

REPORT NO: EF/2005/20003

DATE: Mar. 04, 2005

Page: 1 of 61

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT

INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPART C REQUIREMENT

OF

Product Name: Bluetooth GPS Receiver

Brand Name: N/A

Model Name: BT-338

Model Differences: N/A

FCC ID: RIDBT-338

Report No.: EF/2005/20004

Issue Date: Feb. 17, 2005

FCC Rule Part: §15.247

Prepared for: Globalsat Technology Corporation

16F, No. 186, Jian Yi Road., Far East Century Park, Chung Ho City, Taipei

Hsien, Taiwan

Prepared by: SGS Taiwan Ltd.

No. 134, Wu Kung Rd., Wuku Industrial

Zone, Taipei County, Taiwan.

Note: This report shall not be reproduced except in full, without the written approval of SGS Taiwan Ltd. This document may be altered or revised by SGS Taiwan Ltd. personnel only, and shall be noted in the revision section of the document.

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 2

VERIFICATION OF COMPLIANCE

Applicant: Globalsat Technology Corporation

16F, No. 186, Jian Yi Road., Far East Century Park, Chung Ho City,

Taipei Hsien, Taiwan

Equipment Under Test: Bluetooth GPS Receiver

Brand Name: N/A

FCC ID Number: RIDBT-338

Model No.: BT-338

Model Difference: N/A

File Number: EF/2005/20004

Date of test: Feb. 05, 2005 ~ Mar. 03, 2005

Date of EUT Received: Mar. 04, 2005

We hereby certify that:

The above equipment was tested by SGS Taiwan Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247

The test results of this report relate only to the tested sample identified in this report.

Mar. 04, 2005 Alex Hsieh Date Mar. 04, 2005 Approved By

Vincent Su

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 3

Table of Contents

ı.	GEN	ERAL INFORMATION	6
	1.1.	Product Description	e
	1.2.	Related Submittal(s) / Grant (s)	6
	1.3.	Test Methodology	6
	1.4.	Test Facility	6
	1.5.	Special Accessories	6
	1.6.	Equipment Modifications	6
2.	SYST	TEM TEST CONFIGURATION	7
	2.1.	EUT Configuration	7
	2.2.	EUT Exercise	7
	2.3.	Test Procedure	7
	2.4.	Configuration of Tested System	8
3.	SUM	MARY OF TEST RESULTS	9
4.	DES	CRIPTION OF TEST MODES	9
5.	CON	DUCTED EMISSION TEST	10
	5.1.	Standard Applicable	10
	5.2.	EUT Setup	10
	5.3.	Measurement Procedure	10
	5.4.	Measurement Equipment Used:	11
	5.5.	Measurement Result	11
6.	PEA]	K OUTPUT POWER MEASUREMENT	14
	6.1.	Standard Applicable	14
	6.2.	Measurement Procedure	14
	6.3.	Measurement Result	14
	6.4.	Measurement Equipment Used:	14
7.	20dB	BAND WIDTH	17
	7.1.	Standard Applicable	17
	7.2.	Measurement Procedure	17
	7.3.	Measurement Result.	17
	7.4	Measurement Equipment Used:	17

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 4

8.	100K	Hz BANDWIDTH OF BAND EDGES MEASUREMENT	20
	8.1.	Standard Applicable	20
	8.2.	Measurement Procedure	20
	8.3.	Measurement Result	20
	8.4.	Measurement Equipment Used:	20
9.	SPUR	RIOUS RADIATED EMISSION TEST	24
	9.1.	Standard Applicable	24
	9.2.	EUT Setup	24
	9.3.	Measurement Procedure	24
	9.4.	Test SET-UP (Block Diagram of Configuration)	25
	9.5.	Measurement Equipment Used:	26
	9.6.	Field Strength Calculation	26
	9.7.	Measurement Result	26
10.	FREC	QUENCY SEPARATION	39
	10.1.	Standard Applicable	39
	10.2.	Measurement Procedure.	39
	10.3.	Measurement Result	39
	10.4.	Measurement Equipment Used:	39
11.	NUM	BER OF HOPPING FREQUENCY	41
	11.1.	Standard Applicable	41
	11.2.	Measurement Procedure.	41
	11.3.	Measurement Result	41
	11.4.	Measurement Equipment Used:	41
12.	TIME	E OF OCCUPANCY (DWELL TIME)	43
	12.1.	Standard Applicable	43
	12.2.	Measurement Procedure.	43
	12.3.	Measurement Result	43
	12.4.	Measurement Equipment Used:	44
13.	Peak	Power Spectral Density	50
	13.1.	Standard Applicable	
	13.2.	Measurement Procedure	50
	13.3.	Measurement Result	50
	13.4.	Measurement Equipment Used:	50

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 5

14.	ANTE	ENNA REQUIREMENT	53
	14.1.	Standard Applicable	53
	14.2.	Antenna Connected Construction	53
15.	RF E	XPOSURE	54
		Standard Applicable	
	15.2.	Measurement Result:	54
PH	OTOG	GRPHS OF SET UP	55
PH	OTOG	RPHS OF EUT	58

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 6

1. GENERAL INFORMATION

1.1. Product Description

The Globalsat Technology Corporation, Model: BT-338 is a Bluetooth GPS Receiver.

The EUT is compliance with Bluetooth Standard.

A major technical descriptions of EUT is described as following:

- A). Operation Frequency: 2402 2480Hz, 79 channels
- B). Rated output power: 2 dBm
- C). Modulation type: Frequency Hopping Spread Spectrum (FHSS)
- D). Antenna Designation: Chip Antenna, 2 dBi, Non-User Replaceable (Fixed)
- E). Battery Charge: 4.5 V dc from 3*AAA Ni-Cd Battery

1.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: RIDBT-338 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules. The composite system (receiver) is compliance with Subpart B is authorized under a Doc procedure.

1.3. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2003). Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4. Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the address of SGS Taiwan Ltd. No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei Country, Taiwan. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003 and CISPR 22/EN 55022 requirements. Site No. 1(3 &10 meters) Registration Number: 94644, Anechoic chamber (3 meters) Registration Number: 573967

1.5. Special Accessories

Not available for this EUT intended for grant.

1.6. Equipment Modifications

Not available for this EUT intended for grant.

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 7

2. SYSTEM TEST CONFIGURATION

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

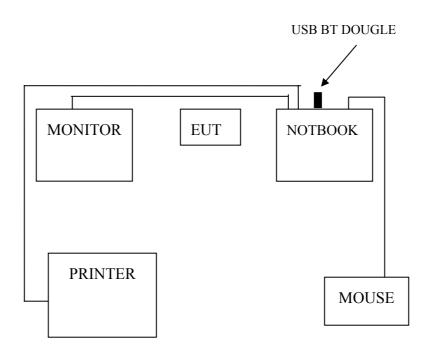
2.3. Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 7 and 13 of ANSI C63.4-2003. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4-2003.


REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 8

2.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System (Fixed channel)

Table 2-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	FCC ID	Series No.	Data Cable	Power Cord
1.	NOTBOOK	HP	723D	DOC	TW23420337	Shielding 1.8m	Un-shielding 1.2m
2.	PRINTER	HP	DJ640C	DOC	TH12Q110Y	Shielding 1.2m	N/A
3.	MONITOR	HP	Vf51	DOC	TWTFG01092	Shielding 1.2m	N/A
4.	MOUSE	HP	P8131-D	DOC	K023302209	N/A	Un-shielding1.8m
5.	USB BT DOUGLE	FREE STYLE	N/A	DOC	N/A	N/A	N/A

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 9

3. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.207(a)	Conducted Emission	Compliant
§15.247(b)(1)	Peak Output Power	Compliant
§15.247(a)	20dB Bandwidth	Compliant
§15.247(c)	100 KHz Bandwidth Of Fre-	Compliant
	quency Band Edges	
§15.209(a) (f)	Spurious Emission	Compliant
§15.247(a)(1)	Frequency Separation	Compliant
§15.247(a)(1)(iii)	Number of hopping frequency	Compliant
§15.247(a)(1)(iii)	Time of Occupancy	Compliant
§15.247	Peak Power Density	Compliant
§15.203,	Antenna Requirement	Compliant
§15.247(b)(4)(i)		
§1.1310	RF Exposure	Compliant

4. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low (2402MHz) · mid (2441MHz) and high (2480MHz) with 741k highest data rate are chosen for full testing.

The Dwell in hybrid mode is shorter than in data mode. For this reason the spurious emissions average level in data mode is worst case. The spurious emissions peak level is the same for both modes.

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 10

5. CONDUCTED EMISSION TEST

5.1. Standard Applicable

According to §15.207. frequency within 150KHz to 30MHz shall not exceed the limit table as below.

Frequency range	Lin dB(nits uV)
MHz	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Note

5.2. EUT Setup

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2003.
- 2. The EUT was plug-in the AC/DC Power adapter. The host system was placed on the center of the back edge on the test table. The peripherals was placed on the side of the host PC system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The spacing between the peripherals was 10 centimeters.
- 4. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 5. The host system was connected with 110Vac/60Hz power source.

5.3. Measurement Procedure

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

^{1.} The lower limit shall apply at the transition frequencies

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

REPORT NO: EF/2005/20003

DATE: Mar. 04, 2005

Page: 11

5.4. Measurement Equipment Used:

Conducted Emission Test Site						
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.	
TYPE		NUMBER	NUMBER	CAL.		
EMC Analyzer	HP	8594EM	3624A00203	12/31/2004	12/30/2005	
EMI Test Receiver	R&S	ESCS30	828985/004	01/15/2004	01/14/2005	
LISN	Rolf-Heine	NNB-2/16Z	99012	12/30/2004	12/29/2005	
LISN	Rolf-Heine	NNB-2/16Z	99013	11/06/2004	11/05/2005	

5.5. **Measurement Result**

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

REPORT NO: EF/2005/20003

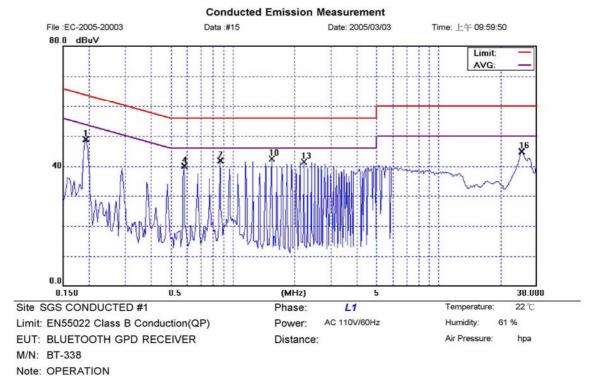
DATE: Mar. 04, 2005 Page: 12

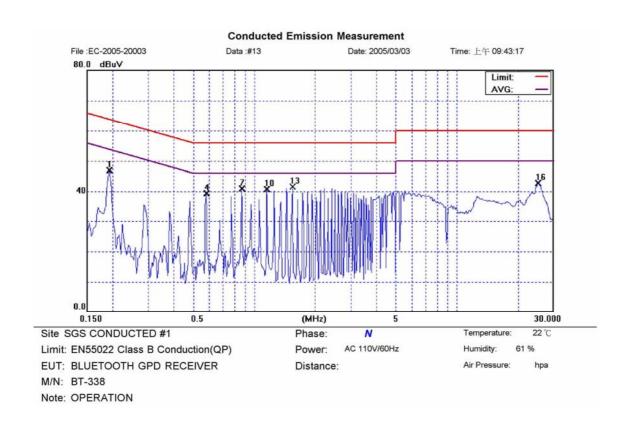
AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode:	Charge Mode			Test Date:	Mar. 03, 2005
Temperature:	22 ℃	Humidity:	61 %	Test By:	Alex

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	Raw	Raw	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.193	48.35	-	63.91	50.29	-15.56		L1
0.580	39.59	-	56.00	46.00	-16.41	-	L1
0.869	41.22	-	56.00	46.00	-14.78	-	L1
1.545	41.82	-	56.00	46.00	-14.18		L1
2.220	40.85		56.00	46.00	-15.15		L1
0.193	46.38		63.91	50.29	-17.53		L2
0.580	38.73		56.00	46.00	-17.27		L2
0.869	40.27		56.00	46.00	-15.73		L2
1.158	39.97		56.00	46.00	-16.03		L2
1.545	40.83		56.00	46.00	-15.17		L2

- (1) Measuring frequencies from 0.15 MHz to 30MHz •
- (2) The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Qusia-Peak detector and Average detector.
- (3) "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.
- (4) The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; The IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- (5) L1 = Line One (Hot side) / L2 = Line Two (Neutral side)




REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 13

Conducted Emission Test Plot

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 14

6. PEAK OUTPUT POWER MEASUREMENT

6.1. Standard Applicable

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1Watt. For all other frequency hopping systems in the 2400 – 2483.5MHz band: 0.125 Watts.

6.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter or spectrum. (Channel power function, RBW, VBW = 1MHz)
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

6.3. Measurement Result

СН	Frequency (MHz)	Reading Power dBm	Cable Loss	Output Power dBm	Output Power W	Limit (W)
LOW	2402.0	0.59	0.10	0.69	0.00117	1
MID	2441.0	1.05	0.10	1.15	0.00130	1
HIGH	2480.0	2.55	0.10	2.65	0.00184	1

6.4. Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/27/2005
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2005	01/21/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2004	10/06/2005

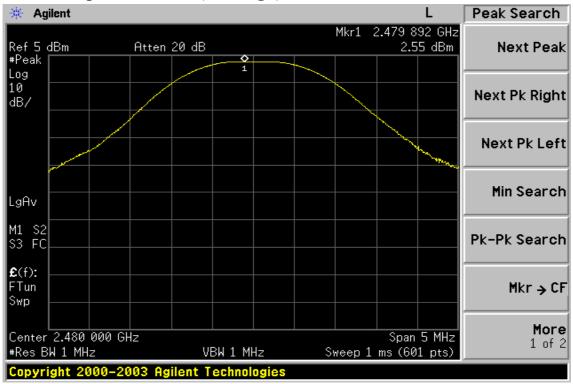
REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 15

Peak Power Output Data Plot (CH Low)

Peak Power Output Data Plot (CH Mid)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.



REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 16

Peak Power Output Data Plot (CH High)

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 17

7. 20dB BAND WIDTH

7.1. Standard Applicable

For frequency hopping systems operating in the 2400MHz-2483.5 MHz no limit for 20dB bandwidth.

7.2. Measurement Procedure

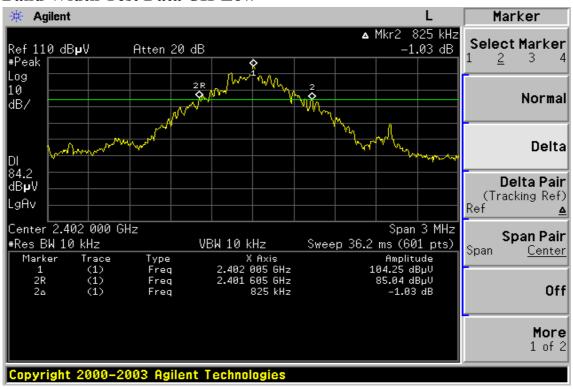
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=10KHz (1 % of Bandwidth.), Span= 3MHz, Sweep=auto
- 4. Mark the peak frequency and –20dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

7.3. Measurement Result

СН	Bandwidth
	(MHz)
Lower	0.825
Mid	0.820
Higher	0.820

7.4. Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	MODEL SERIAL		CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/27/2005
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2005	01/21/2006
Low Loss Cable HUBER+SUH		SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	BW-S6W5 N/A		10/06/2005



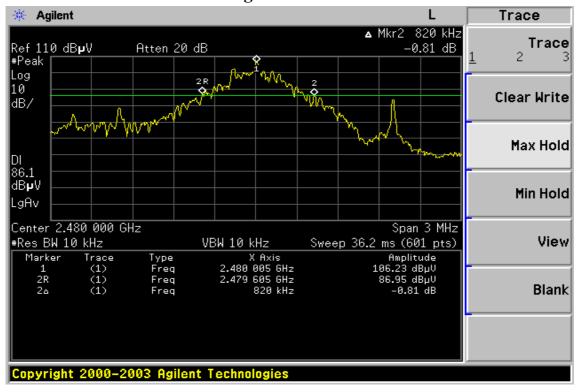
REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 18

20dB Band Width Test Data CH-Low

20dB Band Width Test Data CH-Mid

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.



REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 19

20dB Band Width Test Data CH-High

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 20

8. 100KHz BANDWIDTH OF BAND EDGES MEASUREMENT

8.1. Standard Applicable

According to §15.247(c), in any 100 KHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

8.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span=25MHz, Sweep = auto
- 5. Mark Peak, 2.390GHz and 2.488GHz and record the max. level.
- 6. Repeat above procedures until all frequency measured were complete.
- 7. Radiated Emission refer to section 9.

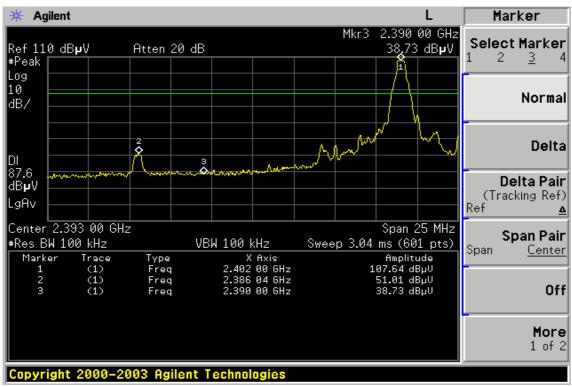
8.3. Measurement Result

Refer to attach spectrum analyzer data chart.

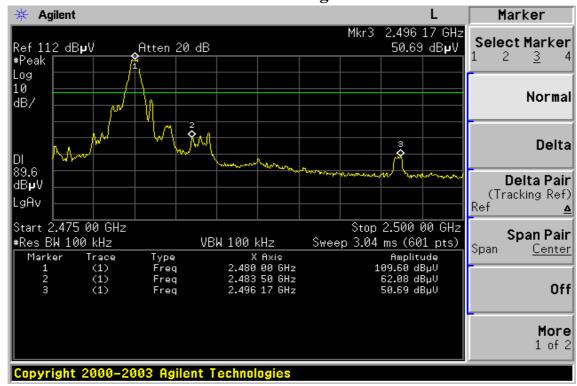
8.4. Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2005	01/21/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2004	10/06/2005

Note: Measurement Equipment for radiated emission refers to section 9.



REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**


Page: 21

Conducted Emission: Test Data CH-Low

Conducted Emission: Test Data CH-High

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 22

Radiated Emission:

Operation Mode TX CH Low Test Date Feb. 25, 2005

Fundamental Frequency 2402 MHz Temperature 2402 MHz Test By Alex Pol Ver.

Humidity 65 %

	Peak	\mathbf{AV}		Actua	al FS	Peak	\mathbf{AV}		
Freq.	Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin	Remark
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
2386.0						74.00	54.00		Peak

Operation Mode TX CH Low Test Date Feb 14, 2005

Fundamental Frequency 2402 MHz Test By Alex Temperature 25 $^{\circ}$ C Pol Hor. Humidity 65 $^{\circ}$

AVPeak **Actual FS** Peak AV Margin Remark Reading Reading Ant./CL Peak \mathbf{AV} Limit Freq. Limit (dBuV) (dBuV) CF(dB) (dBuV/m)(dBuV/m)(dBuV/m)(MHz) (dB) Peak 2386.0 74.00 54.00

- (1) Datas of measurement within this frequency range shown " " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column °
- (3) Spectrum Peak Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (4) Spectrum AV Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 23

Radiated Emission:

Operation Mode TX CH High Test Date Feb. 25, 2005

Fundamental Frequency 2480 MHz Temperature 2480 MHz Test By Alex Pol Ver.

