
Appendix A. System Check Data

Test Laboratory: DEKRA

Date: 2024/12/01

System Performance Check_2450MHz-Head**DUT: Dipole 2450 MHz; Type: D2450V2**

Communication System: UID 0, CW; Frequency: 2450 MHz

Communication System PAR: 0 dB

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.77$ S/m; $\epsilon_r = 39.17$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

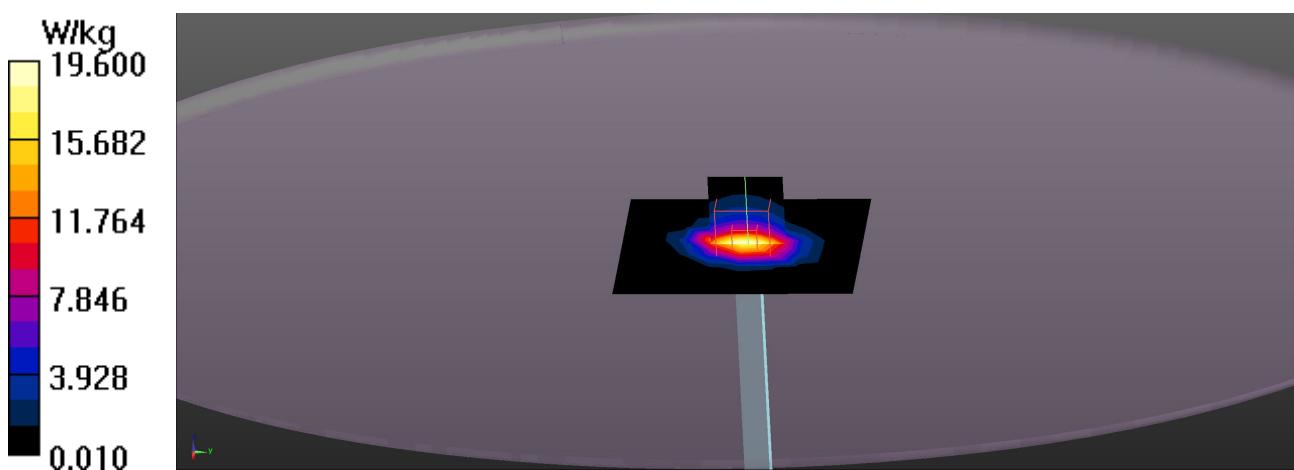
- Probe: EX3DV4 - SN3801; ConvF(7.41, 7.41, 7.41) @ 2450 MHz; Calibrated: 2024/06/20
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1305; Calibrated: 2024/04/18
- Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199
- Measurement SW: DASY52, Version 52.10 (4);

Configuration/2450MHz-Head/Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 19.6 W/kg

Configuration/2450MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 111.4 V/m; Power Drift = 0.14 dB


Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.23 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 50.1%

Maximum value of SAR (measured) = 21.3 W/kg

Test Laboratory: DEKRA

Date: 2024/11/30

System Performance Check_5250MHz-Head**DUT: D5GHzV2; Type: D5GHzV2**

Communication System: UID 0, CW; Frequency: 5250 MHz

Communication System PAR: 0 dB

Medium parameters used: $f = 5250$ MHz; $\sigma = 4.73$ S/m; $\epsilon_r = 36.35$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

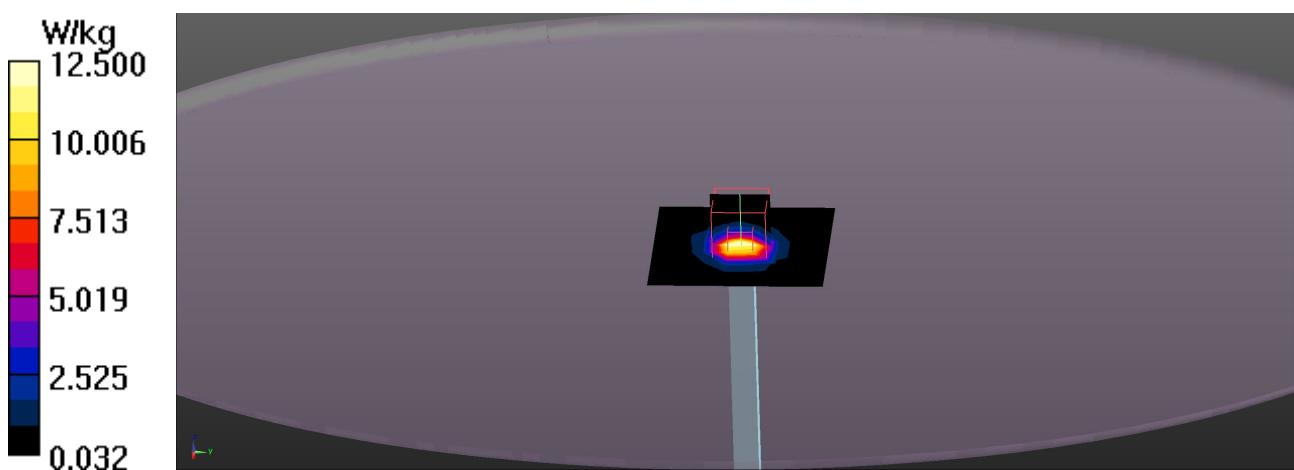
- Probe: EX3DV4 - SN3801; ConvF(5.23, 5.23, 5.23) @ 5250 MHz; Calibrated: 2024/06/20
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1305; Calibrated: 2024/04/18
- Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199
- Measurement SW: DASY52, Version 52.10 (4);

