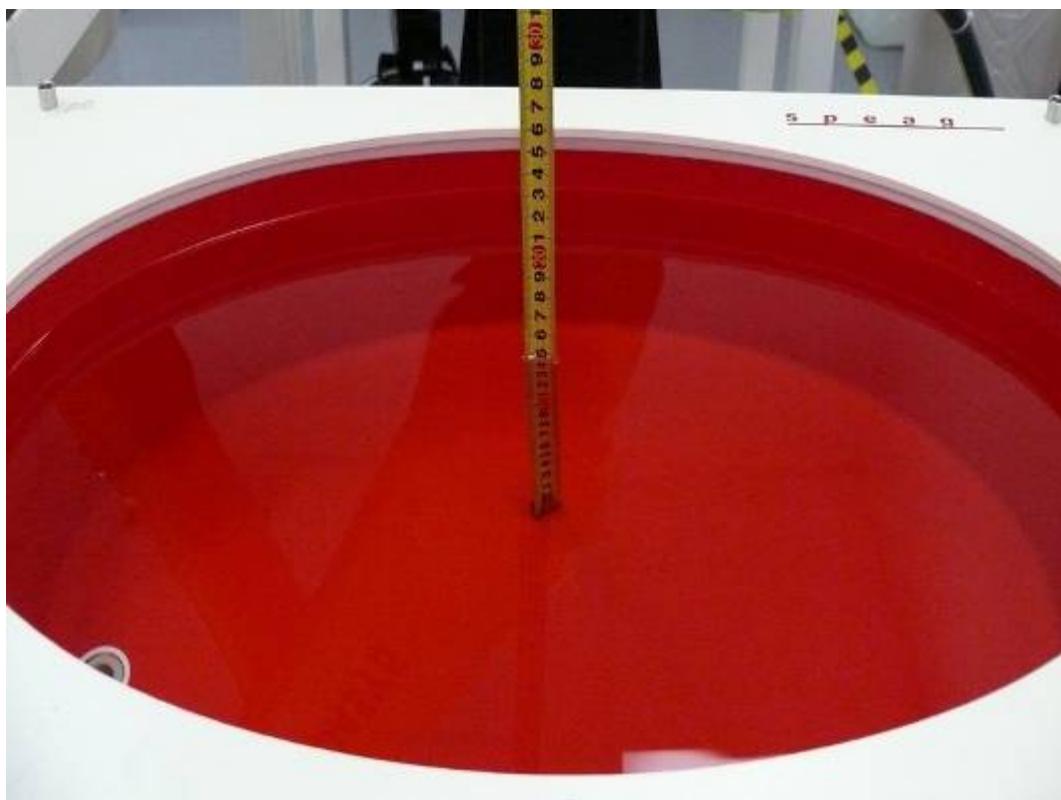
*****END OF REPORT *****

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 31 of 73

ANNEX A: Test Layout



Picture 1: Specific Absorption Rate Test Layout


**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1212-1162SAR01R5

Page 32 of 73

Picture 2: Liquid depth in the Flat Phantom (150MHz, 15.1cm depth)

Picture 3: Liquid depth in the Flat Phantom (300MHz, 15.4cm depth)

ANNEX B: System Validation Results

System Performance Check at 300 MHz Head TSL

DUT: Dipole300 MHz; Type: D300V3; Serial: 1017

Date/Time: 02/21/2013 9:18:50 AM

Communication System: CW; Frequency: 300 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 300$ MHz; $\sigma = 0.86$ mho/m; $\epsilon_r = 45.8$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(6.83, 6.83, 6.83); Calibrated: 6/22/2012

Electronics: DAE4 Sn905; Calibrated: 6/21/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=15mm, Pin=398mW/Area Scan (61x301x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.26 mW/g

d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 38.4 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.824 mW/g

Maximum value of SAR (measured) = 1.25 mW/g

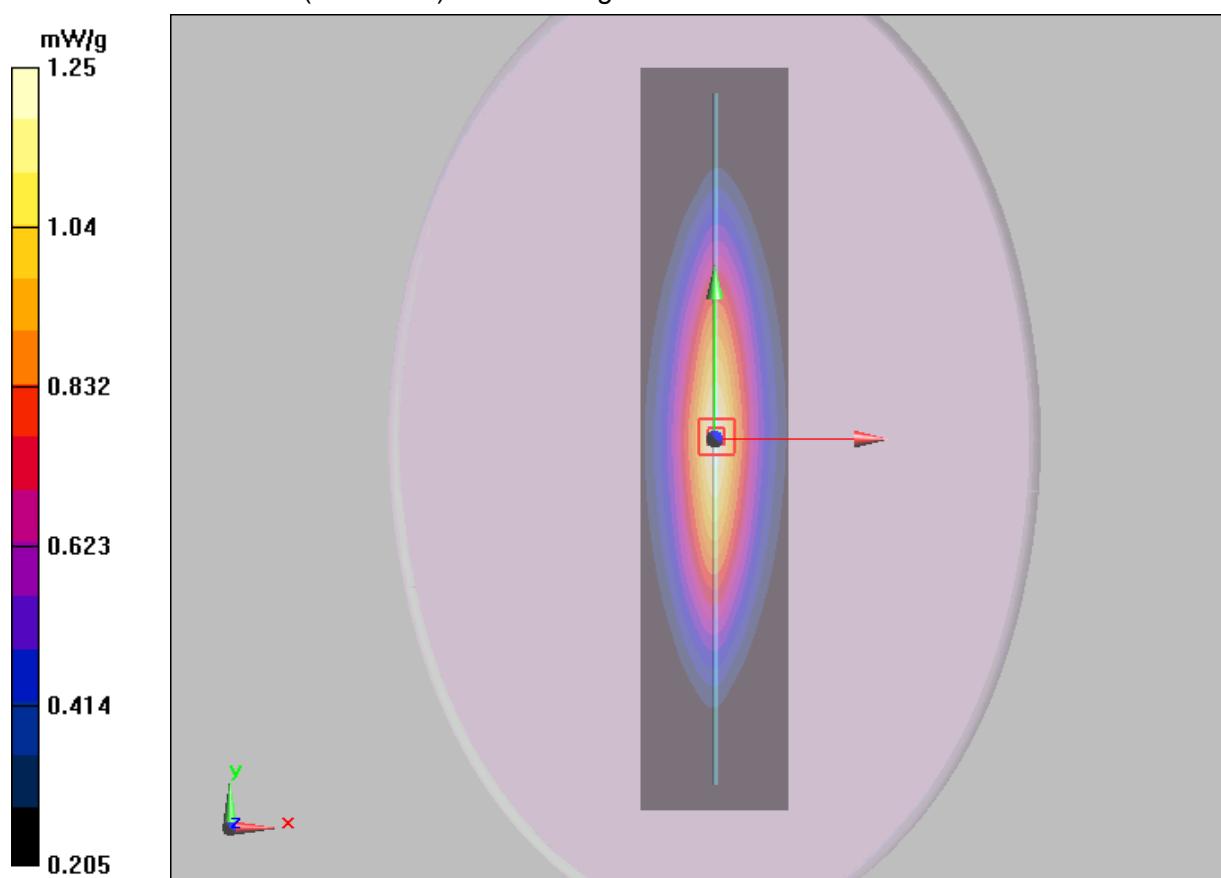


Figure 7 System Performance Check 300MHz 398mW

System Performance Check at 300 MHz Body TSL

DUT: Dipole300 MHz; Type: D300V3; Serial: 1017

Date/Time: 02/21/2013 2:05:18 PM

Communication System: CW; Frequency: 300 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 300$ MHz; $\sigma = 0.912$ mho/m; $\epsilon_r = 57.34$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(6.53, 6.53, 6.53); Calibrated: 6/22/2012

Electronics: DAE4 Sn 905; Calibrated: 6/21/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=15mm, Pin=398mW/Area Scan (61x301x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.23 mW/g

d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.2 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.809 mW/g