Humidity 65 %

	Peak	\mathbf{AV}		Actu	al FS	Peak	\mathbf{AV}		
Freq.	Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin	Remark
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)) (dBuV/m)	(dBuV/m)	(dB)	
2483.5						74.00	54.00		Peak

Operation Mode TX CH High Test Date Feb. 14, 2005

Fundamental Frequency 2480 MHz Test By Alex Temperature 25 $^{\circ}$ C Pol Hor. Humidity 65 $^{\circ}$

 \mathbf{AV} AVPeak Peak Actual FS Reading Reading Ant./CL \mathbf{AV} Limit Peak Limit Margin Remark Freq. (dBuV) CF(dB) (dBuV/m) (dBuV/m) (dBuV/m)(dB) (MHz) (dBuV) Peak 2483.5 74.00 54.00

- (1) Datas of measurement within this frequency range shown " " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column °
- (3) Spectrum Peak Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (4) Spectrum AV Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 24

9. SPURIOUS RADIATED EMISSION TEST

9.1. Standard Applicable

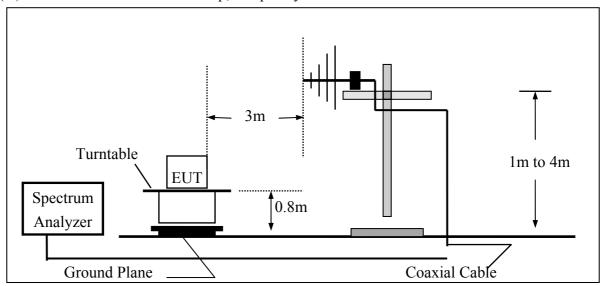
According to §15.247(c), all other emissions outside these bands shall not exceed the general radiated emission limits specified in §15.209(a). And according to §15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

9.2. EUT Setup

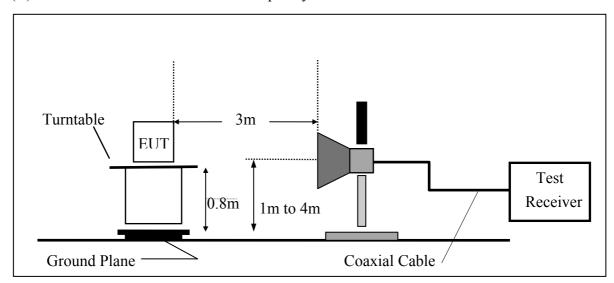
- 1. The radiated emission tests were performed in the 3 meter open-test site, using the setup in accordance with the ANSI C63.4-2003.
- 2. The EUT was put in the front of the test table. The peripherals was placed on the side of the host system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The spacing between the peripherals was 10 centimeters.
- 4. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 5. The host PC system was connected with 110Vac/60Hz power source.

9.3. Measurement Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until all frequency measured were complete.

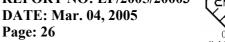

REPORT NO: EF/2005/20003

DATE: Mar. 04, 2005 Page: 25



9.4. Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1GHz


(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

REPORT NO: EF/2005/20003

DATE: Mar. 04, 2005

9.5. **Measurement Equipment Used:**

966 Chamber											
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.						
TYPE		NUMBER	NUMBER	CAL.							
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005						
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005						
Bilog Antenna	SCHWAZBECK	VULB9163	152	06/03/2004	06/02/2005						
Horn antenna	Schwarzbeck	BBHA 9120D	309/320	08/16/2004	08/15/2005						
Horn antenna	Schwarzbeck	BBHA 9170	184/185	07/04/2004	07/03/2005						
Pre-Amplifier	HP	8447D	2944A09469	07/19/2004	07/18/2005						
Pre-Amplifier	HP	8494B	3008A00578	02/26/2004	02/25/2005						
Turn Table	HD	DT420	N/A	N.C.R	N.C.R						
Antenna Tower	HD	MA240-N	240/657	N.C.R	N.C.R						
Controller	HD	HD100	N/A	N.C.R	N.C.R						
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	10/09/2004	10/08/2005						
Low Loss Cable HUBER+SUHN		SUCOFLEX 104PEA-3M 3m		10/09/2004	10/08/2005						
Site NSA	SGS	966 chamber	N/A	11/17/2004	11/16/2005						

9.6. Field Strength Calculation

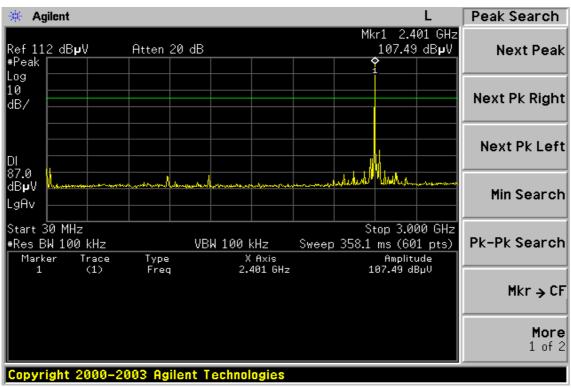
The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

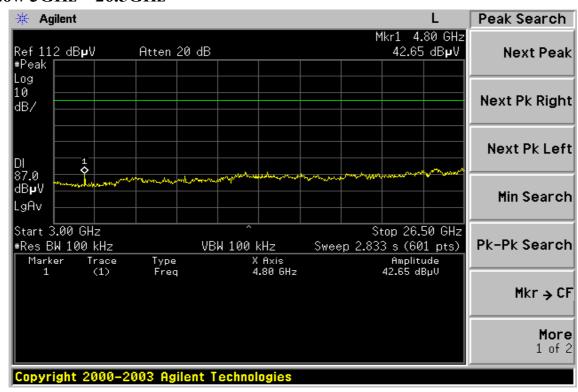
1	Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
		RA = Reading Amplitude	AG = Amplifier Gain
		AF = Antenna Factor	

9.7. Measurement Result

Refer to attach tabular data sheets.



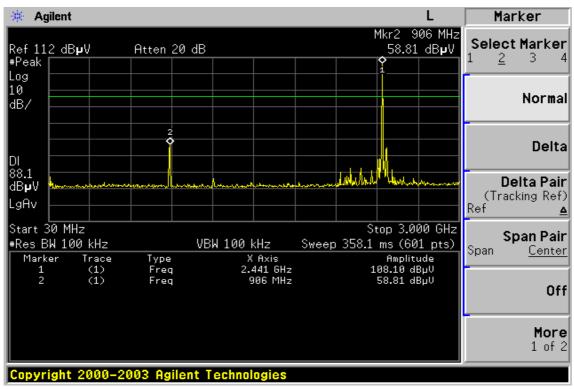
REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**


Page: 27

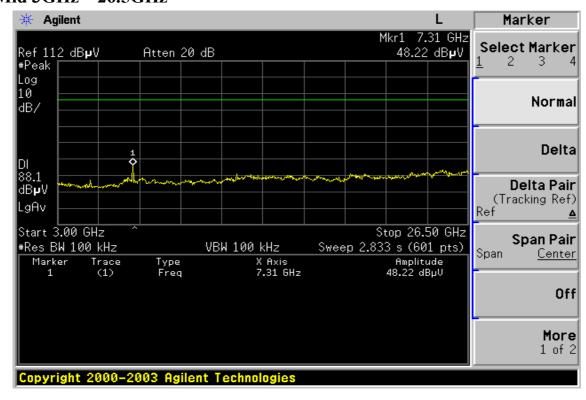
Conducted Spurious Emission Measurement Result Ch Low 30MHz - 3GHz

Ch Low 3GHz – 26.5GHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.



REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**


Page: 28

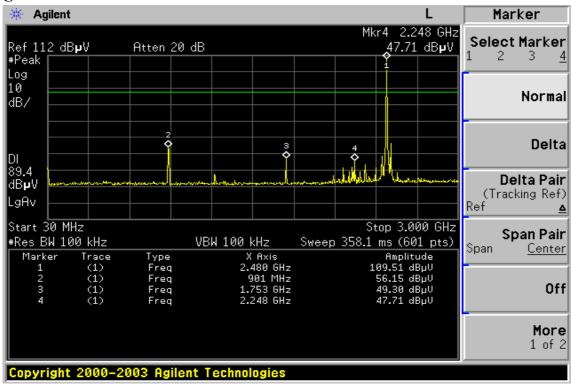
Ch Mid 30MHz - 3GHz

Ch Mid 3GHz – 26.5GHz

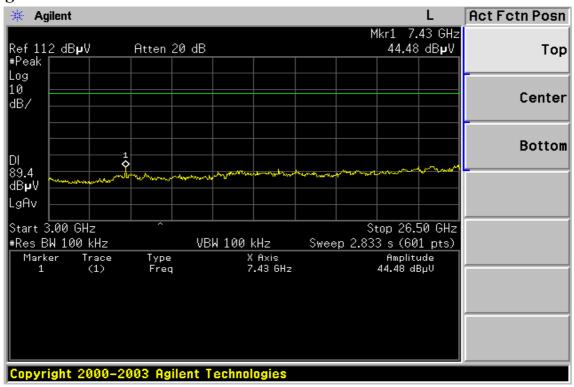
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

 SGS Taiwan Ltd.
 No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei Country, Taiwan. / 台北縣五股工業區五工路 134 號 t (886-2) 2299-3939

 方灣檢驗科技股份有限公司
 f (886-2) 2298-2698
 www.sgs.com.tw



REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**


Page: 29

Ch High 30MHz - 3GHz

Ch High 3GHz – 26.5GHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 30

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode TX CH Low **Test Date** Feb. 25, 2005

Fundamental Frequency 2402MHz Test By Alex Temperature 25 °C Pol Ver./Hor.

65 % Humidity

Freq.	Ant.Pol.	Detector Mode	Reading	Factor	Actual FS	Limit3m	Safe Margin
(MHz)	H/V	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
67.83	V	Peak	44.21	-15.88	28.33	40.00	-11.67
96.93	V	Peak	47.72	-17.45	30.27	43.50	-13.23
128.94	V	Peak	43.47	-14.79	28.68	43.50	-14.82
300.63	V	Peak	44.82	-13.37	31.45	46.00	-14.55
67.83	Н	Peak	43.59	-15.88	27.71	40.00	-12.29
96.93	Н	Peak	45.17	-17.45	27.72	43.50	-15.78
128.94	Н	Peak	43.4	-14.79	28.61	43.50	-14.89
252.13	Н	Peak	39.87	-15.26	24.61	46.00	-21.39
300.63	Н	Peak	47.71	-13.37	34.34	46.00	-11.66
623.64	Н	Peak	37.12	- 7.1	30.02	46.00	-15.98

- (1) Measuring frequencies from 30 MHz to the 1GHz •
- (2) Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/QP detector mode.
- (3) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz.

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 31

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode TX CH Mid Test Date Feb. 25, 2005

Fundamental Frequency 2441MHz Test By Alex Temperature 25 °C Pol Ver./Hor.

65 % Humidity

Freq.	Ant.Pol.	Detector Mode	Reading	Factor	Actual FS	Limit3m	Safe Margin
(MHz)	H/V	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
33.88	V	Peak	43.83	-15.13	28.70	40.00	-11.30
67.83	V	Peak	45.11	-15.88	29.23	40.00	-10.77
96.93	V	Peak	48.43	-17.45	30.98	43.50	-12.52
128.94	V	Peak	44.17	-14.79	29.38	43.50	-14.12
300.63	V	Peak	44.38	-13.37	31.01	46.00	-14.99
67.83	Н	Peak	43.73	-15.88	27.85	40.00	-12.15
96.93	Н	Peak	45.51	-17.45	28.06	43.50	-15.44
128.94	Н	Peak	42.93	-14.79	28.14	43.50	-15.36
300.63	Н	Peak	48.60	-13.37	35.23	46.00	-10.77
599.39	Н	Peak	37.39	-7.64	29.75	46.00	-16.25
623.64	Н	Peak	37.42	-7.10	30.32	46.00	-15.68

- (1) Measuring frequencies from 30 MHz to the 1GHz •
- (2) Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/QP detector mode.
- (3) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz.

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 32

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode TX CH High Test Date Feb. 25, 2005

Fundamental Frequency 2480MHz Test By Alex Temperature 25 °C Pol Ver./Hor.

65 % Humidity

Freq.	Ant.Pol.	Detector Mode	Reading	Factor	Actual FS	Limit3m	Safe Margin
(MHz)	H/V	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
65.89	V	Peak	43.36	-14.96	28.40	40.00	-11.60
96.93	V	Peak	48.12	-16.97	31.15	43.50	-12.35
128.94	V	Peak	43.27	-14.48	28.79	43.50	-14.71
300.63	V	Peak	42.4	-13.35	29.05	46.00	-16.95
67.83	Н	Peak	45.05	-15.88	29.17	40.00	-10.83
96.93	H	Peak	48.12	-17.45	30.67	43.50	-12.83
128.94	Н	Peak	43.27	-14.79	28.48	43.50	-15.02
300.63	H	Peak	49.25	-13.37	35.88	46.00	-10.12
599.39	H	Peak	38.97	-7.64	31.33	46.00	-14.67
623.64	Н	Peak	38.57	-7.10	31.47	46.00	-14.53

- (1) Measuring frequencies from 30 MHz to the 1GHz •
- (2) Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/QP detector mode.
- (3) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz.

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 33

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode	TX CH Low	Test Date	Feb. 25, 2005
Fundamental Frequency	2402 MHz	Test By	Alex
Temperature	25 ℃	Pol	Ver.
Humidity	65 %		

	Peak	\mathbf{AV}		Actu	al FS	Peak	\mathbf{AV}	
Freq.	Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m	(dBuV/m)	(dB)
1500.5								
2391.0								
4804.0								
7206.0								
9608.0								
12010.0								
14412.0								
16814.0								

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency °
- (2) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column o
- (4) Spectrum Peak Setting: 1GHz-26GHz, RBW=1MHz, VBW=3MHz, Sweep time=200
- (5) Spectrum AV Setting: 1GHz-26GHz, RBW=1MHz, VBW=10Hz, Sweep time=200 ms.

