FREQUENCY HOPPING SEQUENCE

The random frequency hop sequence was created using the random sequence generator found at http://www.random.org/sform.html, which generates true random numbers using atmospheric noise measurements.

"The way the <u>random.org</u> random number generator works is quite simple. A radio is tuned into a frequency where nobody is broadcasting. The atmospheric noise picked up by the receiver is fed into a Sun SPARC workstation through the microphone port where it is sampled by a program as an eight bit mono signal at a frequency of 8KHz. The upper seven bits of each sample are discarded immediately and the remaining bits are gathered and turned into a stream of bits with a high content of entropy. Skew correction is performed on the bit stream, in order to ensure that there is an approximately even distribution of 0s and 1s

The skew correction algorithm used is based on *transition mapping*. Bits are read two at a time, and if there is a *transition* between values (the bits are 01 or 10) one of them - say the first - is passed on as random. If there is no transition (the bits are 00 or 11), the bits are discarded and the next two are read. This simple algorithm was originally due to Von Neumann and completely eliminates any bias towards 0 or 1 in the data." (from http://www.random.org/essay.html)

A "smallest value" of 0 and "largest value" of 129 were entered, corresponding to the 130 different frequencies we use, and the following random sequence was generated:

61, 7, 112, 60, 102, 35, 0, 122, 6, 66, 117, 69, 110, 78, 107, 9, 91, 59, 44, 121, 50, 126, 8, 24, 94, 19, 46, 127, 72, 114, 73, 68, 111, 56, 29, 86, 54, 120, 58, 118, 28, 125, 93, 52, 49, 115, 36, 129, 20, 3, 27, 74, 21, 113, 90, 106, 89, 47, 77, 57, 18, 75, 40, 80, 76, 17, 119, 11, 37, 105, 83, 48, 13, 82, 1, 10, 109, 4, 79, 2, 12, 43, 103, 32, 108, 67, 25, 45, 38, 53, 14, 34, 22, 116, 55, 26, 62, 99, 81, 71, 98, 70, 95, 128, 64, 88, 16, 84, 5, 41, 97, 23, 100, 31, 96, 51, 65, 104, 30, 101, 123, 87, 124, 42, 92, 63, 39, 15, 33, 85.

The active frequency is set sequentially from the above table. This results in a channel hop sequence of [61], [7], [112], [60], etc. where [xx] denotes a channel number. The resultant frequency hop sequence in MHz is 914.3, 903.5, 924.5, 914.1, etc. The sequence wraps around so that when on frequency [85], the NEXT frequency will be [61]. The raw table was scanned for adjacent frequencies, and if/when one was found, that index was moved further in the sequence until indices were no longer adjacent.

The first and last five (5) channels in the table are not used by the hardware to avoid potential out of band interference levels. This allows for 120 total channels available for the hop sequence. When a blanked channel is selected in the table software will automatically step to the next valid channel on the list.

This sequence is coded into a fixed HOP TABLE which is used by the software. This table is used to set frequencies, and index to the NEXT frequency in the sequence:

Frequency (MHz)	Channel	Next Channel in Hop		
	Number	Sequence		
902.100	0	122		
902.300	1	10		
902.500	2	12		
902.700	3	27		
902.900	4	79		
903.100	5	41		
903.300	6	66		
903.500	7	112		
903.700	8	24		

Frequency (MHz)	Channel	Next Channel in Hop		
002.000	Number	Sequence		
903.900	9	91		
904.100	10	109		
904.300	11	37		
904.500	12	43		
904.700	13	82		
904.900	14	34		
905.100	15	33		
905.300	16	84		
905.500	17	119		
905.700	18	75		
905.900	19	46		
906.100	20	3		
906.300	21	113		
906.500	22	116		
906.700	23	100		
906.900	24	94		
907.100	25	45		
907.300	26	62		
907.500	27	74		
907.700	28	125		
907.900	29	86		
908.100	30	101		
908.300	31	96		
908.500	32	108		
908.700	33	85		
908.900	34	22		
909.100	35	0		
909.300	36	129		
909.500	37	105		
909.700	38	53		
909.900	39	15		
910.100	40	80		
910.300	41	97		
910.500	42	92		
910.700	43	103		
910.900	44	121		
911.100	45	38		
911.300	46	127		
911.500	47	77		
911.700	48	13		
911.900	49	115		
912.100	50	126		
912.300	51	65		
912.500	52	49		
912.700	53	14		
912.700	55 54	120		
912.900	55			
	55 56	26		
913.300		29		
913.500	57	18		
913.700	58	118		
913.900	59	44		

