# **XceedID Corporation**

**TEST REPORT FOR** 

Enrollment Reader Model: MT20

**Tested To The Following Standards:** 

FCC Part 15 Subpart C Section(s) 15.207, 15.209, and 15.225

Report No.: 96065-10

Date of issue: October 28, 2014



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 49 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.



### **TABLE OF CONTENTS**

| Administrative Information                           | 3  |
|------------------------------------------------------|----|
| Test Report Information                              | 3  |
| Report Authorization                                 | 3  |
| Test Facility Information                            | 2  |
| Software Versions                                    |    |
| Site Registration & Accreditation Information        |    |
| Summary of Results                                   |    |
| Modifications/Conditions During Testing              |    |
| Equipment Under Test                                 | 6  |
| Peripheral Devices                                   | 6  |
| FCC Part 15 Subpart C                                |    |
| 15.207 AC Conducted Emissions                        |    |
| 15.209 Field Strength of Radiated Spurious Emissions | 20 |
| 15.209(a) Fundamental Field Strength                 | 24 |
| 15.215(c) 20dB Occupied Bandwidth                    | 30 |
| 15.225(a) Fundamental Field Strength                 | 32 |
| 15.225(b)(c) Emission Mask                           | 39 |
| 15.225(d) Field Strength of Spurious Emissions       | 41 |
| 15.225(e) Frequency Stability                        | 45 |
| Supplemental Information                             | 48 |
| Measurement Uncertainty                              | 48 |
| Emissions Test Details                               | 48 |



## **ADMINISTRATIVE INFORMATION**

## **Test Report Information**

REPORT PREPARED FOR: REPORT PREPARED BY:

XceedID CorporationMorgan Tramontin500 Golden Ridge RoadCKC Laboratories, Inc.Bldg #1 Suite 1605046 Sierra Pines DriveGolden, CO 80401Mariposa, CA 95338

Representative: Bryan Hoff Project Number: 96065

Customer Reference Number: 4043899

**DATE OF EQUIPMENT RECEIPT:**September 23, 2014 **DATE(S) OF TESTING:**September 24 - 27, 2014

## **Report Authorization**

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 2 Be

Page 3 of 49 Report No.: 96065-10



# **Test Facility Information**



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

### **Software Versions**

| CKC Laboratories Proprietary Software | Version |
|---------------------------------------|---------|
| EMITest Emissions                     | 5.00.14 |
| Immunity                              | 5.00.07 |

# **Site Registration & Accreditation Information**

| Location   | CB # TAIWAN |                | tion CB # TAIWAN CANADA |        | FCC    | JAPAN |
|------------|-------------|----------------|-------------------------|--------|--------|-------|
| Mariposa A | US0103      | SL2-IN-E-1147R | 3082A-2                 | 90477  | A-0136 |       |
| Mariposa D | US0103      | SL2-IN-E-1147R | 3082A-1                 | 784962 | A-0136 |       |

Page 4 of 49 Report No.: 96065-10



### **SUMMARY OF RESULTS**

Standard / Specification: FCC Part 15 Subpart C

| Test<br>Procedure/Method | Description                                   | Modifications* | Results |
|--------------------------|-----------------------------------------------|----------------|---------|
| 15.207 / ANSI C63.4      | Conducted Emissions                           | NA             | Pass    |
|                          |                                               |                |         |
| 15.209                   | Field Strength of Radiated Spurious Emissions | NA             | Pass    |
|                          |                                               |                |         |
| 15.209(a)                | Fundamental Field Strength                    | NA             | Pass    |
|                          |                                               |                |         |
| 15.215(c)                | Occupied Bandwidth                            | NA             | Pass    |
|                          |                                               |                |         |
| 15.225(a)                | Fundamental Field Strength                    | NA             | Pass    |
|                          |                                               |                |         |
| 15.225(b)(c)             | Emission Mask                                 | NA             | Pass    |
|                          |                                               |                |         |
| 15.225(d)                | Field Strength of Spurious Emissions          | NA             | Pass    |
|                          |                                               |                |         |
| 15.225(e)                | Frequency Stability                           | NA             | Pass    |
|                          |                                               |                |         |

# **Modifications\*/Conditions During Testing**

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

#### **Summary of Conditions**

The Enrollment Reader employs two separate transmitters. One is at 13.56MHz and the other is at 125kHz. No modifications were made during testing.

Page 5 of 49 Report No.: 96065-10

<sup>\*</sup>Modifications listed above must be incorporated into all production units.



# **EQUIPMENT UNDER TEST (EUT)**

#### **EQUIPMENT UNDER TEST**

### **Enrollment Reader**

Manuf: XceedID Model: MT20 Serial: 0001

#### **PERIPHERAL DEVICES**

The EUT was tested with the following peripheral device(s):

AC Adaptor Laptop Computer

Manuf:LenovoManuf:LenovoModel:42T4422Model:SL410Serial:11S42T4422Z1ZF3D01T2L3Serial:LR-ZZW25

Page 6 of 49 Report No.: 96065-10



# **FCC PART 15 SUBPART C**

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) CFR 47 Section 15 Subpart C requirements for Intentional Radiators.

### **15.207 AC Conducted Emissions**

### **Test Data**

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: Allegion

Specification: 15.207 AC Mains - Average

Work Order #: 96065 Date: 9/27/2014
Test Type: Conducted Emissions
Equipment: Enrollment Reader Sequence#: 2

Manufacturer: XceedID Tested By: Eddie Mariscal Model: MT20 120V 60Hz

S/N: 0001

#### Test Equipment:

| ID | Asset #  | Description       | Model          | Calibration Date | Cal Due Date |
|----|----------|-------------------|----------------|------------------|--------------|
|    | AN02668  | Spectrum Analyzer | E4446A         | 8/4/2014         | 8/4/2015     |
| T1 | AN02609  | High Pass Filter  | HE9615-150K-   | 3/25/2014        | 3/25/2016    |
|    |          |                   | 50-720B        |                  |              |
| T2 | ANMACOND | Cable             |                | 8/26/2014        | 8/26/2016    |
| Т3 | ANP02221 | Attenuator        | PE7010-10      | 6/25/2013        | 6/25/2015    |
| T4 | AN00374  | 50uH LISN-Black   | 8028-TS-50-BNC | 3/15/2014        | 3/15/2015    |
|    |          | (dB)              |                |                  |              |
|    | AN00374  | 50uH LISN-White   | 8028-TS-50-BNC | 3/15/2014        | 3/15/2015    |
|    |          | (dB)              |                |                  |              |

*Equipment Under Test* (\* = EUT):

| Function           | Manufacturer | Model # | S/N  |  |
|--------------------|--------------|---------|------|--|
| Enrollment Reader* | XceedID      | MT20    | 0001 |  |

#### Support Devices:

| Function        | Manufacturer | Model # | S/N                  |
|-----------------|--------------|---------|----------------------|
| AC Adaptor      | Lenovo       | 42T4422 | 11S42T4422Z1ZF3D01T2 |
|                 |              |         | L3                   |
| Laptop Computer | Lenovo       | SL410   | LR-ZZW25             |

Page 7 of 49 Report No.: 96065-10



#### Test Conditions / Notes:

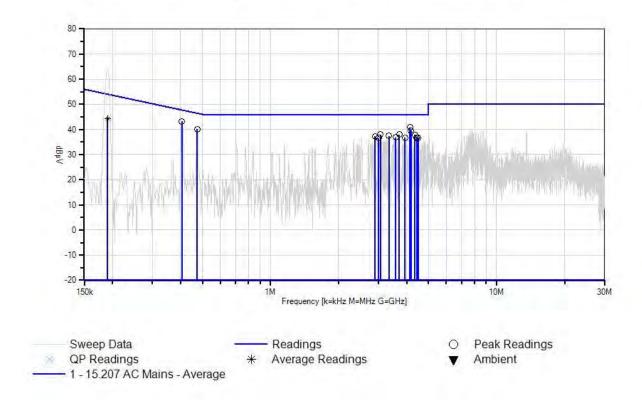
The EUT is placed atop a wooden, non-conductive table of height 80cm. EUT is connected to support laptop via EUT's USB cable. A card is presented to the EUT during testing in order to allow the EUT to constantly transmit. The AC mains port of the support laptop was tested.

The EUT is transmitting at 125kHz.

The EUT is powered by +5VDC via USB cable.

Frequency Range of Interest: 0.15-30MHz

RBW = 9kHz; VBW > RBW


Atmospheric Conditions: Temperature: 21°C Relative Humidity: 56% Atmospheric Pressure: 97.8kPa