Maximum value of SAR (measured) = 1.24 mW/g

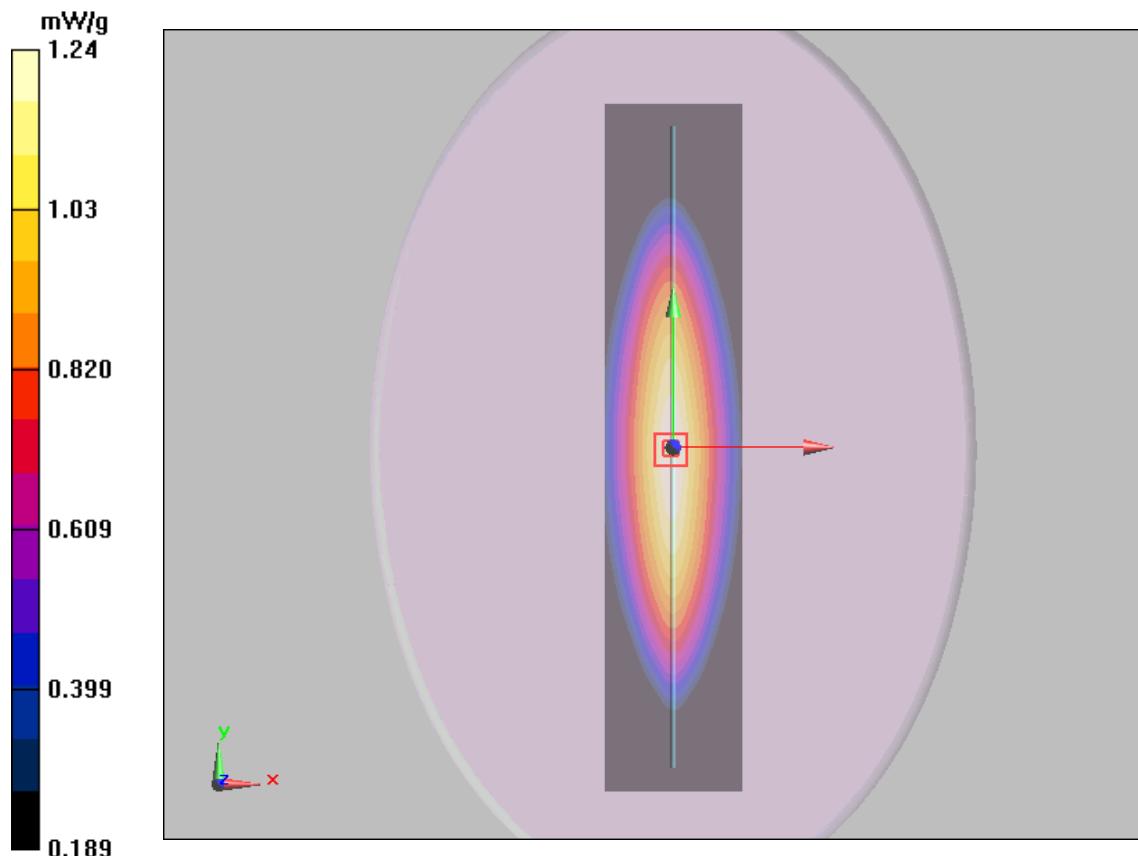


Figure 8 System Performance Check 300MHz 398mW

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 35 of 73

System Verification at 150 MHz Head TSL

DUT: Dipole300 MHz; Type: D300V3; Serial: 1017

Date/Time: 02/21/2013 9:45:51 AM

Communication System: CW; Frequency: 150 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 150$ MHz; $\sigma = 0.78$ mho/m; $\epsilon_r = 49.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(7.7, 7.7, 7.7); Calibrated: 6/22/2012

Electronics: DAE4 Sn905; Calibrated: 6/21/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=15mm, Pin=398mW/Area Scan (61x301x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.06 mW/g

d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.5 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.706 mW/g

Maximum value of SAR (measured) = 1.07 mW/g

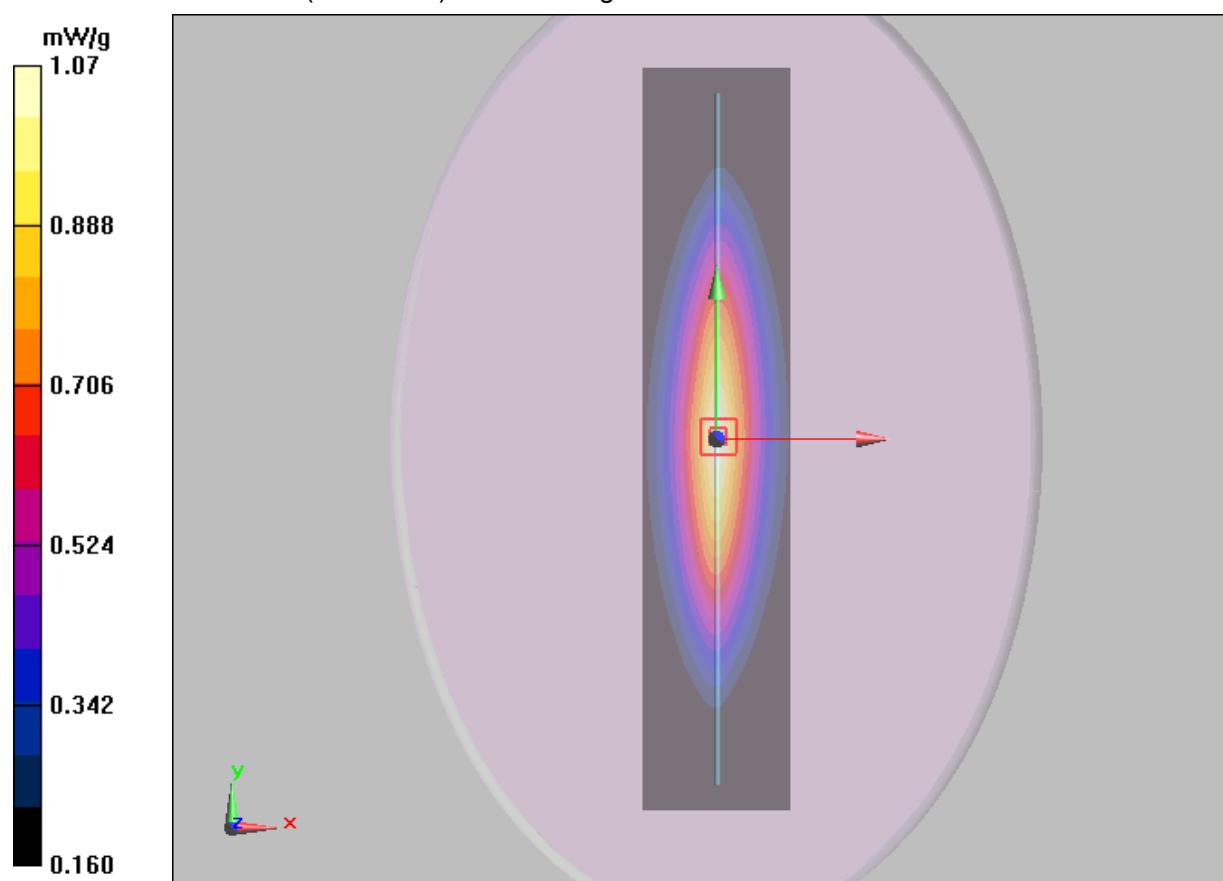


Figure 9 System Verification at 150 MHz 398mW

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RXA1212-1162SAR01R5

Page 36 of 73

System Verification at 150 MHz Body TSL

DUT: Dipole300 MHz; Type: D300V3; Serial: 1017

Date/Time: 02/21/2013 11:22:41 AM

Communication System: CW; Frequency: 150 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 150$ MHz; $\sigma = 0.83$ mho/m; $\epsilon_r = 61.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(7.3, 7.3, 7.3); Calibrated: 6/22/2012

Electronics: DAE4 Sn905; Calibrated: 6/21/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=15mm, Pin=398mW/Area Scan (61x301x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.12 mW/g

d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.6 V/m; Power Drift = 0.043 dB

Peak SAR (extrapolated) = 1.6 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.733 mW/g

