

Appendix B – System Check Plots

Date: 2024/11/5

System Performance Check at 2450 MHz

DUT: D2450V2_SN712

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2450$ MHz; $\sigma = 1.779$ S/m; $\epsilon_r = 39.443$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

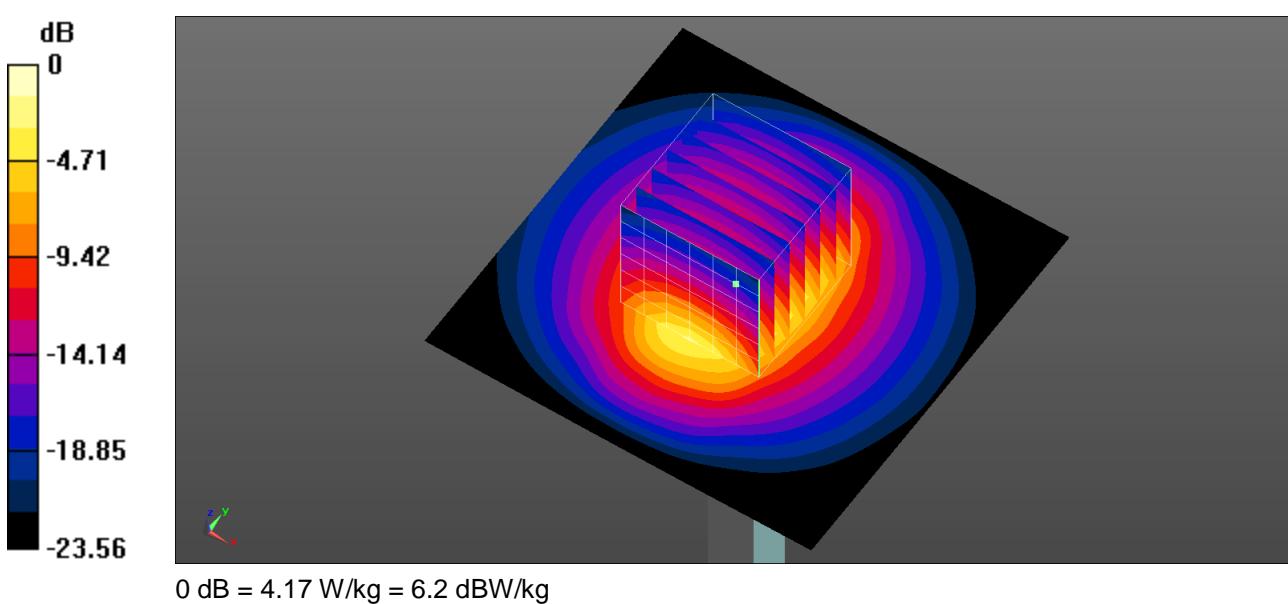
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(7.73, 7.11, 7.58) @ 2450 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 2450MHz/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 4.16 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.26 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 5.08 W/kg

SAR(1 g) = 2.54 W/kg; SAR(10 g) = 1.2 W/kg

Smallest distance from peaks to all points 3 dB below = 9.2 mm

Ratio of SAR at M2 to SAR at M1 = 54.5%

Maximum value of SAR (measured) = 4.17 W/kg

Date: 2024/11/6

System Performance Check at 5250 MHz

DUT: D5GHzV2_SN1021

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 5250$ MHz; $\sigma = 4.438$ S/m; $\epsilon_r = 35.254$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