19216.0 21618.0 24020.0

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 34

Radiated Spurious Emission Measurement Result (above 1GHz)

TX CH Low **Test Date** Feb. 25. 2005 Operation Mode Fundamental Frequency 2402 MHz Test By Alex Temperature 25 °C Pol Hor

65 % Humidity

	Peak	\mathbf{AV}		Actu	al FS	Peak	AV	
Freq.	Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
1500.5	47.46		-7.17	40.29		74.00	54.00	-13.71
2391.0								
4804.0								
7206.0								
9608.0								
12010.0								
14412.0								
16814.0								
19216.0								
21618.0								
24020.0								

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency o
- (2) Datas of measurement within this frequency range shown " " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column o
- (4) Spectrum Peak Setting: 1GHz-26GHz, RBW=1MHz, VBW=3MHz, Sweep time=200
- (5) Spectrum AV Setting: 1GHz-26GHz, RBW=1MHz, VBW=10Hz, Sweep time=200

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 35

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode TX CH Mid Test Date Feb. 25, 2005

Fundamental Frequency 2441 MHz Test By Alex Temperature 25 $^{\circ}$ C Pol Ver

Humidity 65 %

	Peak	\mathbf{AV}		Actual FS		Peak	\mathbf{AV}	
Freq.	Reading	Reading	Ant./CL	Peak	AV	Limit	Limit	Margin
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
2443.0								
4882.0								
7323.0								
9764.0								
12205.0								
14646.0								
17087.0								
19528.0								
21969.0								
24410.0								

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency °
- (2) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column °
- (4) Spectrum Peak Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms
- (5) Spectrum AV Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 36

Radiated Spurious Emission Measurement Result (above 1GHz)

TX CH Mid Test Date Feb. 25, 2005 Operation Mode

Fundamental Frequency 2441 MHz Test By Alex Temperature 25 °C Pol Hor

Humidity 65 %

	Peak	\mathbf{AV}		Actual FS		Peak	\mathbf{AV}	
Freq.	Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
2443.0								
4882.0								
7323.0								
9764.0								
12205.0								
14646.0								
17087.0								
19528.0								
21969.0								
24410.0								

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency °
- (2) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column o
- (4) Spectrum Peak Setting: 1GHz-26GHz, RBW=1MHz, VBW=3MHz, Sweep time=200
- (5) Spectrum AV Setting: 1GHz-26GHz, RBW=1MHz, VBW=10Hz, Sweep time=200 ms.

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 37

Radiated Spurious Emission Measurement Result (above 1GHz)

TX CH High Test Date Feb. 25, 2005 Operation Mode

Fundamental Frequency 2480 MHz Test By Alex Temperature 25 °C Pol Ver

65 % Humidity

	Peak	\mathbf{AV}		Actu	ıal FS	Peak	\mathbf{AV}	
Freq.	Reading	Reading	Ant./CL	Peak	AV	Limit	Limit	Margin
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
2475.5								
4960.0								
7440.0								
9920.0								
12400.0								
14880.0								
17360.0								
19840.0								
22320.0								
24800.0								

Remark:

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency °
- (2) Datas of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column o
- (4) Spectrum Peak Setting: 1GHz-26GHz, RBW=1MHz, VBW=3MHz, Sweep time=200
- (5) Spectrum AV Setting: 1GHz-26GHz, RBW=1MHz, VBW=10Hz, Sweep time=200 ms.

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 38

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode TX CH High Test Date Feb. 25, 2005

Fundamental Frequency 2480 MHz

Temperature

Zero Scrott Test By Alex
Pol Hor

Humidity 65 %

	Peak	\mathbf{AV}		Actu	al FS	Peak	\mathbf{AV}	
Freq.	Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
1500.5	47.83		-7.17	40.66		74.00	54.00	-13.34
2475.5								
7440.0								
9920.0								
12400.0								
14880.0								
17360.0								
19840.0								
22320.0								
24800.0								

Remark:

- (1) Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency $^{\circ}$
- (2) Datas of measurement within this frequency range shown " " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column °
- (4) Spectrum Peak Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 3MHz, Sweep time= 200 ms.
- (5) Spectrum AV Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 39

10. FREQUENCY SEPARATION

10.1. Standard Applicable

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 20dB bandwidth of the hopping channel, whichever is greater.

10.2. Measurement Procedure

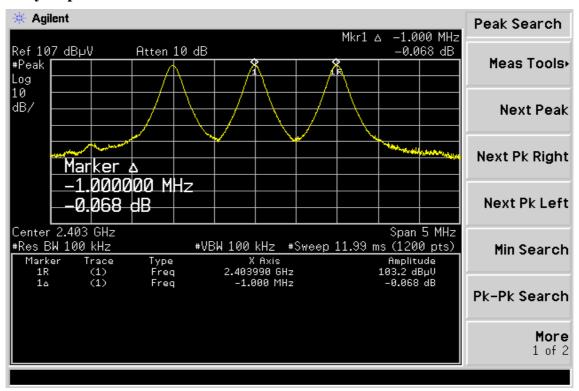
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Adjust Span to 5 MHz, Sweep = auto.
- 5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

10.3. Measurement Result

Channel separation	Limit	Result
MHz	kHz	
1	>=25KHz/ 20 dB bandwidth	PASS

10.4. Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2005	01/21/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2004	10/06/2005



REPORT NO: EF/2005/20003

Page: 40

DATE: Mar. 04, 2005

Frequency Separation Test Data

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 41

11. NUMBER OF HOPPING FREQUENCY

11.1. Standard Applicable

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

11.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz,
- 5. Max hold, view and count how many channel in the band.

11.3. Measurement Result

The nominal channel spacing of the Bluetooth system is 1Mhz independent of the operating mode.

The maximum "initial carrier frequency tolerance" which is allowed for Bluetooth is fcenter = 75 kHz.

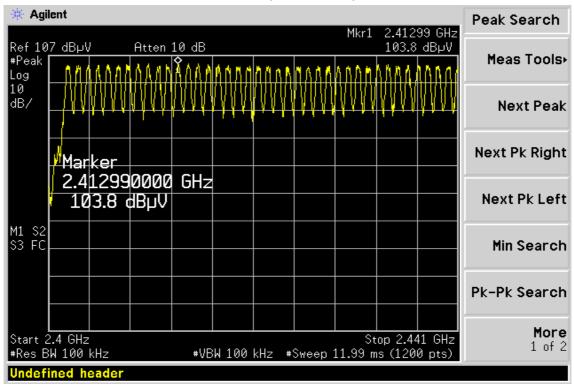
This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/07-E) for three frequencies (2402, 2441, 2480 MHz).

