

**FCC CFR47 PART 15 SUBPART C
CERTIFICATION**

TEST REPORT

FOR

EUT: BASE STATION MODEM UNIT TRANSMITTER

MODEL: 300-00008-0001

FCC ID: QM4-300-00008

REPORT NUMBER: 04U2670-1

ISSUE DATE: APRIL 22, 2004

Prepared for
GameTech INTERNATIONAL, INC.
900 SANDHILL RD
RENO, NV 89521, USA

Prepared by
COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY ROAD,
MORGAN HILL, CA 95037, USA
TEL: (408) 463-0885
FAX: (408) 463-0888

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION	3
2. EUT DESCRIPTION.....	4
3. TEST METHODOLOGY	5
4. FACILITIES AND ACCREDITATION	5
5. CALIBRATION AND UNCERTAINTY.....	6
5.1. <i>MEASURING INSTRUMENT CALIBRATION</i>	6
5.2. <i>MEASUREMENT UNCERTAINTY</i>	6
5.3. <i>TEST AND MEASUREMENT EQUIPMENT</i>	7
6. SETUP OF EQUIPMENT UNDER TEST	7
7. APPLICABLE LIMITS AND TEST RESULTS	10
7.1. <i>RADIATED EMISSIONS</i>	10
7.1.1. TRANSMITTER RADIATED EMISSIONS	12
7.1.2. WORST-CASE RADIATED EMISSIONS BELOW 1 GHZ	14
7.2. <i>POWERLINE CONDUCTED EMISSIONS</i>	15
8. SETUP PHOTOS	18

1. TEST RESULT CERTIFICATION

COMPANY NAME: GAMETECH INTERNATIONAL
900 SANDHILL RD
RENO NEVADA 89521, USA

EUT DESCRIPTION: BASE STATION MODEM UNIT TRANSMITTER.

MODEL: 300-00008-0001

DATE TESTED: APRIL 22, 2004 – APRIL 23, 2004

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

THU CHAN
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

Tested By:

THANH NGUYEN
EMC TECHNICIAN
COMPLIANCE CERTIFICATION SERVICES

2. EUT DESCRIPTION

The Base Station Modem Unit transmitter (BSM) is the RF device used to transmit the Packet data from the Host Computer to the HandHeld Traveller device and the RF TED.

UNIT	Frequency Band (MHz)	Peak Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)
BSM	914.5	93.14	94.00	-0.86

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/1992, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The open area test sites and conducted measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5.3. TEST AND MEASUREMENT EQUIPMENT