Maximum value of SAR (measured) = 1.13 mW/g

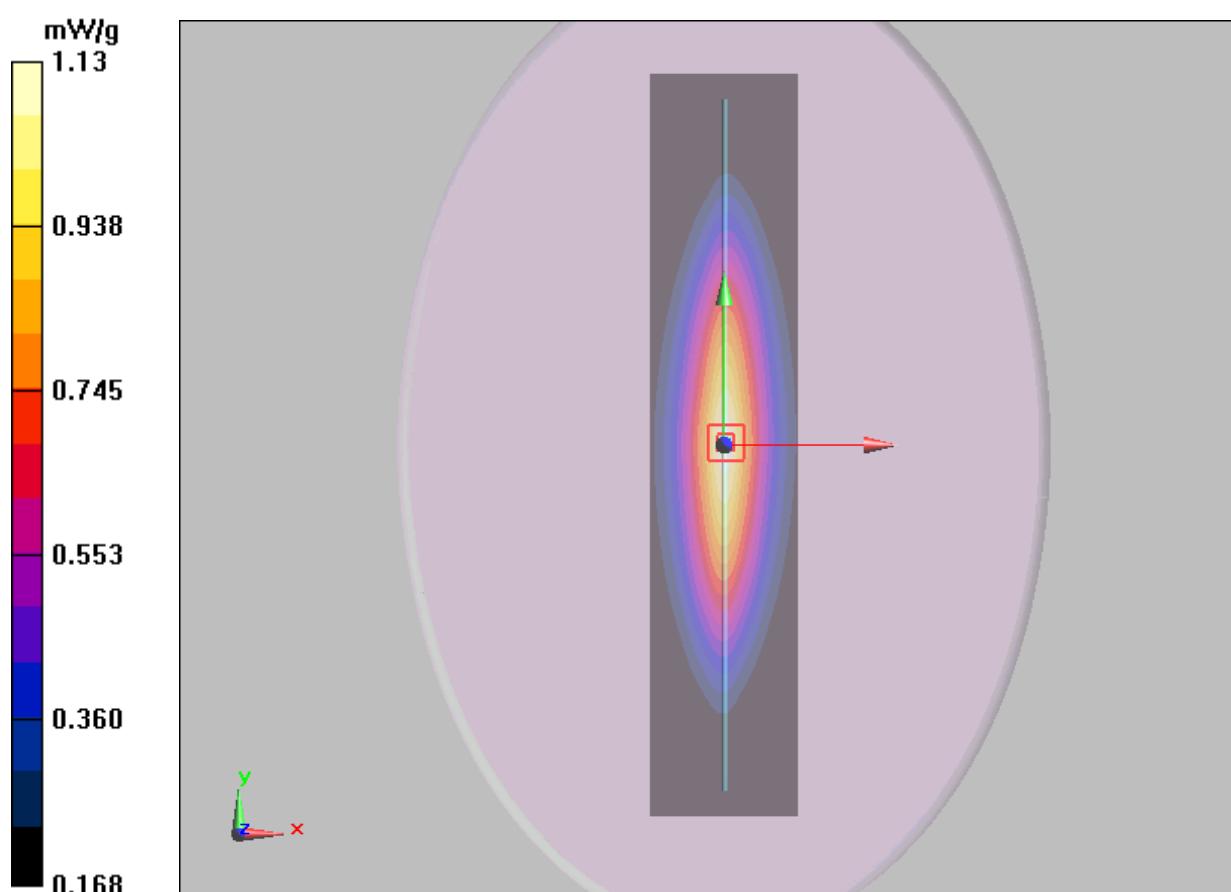


Figure 10 System Verification at 150 MHz 398mW

ANNEX C: Graph Results

Face Held for Analog, Front towards Phantom 156.05MHz (25 KHz Channel Spacing)

Date/Time: 2/21/2013 3:32:23 PM

Communication System: PTT 150; Frequency: 156.05 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 156.05$ MHz; $\sigma = 0.783$ mho/m; $\epsilon_r = 49.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(7.7, 7.7, 7.7); Calibrated: 6/22/2012

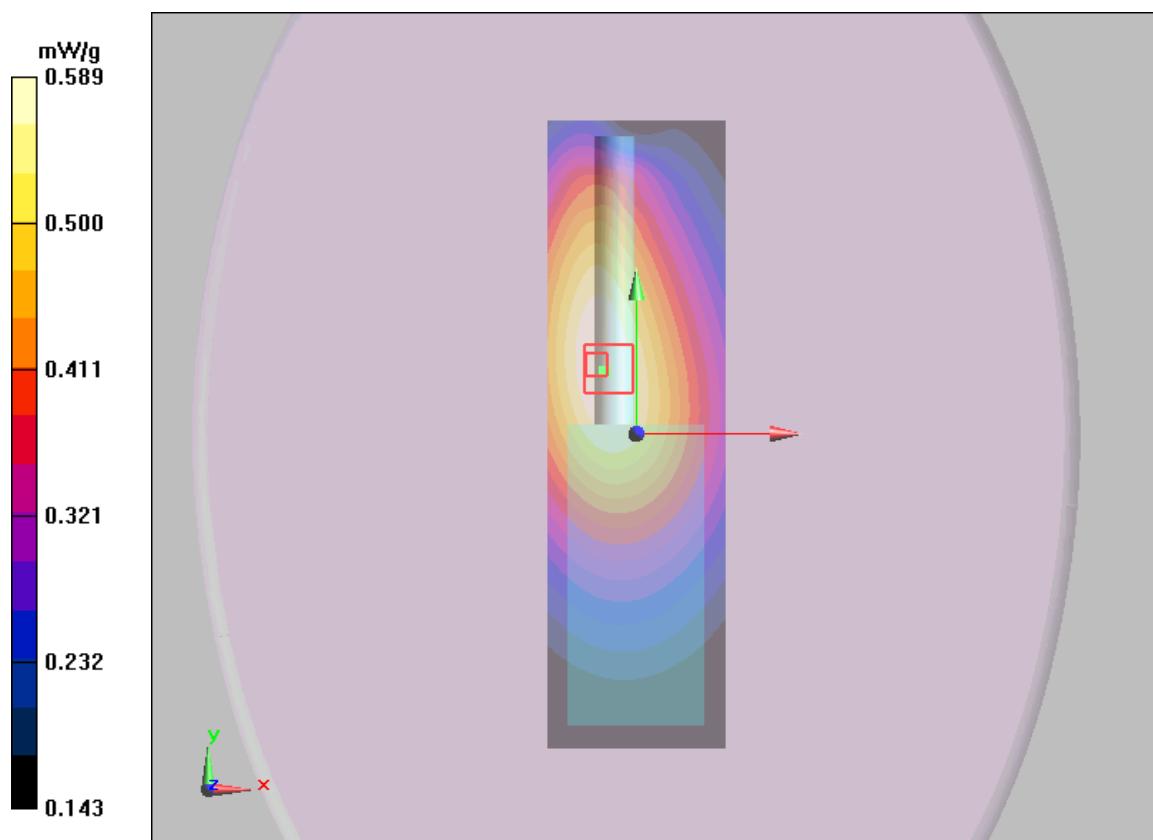
Electronics: DAE4 Sn 905; Calibrated: 6/21/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Phantom Ch 1/Area Scan (51x171x1): Measurement grid: dx=15mm, dy=15mm

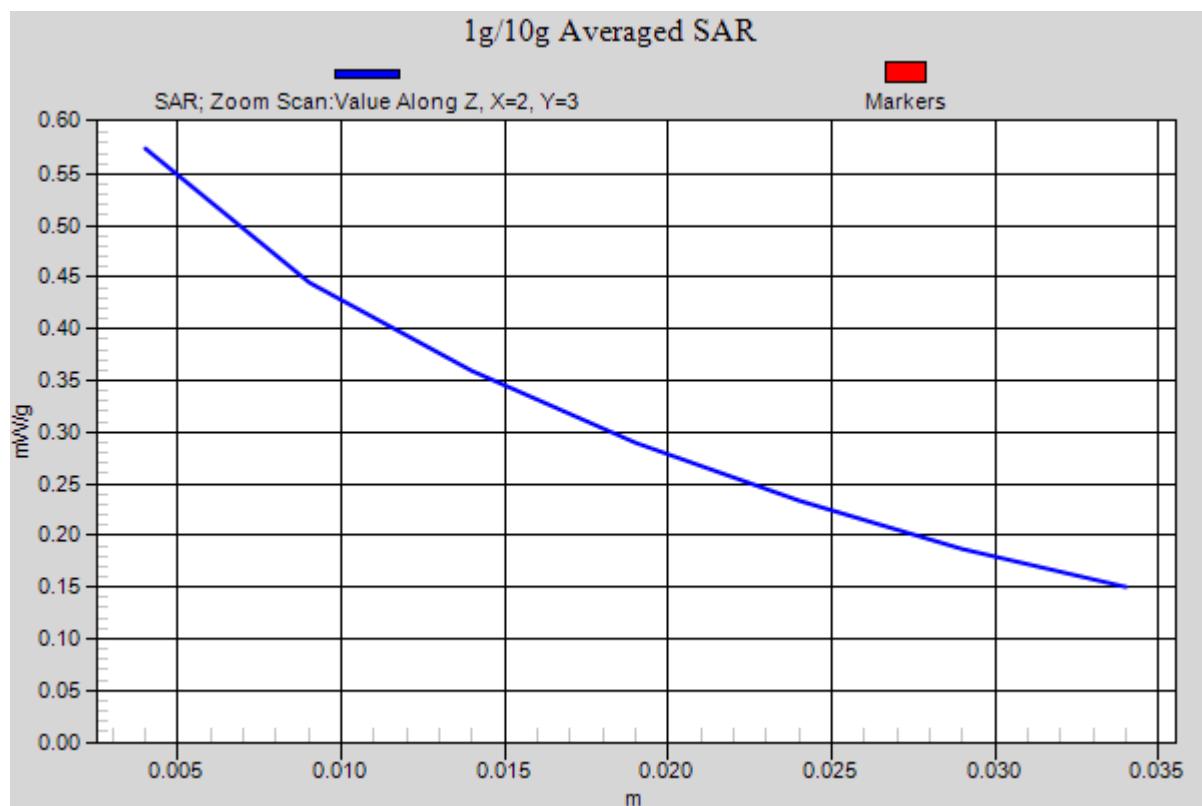
Maximum value of SAR (interpolated) = 0.549 mW/g


Towards Phantom Ch 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.9 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 0.747 W/kg

SAR(1 g) = 0.566 mW/g; SAR(10 g) = 0.442 mW/g


Maximum value of SAR (measured) = 0.589 mW/g

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1212-1162SAR01R5

Page 38 of 73

Figure 11 Face Held for Analog, Front towards Phantom 156.05MHz (25KHz Channel Spacing)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 39 of 73