Ext Attn: 0 dB

| Freq<br>MHz<br>406.172k<br>4.144M | Rdng<br>dBμV<br>33.0                                                                             | T1<br>dB<br>+0.2                                                                                                                                                                                                                                                                                                             | T2<br>dB<br>+0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T3<br>dB<br>+9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T4<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dist<br>Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Corr<br>dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spec<br>dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz<br>406.172k<br>4.144M         | dBμV<br>33.0                                                                                     | dB<br>+0.2                                                                                                                                                                                                                                                                                                                   | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 406.172k<br>4.144M                | 33.0                                                                                             | +0.2                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $d\mathbf{R}_{\mathbf{H}}\mathbf{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.144M                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                              | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tuoic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | αυμ ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | иБμν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   | 30.5                                                                                             | ι Δ. 1                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 474 529k                          |                                                                                                  | +0.1                                                                                                                                                                                                                                                                                                                         | +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17 1.525K                         | 29.8                                                                                             | +0.2                                                                                                                                                                                                                                                                                                                         | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.178M                            | 29.2                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.064M                            | 27.7                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.711M                            | 27.6                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.349M                            | 27.4                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.345M                            | 27.1                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.903M                            | 27.0                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.583M                            | 26.5                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.932M                            | 26.3                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.434M                            | 26.3                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.493M                            | 26.3                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.005M                            | 26.3                                                                                             | +0.1                                                                                                                                                                                                                                                                                                                         | +0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 190.050k                          | 34.2                                                                                             | +0.2                                                                                                                                                                                                                                                                                                                         | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 190.050k                          | 53.3                                                                                             | +0.2                                                                                                                                                                                                                                                                                                                         | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                   | 3.064M<br>3.711M<br>4.349M<br>3.345M<br>2.903M<br>3.583M<br>3.932M<br>4.434M<br>4.493M<br>3.005M | 4.178M       29.2         3.064M       27.7         3.711M       27.6         4.349M       27.4         3.345M       27.1         2.903M       27.0         3.583M       26.5         3.932M       26.3         4.434M       26.3         4.493M       26.3         3.005M       26.3         190.050k       34.2         ve | 4.178M       29.2       +0.1         3.064M       27.7       +0.1         3.711M       27.6       +0.1         4.349M       27.4       +0.1         3.345M       27.1       +0.1         2.903M       27.0       +0.1         3.583M       26.5       +0.1         3.932M       26.3       +0.1         4.434M       26.3       +0.1         4.493M       26.3       +0.1         3.005M       26.3       +0.1         190.050k       34.2       +0.2         ve | 4.178M       29.2       +0.1       +0.3         3.064M       27.7       +0.1       +0.2         3.711M       27.6       +0.1       +0.3         4.349M       27.4       +0.1       +0.3         3.345M       27.1       +0.1       +0.2         2.903M       27.0       +0.1       +0.2         3.583M       26.5       +0.1       +0.3         3.932M       26.3       +0.1       +0.3         4.434M       26.3       +0.1       +0.3         4.493M       26.3       +0.1       +0.3         3.005M       26.3       +0.1       +0.2         190.050k       34.2       +0.2       +0.0         ve | 4.178M       29.2       +0.1       +0.3       +9.9         3.064M       27.7       +0.1       +0.2       +9.9         3.711M       27.6       +0.1       +0.3       +9.9         4.349M       27.4       +0.1       +0.3       +9.9         3.345M       27.1       +0.1       +0.2       +9.9         2.903M       27.0       +0.1       +0.2       +9.9         3.583M       26.5       +0.1       +0.3       +9.9         3.932M       26.3       +0.1       +0.3       +9.9         4.434M       26.3       +0.1       +0.3       +9.9         4.493M       26.3       +0.1       +0.3       +9.9         3.005M       26.3       +0.1       +0.2       +9.9         190.050k       34.2       +0.2       +0.0       +9.9 | 4.178M       29.2       +0.1       +0.3       +9.9       +0.1         3.064M       27.7       +0.1       +0.2       +9.9       +0.1         3.711M       27.6       +0.1       +0.3       +9.9       +0.1         4.349M       27.4       +0.1       +0.3       +9.9       +0.1         3.345M       27.1       +0.1       +0.2       +9.9       +0.1         2.903M       27.0       +0.1       +0.2       +9.9       +0.1         3.583M       26.5       +0.1       +0.3       +9.9       +0.1         3.932M       26.3       +0.1       +0.3       +9.9       +0.1         4.434M       26.3       +0.1       +0.3       +9.9       +0.1         4.493M       26.3       +0.1       +0.3       +9.9       +0.1         3.005M       26.3       +0.1       +0.2       +9.9       +0.1         190.050k       34.2       +0.2       +0.0       +9.9       +0.1 | 4.178M       29.2       +0.1       +0.3       +9.9       +0.1       +0.0         3.064M       27.7       +0.1       +0.2       +9.9       +0.1       +0.0         3.711M       27.6       +0.1       +0.3       +9.9       +0.1       +0.0         4.349M       27.4       +0.1       +0.3       +9.9       +0.1       +0.0         3.345M       27.1       +0.1       +0.2       +9.9       +0.1       +0.0         2.903M       27.0       +0.1       +0.2       +9.9       +0.1       +0.0         3.583M       26.5       +0.1       +0.3       +9.9       +0.1       +0.0         3.932M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0         4.434M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0         4.493M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0         3.005M       26.3       +0.1       +0.2       +9.9       +0.1       +0.0         190.050k       34.2       +0.2       +0.0       +9.9       +0.1       +0.0 | 4.178M       29.2       +0.1       +0.3       +9.9       +0.1       +0.0       39.6         3.064M       27.7       +0.1       +0.2       +9.9       +0.1       +0.0       38.0         3.711M       27.6       +0.1       +0.3       +9.9       +0.1       +0.0       38.0         4.349M       27.4       +0.1       +0.3       +9.9       +0.1       +0.0       37.8         3.345M       27.1       +0.1       +0.2       +9.9       +0.1       +0.0       37.4         2.903M       27.0       +0.1       +0.2       +9.9       +0.1       +0.0       37.3         3.583M       26.5       +0.1       +0.3       +9.9       +0.1       +0.0       36.9         3.932M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.7         4.434M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.7         4.493M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.6         190.050k       34.2       +0.2       +0.0       +9.9       +0.1       +0.0       44.4         ve </td <td>4.178M       29.2       +0.1       +0.3       +9.9       +0.1       +0.0       39.6       46.0         3.064M       27.7       +0.1       +0.2       +9.9       +0.1       +0.0       38.0       46.0         3.711M       27.6       +0.1       +0.3       +9.9       +0.1       +0.0       38.0       46.0         4.349M       27.4       +0.1       +0.3       +9.9       +0.1       +0.0       37.8       46.0         3.345M       27.1       +0.1       +0.2       +9.9       +0.1       +0.0       37.4       46.0         2.903M       27.0       +0.1       +0.2       +9.9       +0.1       +0.0       37.3       46.0         3.583M       26.5       +0.1       +0.3       +9.9       +0.1       +0.0       36.9       46.0         3.932M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.7       46.0         4.434M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.7       46.0         4.493M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.6       46.0         3.005</td> <td>4.178M       29.2       +0.1       +0.3       +9.9       +0.1       +0.0       39.6       46.0       -6.4         3.064M       27.7       +0.1       +0.2       +9.9       +0.1       +0.0       38.0       46.0       -8.0         3.711M       27.6       +0.1       +0.3       +9.9       +0.1       +0.0       38.0       46.0       -8.0         4.349M       27.4       +0.1       +0.3       +9.9       +0.1       +0.0       37.8       46.0       -8.2         3.345M       27.1       +0.1       +0.2       +9.9       +0.1       +0.0       37.4       46.0       -8.6         2.903M       27.0       +0.1       +0.2       +9.9       +0.1       +0.0       37.3       46.0       -8.7         3.583M       26.5       +0.1       +0.3       +9.9       +0.1       +0.0       36.9       46.0       -9.1         3.932M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.7       46.0       -9.3         4.434M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.7       46.0       -9.3         3.005M       26.3</td> | 4.178M       29.2       +0.1       +0.3       +9.9       +0.1       +0.0       39.6       46.0         3.064M       27.7       +0.1       +0.2       +9.9       +0.1       +0.0       38.0       46.0         3.711M       27.6       +0.1       +0.3       +9.9       +0.1       +0.0       38.0       46.0         4.349M       27.4       +0.1       +0.3       +9.9       +0.1       +0.0       37.8       46.0         3.345M       27.1       +0.1       +0.2       +9.9       +0.1       +0.0       37.4       46.0         2.903M       27.0       +0.1       +0.2       +9.9       +0.1       +0.0       37.3       46.0         3.583M       26.5       +0.1       +0.3       +9.9       +0.1       +0.0       36.9       46.0         3.932M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.7       46.0         4.434M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.7       46.0         4.493M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.6       46.0         3.005 | 4.178M       29.2       +0.1       +0.3       +9.9       +0.1       +0.0       39.6       46.0       -6.4         3.064M       27.7       +0.1       +0.2       +9.9       +0.1       +0.0       38.0       46.0       -8.0         3.711M       27.6       +0.1       +0.3       +9.9       +0.1       +0.0       38.0       46.0       -8.0         4.349M       27.4       +0.1       +0.3       +9.9       +0.1       +0.0       37.8       46.0       -8.2         3.345M       27.1       +0.1       +0.2       +9.9       +0.1       +0.0       37.4       46.0       -8.6         2.903M       27.0       +0.1       +0.2       +9.9       +0.1       +0.0       37.3       46.0       -8.7         3.583M       26.5       +0.1       +0.3       +9.9       +0.1       +0.0       36.9       46.0       -9.1         3.932M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.7       46.0       -9.3         4.434M       26.3       +0.1       +0.3       +9.9       +0.1       +0.0       36.7       46.0       -9.3         3.005M       26.3 |



CKC Laboratories, Inc. Date: 9/27/2014 Time: 12:06:18 Allegion WO#: 96065 15:207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 2 Ext ATTN: 0 dB



Note: Since the time of testing, it has come to CKC Laboratories attention the manufacturer name Allegion referenced in the above plot should read XceedID Corporation. The screen captures were taken at the time of testing and cannot be changed.



Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: Allegion

Specification: 15.207 AC Mains – Average

Work Order #: 96065 Date: 9/27/2014
Test Type: Conducted Emissions Time: 12:15:42

Equipment: Enrollment Reader Sequence#: 3

Manufacturer: XceedID Tested By: Eddie Mariscal Model: MT20 120V 60Hz

S/N: 0001

#### Test Equipment:

| 1 csi Equip | inciti.  |                   |                |                  |              |
|-------------|----------|-------------------|----------------|------------------|--------------|
| ID          | Asset #  | Description       | Model          | Calibration Date | Cal Due Date |
| T1          | AN02668  | Spectrum Analyzer | E4446A         | 8/4/2014         | 8/4/2015     |
| T2          | AN02609  | High Pass Filter  | HE9615-150K-   | 3/25/2014        | 3/25/2016    |
|             |          |                   | 50-720B        |                  |              |
| Т3          | ANMACOND | Cable             |                | 8/26/2014        | 8/26/2016    |
| T4          | ANP02221 | Attenuator        | PE7010-10      | 6/25/2013        | 6/25/2015    |
|             | AN00374  | 50uH LISN-Black   | 8028-TS-50-BNC | 3/15/2014        | 3/15/2015    |
|             |          | (dB)              |                |                  |              |
| T5          | AN00374  | 50uH LISN-White   | 8028-TS-50-BNC | 3/15/2014        | 3/15/2015    |
|             |          | (dB)              |                |                  |              |

#### Equipment Under Test (\* = EUT):

| Function           | Manufacturer | Model # | S/N  |  |
|--------------------|--------------|---------|------|--|
| Enrollment Reader* | XceedID      | MT20    | 0001 |  |

#### Support Devices:

| Function        | Manufacturer | Model # | S/N                  |
|-----------------|--------------|---------|----------------------|
| AC Adaptor      | Lenovo       | 42T4422 | 11S42T4422Z1ZF3D01T2 |
|                 |              |         | L3                   |
| Laptop Computer | Lenovo       | SL410   | LR-ZZW25             |

#### Test Conditions / Notes:

The EUT is placed atop a wooden, non-conductive table of height 80cm. EUT is connected to support laptop via EUT's USB cable. A card is presented to the EUT during testing in order to allow the EUT to constantly transmit. The AC mains port of the support laptop was tested.