Configuration/5250MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.5 W/kg

Configuration/5250MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.83 V/m; Power Drift = -0.10 dB


Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.26 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 66.8%

Maximum value of SAR (measured) = 19.0 W/kg

Test Laboratory: DEKRA

Date: 2024/11/30

System Performance Check_5600MHz-Head**DUT: D5GHzV2; Type: D5GHzV2**

Communication System: UID 0, CW; Frequency: 5600 MHz

Communication System PAR: 0 dB

Medium parameters used: $f = 5600$ MHz; $\sigma = 5.21$ S/m; $\epsilon_r = 35.39$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

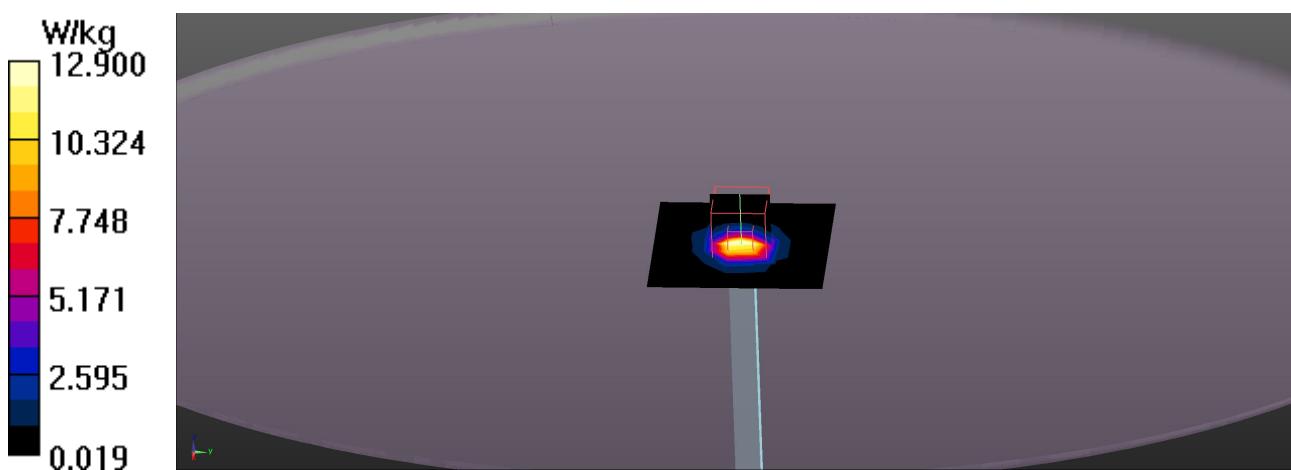
- Probe: EX3DV4 - SN3801; ConvF(4.63, 4.63, 4.63) @ 5600 MHz; Calibrated: 2024/06/20
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1305; Calibrated: 2024/04/18
- Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199
- Measurement SW: DASY52, Version 52.10 (4);

Configuration/5600MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.9 W/kg

Configuration/5600MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.95 V/m; Power Drift = 0.12 dB


Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.35 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 64%

Maximum value of SAR (measured) = 20.5 W/kg

Test Laboratory: DEKRA

Date: 2024/11/29

System Performance Check_5800MHz-Head**DUT: D5GHzV2; Type: D5GHzV2**

Communication System: UID 0, CW; Frequency: 5800 MHz

Communication System PAR: 0 dB

Medium parameters used: $f = 5800$ MHz; $\sigma = 5.45$ S/m; $\epsilon_r = 35.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