Body-Worn for Analog, Front towards Ground 156.05MHz (25 KHz Channel Spacing)

Date/Time: 2/21/2013 4:34:42 PM

Communication System: PTT 150; Frequency: 156.05 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 156.05$ MHz; $\sigma = 0.838$ mho/m; $\epsilon_r = 61.8$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(7.3, 7.3, 7.3); Calibrated: 6/22/2012

Electronics: DAE4 Sn 905; Calibrated: 6/21/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground Ch 1 /Area Scan (61x221x1): Measurement grid: dx=15mm, dy=15mm

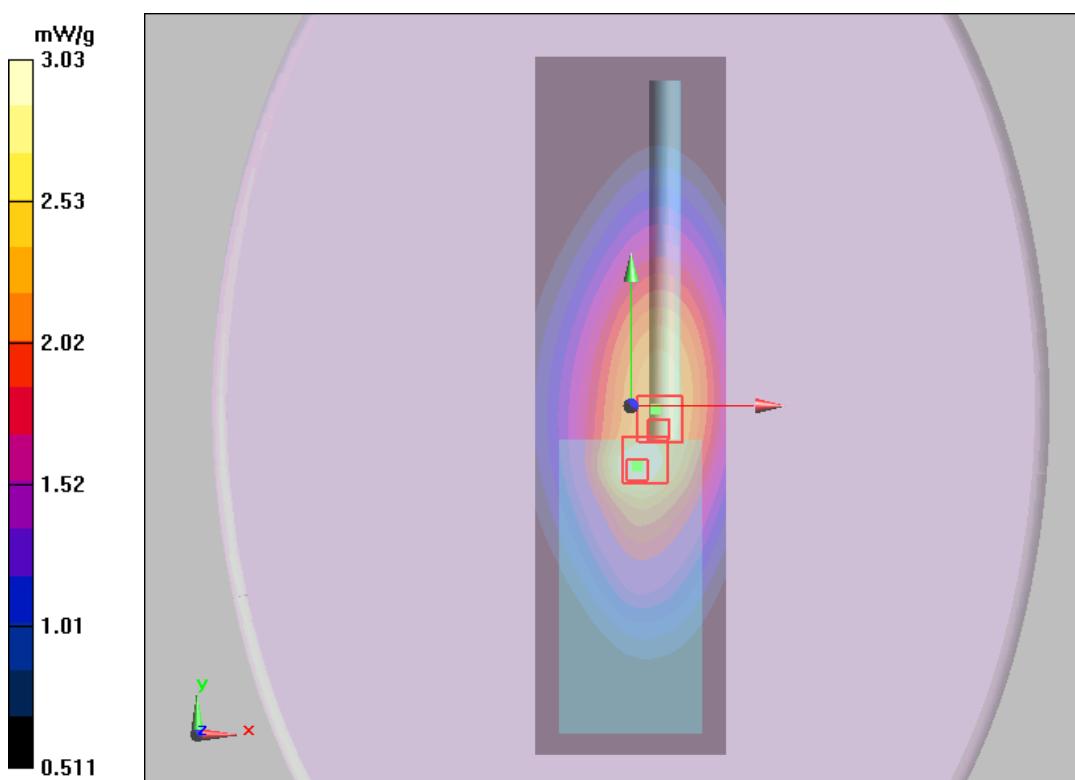
Maximum value of SAR (interpolated) = 3.15 mW/g

Towards Ground Ch 1 /Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.5 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 3.28 W/kg

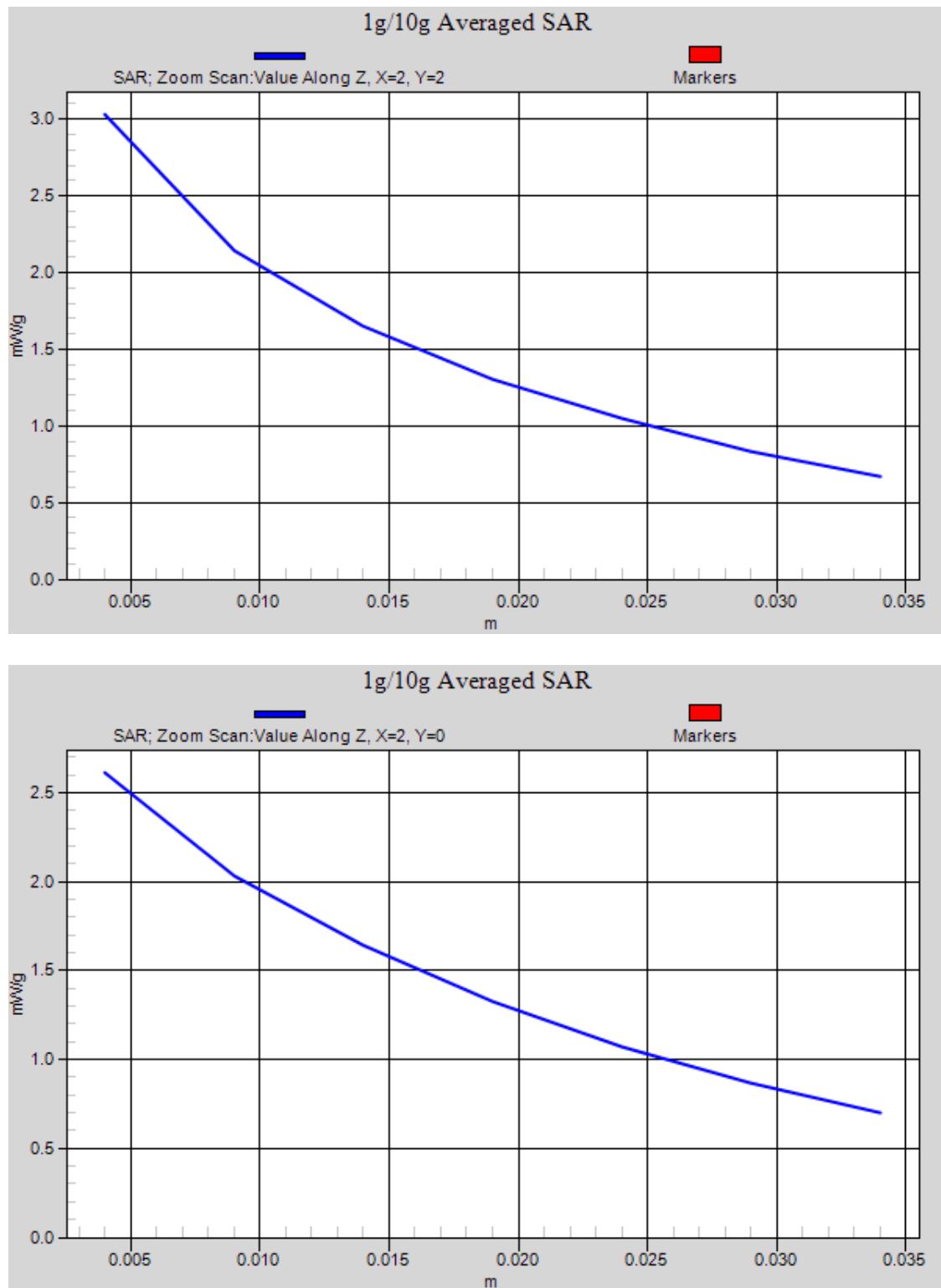
SAR(1 g) = 2.5 mW/g; SAR(10 g) = 1.95 mW/g


Towards Ground Ch 1 /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.5 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 4.66 W/kg

SAR(1 g) = 2.91 mW/g; SAR(10 g) = 2.08 mW/g


Maximum value of SAR (measured) = 3.03 mW/g

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1212-1162SAR01R5

Page 40 of 73

Figure 12 Body-Worn for Analog, Front towards Ground 156.05MHz (25KHz Channel Spacing)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 41 of 73

Body-Worn for Analog, Front towards Ground 156.05MHz (25 KHz Channel Spacing, 1st Repeated Test)

Date/Time: 2/21/2012 5:26:55 PM

Communication System: PTT 150; Frequency: 156.05 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 156.05$ MHz; $\sigma = 0.838$ mho/m; $\epsilon_r = 61.8$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(7.3, 7.3, 7.3); Calibrated: 6/22/2012