The EUT is transmitting at 125kHz.

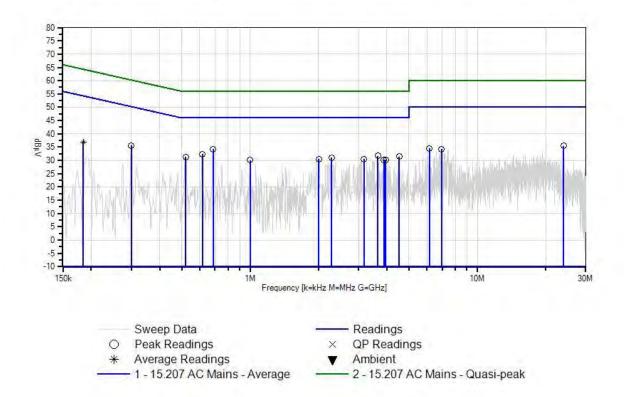
The EUT is powered by +5VDC via USB cable.

Frequency Range of Interest: 0.15-30MHz

RBW = 9kHz; VBW > RBW

Atmospheric Conditions: Temperature: 21°C Relative Humidity: 56% Atmospheric Pressure: 97.8kPa

> Page 10 of 49 Report No.: 96065-10




Ext Attn: 0 dB

| Measur | rement Data: |      | eading lis   | ted by ma | argin. |        |         | Test Lead | d: White |        |          |
|--------|--------------|------|--------------|-----------|--------|--------|---------|-----------|----------|--------|----------|
| #      | Freq         | Rdng | T1           | T2        | Т3     | T4     | Dist    | Corr      | Spec     | Margin | Polar    |
|        | MHz          | dΒμV | T5<br>dB     | dB        | dB     | dB     | Table   | dΒμV      | dΒμV     | dB     | Ant      |
| 1      | 686.874k     | 23.9 | +0.0         | +0.2      | +0.1   | +9.9   | +0.0    | 34.2      | 46.0     | -11.8  | White    |
|        |              |      | +0.1         |           |        |        |         |           |          |        |          |
| 2      | 617.062k     | 22.1 | +0.0         | +0.2      | +0.1   | +9.9   | +0.0    | 32.4      | 46.0     | -13.6  | White    |
| 3      | 2 (51)4      | 21.3 | +0.1         | +0.1      | +0.3   | 10.0   | ١, ٥, ٥ | 31.7      | 46.0     | 14.2   | 3371.24. |
| 3      | 3.651M       | 21.3 | +0.0<br>+0.1 | +0.1      | +0.3   | +9.9   | +0.0    | 31./      | 46.0     | -14.3  | White    |
| 4      | 4.536M       | 21.1 | +0.0         | +0.1      | +0.3   | +9.9   | +0.0    | 31.5      | 46.0     | -14.5  | White    |
|        |              |      | +0.1         |           |        |        |         |           |          |        |          |
| 5      | 23.990M      | 24.5 | +0.0         | +0.2      | +0.7   | +9.9   | +0.0    | 35.5      | 50.0     | -14.5  | White    |
|        | 200.0501     | 25.4 | +0.2         | . 0. 1    | . 0. 1 | . 0. 0 | . 0 0   | 25.6      | 50.0     | 116    | ****     |
| 6      | 299.850k     | 25.4 | +0.0<br>+0.1 | +0.1      | +0.1   | +9.9   | +0.0    | 35.6      | 50.2     | -14.6  | White    |
| 7      | 521.071k     | 21.0 | +0.1         | +0.2      | +0.1   | +9.9   | +0.0    | 31.3      | 46.0     | -14.7  | White    |
| ,      | 321.071K     | 21.0 | +0.1         | . 0.2     | . 0.1  |        | . 0.0   | 51.5      | 10.0     | 11.7   | VV IIIC  |
| 8      | 2.282M       | 20.8 | +0.0         | +0.1      | +0.2   | +9.9   | +0.0    | 31.1      | 46.0     | -14.9  | White    |
|        |              |      | +0.1         |           |        |        |         |           |          |        |          |
| 9      | 2.010M       | 20.2 | +0.0         | +0.1      | +0.2   | +9.9   | +0.0    | 30.5      | 46.0     | -15.5  | White    |
| 1.0    | 2 17514      | 20.2 | +0.1         | +0.1      | +0.2   | +0.0   |         | 20.5      | 46.0     | 15.5   | 3371 '4  |
| 10     | 3.175M       | 20.2 | +0.0<br>+0.1 | +0.1      | +0.2   | +9.9   | +0.0    | 30.5      | 46.0     | -15.5  | White    |
| 11     | 6.160M       | 24.1 | +0.1         | +0.1      | +0.3   | +9.9   | +0.0    | 34.5      | 50.0     | -15.5  | White    |
|        | 0.1001       | 21.1 | +0.1         | . 0.1     | . 0.5  |        | . 0.0   | 5 1.5     | 50.0     | 15.5   | vv inte  |
| 12     | 6.951M       | 23.8 | +0.0         | +0.1      | +0.4   | +9.9   | +0.0    | 34.3      | 50.0     | -15.7  | White    |
|        |              |      | +0.1         |           |        |        |         |           |          |        |          |
| 13     | 3.881M       | 19.8 | +0.0         | +0.1      | +0.3   | +9.9   | +0.0    | 30.2      | 46.0     | -15.8  | White    |
|        |              |      | +0.1         |           |        |        |         |           |          |        |          |
| 14     | 3.949M       | 19.8 | +0.0         | +0.1      | +0.3   | +9.9   | +0.0    | 30.2      | 46.0     | -15.8  | White    |
| 1.5    | 000 5731-    | 19.8 | +0.1         | +0.2      | +0.1   | 10.0   | 100     | 20.1      | 46.0     | 15.0   | Wilsia   |
| 15     | 999.572k     | 19.8 | +0.0<br>+0.1 | +0.2      | +0.1   | +9.9   | +0.0    | 30.1      | 46.0     | -15.9  | White    |
| 16     | 184.637k     | 26.6 | +0.0         | +0.3      | +0.0   | +9.9   | +0.0    | 36.9      | 54.3     | -17.4  | White    |
|        | Ave          |      | +0.1         |           |        |        |         |           |          |        |          |
| ^      | 184.600k     | 52.1 | +0.0         | +0.3      | +0.0   | +9.9   | +0.0    | 62.4      | 54.3     | +8.1   | White    |
|        |              |      | +0.1         |           |        |        |         |           |          |        |          |



CKC Laboratories, Inc. Date: 9/27/2014 Time: 12:15:42 Allegion WO#: 96065 15:207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 3 Ext ATTN: 0 dB



Note: Since the time of testing, it has come to CKC Laboratories attention the manufacturer name Allegion referenced in the above plot should read XceedID Corporation. The screen captures were taken at the time of testing and cannot be changed.



Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: Allegion

Specification: 15.207 AC Mains – Average

Work Order #: 96065 Date: 9/27/2014
Test Type: Conducted Emissions
Equipment: Enrollment Reader Sequence#: 5

Manufacturer: XceedID Tested By: Eddie Mariscal Model: MT20 120V 60Hz

S/N: 0001

#### Test Equipment:

| ID | Asset #  | Description       | Model          | Calibration Date | Cal Due Date |
|----|----------|-------------------|----------------|------------------|--------------|
|    | AN02668  | Spectrum Analyzer | E4446A         | 8/4/2014         | 8/4/2015     |
| T1 | AN02609  | High Pass Filter  | HE9615-150K-   | 3/25/2014        | 3/25/2016    |
|    |          |                   | 50-720B        |                  |              |
| T2 | ANMACOND | Cable             |                | 8/26/2014        | 8/26/2016    |
| Т3 | ANP02221 | Attenuator        | PE7010-10      | 6/25/2013        | 6/25/2015    |
| T4 | AN00374  | 50uH LISN-Black   | 8028-TS-50-BNC | 3/15/2014        | 3/15/2015    |
|    |          | (dB)              |                |                  |              |
|    | AN00374  | 50uH LISN-White   | 8028-TS-50-BNC | 3/15/2014        | 3/15/2015    |
|    |          | (dB)              |                |                  |              |

#### Equipment Under Test (\* = EUT):

| Function           | Manufacturer | Model # | S/N  |  |
|--------------------|--------------|---------|------|--|
| Enrollment Reader* | XceedID      | MT20    | 0001 |  |

#### Support Devices:

| Function        | Manufacturer | Model # | S/N                  |
|-----------------|--------------|---------|----------------------|
| AC Adaptor      | Lenovo       | 42T4422 | 11S42T4422Z1ZF3D01T2 |
|                 |              |         | L3                   |
| Laptop Computer | Lenovo       | SL410   | LR-ZZW25             |

#### Test Conditions / Notes:

The EUT is placed atop a wooden, non-conductive table of height 80cm. EUT is connected to support laptop via EUT's USB cable. A card is presented to the EUT during testing in order to allow the EUT to constantly transmit. The AC mains port of the support laptop was tested.