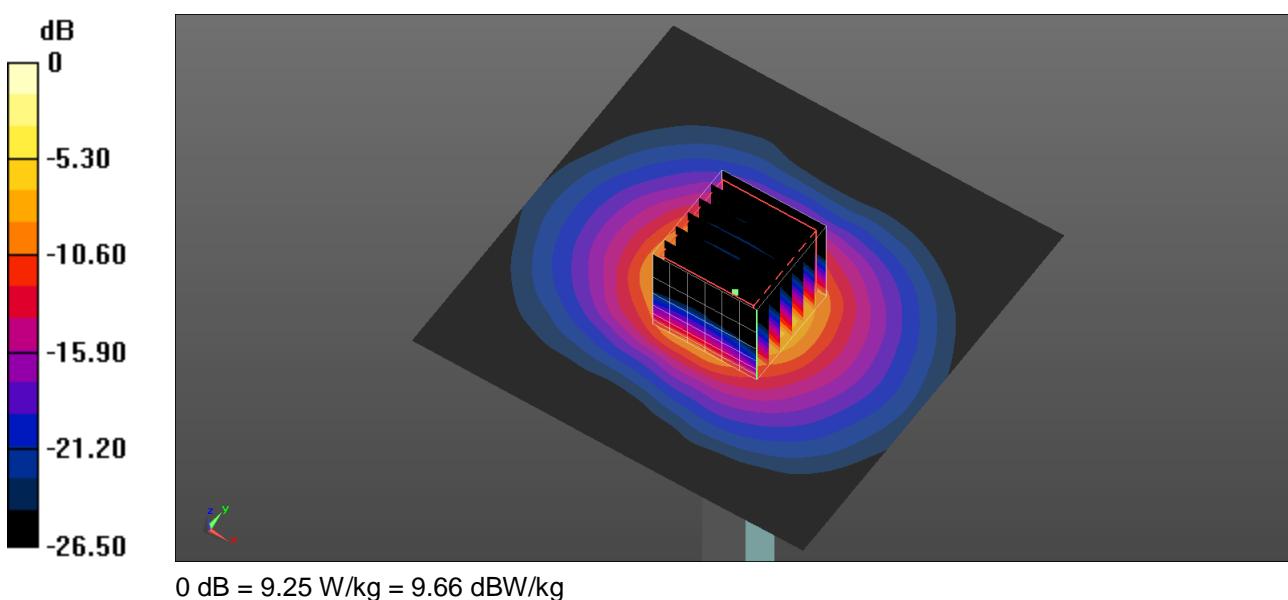
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(5.68, 5.15, 5.5) @ 5250 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5250MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 8.95 W/kg

System Performance Check at 5250MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 51.68 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 3.78 W/kg; SAR(10 g) = 1.09 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 65.8%

Maximum value of SAR (measured) = 9.25 W/kg

Date: 2024/11/7

System Performance Check at 5600 MHz

DUT: D5GHzV2_SN1021

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 5600$ MHz; $\sigma = 4.752$ S/m; $\epsilon_r = 34.874$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

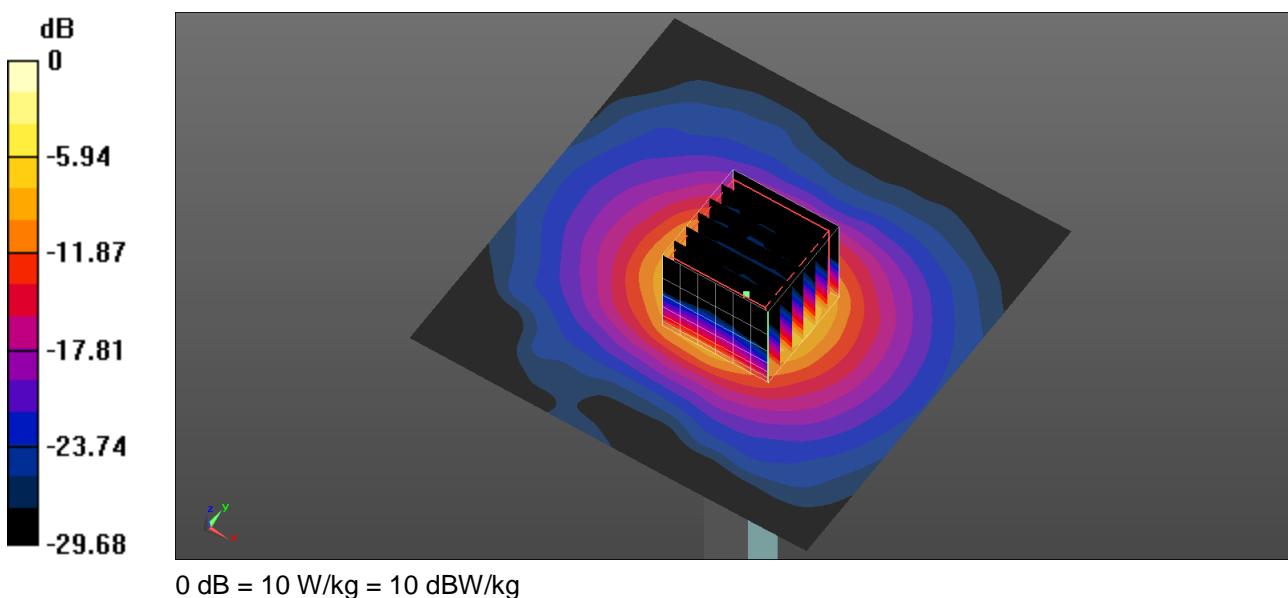
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(4.9, 4.47, 4.74) @ 5600 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5600MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 9.82 W/kg