Additionally an example for the channel separation is given in the test report

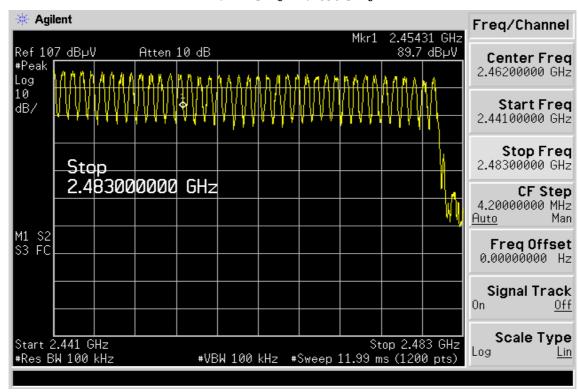
Total No of	Limit (CH)	Measurement result (CH)	Result
hopping channel	15	79	Pass

11.4. Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2005	01/21/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2004	10/06/2005


REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 42



Channel Number

2.4 GHz - 2.441GHz.

2.441 GHz - 2.4835GHz

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 43

12. TIME OF OCCUPANCY (DWELL TIME)

12.1. Standard Applicable

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz. The average time of occupancy on any frequency shall not greater than 0.4 s within period of 0.4 seconds multiplied by the number of hopping channel employed.

12.2. Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span = 0Hz, Adjust Sweep = 30s.
- 5. Repeat above procedures until all frequency measured were complete.

12.3. Measurement Result

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is a follows:

Dwell time = time slot length * hop rate / number of hopping channels *30s

Example for a DH1 packet (with a maximum length of one time slot)

Dwell time = $625 \mu s * 1600 1/s / 79 * 30s = 0.3797s$ (in a 30s period)

For multislot packet the hopping is reduced according to the length of the packet.

Example for a DH5 packet (with a maximum length of five time slots)

Dwell time = $5 * 625 \mu s * 1600 * 1/5 * 1/s / 79 * 30s = 0.3797s$ (in a 30s period)

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for all

Bluetooth devices. There for all Bluetooth devices comply with the FCC dwell time requirement in data mode.

This was checked during the Bluetooth Qualification tests.

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 44

The Dwell time in hybrid mode is measured and stated in the test report.

A period time =
$$0.4 \text{ (ms)} * 79 = 31.6 \text{ (s)}$$

CH Low: DH1 time slot =
$$0.405$$
 (ms) * $(1600/(2*79))$ * $31.6 = 129.6$ (ms)

DH3 time slot =
$$1.675$$
 (ms) * $(1600/(4*79))$ * $31.6 = 268$ (ms)

DH5 time slot =
$$2.295$$
 (ms) * $(1600/(6*79))$ * $31.6 = 312$ (ms)

CH Mid: DH1 time slot =
$$0.405$$
 (ms) * $(1600/(2*79))$ * $31.6 = 129.6$ (ms)

DH3 time slot =
$$1.675$$
 (ms) * $(1600/(4*79))$ * $31.6 = 268$ (ms)

DH5 time slot =
$$2.906$$
 (ms) * $(1600/(6*79))$ * $31.6 = 309.97$ (ms)

CH High: DH1 time slot =
$$0.416 \text{ (ms)} * (1600/(2*79)) * 31.6 = 129.6 \text{ (ms)}$$

DH3 time slot =
$$1.662 \text{ (ms)} * (1600/(4*79)) * 31.6 = 265.92 \text{ (ms)}$$

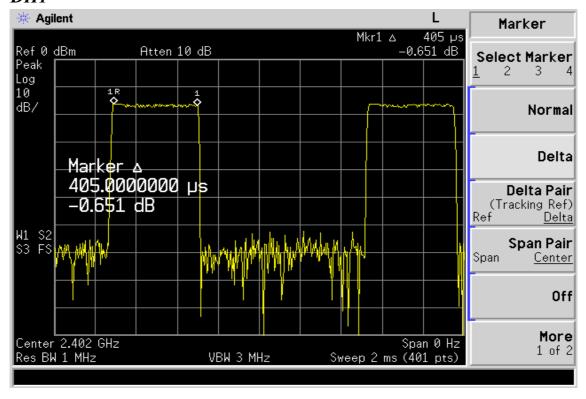
DH5 time slot =
$$2.906$$
 (ms) * $(1600/(6*79))$ * $31.6 = 309.97$ (ms)

12.4. Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Spectrum Analyzer	Agilent	E4446A	MY43360126	01/22/2005	01/21/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2004	10/06/2005