The EUT is transmitting at 13.56Hz.

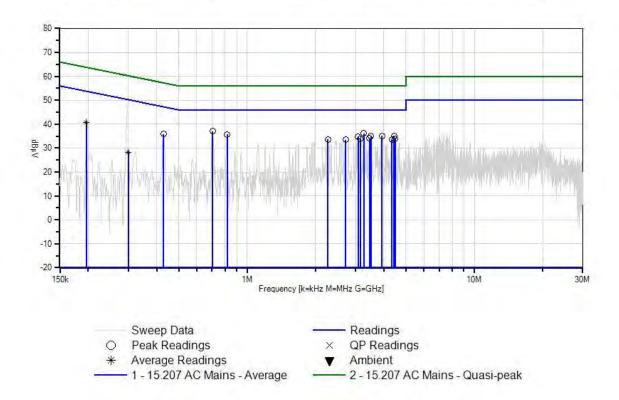
The EUT is powered by +5VDC via USB cable.

Frequency Range of Interest: 0.15-30MHz

RBW = 9kHz; VBW > RBW

Atmospheric Conditions: Temperature: 21°C Relative Humidity: 56% Atmospheric Pressure: 97.8kPa

> Page 13 of 49 Report No.: 96065-10




Ext Attn: 0 dB

|    | rement Data:    |      | ading lis | ted by ma | argin. |      |       | Test Lead | d: Black |        |       |
|----|-----------------|------|-----------|-----------|--------|------|-------|-----------|----------|--------|-------|
| #  | Freq            | Rdng | T1        | T2        | T3     | T4   | Dist  | Corr      | Spec     | Margin | Polar |
|    | MHz             | dΒμV | dB        | dB        | dB     | dB   | Table | dΒμV      | dΒμV     | dB     | Ant   |
| 1  | 704.327k        | 26.7 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 37.0      | 46.0     | -9.0   | Black |
| 2  | 3.268M          | 25.9 | +0.1      | +0.2      | +9.9   | +0.1 | +0.0  | 36.2      | 46.0     | -9.8   | Black |
| 3  | 816.316k        | 25.5 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 35.8      | 46.0     | -10.2  | Black |
| 4  | 3.507M          | 24.8 | +0.1      | +0.3      | +9.9   | +0.1 | +0.0  | 35.2      | 46.0     | -10.8  | Black |
| 5  | 3.923M          | 24.7 | +0.1      | +0.3      | +9.9   | +0.1 | +0.0  | 35.1      | 46.0     | -10.9  | Black |
| 6  | 4.434M          | 24.7 | +0.1      | +0.3      | +9.9   | +0.1 | +0.0  | 35.1      | 46.0     | -10.9  | Black |
| 7  | 3.081M          | 24.4 | +0.1      | +0.2      | +9.9   | +0.1 | +0.0  | 34.7      | 46.0     | -11.3  | Black |
| 8  | 429.443k        | 25.6 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 35.9      | 47.3     | -11.4  | Black |
| 9  | 3.456M          | 23.7 | +0.1      | +0.3      | +9.9   | +0.1 | +0.0  | 34.1      | 46.0     | -11.9  | Black |
| 10 | 3.149M          | 23.7 | +0.1      | +0.2      | +9.9   | +0.1 | +0.0  | 34.0      | 46.0     | -12.0  | Black |
| 11 | 4.485M          | 23.6 | +0.1      | +0.3      | +9.9   | +0.1 | +0.0  | 34.0      | 46.0     | -12.0  | Black |
| 12 | 2.265M          | 23.4 | +0.1      | +0.2      | +9.9   | +0.1 | +0.0  | 33.7      | 46.0     | -12.3  | Black |
| 13 | 4.340M          | 23.2 | +0.1      | +0.3      | +9.9   | +0.1 | +0.0  | 33.6      | 46.0     | -12.4  | Black |
| 14 | 2.716M          | 23.2 | +0.1      | +0.2      | +9.9   | +0.1 | +0.0  | 33.5      | 46.0     | -12.5  | Black |
| 15 | 196.256k<br>Ave | 30.4 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 40.7      | 53.8     | -13.1  | Black |
| ^  | 196.000k        | 49.1 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 59.4      | 53.8     | +5.6   | Black |
| 17 | 299.851k<br>Ave | 18.1 | +0.1      | +0.1      | +9.9   | +0.1 | +0.0  | 28.3      | 50.2     | -21.9  | Black |
| ٨  | 299.851k        | 37.4 | +0.1      | +0.1      | +9.9   | +0.1 | +0.0  | 47.6      | 50.2     | -2.6   | Black |



CKC Laboratories, Inc. Date: 9/27/2014 Time: 12:22:37 Allegion WO#: 96065 15.207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 5 Ext ATTN: 0 dB



Note: Since the time of testing, it has come to CKC Laboratories attention the manufacturer name Allegion referenced in the above plot should read XceedID Corporation. The screen captures were taken at the time of testing and cannot be changed.



Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: Allegion

Specification: 15.207 AC Mains - Average

Work Order #: 96065 Date: 9/27/2014
Test Type: Conducted Emissions Time: 12:19:22

Equipment: Enrollment Reader Sequence#: 4

Manufacturer: XceedID Tested By: Eddie Mariscal Model: MT20 Tested By: Eddie Mariscal 120V 60Hz

S/N: 0001

#### Test Equipment:

| ID | Asset #  | Description          | Model                   | Calibration Date | Cal Due Date |
|----|----------|----------------------|-------------------------|------------------|--------------|
|    | AN02668  | Spectrum Analyzer    | E4446A                  | 8/4/2014         | 8/4/2015     |
| T1 | AN02609  | High Pass Filter     | HE9615-150K-<br>50-720B | 3/25/2014        | 3/25/2016    |
|    |          |                      | 30-720D                 |                  |              |
| T2 | ANMACOND | Cable                |                         | 8/26/2014        | 8/26/2016    |
| Т3 | ANP02221 | Attenuator           | PE7010-10               | 6/25/2013        | 6/25/2015    |
|    | AN00374  | 50uH LISN-Black (dB) | 8028-TS-50-BNC          | 3/15/2014        | 3/15/2015    |
| T4 | AN00374  | 50uH LISN-White (dB) | 8028-TS-50-BNC          | 3/15/2014        | 3/15/2015    |

#### Equipment Under Test (\* = EUT):

| Function           | Manufacturer | Model # | S/N  |  |
|--------------------|--------------|---------|------|--|
| Enrollment Reader* | XceedID      | MT20    | 0001 |  |

#### Support Devices:

| Function        | Manufacturer | Model # | S/N                  |
|-----------------|--------------|---------|----------------------|
| AC Adaptor      | Lenovo       | 42T4422 | 11S42T4422Z1ZF3D01T2 |
|                 |              |         | L3                   |
| Laptop Computer | Lenovo       | SL410   | LR-ZZW25             |

#### Test Conditions / Notes:

The EUT is placed atop a wooden, non-conductive table of height 80cm. EUT is connected to support laptop via EUT's USB cable. A card is presented to the EUT during testing in order to allow the EUT to constantly transmit. The AC mains port of the support laptop was tested.

The EUT is transmitting at 13.56Hz.

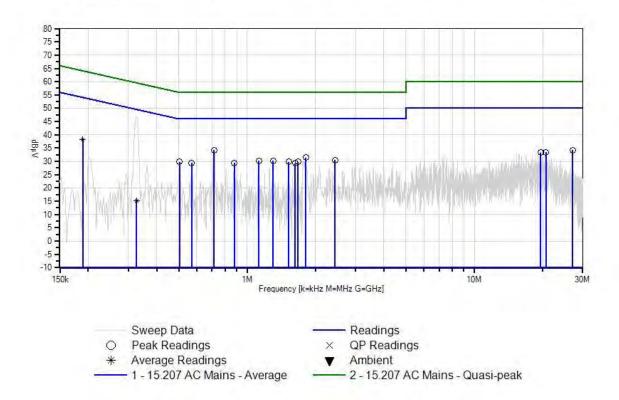
The EUT is powered by +5VDC via USB cable.

Frequency Range of Interest: 0.15-30MHz

RBW = 9kHz; VBW > RBW

Atmospheric Conditions: Temperature: 21°C Relative Humidity: 56% Atmospheric Pressure: 97.8kPa