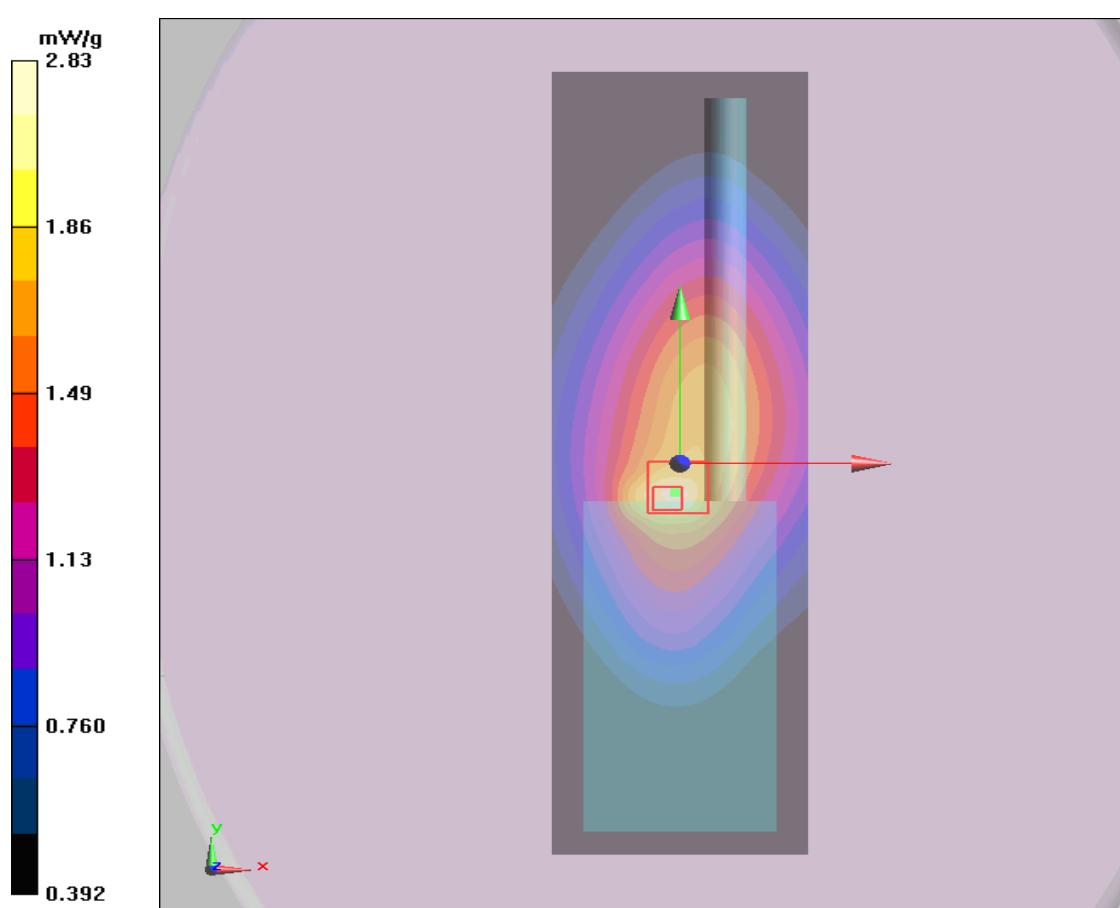
Electronics: DAE4 Sn 905; Calibrated: 6/21/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground Ch 1 /Area Scan (61x221x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.75 mW/g


Towards Ground Ch 1 /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.8 V/m; Power Drift = 0.064 dB

Peak SAR (extrapolated) = 4.24 W/kg

SAR(1 g) = 2.76 mW/g; SAR(10 g) = 1.93 mW/g

Maximum value of SAR (measured) = 2.83 mW/g

Figure 13 Body-Worn for Analog, Front towards Ground 156.05MHz (25KHz Channel Spacing)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 42 of 73

Body-Worn for Analog, Front towards Ground 156.05MHz (25 KHz Channel Spacing, 2nd Repeated Test)

Date/Time: 2/21/2012 6:32:28 PM

Communication System: PTT 150; Frequency: 156.05 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 156.05$ MHz; $\sigma = 0.838$ mho/m; $\epsilon_r = 61.8$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(7.3, 7.3, 7.3); Calibrated: 6/22/2012

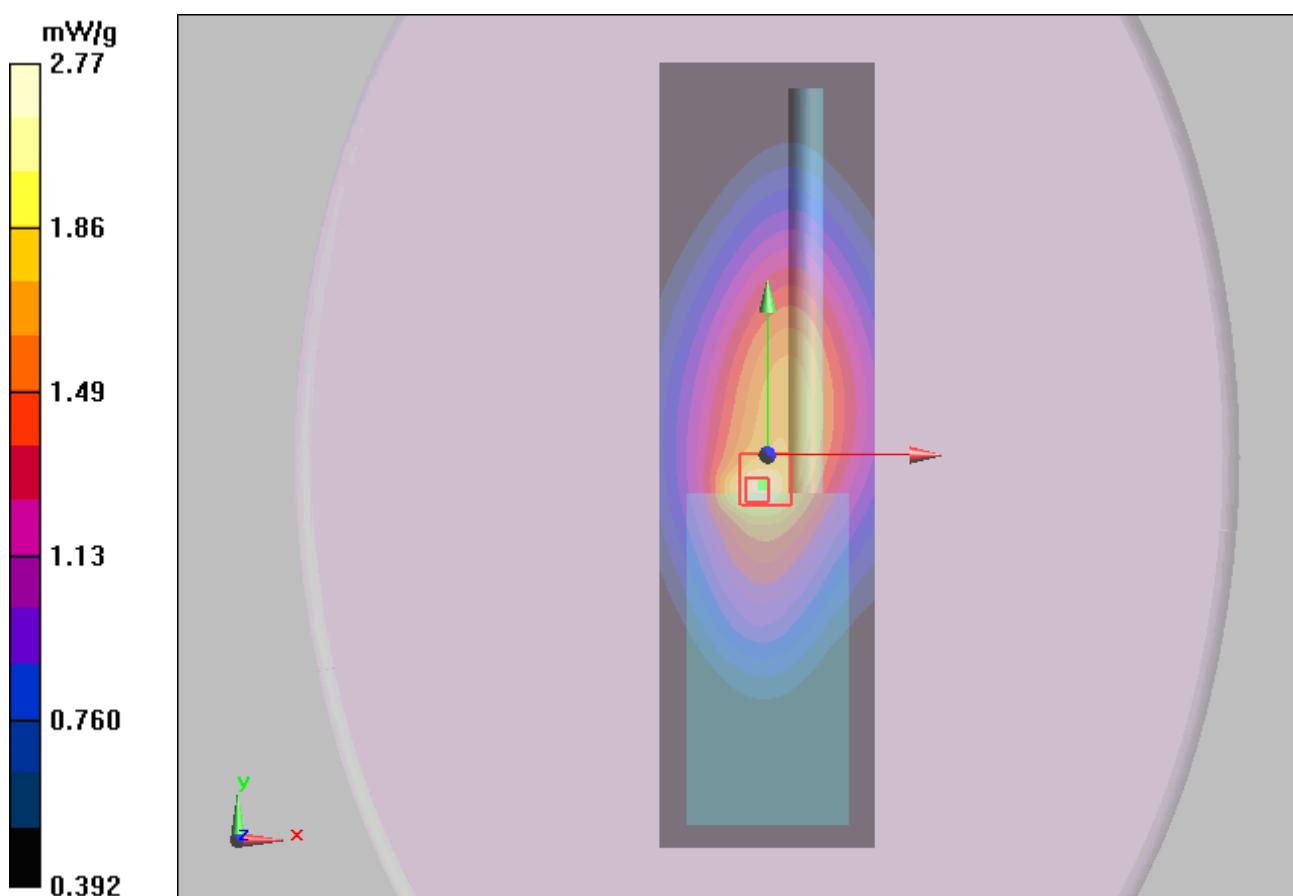
Electronics: DAE4 Sn 905; Calibrated: 6/21/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground Ch 1 /Area Scan (61x221x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.70 mW/g


Towards Ground Ch 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.8 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 4.18 W/kg

SAR(1 g) = 2.71 mW/g; SAR(10 g) = 1.89 mW/g

Maximum value of SAR (measured) = 2.77 mW/g

Figure 14 Body-Worn for Analog, Front towards Ground 156.05MHz (25KHz Channel Spacing)

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1212-1162SAR01R5

Page 43 of 73

ANNEX D: Probe Calibration Certificate

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 44 245 9700, Fax +41 44 245 9779
info@speag.com, http://www.speag.com

**Additional Conversion Factors
for Dosimetric E-Field Probe**

Type:

ES3DV3

Serial Number:

3189

Place of Assessment:

Zurich

Date of Assessment:

June 22, 2012

Probe Calibration Date:

June 22, 2012

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 300, 450 and 835 MHz.