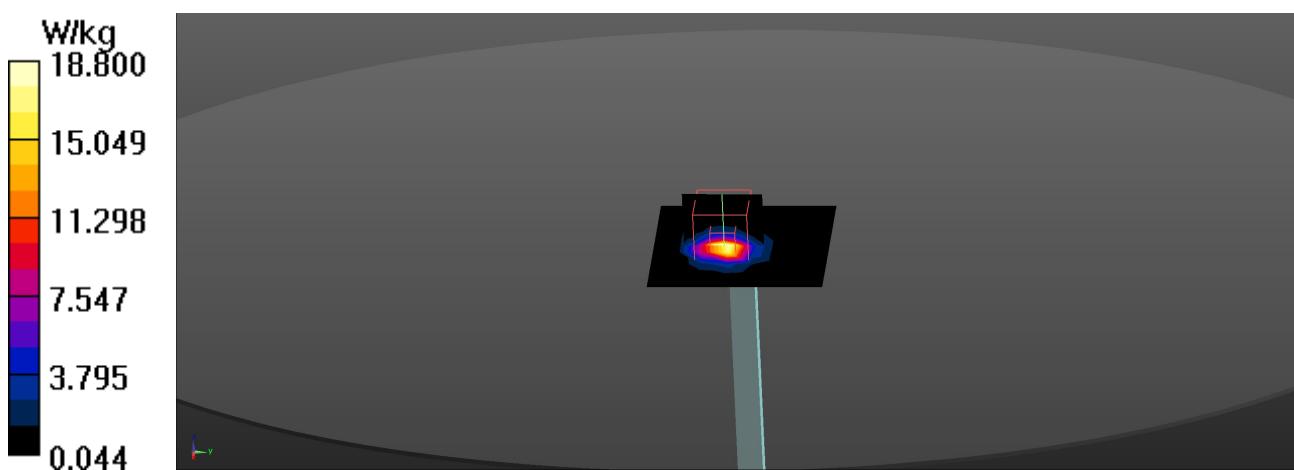
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 - SN7631; ConvF(5.14, 5.14, 5.14) @ 5800 MHz; Calibrated: 2024/02/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1651; Calibrated: 2024/02/15
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2139
- Measurement SW: DASY52, Version 52.10 (4);

Configuration/5800MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (measured) = 18.8 W/kg**Configuration/5800MHz-Head/Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.52 V/m; Power Drift = 0.14 dB


Peak SAR (extrapolated) = 36.0 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 61.9%

Maximum value of SAR (measured) = 21.2 W/kg

Test Laboratory: DEKRA

Date: 2024/11/30

System Performance Check_5800MHz-Head**DUT: D5GHzV2; Type: D5GHzV2**

Communication System: UID 0, CW; Frequency: 5800 MHz

Communication System PAR: 0 dB

Medium parameters used: $f = 5800$ MHz; $\sigma = 5.47$ S/m; $\epsilon_r = 34.84$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

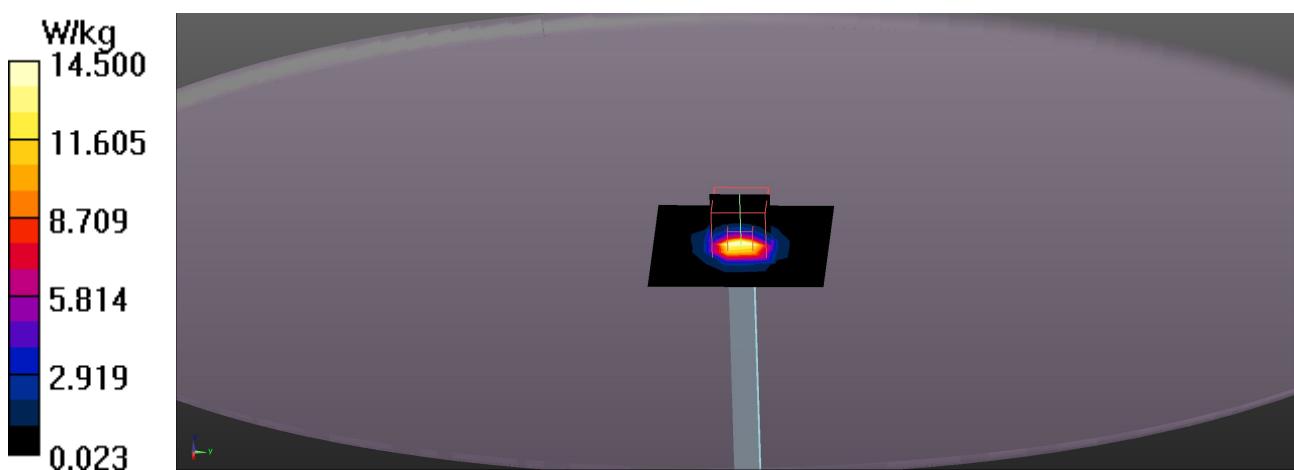
- Probe: EX3DV4 - SN3801; ConvF(4.89, 4.89, 4.89) @ 5800 MHz; Calibrated: 2024/06/20
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1305; Calibrated: 2024/04/18
- Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199
- Measurement SW: DASY52, Version 52.10 (4);

Configuration/5800MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 14.5 W/kg

Configuration/5800MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.49 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 35.8 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.29 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 64.2%

Maximum value of SAR (measured) = 22.2 W/kg