> Page 16 of 49 Report No.: 96065-10




Ext Attn: 0 dB

|    | rement Data:    |      | ading lis | ted by ma | argin. |      |       | Test Lead | d: White |        |       |
|----|-----------------|------|-----------|-----------|--------|------|-------|-----------|----------|--------|-------|
| #  | Freq            | Rdng | T1        | T2        | T3     | T4   | Dist  | Corr      | Spec     | Margin | Polar |
|    | MHz             | dΒμV | dB        | dB        | dB     | dB   | Table | dΒμV      | dΒμV     | dB     | Ant   |
| 1  | 715.962k        | 24.0 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 34.3      | 46.0     | -11.7  | White |
| 2  | 1.814M          | 21.1 | +0.2      | +0.2      | +9.9   | +0.1 | +0.0  | 31.5      | 46.0     | -14.5  | White |
| 3  | 2.435M          | 20.2 | +0.1      | +0.2      | +9.9   | +0.1 | +0.0  | 30.5      | 46.0     | -15.5  | White |
| 4  | 1.126M          | 20.0 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 30.3      | 46.0     | -15.7  | White |
| 5  | 27.026M         | 23.3 | +0.2      | +0.8      | +9.9   | +0.1 | +0.0  | 34.3      | 50.0     | -15.7  | White |
| 6  | 1.304M          | 20.0 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 30.3      | 46.0     | -15.7  | White |
| 7  | 188.951k<br>Ave | 28.0 | +0.2      | +0.0      | +9.9   | +0.1 | +0.0  | 38.2      | 54.1     | -15.9  | White |
| ^  | 189.000k        | 50.8 | +0.2      | +0.0      | +9.9   | +0.1 | +0.0  | 61.0      | 54.1     | +6.9   | White |
| 9  | 1.523M          | 19.5 | +0.2      | +0.2      | +9.9   | +0.1 | +0.0  | 29.9      | 46.0     | -16.1  | White |
| 10 | 505.072k        | 19.5 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 29.8      | 46.0     | -16.2  | White |
| 11 | 1.674M          | 19.4 | +0.2      | +0.2      | +9.9   | +0.1 | +0.0  | 29.8      | 46.0     | -16.2  | White |
| 12 | 570.521k        | 19.1 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 29.4      | 46.0     | -16.6  | White |
| 13 | 877.402k        | 19.1 | +0.2      | +0.1      | +9.9   | +0.1 | +0.0  | 29.4      | 46.0     | -16.6  | White |
| 14 | 20.692M         | 22.4 | +0.2      | +0.7      | +9.9   | +0.2 | +0.0  | 33.4      | 50.0     | -16.6  | White |
| 15 | 1.629M          | 18.9 | +0.2      | +0.2      | +9.9   | +0.1 | +0.0  | 29.3      | 46.0     | -16.7  | White |
| 16 | 19.593M         | 22.4 | +0.2      | +0.6      | +9.9   | +0.2 | +0.0  | 33.3      | 50.0     | -16.7  | White |
| 17 | 326.179k<br>Ave | 5.1  | +0.1      | +0.1      | +9.9   | +0.1 | +0.0  | 15.3      | 49.5     | -34.2  | White |
| ^  | 326.179k        | 36.7 | +0.1      | +0.1      | +9.9   | +0.1 | +0.0  | 46.9      | 49.5     | -2.6   | White |



CKC Laboratories, Inc. Date: 9/27/2014 Time: 12:19:22 Allegion WO#: 96065 15:207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 4 Ext ATTN: 0 dB



Note: Since the time of testing, it has come to CKC Laboratories attention the manufacturer name Allegion referenced in the above plot should read XceedID Corporation. The screen captures were taken at the time of testing and cannot be changed.



## **Test Setup Photo(s)**



Front View



**Back View** 



## 15.209 Field Strength of Radiated Spurious Emissions

#### **Test Data**

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: Allegion

Specification: 15.209 Radiated Emissions

 Work Order #:
 96065
 Date: 10/18/2014

 Test Type:
 Maximized Emissions
 Time: 09:46:32

Equipment: Enrollment Reader Sequence#: 1

Manufacturer: XceedID Tested By: Eddie Mariscal

Model: MT20 S/N: 0001

Test Equipment:

| ID | Asset # | Description         | Model    | Calibration Date | Cal Due Date |
|----|---------|---------------------|----------|------------------|--------------|
| T1 | AN01991 | Biconilog Antenna   | CBL6111C | 3/7/2014         | 3/7/2016     |
| T2 | ANMA10M | Cable               |          | 8/26/2014        | 8/26/2016    |
|    | AN02668 | Spectrum Analyzer   | E4446A   | 8/4/2014         | 8/4/2015     |
| Т3 | AN00449 | Preamp-Top Amp (dB) | 8447F    | 4/7/2014         | 4/7/2016     |
| T4 | AN00226 | Loop Antenna        | 6502     | 3/28/2014        | 3/28/2016    |

Equipment Under Test (\* = EUT):

| Function           | Manufacturer | Model # | S/N  |
|--------------------|--------------|---------|------|
| Enrollment Reader* | XceedID      | MT20    | 0001 |

Support Devices:

| Function        | Manufacturer | Model # | S/N                    |
|-----------------|--------------|---------|------------------------|
| AC Adaptor      | Lenovo       | 42T4422 | 11S42T4422Z1ZF3D01T2L3 |
| Laptop Computer | Lenovo       | SL410   | LR-ZZW25               |

#### Test Conditions / Notes:

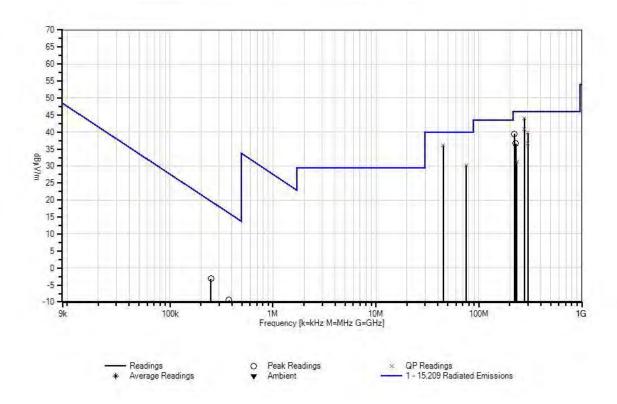
The EUT is placed atop a wooden, non-conductive table of height 80cm. EUT is connected to support laptop via EUT's USB cable. A card is presented to the EUT during testing in order to allow the EUT to constantly transmit. The EUT was investigated about three orthogonal axes. The data presented represents the worst-case orientation. The EUT is transmitting at 125kHz.

The EUT is powered by +5VDC via USB cable. Highest internal clock of the EUT: 48MHz Frequency Range of Interest: 0.009-1000MHz

0.009-0.15MHz: RBW = 200Hz; VBW > RBW 0.15-30MHz: RBW = 9kHz; VBW > RBW 30-1000MHz: RBW = 120kHz; VBW > RBW

Atmospheric Conditions: Temperature: 21°C Relative Humidity: 56% Atmospheric Pressure: 97.8kPa

> Page 20 of 49 Report No.: 96065-10




Ext Attn: 0 dB

| Measu | rement Data:   |           | eading lis | ted by ma | ırgin. |       | Те    | est Distance | e: 10 Meter | rs .   |       |
|-------|----------------|-----------|------------|-----------|--------|-------|-------|--------------|-------------|--------|-------|
| #     | Freq           | Rdng      | T1         | T2        | Т3     | T4    | Dist  | Corr         | Spec        | Margin | Polar |
|       | MHz            | $dB\mu V$ | dB         | dB        | dB     | dB    | Table | $dB\mu V/m$  | $dB\mu V/m$ | dB     | Ant   |
| 1     | 276.023M<br>QP | 42.5      | +13.0      | +4.6      | -26.5  | +0.0  | +10.5 | 44.1         | 46.0        | -1.9   | Horiz |
| ^     | 276.023M       | 50.5      | +13.0      | +4.6      | -26.5  | +0.0  | +10.5 | 52.1         | 46.0        | +6.1   | Horiz |
| 3     | 44.945M<br>QP  | 40.0      | +11.3      | +1.6      | -27.2  | +0.0  | +10.5 | 36.2         | 40.0        | -3.8   | Horiz |
| ^     | 44.945M        | 46.8      | +11.3      | +1.6      | -27.2  | +0.0  | +10.5 | 43.0         | 40.0        | +3.0   | Horiz |
|       | 276.037M<br>QP | 39.2      | +13.0      | +4.6      | -26.5  | +0.0  | +10.5 | 40.8         | 46.0        | -5.2   | Vert  |
| ^     | 276.037M       | 47.9      | +13.0      | +4.6      | -26.5  | +0.0  | +10.5 | 49.5         | 46.0        | +3.5   | Vert  |
|       | 299.980M<br>QP | 37.6      | +13.3      | +4.9      | -26.5  | +0.0  | +10.5 | 39.8         | 46.0        | -6.2   | Vert  |
| ^     | 299.980M       | 44.8      | +13.3      | +4.9      | -26.5  | +0.0  | +10.5 | 47.0         | 46.0        | +1.0   | Vert  |
| 9     | 221.140M       | 40.7      | +10.7      | +4.1      | -26.5  | +0.0  | +10.5 | 39.5         | 46.0        | -6.5   | Horiz |
| 10    | 300.025M<br>QP | 34.6      | +13.3      | +4.9      | -26.5  | +0.0  | +10.5 | 36.8         | 46.0        | -9.2   | Horiz |
| ^     | 300.025M       | 43.0      | +13.3      | +4.9      | -26.5  | +0.0  | +10.5 | 45.2         | 46.0        | -0.8   | Horiz |
| 12    | 228.070M       | 37.3      | +11.2      | +4.1      | -26.5  | +0.0  | +10.5 | 36.6         | 46.0        | -9.4   | Vert  |
| 13    | 75.385M<br>QP  | 37.9      | +6.9       | +2.1      | -27.2  | +0.0  | +10.5 | 30.2         | 40.0        | -9.8   | Horiz |
| ^     | 75.380M        | 45.6      | +6.9       | +2.1      | -27.2  | +0.0  | +10.5 | 37.9         | 40.0        | -2.1   | Horiz |
| 15    | 233.980M<br>QP | 31.5      | +11.6      | +4.2      | -26.5  | +0.0  | +10.5 | 31.3         | 46.0        | -14.7  | Vert  |
| ^     | 233.980M       | 40.4      | +11.6      | +4.2      | -26.5  | +0.0  | +10.5 | 40.2         | 46.0        | -5.8   | Vert  |
| 17    | 250.000k       | 45.7      | +0.0       | +0.1      | +0.0   | +10.2 | -59.1 | -3.1         | 19.6        | -22.7  | Vert  |
| 18    | 375.000k       | 39.4      | +0.0       | +0.1      | +0.0   | +10.2 | -59.1 | -9.4         | 16.1        | -25.5  | Vert  |



CKC Laboratories, Inc. Date: 10/18/2014 Time: 09:46:32 Allegion WO#: 96065 15.209 Radiated Emissions Test Distance: 10 Meters Sequence#: 1 Ext ATTN: 0 dB



Note: Since the time of testing, it has come to CKC Laboratories attention the manufacturer name Allegion referenced in the above plot should read XceedID Corporation. The screen captures were taken at the time of testing and cannot be changed.