Assessed by:

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 44 of 73

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 44 245 9700, Fax +41 44 245 9779
info@speag.com, http://www.speag.com

s p e a g

Dosimetric E-Field Probe ES3DV3 SN:3189

Conversion factor (\pm standard deviation)

150 \pm 50 MHz	ConvF	7.7 \pm 10%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue)
150 \pm 50 MHz	ConvF	7.3 \pm 10%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 45 of 73

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zuaghaustrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **TA-Shanghai (Auden)**

Certificate No: **ES3-3189_Jun12**

CALIBRATION CERTIFICATE

Object **ES3DV3 - SN:3189**

Calibration procedure(s) **QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4**
Calibration procedure for dosimetric E-field probes

Calibration date: **June 22, 2012**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5068 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: June 22, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 46 of 73

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}*: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). *NORM_{x,y,z}* are only intermediate values, i.e., the uncertainties of *NORM_{x,y,z}* does not affect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z* = *NORM_{x,y,z}* * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z*: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORM_{x,y,z}* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 47 of 73

ES3DV3 – SN:3189

June 22, 2012

Probe ES3DV3

SN:3189

Manufactured: March 25, 2008
Calibrated: June 22, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 48 of 73

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.32	1.35	1.05	$\pm 10.1\%$
DCP (mV) ^B	99.5	100.6	100.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	X	0.00	0.00	1.00	160.3	$\pm 3.8\%$
			Y	0.00	0.00	1.00	164.9	
			Z	0.00	0.00	1.00	182.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 49 of 73

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	6.83	6.83	6.83	0.25	1.06	± 13.4 %
450	43.5	0.87	6.37	6.37	6.37	0.14	1.67	± 13.4 %
835	41.5	0.90	5.81	5.81	5.81	0.63	1.24	± 12.0 %
1750	40.1	1.37	4.90	4.90	4.90	0.80	1.14	± 12.0 %
1900	40.0	1.40	4.69	4.69	4.69	0.62	1.31	± 12.0 %
2450	39.2	1.80	4.14	4.14	4.14	0.65	1.36	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 50 of 73

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

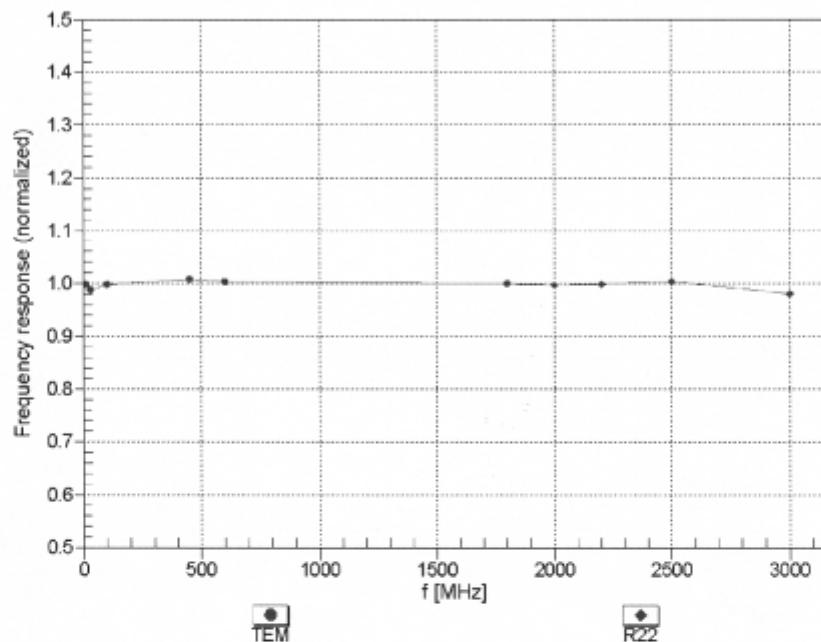
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	58.2	0.92	6.53	6.53	6.53	0.23	1.90	± 13.4 %
450	56.7	0.94	6.73	6.73	6.73	0.10	1.00	± 13.4 %
835	55.2	0.97	5.81	5.81	5.81	0.54	1.33	± 12.0 %
1750	53.4	1.49	4.65	4.65	4.65	0.67	1.38	± 12.0 %
1900	53.3	1.52	4.36	4.36	4.36	0.62	1.40	± 12.0 %
2450	52.7	1.95	3.96	3.96	3.96	0.64	0.99	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**TA Technology (Shanghai) Co., Ltd.
Test Report**


Report No. RXA1212-1162SAR01R5

Page 51 of 73

ES3DV3- SN:3189

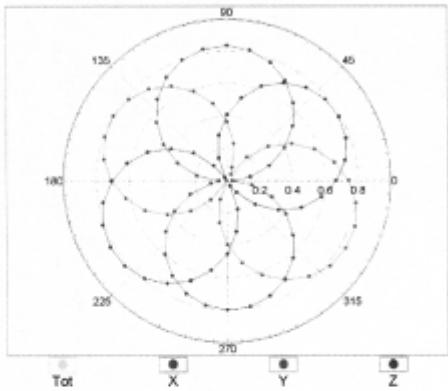
June 22, 2012

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)

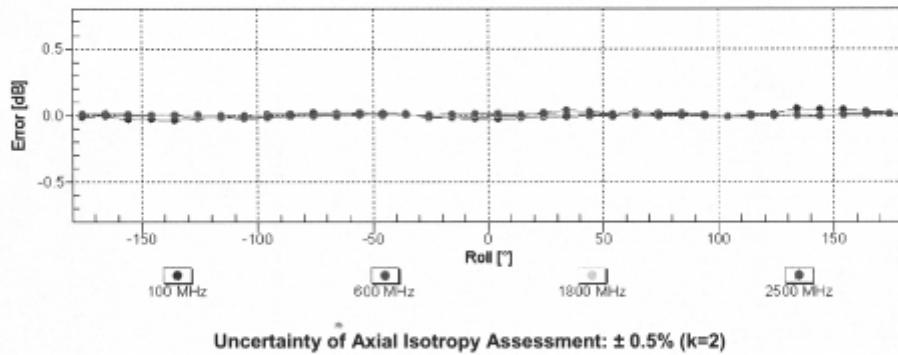
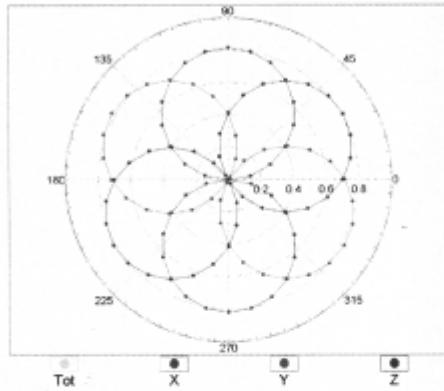
Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1212-1162SAR01R5


Page 52 of 73

ES3DV3- SN:3189

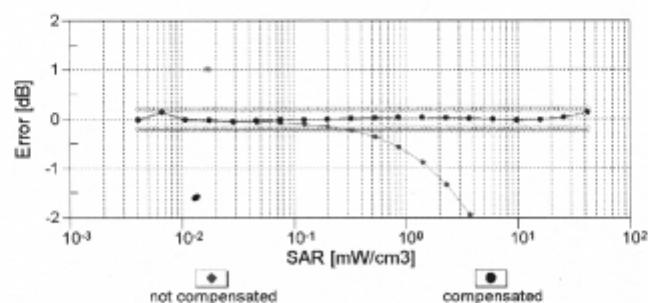
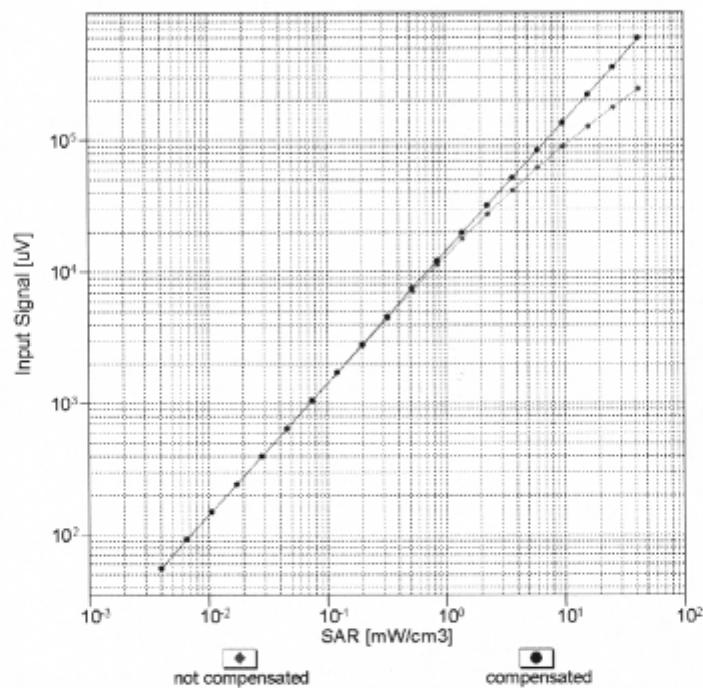


June 22, 2012

Receiving Pattern (ϕ), $\theta = 0^\circ$

$f=600$ MHz, TEM

$f=1800$ MHz, R22

TA Technology (Shanghai) Co., Ltd.
Test Report



Report No. RXA1212-1162SAR01R5

Page 53 of 73

ES3DV3- SN:3189

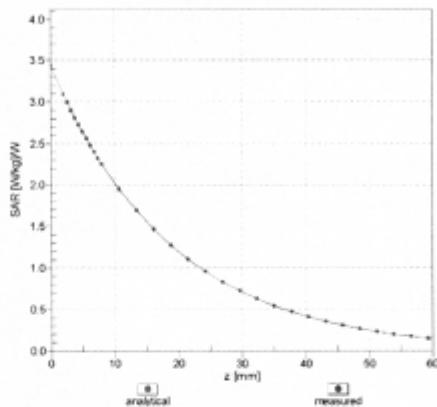
June 22, 2012

Dynamic Range f(SAR_{head})
(TEM cell, f = 900 MHz)