System Performance Check at 5600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 51.05 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 18.22 W/kg

SAR(1 g) = 3.98 W/kg; SAR(10 g) = 1.14 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm

Ratio of SAR at M2 to SAR at M1 = 56.3%

Maximum value of SAR (measured) = 10 W/kg

Date: 2024/11/8

System Performance Check at 5800 MHz

DUT: D5GHzV2_SN1021

Communication System: UID 0, CW (0); Frequency: 5800 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 5800$ MHz; $\sigma = 4.988$ S/m; $\epsilon_r = 34.518$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

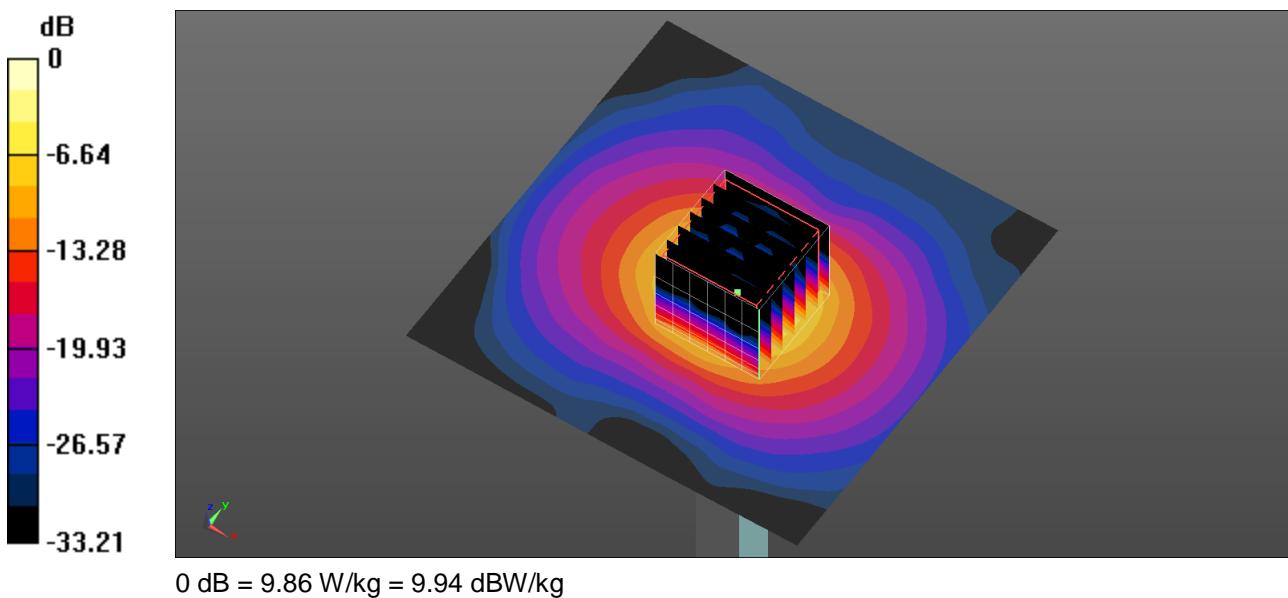
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(5.03, 4.62, 4.96) @ 5800 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5800MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 9.68 W/kg

System Performance Check at 5800MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 51.43 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 18.24 W/kg

SAR(1 g) = 3.85 W/kg; SAR(10 g) = 1.1 W/kg

Smallest distance from peaks to all points 3 dB below = 8.2 mm

Ratio of SAR at M2 to SAR at M1 = 55.5%

Maximum value of SAR (measured) = 9.86 W/kg