# Test Setup Photo(s)



Front View



**Back View** 



## 15.209(a) Fundamental Field Strength

### **Test Conditions / Setup**

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: Allegion

Specification: 15.209 Radiated Emissions

Work Order #: 96065 Date: 9/27/2014
Test Type: Maximized Emissions Time: 13:10:16

Equipment: Enrollment Reader Sequence#: 1

Manufacturer: XceedID Tested By: Eddie Mariscal

Model: MT20 S/N: 0001

Test Equipment:

| ID | Asset #  | Description       | Model  | Calibration Date | Cal Due Date |
|----|----------|-------------------|--------|------------------|--------------|
| T1 | AN00226  | Loop Antenna      | 6502   | 3/28/2014        | 3/28/2016    |
|    | AN02668  | Spectrum Analyzer | E4446A | 8/4/2014         | 8/4/2015     |
| T2 | ANMACOND | Cable             |        | 8/26/2014        | 8/26/2016    |

*Equipment Under Test* (\* = EUT):

|                    | ,            |         |      |  |
|--------------------|--------------|---------|------|--|
| Function           | Manufacturer | Model # | S/N  |  |
| Enrollment Reader* | XceedID      | MT20    | 0001 |  |

Support Devices:

| Function        | Manufacturer | Model # | S/N                  |
|-----------------|--------------|---------|----------------------|
| AC Adaptor      | Lenovo       | 42T4422 | 11S42T4422Z1ZF3D01T2 |
|                 |              |         | L3                   |
| Laptop Computer | Lenovo       | SL410   | LR-ZZW25             |

#### Test Conditions / Notes:

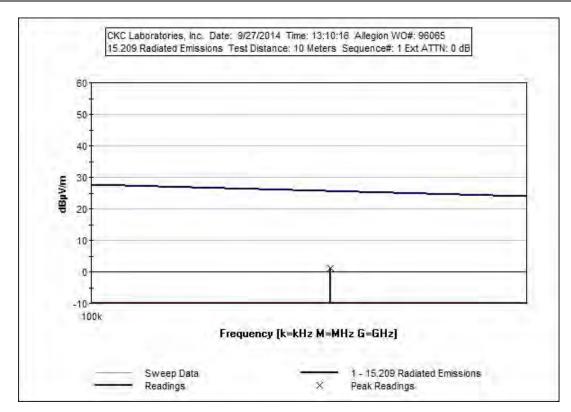
The EUT is placed atop a wooden, non-conductive table of height 80cm. EUT is connected to support laptop via EUT's USB cable. A card is presented to the EUT during testing in order to allow the EUT to constantly transmit. The EUT was investigated about three orthogonal axes. The data presented represents the worst-case orientation. The EUT is transmitting at 125kHz.

The EUT is powered by +5VDC via USB cable.

Highest internal clock of the EUT: 48MHz

Frequency Range of Interest: Fundamental (125kHz)

RBW = 200Hz; VBW > RBW

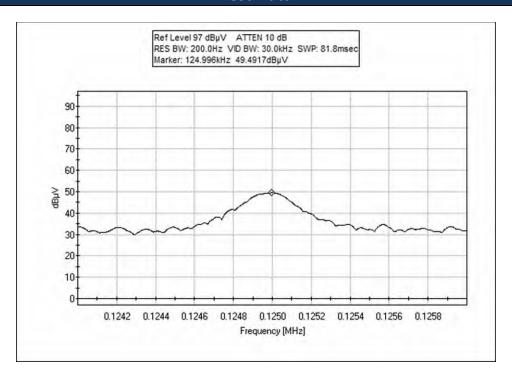

Atmospheric Conditions: Temperature: 21°C Relative Humidity: 56% Atmospheric Pressure: 97.8kPa

> Page 24 of 49 Report No.: 96065-10



Ext Attn: 0 dB

|   | Measurement Data: |          | Reading listed by margin. |       |      |    | Test Distance: 10 Meters |       |             |             |        |       |
|---|-------------------|----------|---------------------------|-------|------|----|--------------------------|-------|-------------|-------------|--------|-------|
| I | #                 | Freq     | Rdng                      | T1    | T2   |    |                          | Dist  | Corr        | Spec        | Margin | Polar |
|   |                   | MHz      | $dB\mu V$                 | dB    | dB   | dΒ | dB                       | Table | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
| Ī | 1                 | 124.980k | 49.3                      | +10.8 | +0.0 |    |                          | -59.1 | 1.0         | 25.7        | -24.7  | Vert  |
|   |                   |          |                           |       |      |    |                          |       |             |             |        |       |




Note: Since the time of testing, it has come to CKC Laboratories attention the manufacturer name Allegion referenced in the above plot should read XceedID Corporation. The screen captures were taken at the time of testing and cannot be changed.

Page 25 of 49 Report No.: 96065-10



## **Test Data**



Page 26 of 49 Report No.: 96065-10



# Test Setup Photo(s)



Front View



**Back View** 





X-Axis



Y-Axis





Z-Axis



## 15.215(c) 20dB Occupied Bandwidth

### **Test Conditions / Setup**

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: Allegion

Specification: 15.215 20dB Bandwidth

Work Order #: 96065 Date: 9/26/2014
Test Type: Maximized Emissions Time: 17:25:53

Equipment: Enrollment Reader Sequence#: 1

Manufacturer: XceedID Tested By: Eddie Mariscal

Model: MT20 S/N: 0001

Test Equipment:

| ID | Asset # | Description       | Model  | Calibration Date | Cal Due Date |
|----|---------|-------------------|--------|------------------|--------------|
| T1 | AN00226 | Loop Antenna      | 6502   | 3/28/2014        | 3/28/2016    |
| T2 | ANMA10M | Cable             |        | 8/26/2014        | 8/26/2016    |
|    | AN02668 | Spectrum Analyzer | E4446A | 8/4/2014         | 8/4/2015     |

Equipment Under Test (\* = EUT):

|                    | ,            |         |      |  |
|--------------------|--------------|---------|------|--|
| Function           | Manufacturer | Model # | S/N  |  |
| Enrollment Reader* | XceedID      | MT20    | 0001 |  |

Support Devices:

| Function        | Manufacturer | Model # | S/N                  |
|-----------------|--------------|---------|----------------------|
| AC Adaptor      | Lenovo       | 42T4422 | 11S42T4422Z1ZF3D01T2 |
|                 |              |         | L3                   |
| Laptop Computer | Lenovo       | SL410   | LR-ZZW25             |

#### Test Conditions / Notes:

The EUT is placed atop a wooden, non-conductive table of height 80cm. EUT is connected to support laptop via EUT's USB cable. A card is presented to the EUT during testing in order to allow the EUT to constantly transmit. The EUT was investigated about three orthogonal axes. The data presented represents the worst-case orientation.

The EUT is transmitting at 125kHz.

The EUT is powered by +5VDC via USB cable.

Highest internal clock of the EUT: 48MHz

Frequency Range of Interest: Fundamental (125kHz)

Atmospheric Conditions: Temperature: 21°C, Relative Humidity: 56%, Atmospheric Pressure: 97.8kPa

Page 30 of 49 Report No.: 96065-10



Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: Allegion

Specification: 15.215 20dB Bandwidth

 Work Order #:
 96065
 Date: 9/26/2014

 Test Type:
 Maximized Emissions
 Time: 17:25:53

Equipment: Enrollment Reader Sequence#: 1

Manufacturer: XceedID Tested By: Eddie Mariscal

Model: MT20 S/N: 0001

#### Test Equipment:

| ID | Asset # | Description       | Model  | Calibration Date | Cal Due Date |
|----|---------|-------------------|--------|------------------|--------------|
| T1 | AN00226 | Loop Antenna      | 6502   | 3/28/2014        | 3/28/2016    |
| T2 | ANMA10M | Cable             |        | 8/26/2014        | 8/26/2016    |
|    | AN02668 | Spectrum Analyzer | E4446A | 8/4/2014         | 8/4/2015     |

Equipment Under Test (\* = EUT):

| Function           | Manufacturer | Model # | S/N  |  |
|--------------------|--------------|---------|------|--|
| Enrollment Reader* | XceedID      | MT20    | 0001 |  |

#### Support Devices:

| Function        | Manufacturer | Model # | S/N                  |
|-----------------|--------------|---------|----------------------|
| AC Adaptor      | Lenovo       | 42T4422 | 11S42T4422Z1ZF3D01T2 |
|                 |              |         | L3                   |
| Laptop Computer | Lenovo       | SL410   | LR-ZZW25             |

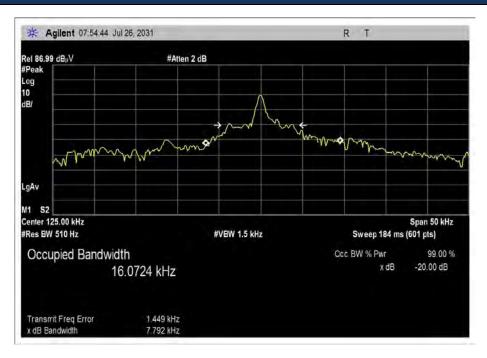
#### Test Conditions / Notes:

The EUT is placed atop a wooden, non-conductive table of height 80cm. EUT is connected to support laptop via EUT's USB cable. A card is presented to the EUT during testing in order to allow the EUT to constantly transmit. The EUT was investigated about three orthogonal axes. The data presented represents the worst-case orientation.

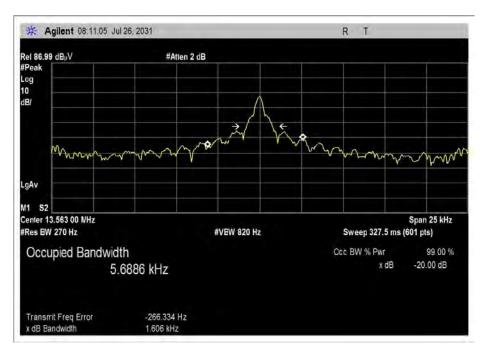
The EUT is transmitting at 13.56MHz.

The EUT is powered by +5VDC via USB cable.