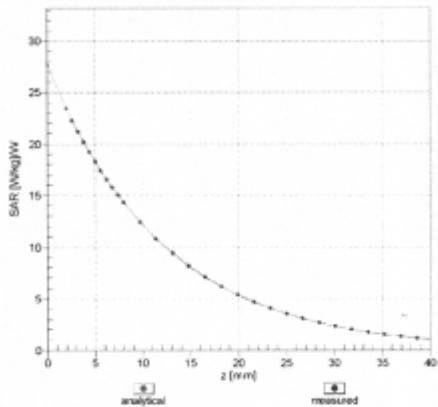
Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1212-1162SAR01R5

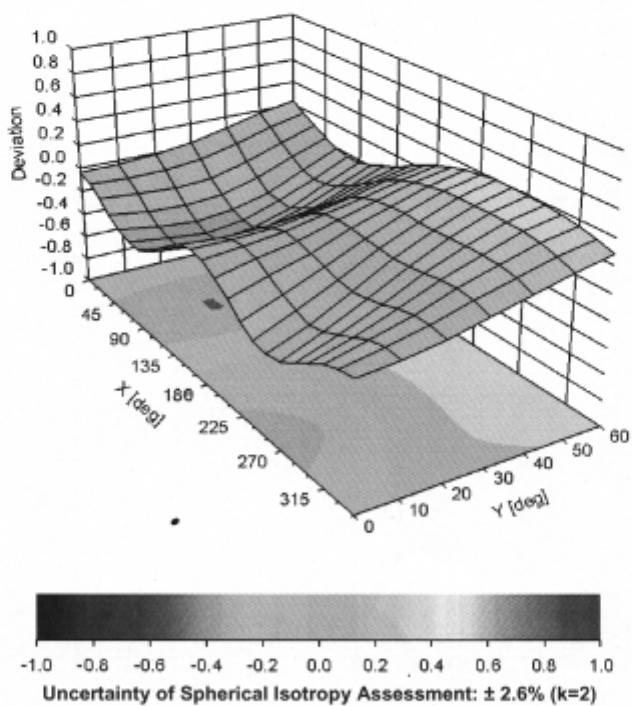

Page 54 of 73

ES3DV3- SN:3189


June 22, 2012

Conversion Factor Assessment

$f = 835 \text{ MHz}, \text{WGLS R9 (H_convF)}$



$f = 1900 \text{ MHz}, \text{WGLS R22 (H_convF)}$

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 55 of 73

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	54.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 56 of 73

ANNEX E: D300V3 Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **TMC (Auden)**

Certificate No: **D300V3-1017_Jul12**

CALIBRATION CERTIFICATE

Object **D300V3 - SN: 1017**

Calibration procedure(s) **QA CAL-15.v6**
Calibration procedure for dipole validation kits below 700 MHz

Calibration date: **July 24, 2012**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: 55054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ET3DV6	SN: 1507	30-Dec-11 (No. ET3-1507_Dect11)	Dec-12
DAE4	SN: 654	18-Apr-12 (No. DAE4-654_Apr12)	Apr-13

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
----------------	------------------------	-----------------------------------	---------------

Approved by:	Katja Pokovic	Technical Manager	
--------------	---------------	-------------------	--

Issued: July 25, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 57 of 73

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalementage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled-phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 58 of 73

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.1
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	45.3	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.2 ± 6 %	0.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	398 mW input power	1.13 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	2.88 mW /g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	0.742 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	1.89 mW /g ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	58.2	0.92 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	58.3 ± 6 %	0.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	398 mW input power	1.14 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	2.84 mW / g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	0.765 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	1.91 mW / g ± 17.6 % (k=2)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 59 of 73

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	58.9 Ω - 1.1 $j\Omega$
Return Loss	-21.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	56.8 Ω - 5.5 $j\Omega$
Return Loss	-21.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.746 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 30, 2010

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1212-1162SAR01R5

Page 60 of 73

DASY5 Validation Report for Head TSL

Date: 24.07.2012

Test Laboratory: SPEAG

DUT: Dipole 300 MHz; Type: D300V3; Serial: D300V3 - SN: 1017

Communication System: CW; Frequency: 300 MHz

Medium parameters used: $f = 300$ MHz; $\sigma = 0.85$ mho/m; $\epsilon_r = 44.2$; $\rho = 1000$ kg/m³

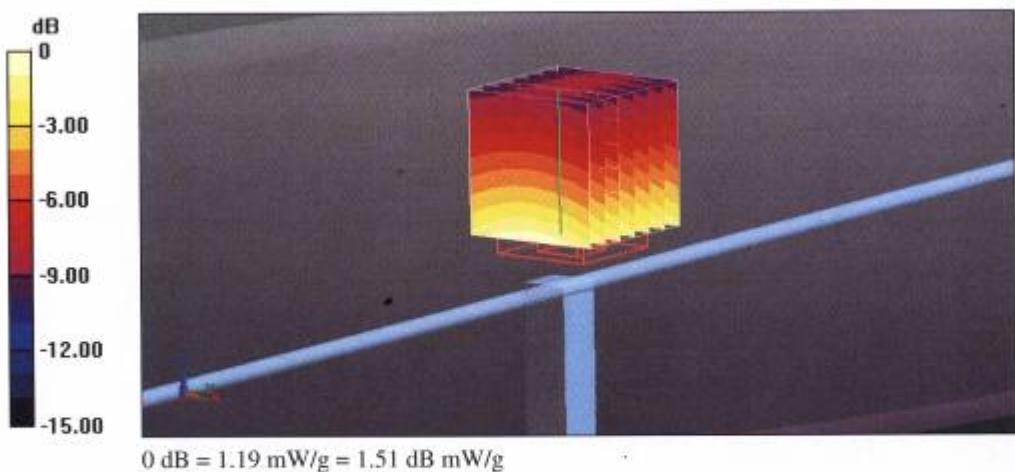
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(7.3, 7.3, 7.3); Calibrated: 30.12.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 18.04.2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Head Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:

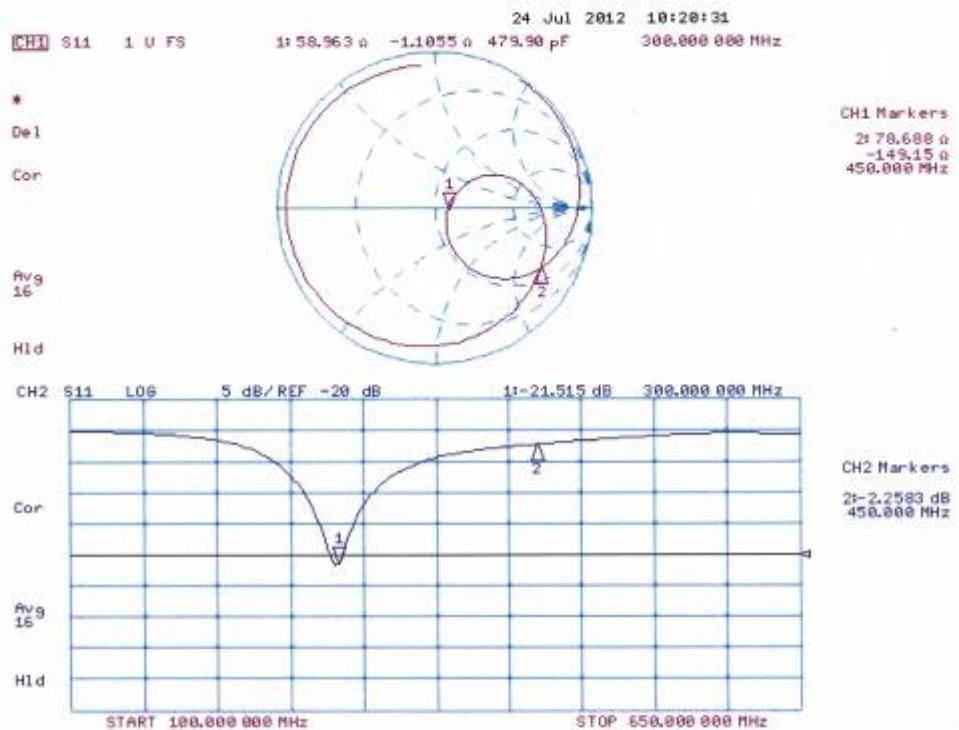

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.841 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.881 mW/g

SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.742 mW/g

Maximum value of SAR (measured) = 1.19 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 61 of 73

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 62 of 73

DASY5 Validation Report for Body TSL

Date: 24.07.2012

Test Laboratory: SPEAG

DUT: Dipole 300 MHz; Type: D300V3; Serial: D300V3 - SN: 1017

Communication System: CW; Frequency: 300 MHz

Medium parameters used: $f = 300$ MHz; $\sigma = 0.93$ mho/m; $\epsilon_r = 58.3$; $\rho = 1000$ kg/m³