Frequency (MHz)	Channel Number	Next Channel in Hop		
014 100		Sequence		
914.100	60	102		
914.300	61	7		
914.500	62	99		
914.700	63	39		
914.900	64	88		
915.100	65	104		
915.300	66	117		
915.500	67	25		
915.700	68	111		
915.900	69	110		
916.100	70	95		
916.300	71	98		
916.500	72	114		
916.700	73	68		
916.900	74	21		
917.100	75	40		
917.300	76	17		
917.500	77	57		
917.700	78	107		
917.900	79	2		
918.100	80	76		
918.300	81	71		
918.500	82	1		
918.700	83	48		
918.900	84	5		
919.100	85	61		
919.300	86	54		
919.500	87	124		
919.700	88	16		
919.900	89	47		
920.100	90	106		
920.300	91	59		
920.500	92	63		
920.700	93	52		
920.900	94	19		
921.100	95	128		
921.300	96	51		
921.500	97	23		
921.700	98	70		
921.900	99	81		
922.100	100	31		
922.300	101	123		
922.500	102	35		
922.700	103	32		
922.900	104	30		
923.100	105	83		
923.300	106	89		
923.500	107	9		
923.700	108	67		
923.900	109	4		
924.100	110	78		

Frequency (MHz)	Channel	Next Channel in Hop		
	Number	Sequence		
924.300	111	56		
924.500	112	60		
924.700	113	90		
924.900	114	73		
925.100	115	36		
925.300	116	55		
925.500	117	69		
925.700	118	28		
925.900	119	11		
926.100	120	58		
926.300	121	50		
926.500	122	6		
926.700	123	87		
926.900	124	42		
927.100	125	93		
927.300	126	8		
927.500	127	72		
927.700	128	64		
927.900	129	20		

FREQUENCY HOPPING DWELL TIMES

The dwell time for the UHF Reader is designed for a range between 150 and 350 mS, based on the following software characteristics:

- 1. A millisecond counter is used to track time since the last hop. That is, at each hop, a counter is loaded with a constant number of milliseconds. At each millisecond time tick, the counter is decremented as long as it remains nonzero. The counter is preloaded with a value of 300.
- 2. When the reader has its field on but is not actively searching for tags, the software will hop whenever the counter becomes zero. A consistent time of 300 mS between hops in this situation has been verified.
- 3. When the reader is actively searching for tags, service delays and the need of tags for a stable field make it impractical to hop at precise time intervals. For this case the software follows a number of rules to ensure compliance with the 400 mS average dwell time rule:
 - a) Before initiating a search for tags, the software checks the value of the hop time counter. If the counter has fallen to below half its initial value (i.e., 150 mS), the reader hops frequencies before initiating a search for tags.
 - b) During certain operations that take a long time, the software checks the value of the hop time counter. If the counter has fallen to zero (i.e., 300 mS), the reader hops frequencies before continuing the operation.
 - c) In no case is any service delay long enough to cause a violation of the 400 mS limit.

RECEIVER SELECTIVITY

The operation of the RFID tag reading system supported by the UHF Reader requires the transmitter and receiver to operate simultaneously on the same frequency. The Transmitter provides activation energy to the tags through a CW RF field transmitted from the reader to the tag during the reader receive process. This energy is reflected back to the reader by the tag. Information is modulated onto the reflected carrier

by varying the radar cross sectional area of the tag. The result is an AM modulated return signal. Since the tag does not generate its own RF field the return signal is on the same frequency as the transmitter.

The transmitter does not modulate its signal during the receive process making the communication simplex in nature.

ANTENNA SELECTIONS

Manufacturer	Model	Frequency (MHz)	Omi/Directional	Polarization	Nominal Gain (dBi)
Cushcraft	S888P12NF	880-960	Directional	Linear	8
	S9028PC12NF	902-960	Directional	Circular	7.5 dBic
	S9026P12NF	902-960	Directional	Linear	6
	S8963-B	896-960	Omni	Linear	3
Poynting Antennas Ltd.	PA-P-900-L-8/CELL	820-1000	Directional	Linear	8
	PA-P-900-C-7/RFID	902-928	Directional	Circular	5.5
	PA-P-900-L-8/TDMA	902-928	Directional	Linear	8
Seavey Engineering and Associates	9394-818	902.8	Directional	Linear	16
	9718-820	902.8	Omni	Linear	7
Maxrad Inc.	MP9159PT	902-928	Directional	Linear	8.9