Highest internal clock of the EUT: 48MHz


Frequency Range of Interest: Fundamental (13.56MHz)

Atmospheric Conditions: Temperature: 21°C Relative Humidity: 56% Atmospheric Pressure: 97.8kPa


> Page 31 of 49 Report No.: 96065-10



#### **Test Data**



#### 125kHz



13.56MHz

Note: At the time of testing, the date on the above test screen captures was set on a default setting and should read 9/26/14. The screen capture was taken at the time of testing and cannot be changed.



# Test Setup Photo(s)



Front View



**Back View** 



## 15.225(a) Fundamental Field Strength

#### **Test Data**

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: Allegion

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

 Work Order #:
 96065
 Date:
 9/26/2014

 Test Type:
 Maximized Emissions
 Time:
 17:25:53

Equipment: Enrollment Reader Sequence#: 1

Manufacturer: XceedID Tested By: Eddie Mariscal

Model: MT20 S/N: 0001

Test Equipment:

| ID | Asset # | Description       | Model  | Calibration Date | Cal Due Date |
|----|---------|-------------------|--------|------------------|--------------|
| ID | Asset # | Description       | Model  | Candiation Date  | Cai Due Date |
| T1 | AN00226 | Loop Antenna      | 6502   | 3/28/2014        | 3/28/2016    |
| T2 | ANMA10M | Cable             |        | 8/26/2014        | 8/26/2016    |
|    | AN02668 | Spectrum Analyzer | E4446A | 8/4/2014         | 8/4/2015     |

Equipment Under Test (\* = EUT):

|                    | ,            |         |      |  |
|--------------------|--------------|---------|------|--|
| Function           | Manufacturer | Model # | S/N  |  |
| Enrollment Reader* | XceedID      | MT20    | 0001 |  |

Support Devices:

| Function        | Manufacturer | Model # | S/N                  |
|-----------------|--------------|---------|----------------------|
| AC Adaptor      | Lenovo       | 42T4422 | 11S42T4422Z1ZF3D01T2 |
|                 |              |         | L3                   |
| Laptop Computer | Lenovo       | SL410   | LR-ZZW25             |

#### Test Conditions / Notes:

The EUT is placed atop a wooden, non-conductive table of height 80cm. EUT is connected to support laptop via EUT's USB cable. A card is presented to the EUT during testing in order to allow the EUT to constantly transmit. The EUT was investigated about three orthogonal axes. The data presented represents the worst-case orientation.

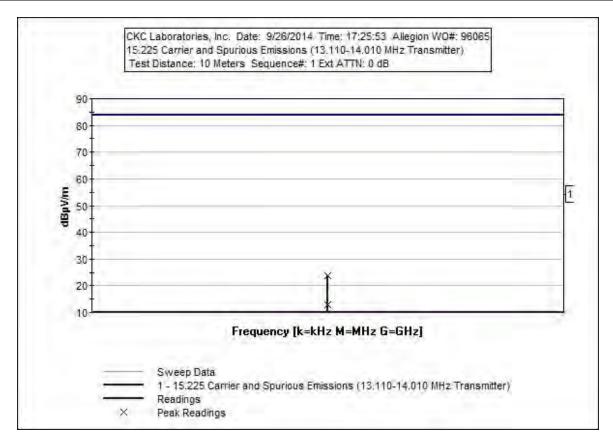
The EUT is transmitting at 13.56MHz.

The EUT is powered by +5VDC via USB cable.

Highest internal clock of the EUT: 48MHz

Frequency Range of Interest: Fundamental (13.56MHz)

0.009-0.15MHz: RBW = 200Hz; VBW > RBW 0.15-30MHz: RBW = 9kHz; VBW > RBW 30-1000MHz: RBW = 120kHz; VBW > RBW


Atmospheric Conditions: Temperature: 21°C, Relative Humidity: 56%, Atmospheric Pressure: 97.8kPa

Page 34 of 49 Report No.: 96065-10



Ext Attn: 0 dB

| Measurement Data: |         | Reading listed by margin. |      |      | Test Distance: 10 Meters |        |        |             |             |        |       |  |
|-------------------|---------|---------------------------|------|------|--------------------------|--------|--------|-------------|-------------|--------|-------|--|
| #                 | Freq    | Rdng                      | T1   | T2   |                          |        | Dist   | Corr        | Spec        | Margin | Polar |  |
|                   | MHz     | dΒμV                      | dB   | dB   | dB                       | dB     | Table  | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |  |
| 1                 | 13.563M | 32.5                      | +9.7 | +0.8 |                          |        | -19.1  | 23.9        | 84.0        | -60.1  | Vert  |  |
|                   |         |                           |      |      |                          |        | Y-Axis |             |             |        |       |  |
| 2                 | 13.563M | 32.4                      | +9.7 | +0.8 |                          |        | -19.1  | 23.8        | 84.0        | -60.2  | Vert  |  |
|                   |         |                           |      |      |                          |        | Z-Axis |             |             |        |       |  |
| 3                 | 13.563M | 21.5                      | +9.7 | +0.8 |                          |        | -19.1  | 12.9        | 84.0        | -71.1  | Vert  |  |
|                   |         |                           |      |      |                          | X-Axis |        |             |             |        |       |  |



Note: Since the time of testing, it has come to CKC Laboratories attention the manufacturer name Allegion referenced in the above plot should read XceedID Corporation. The screen captures were taken at the time of testing and cannot be changed.



# Test Setup Photo(s)



Front View



**Back View** 



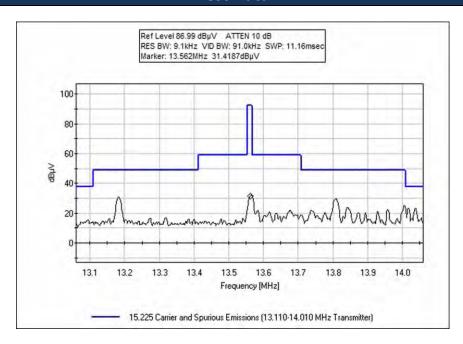


X-Axis

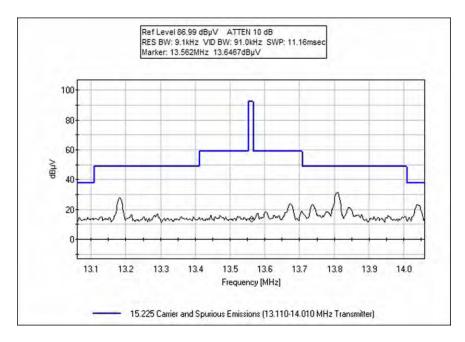


Y-Axis






Z-Axis




# 15.225(b)(c) Emission Mask

## **Test Data**



On, 13.56MHz



Off, 13.56MHz



# Test Setup Photo(s)



Front View



**Back View** 



## 15.225(d) Field Strength of Spurious Emissions

### **Test Data**

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • (209) 966-5240

Customer: Allegion

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

 Work Order #:
 96065
 Date:
 10/18/2014

 Test Type:
 Maximized Emissions
 Time:
 09:41:56

Equipment: Enrollment Reader Sequence#: 1

Manufacturer: XceedID Tested By: Eddie Mariscal

Model: MT20 S/N: 0001

Test Equipment:

| ID | Asset # | Description         | Model    | Calibration Date | Cal Due Date |
|----|---------|---------------------|----------|------------------|--------------|
| T1 | AN01991 | Biconilog Antenna   | CBL6111C | 3/7/2014         | 3/7/2016     |
| T2 | ANMA10M | Cable               |          | 8/26/2014        | 8/26/2016    |
|    | AN02668 | Spectrum Analyzer   | E4446A   | 8/4/2014         | 8/4/2015     |
| Т3 | AN00449 | Preamp-Top Amp (dB) | 8447F    | 4/7/2014         | 4/7/2016     |
| T4 | AN00226 | Loop Antenna        | 6502     | 3/28/2014        | 3/28/2016    |

*Equipment Under Test* (\* = EUT):

| Function           | Manufacturer | Model # | S/N  |
|--------------------|--------------|---------|------|
| Enrollment Reader* | XceedID      | MT20    | 0001 |

Support Devices:

| Function        | Manufacturer | Model # | S/N                  |
|-----------------|--------------|---------|----------------------|
| AC Adaptor      | Lenovo       | 42T4422 | 11S42T4422Z1ZF3D01T2 |
|                 |              |         | L3                   |
| Laptop Computer | Lenovo       | SL410   | LR-ZZW25             |

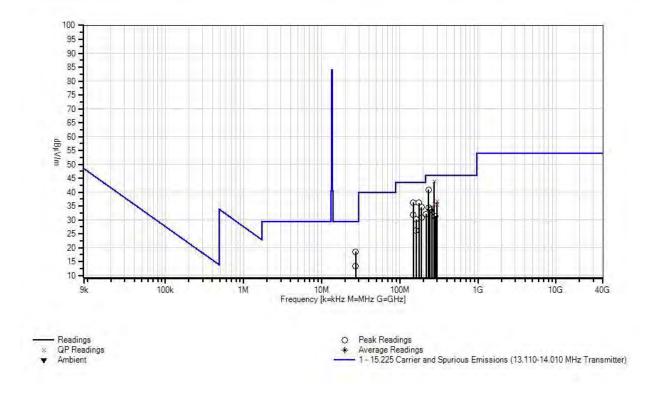
### Test Conditions / Notes:

The EUT is placed atop a wooden, non-conductive table of height 80cm. The EUT is connected to support laptop via EUT's USB cable. A card is presented to the EUT during testing in order to allow the EUT to constantly transmit. The EUT was investigated about three orthogonal axes. The data presented represents the worst-case orientation. The EUT is transmitting at 13.56MHz.