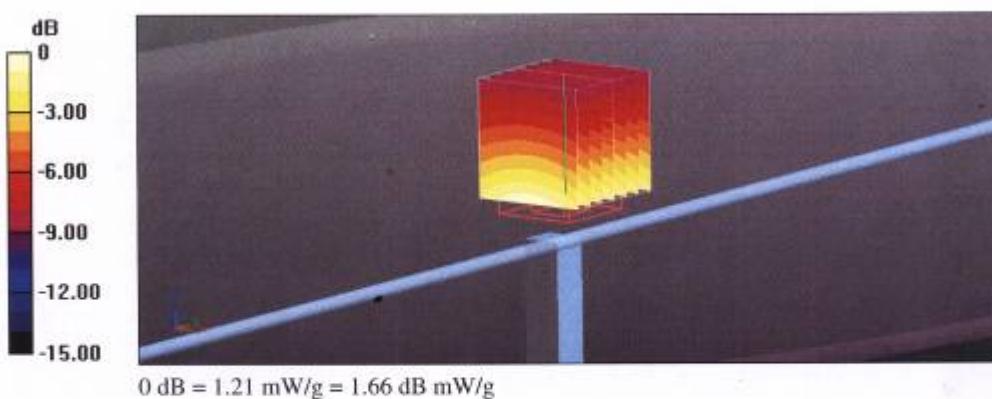
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(7.15, 7.15, 7.15); Calibrated: 30.12.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 18.04.2012
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Body Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:

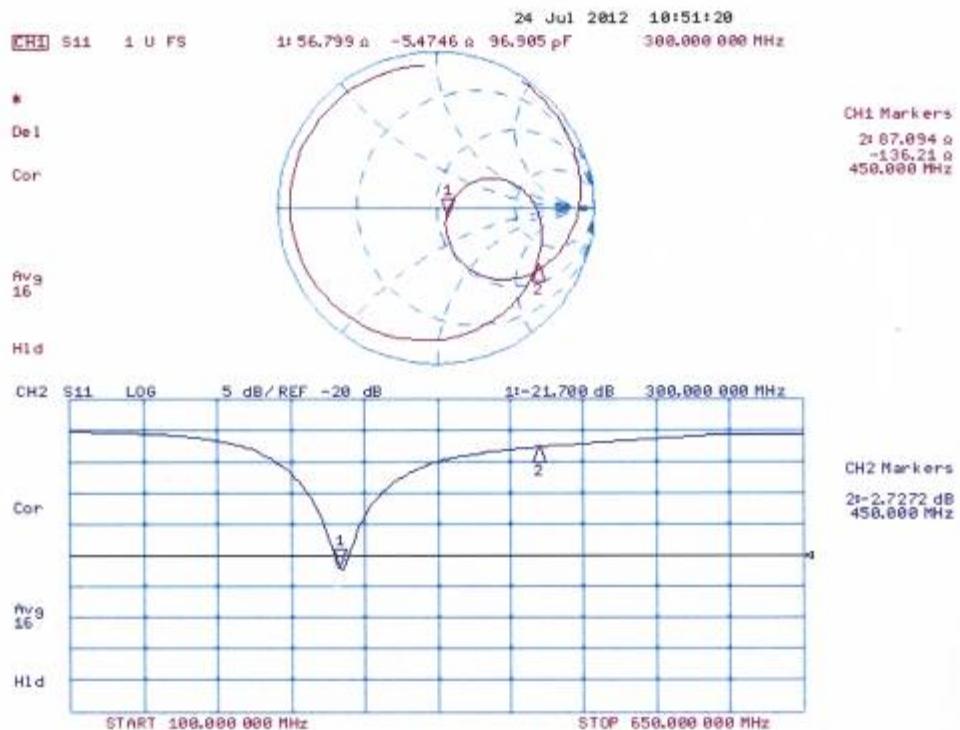

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.172 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.778 mW/g

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.765 mW/g

Maximum value of SAR (measured) = 1.21 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 63 of 73

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 64 of 73

ANNEX F: DAE4 Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Auden

Certificate No: DAE4-905_Jun12

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BK - SN: 905

Calibration procedure(s)
QA CAL-06.v24
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: June 21, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V2.1	SE UWS 053 AA 1001	05-Jan-12 (in house check)	In house check: Jan-13

Calibrated by: Name: Roland Mayoraz Function: Technician Signature:

Approved by: Name: Fin Bomholt Function: R&D Director Signature:

Issued: June 21, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 65 of 73

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 66 of 73

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu V$, full range = $-100...+300\text{ mV}$

Low Range: 1LSB = 61nV , full range = $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.744 \pm 0.1\% \text{ (k=2)}$	$405.295 \pm 0.1\% \text{ (k=2)}$	$404.875 \pm 0.1\% \text{ (k=2)}$
Low Range	$3.97983 \pm 0.7\% \text{ (k=2)}$	$4.00269 \pm 0.7\% \text{ (k=2)}$	$3.99654 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$270^\circ \pm 1^\circ$
---	-------------------------

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 67 of 73

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199996.94	-1.27	-0.00
Channel X	+ Input	20000.14	-0.07	-0.00
Channel X	- Input	-19997.83	3.06	-0.02
Channel Y	+ Input	199996.34	-1.76	-0.00
Channel Y	+ Input	19997.45	-2.66	-0.01
Channel Y	- Input	-20000.85	0.11	-0.00
Channel Z	+ Input	199999.43	1.31	0.00
Channel Z	+ Input	19998.09	-2.03	-0.01
Channel Z	- Input	-20000.38	0.66	-0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.20	-0.38	-0.02
Channel X	+ Input	201.23	0.09	0.04
Channel X	- Input	-197.80	0.90	-0.45
Channel Y	+ Input	2000.37	-0.14	-0.01
Channel Y	+ Input	200.23	-0.93	-0.46
Channel Y	- Input	-199.71	-0.91	0.46
Channel Z	+ Input	2000.07	-0.47	-0.02
Channel Z	+ Input	200.24	-0.94	-0.47
Channel Z	- Input	-199.53	-0.70	0.35

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	10.10	8.39
	-200	-6.31	-7.87
Channel Y	200	7.67	7.42
	-200	-9.57	-9.68
Channel Z	200	2.03	1.67
	-200	-2.67	-3.15

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	5.61	-1.03
Channel Y	200	9.77	-	7.17
Channel Z	200	9.96	6.56	-

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 68 of 73

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15897	16637
Channel Y	16146	15425
Channel Z	16377	16752

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.62	-0.20	1.36	0.34
Channel Y	-0.89	-1.83	-0.02	0.33
Channel Z	-0.59	-2.34	1.15	0.60

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1212-1162SAR01R5

Page 69 of 73

ANNEX G: The EUT Appearances and Test Configuration

a: EUT

b: Belt clip

Picture 4: Constituents of the sample

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 70 of 73

Picture 5: Face-held, the front of the EUT towards phantom, the distance from the EUT Antenna to the bottom of the Phantom is 41mm

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1212-1162SAR01R5

Page 71 of 73

Picture 6: Body-worn, the front of the EUT towards ground, Belt clip directed tightly to touch the bottom of the flat phantom, the distance from the EUT Antenna to the bottom of the Phantom is 33mm

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1212-1162SAR01R5

Page 72 of 73

ANNEX H: Permit but Ask

Inquiry Details on 03/10/2013:

First category: General* (RF Exposure)

Second category:

Third category:

Subject: 150MHZ SAR test inquiry

Inquiry: Dear sir or madam,

Recently, I received a project of 150 MHz PTT, now I have some question about this project for SAR testing.

According to the establishing a new SAR target of KDB 865664:

c) The SAR probe must be calibrated at the offset (device testing) frequency and the probe conversion factors at the tuned dipole frequency and device testing frequencies must be within 5% of each other.

My SAR measurement system is DASY 5 system, we also had calibrated the SAR probe at 150MHz and 300MHz from DASY manufacture. The conversion factors is 7.3 at 150MHz, and the conversion factors is 6.53 at 300MHz, and the different conversion factor is more than 5%.

Please kindly give me a hand and give me a suggestion for SAR testing or this project as soon as possible.

Thanks and best regards

Yours sincerely

Jeff Ling

---Reply from Customer on 03/13/2013---

Dear sir or madam,

I had submit an inquiry about the 150MHz SAR testing.

This project have some urgent

Please kindly give me a hand and give me a suggestion for SAR testing or this project.

Thanks and best regards

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1212-1162SAR01R5

Page 73 of 73

Yours sincerely

Jeff Ling

FCC Response on 03/14/2013:

As long as both probe calibration certificates are included in the SAR report and the difference in probe conversion factor between 150 and 300 MHz $[(7.3-635)/6.53 = 11.8\%]$ is $< 12\%$, you may apply the 150 MHz SAR system verification procedures in KDB 865664. A copy of this KDB inquiry must be provided to the TCB to facilitate review and approval.