REPORT NO: EF/2005/20003

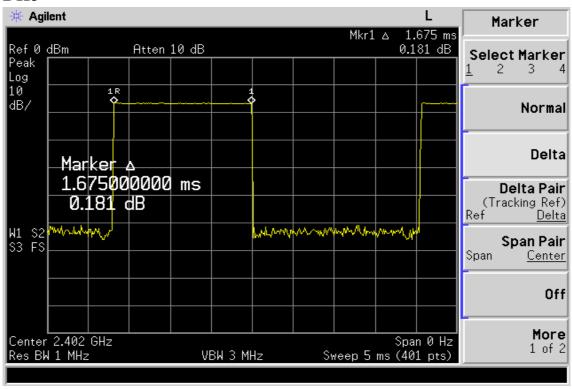
DATE: Mar. 04, 2005


Page: 45

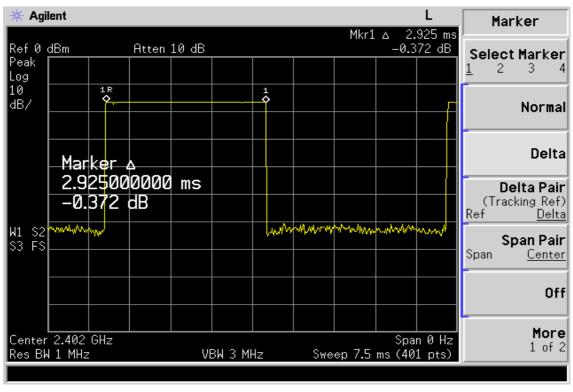
Dwell Time Test Data

CH-Low

DH1

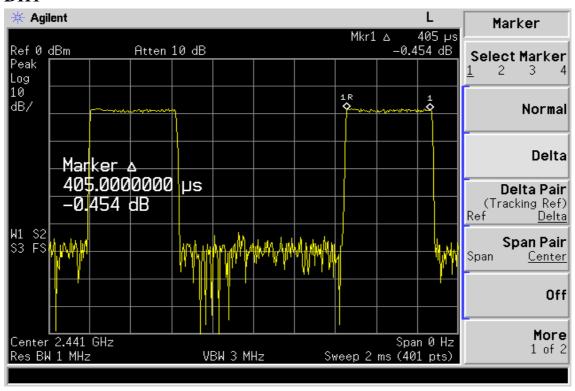


REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

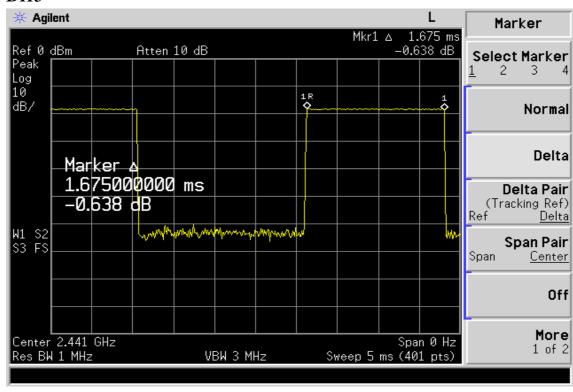

Page: 46

DH3

DH5


REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

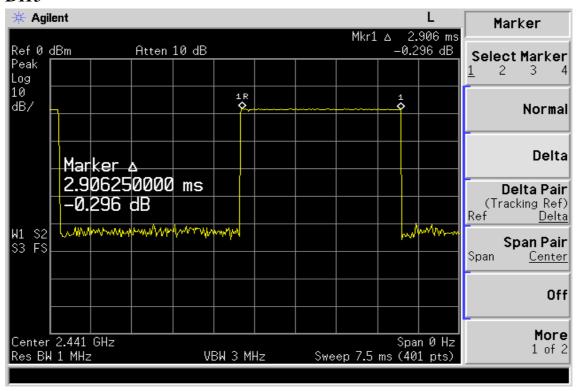
Page: 47



CH-Mid

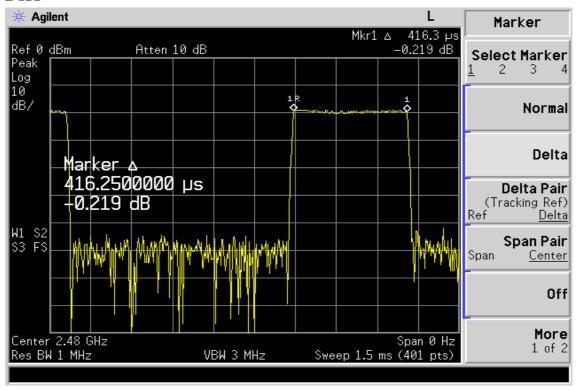
DH1

DH3



REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

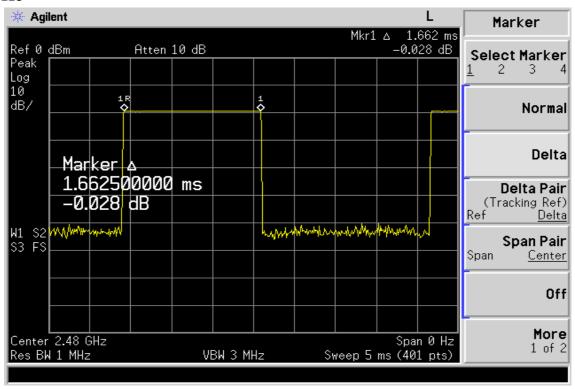
Page: 48



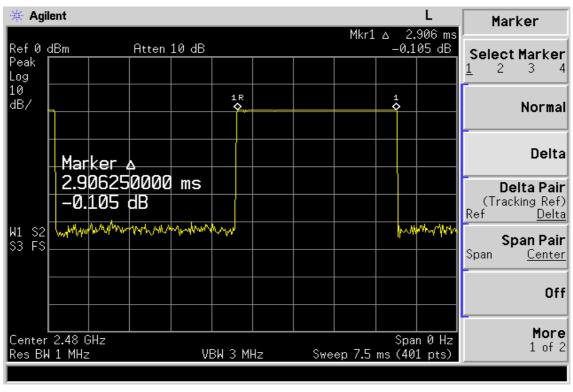
DH₅

CH-High

DH1



REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**


Page: 49

DH3

DH5

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 50

13. Peak Power Spectral Density

13.1. Standard Applicable

According to §15.247(d), for direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3kHz band during any time interval of continuous transmission.

13.2. Measurement Procedure

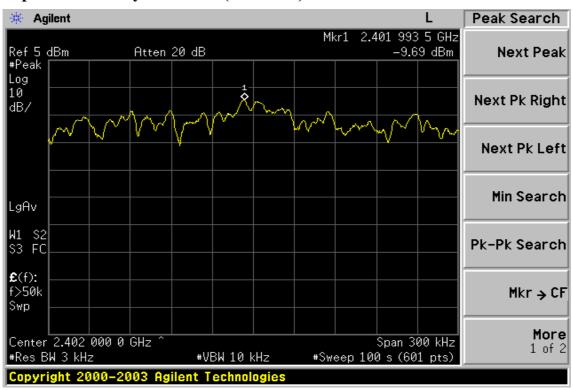
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 3KHz, VBW = 10KHz, Span = 300KHz, Sweep=100s
- 4. Record the max. reading.
- 5. Repeat above procedures until all frequency measured were complete.

13.3. Measurement Result

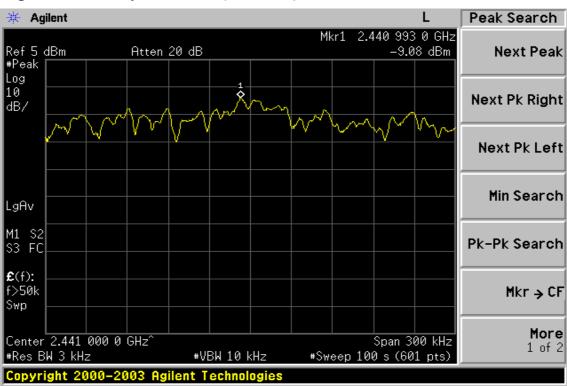
СН	RF Power Density	Cable loss	RF Power Density	Maximum Limit
СП	Reading (dBm)	(dB)	Level (dBm)	(dBm)
Low	-9.69	0.20	-9.49	8
Mid	-9.08	0.20	-8.88	8
High	-8.27	0.20	-8.07	8

13.4. Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2004	10/06/2005

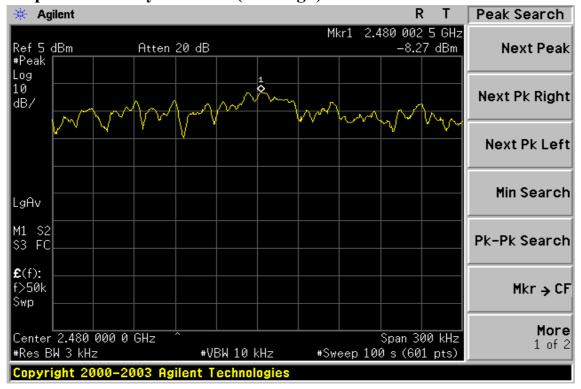


REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005


Page: 51

Power Spectral Density Test Plot (CH-Low)

Power Spectral Density Test Plot (CH-Mid)



REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 52

Power Spectral Density Test Plot (CH-High)

REPORT NO: EF/2005/20003 **DATE: Mar. 04, 2005**

Page: 53

14. ANTENNA REQUIREMENT

14.1. Standard Applicable

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by the responsible party shall be used with the device.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

14.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is 2 dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

REPORT NO: EF/2005/20003 DATE: Mar. 04, 2005

Page: 54

15. RF EXPOSURE

15.1. Standard Applicable

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a Portable device.

15.2. Measurement Result:

This is a portable device and the Max peak output power is 2.65dBm (1.84 mW) lower than low threshold 60/fGHz mW (24.48mW), d<2.5cm in general population category;

The SAR measurement is not necessary.