The EUT is powered by +5VDC via USB cable. Highest internal clock of the EUT: 48MHz Frequency Range of Interest: 0.009-1000MHz 0.009-0.15MHz: RBW = 200Hz; VBW > RBW 0.15-30MHz: RBW = 9kHz; VBW > RBW 30-1000MHz: RBW = 120kHz; VBW > RBW

Atmospheric Conditions: Temperature: 21°C Relative Humidity: 56% Atmospheric Pressure: 97.8kPa

> Page 41 of 49 Report No.: 96065-10




Ext Attn: 0 dB

| Measu | rement Data:   |      | eading lis | ted by ma | argin. |      | Те    | est Distance | e: 10 Meter |        |       |
|-------|----------------|------|------------|-----------|--------|------|-------|--------------|-------------|--------|-------|
| #     | Freq           | Rdng | T1         | T2        | T3     | T4   | Dist  | Corr         | Spec        | Margin | Polar |
|       | MHz            | dBμV | dB         | dB        | dB     | dB   | Table | •            | dBμV/m      | dB     | Ant   |
| 1     | 276.024M<br>QP | 42.1 | +13.0      | +4.6      | -26.5  | +0.0 | +10.5 | 43.7         | 46.0        | -2.3   | Vert  |
| ^     | 276.024M       | 50.2 | +13.0      | +4.6      | -26.5  | +0.0 | +10.5 | 51.8         | 46.0        | +5.8   | Vert  |
| 3     | 233.997M       | 41.1 | +11.6      | +4.2      | -26.5  | +0.0 | +10.5 | 40.9         | 46.0        | -5.1   | Vert  |
| 4     | 149.185M       | 38.2 | +11.1      | +3.3      | -26.9  | +0.0 | +10.5 | 36.2         | 43.5        | -7.3   | Horiz |
| 5     | 176.310M       | 39.6 | +9.3       | +3.6      | -26.8  | +0.0 | +10.5 | 36.2         | 43.5        | -7.3   | Horiz |
| 6     | 189.870M       | 37.9 | +9.1       | +3.7      | -26.7  | +0.0 | +10.5 | 34.5         | 43.5        | -9.0   | Horiz |
| 7     | 299.949M<br>QP | 34.4 | +13.3      | +4.9      | -26.5  | +0.0 | +10.5 | 36.6         | 46.0        | -9.4   | Vert  |
| ^     | 299.949M       | 43.2 | +13.3      | +4.9      | -26.5  | +0.0 | +10.5 | 45.4         | 46.0        | -0.6   | Vert  |
| 9     | 276.037M<br>QP | 34.0 | +13.0      | +4.6      | -26.5  | +0.0 | +10.5 | 35.6         | 46.0        | -10.4  | Horiz |
| ^     | 276.028M       | 42.4 | +13.0      | +4.6      | -26.5  | +0.0 | +10.5 | 44.0         | 46.0        | -2.0   | Horiz |
| 11    | 300.018M<br>QP | 33.2 | +13.3      | +4.9      | -26.5  | +0.0 | +10.5 | 35.4         | 46.0        | -10.6  | Horiz |
| ٨     | 300.018M       | 43.5 | +13.3      | +4.9      | -26.5  | +0.0 | +10.5 | 45.7         | 46.0        | -0.3   | Horiz |
| 13    | 27.131M        | 29.2 | +0.0       | +1.2      | +0.0   | +7.2 | -19.1 | 18.5         | 29.5        | -11.0  | Vert  |
| 14    | 149.199M       | 33.8 | +11.1      | +3.3      | -26.9  | +0.0 | +10.5 | 31.8         | 43.5        | -11.7  | Vert  |
| 15    | 233.957M       | 34.5 | +11.6      | +4.2      | -26.5  | +0.0 | +10.5 | 34.3         | 46.0        | -11.7  | Horiz |
| 16    | 257.550M       | 32.8 | +12.7      | +4.4      | -26.5  | +0.0 | +10.5 | 33.9         | 46.0        | -12.1  | Horiz |
| 17    | 244.150M       | 33.2 | +12.2      | +4.3      | -26.5  | +0.0 | +10.5 | 33.7         | 46.0        | -12.3  | Horiz |
| 18    | 189.880M       | 34.3 | +9.1       | +3.7      | -26.7  | +0.0 | +10.5 | 30.9         | 43.5        | -12.6  | Vert  |
| 19    | 162.754M       | 32.6 | +10.5      | +3.4      | -26.8  | +0.0 | +10.5 | 30.2         | 43.5        | -13.3  | Horiz |
| 20    | 217.000M       | 33.8 | +10.4      | +4.0      | -26.6  | +0.0 | +10.5 | 32.1         | 46.0        | -13.9  | Vert  |
| 21    | 284.790M       | 29.6 | +13.1      | +4.7      | -26.5  | +0.0 | +10.5 | 31.4         | 46.0        | -14.6  | Horiz |
| 22    | 27.131M        | 24.1 | +0.0       | +1.2      | +0.0   | +7.2 | -19.1 | 13.4         | 29.5        | -16.1  | Vert  |
| 23    | 162.756M       | 28.7 | +10.5      | +3.4      | -26.8  | +0.0 | +10.5 | 26.3         | 43.5        | -17.2  | Vert  |




CKC Laboratories, Inc. Date: 10/18/2014 Time: 09:41:56 Allegion WO#: 96065
15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 10 Meters Sequence#: 1
Ext ATTN: 0 dB



Note: Since the time of testing, it has come to CKC Laboratories attention the manufacturer name Allegion referenced in the above plot should read XceedID Corporation. The screen captures were taken at the time of testing and cannot be changed.



# Test Setup Photo(s)



Front View



**Back View** 



## 15.225(e) Frequency Stability

## **Test Conditions / Setup**

The EUT was placed inside the temperature chamber, transmitting at 13.56MHz. The EUT's voltage is regulated at +5VDC via USB. The EUT also has voltage regulation at the input of the EUT to step from 5VDC to 3.3VDC; therefore voltage variations were not performed. A card is presented to the EUT to ensure constant transmission. RBW = 200Hz; VBW > RBW.

| Test Equipment |                        |            |              |            |            |  |  |  |  |
|----------------|------------------------|------------|--------------|------------|------------|--|--|--|--|
| Asset/Serial # | Description            | Model      | Manufacturer | Cal Date   | Cal Due    |  |  |  |  |
| 02668          | Spectrum<br>Analyzer   | E4446A     | Agilent      | 08/04/2014 | 08/04/2016 |  |  |  |  |
| 03197          | Multimeter             | MM570A     | Extech       | 09/12/2014 | 09/12/2016 |  |  |  |  |
| 01879          | Temperature<br>Chamber | S-1.2 Min. | Thermotron   | 11/15/2012 | 11/15/2014 |  |  |  |  |
| 00170          | Loop Antenna           | 7334-1     | Solar        | 02/01/2013 | 02/01/2015 |  |  |  |  |
| 02242          | Thermometer            | HH-26K     | Omega        | 05/02/2014 | 05/02/2016 |  |  |  |  |

Page 45 of 49 Report No.: 96065-10



## **Test Data**

Customer:AllegionWO#:96065Date:27-Sep-14Test Engineer:Eddie MariscalTest SpecificationFCC 15.225

Device Model #: MT20

Operating Voltage: +5 VDC Frequency Limit: 0.01 %

### **Temperature Variations**

| Channel Fre | equency: | Channel 1 (MHz)<br>13.562975 | Dev. (%) |
|-------------|----------|------------------------------|----------|
| Temp (C)    | Voltage  |                              |          |
|             |          |                              |          |
| -20         | +5       | 13.56299                     | 0.00013  |
| -10         | +5       | 13.56300                     | 0.00018  |
| 0           | +5       | 13.56300                     | 0.00018  |
| 10          | +5       | 13.56300                     | 0.00018  |
| 20          | +5       | 13.56298                     | 0.00000  |
| 30          | +5       | 13.56298                     | 0.00006  |
| 40          | +5       | 13.56295                     | 0.00018  |
| 50          | +5       | 13.56295                     | 0.00018  |

### Voltage Variations (±15%)

| <br> |    |    |     |
|------|----|----|-----|
|      | 20 |    | 4.3 |
|      | 20 | +5 |     |
|      | 20 |    | 5.8 |

| Max Deviation (%) | 0.00018 |
|-------------------|---------|
|                   | PASS    |

Page 46 of 49 Report No.: 96065-10



# Test Setup Photo(s)



Temperature Chamber

Page 47 of 49 Report No.: 96065-10



# SUPPLEMENTAL INFORMATION

## **Measurement Uncertainty**

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

### **Emissions Test Details**

#### **TESTING PARAMETERS**

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### **CORRECTION FACTORS**

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $dB\mu V/m$ , the spectrum analyzer reading in  $dB\mu V$  was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 48 of 49 Report No.: 96065-10



| SAMPLE CALCULATIONS |                     |          |  |  |  |  |  |
|---------------------|---------------------|----------|--|--|--|--|--|
|                     | Meter reading       | (dBμV)   |  |  |  |  |  |
| +                   | Antenna Factor      | (dB)     |  |  |  |  |  |
| +                   | Cable Loss          | (dB)     |  |  |  |  |  |
| -                   | Distance Correction | (dB)     |  |  |  |  |  |
| -                   | Preamplifier Gain   | (dB)     |  |  |  |  |  |
| =                   | Corrected Reading   | (dBμV/m) |  |  |  |  |  |

#### TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |                     |                  |                   |  |  |  |  |
|------------------------------------------------------------|---------------------|------------------|-------------------|--|--|--|--|
| TEST                                                       | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |  |  |  |  |
| CONDUCTED EMISSIONS                                        | 150 kHz             | 30 MHz           | 9 kHz             |  |  |  |  |
| RADIATED EMISSIONS                                         | 9 kHz               | 150 kHz          | 200 Hz            |  |  |  |  |
| RADIATED EMISSIONS                                         | 150 kHz             | 30 MHz           | 9 kHz             |  |  |  |  |
| RADIATED EMISSIONS                                         | 30 MHz              | 1000 MHz         | 120 kHz           |  |  |  |  |
| RADIATED EMISSIONS                                         | 1000 MHz            | >1 GHz           | 1 MHz             |  |  |  |  |

### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

#### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

#### **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

### **Average**

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 49 of 49 Report No.: 96065-10