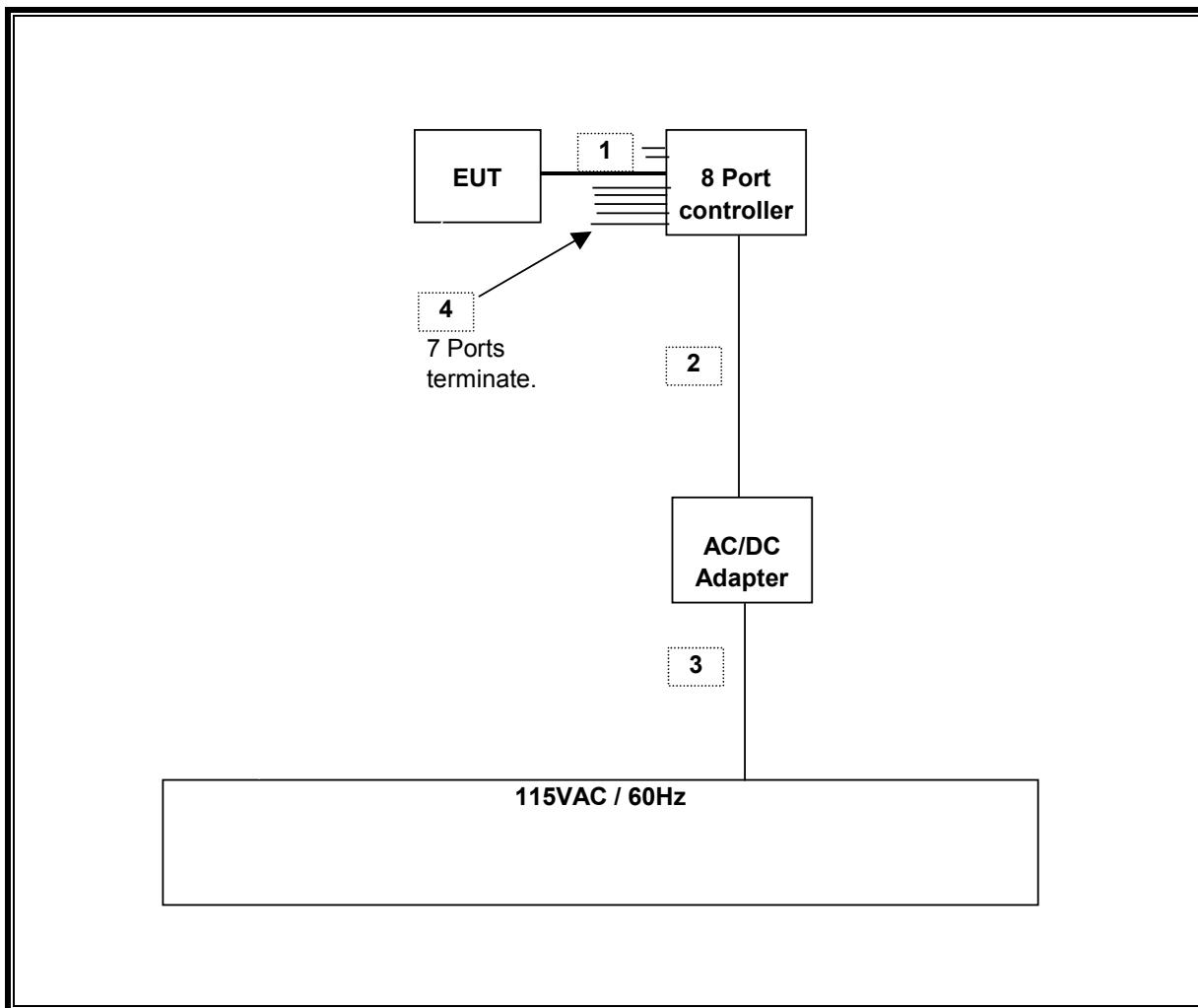
The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date
Quasi-Peak Adaptor	HP	85650A	2521A01038	7/16/04
SA Display Section 3	HP	85662A	2314A04793	7/16/04
SA RF Section, 1.5 GHz	HP	85680A	2314A02604	7/16/04
Site C Preamplifier, 1300MHz	HP	8447D	2944A06550	8/18/04
Antenna, Biconical	Eaton	94455-1	1214	3/8/05
Antenna, Log Periodic 200 ~ 1000 MHz	EMCO	3146	9107-3163	3/8/05
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	10/13/04
Site A Line Stabilizer / Conditioner	Tripplite	LC-1800a	A0051681	CNR
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	10/13/04
EMI Test Receiver	R & S	ESHS 20	827129/006	7/17/04
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	2/4/05
Preamplifier, 1 ~ 26 GHz	Miteq	NSP10023988	646456	4/25/04
Spectrum Analyzer	HP	8593EM	3710A00205	10/01/04

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST				
Device Type	Manufacturer	Model	Serial Number	FCC ID
8 Port Base Station Controller	Gametech	99-00009-0000	N/A	N/A


I/O CABLES

Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	Ethernet	1	RJ45	Unshielded	2m	Yes
2	DC	1	DC	Unshielded	2m	No
3	AC	1	US 115V	Unshielded	2m	No
4	Ethernet	7	RJ45	Unshielded	5m	No

TEST SETUP

The BSM is connected to the 8 Port Base station controller, and activated by program Hyper Terminal transmitting the data packet.

SETUP DIAGRAM FOR TESTS

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. RADIATED EMISSIONS

LIMITS

§15.249 Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 - 928 MHz	50	500
2400 - 2483.5 MHz	50	500
5725 - 5875 MHz	50	500
24.0 - 24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane, the X, Y, and Z positions (if necessary) shall be tested and the worst case reported. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The transmitter shall be switched on with typical modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to 905MHz signal.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

No non-compliance noted:

7.1.1. TRANSMITTER RADIATED EMISSIONS

FUNDAMENTAL MEASUREMENT:

COMPLIANCE Certification Services		<i>Project #:</i> 04U2670-1 <i>Report #:</i> 040422C1 <i>Date & Time:</i> 04/22/04 9:59 AM <i>Test Engr:</i> Thanh Nguyen																																													
FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP 561F MONTEREY ROAD, SAN JOSE, CA 95037-9001 PHONE: (408) 463-0885 FAX: (408) 463-0888																																															
<i>Company:</i> GameTech <i>EUT Description:</i> 2 Way Base Station Modem 900MHz <i>Test Configuration :</i> EUT, 8Port Base station Controller <i>Type of Test:</i> FCC Part15.249 Class B <i>Mode of Operation:</i> Continuously Transmit Packet at normal position.																																															
<input type="radio"/> A-Site <input type="radio"/> B-Site <input checked="" type="radio"/> C-Site <input type="radio"/> F-Site <input type="radio"/> 6 Worst Data <input type="radio"/> Descending																																															
<table border="1"> <thead> <tr> <th>Freq. (MHz)</th> <th>Reading (dBuV)</th> <th>AF (dB)</th> <th>Closs (dB)</th> <th>Pre-amp (dB)</th> <th>Level (dBuV/m)</th> <th>Limit FCC_B</th> <th>Margin (dB)</th> <th>Pol (H/V)</th> <th>Az (Deg)</th> <th>Height (Meter)</th> <th>Mark (P/Q/A)</th> </tr> </thead> <tbody> <tr> <td>914.50</td> <td>64.60</td> <td>23.38</td> <td>5.16</td> <td>0.00</td> <td>93.14</td> <td>94.00</td> <td>-0.86</td> <td>3mV</td> <td>0.00</td> <td>1.00</td> <td>P</td> </tr> <tr> <td>914.51</td> <td>54.10</td> <td>23.38</td> <td>5.16</td> <td>0.00</td> <td>82.64</td> <td>94.00</td> <td>-11.36</td> <td>3mH</td> <td>0.00</td> <td>1.00</td> <td>P</td> </tr> </tbody> </table> <p>The Measurement above is for the normal position of the EUT full strength Tx Packet data.</p> <p>Total data #: 2 V.2c</p>												Freq. (MHz)	Reading (dBuV)	AF (dB)	Closs (dB)	Pre-amp (dB)	Level (dBuV/m)	Limit FCC_B	Margin (dB)	Pol (H/V)	Az (Deg)	Height (Meter)	Mark (P/Q/A)	914.50	64.60	23.38	5.16	0.00	93.14	94.00	-0.86	3mV	0.00	1.00	P	914.51	54.10	23.38	5.16	0.00	82.64	94.00	-11.36	3mH	0.00	1.00	P
Freq. (MHz)	Reading (dBuV)	AF (dB)	Closs (dB)	Pre-amp (dB)	Level (dBuV/m)	Limit FCC_B	Margin (dB)	Pol (H/V)	Az (Deg)	Height (Meter)	Mark (P/Q/A)																																				
914.50	64.60	23.38	5.16	0.00	93.14	94.00	-0.86	3mV	0.00	1.00	P																																				
914.51	54.10	23.38	5.16	0.00	82.64	94.00	-11.36	3mH	0.00	1.00	P																																				

HARMONICS AND SPURIOUS EMISSIONS

04/22/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																																																																																																																																																																																											
Test Engr: Thanh Nguyen Project #: 04U2670-1 Company: Game Tech. EUT Descrip.: 2 Way Base Station Modem 900MHz EUT M/N: 300-00008-0001 Test Target: FCC part 15.249 Class B. Mode Oper: Transmit mode, at Normal Position																																																																																																																																																																																																											
Test Equipment:																																																																																																																																																																																																											
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz																																																																																																																																																																																																							
173; S/N: 6717 @3m	HP 8593EM Analyzer	187 Miteq 924342																																																																																																																																																																																																									
Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)																																																																																																																																																																																																											
Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth																																																																																																																																																																																																											
Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth																																																																																																																																																																																																											
<table border="1"> <thead> <tr> <th>f GHz</th> <th>Dist feet</th> <th>Read Pk dBuV</th> <th>Read Avg. dBuV</th> <th>AF dB/m</th> <th>CL dB</th> <th>Amp dB</th> <th>D Corr dB</th> <th>HPF</th> <th>Peak dBuV/m</th> <th>Avg dBuV/m</th> <th>Pk Lim dBuV/m</th> <th>Avg Lim dBuV/m</th> <th>Pk Mar dB</th> <th>Avg Mar dB</th> <th>Notes</th> </tr> </thead> <tbody> <tr> <td colspan="15" style="text-align: center;">The Fundamental Tx Frequency is 914.525MHz</td> </tr> <tr> <td colspan="15" style="text-align: center;">Harmonics Emissions Measurement.</td> </tr> <tr> <td>1.828</td> <td>9.8</td> <td>57.7</td> <td>54.4</td> <td>27.4</td> <td>1.9</td> <td>-43.3</td> <td>0.0</td> <td>1.0</td> <td>44.6</td> <td>41.4</td> <td>74.0</td> <td>54.0</td> <td>-29.4</td> <td>-12.6</td> <td>V</td> </tr> <tr> <td>2.744</td> <td>9.8</td> <td>52.5</td> <td>42.4</td> <td>30.0</td> <td>2.4</td> <td>-43.2</td> <td>0.0</td> <td>1.0</td> <td>42.6</td> <td>32.6</td> <td>74.0</td> <td>54.0</td> <td>-31.4</td> <td>-21.4</td> <td>V</td> </tr> <tr> <td>3.658</td> <td>9.8</td> <td>52.3</td> <td>47.9</td> <td>31.9</td> <td>2.7</td> <td>-43.7</td> <td>0.0</td> <td>1.0</td> <td>44.1</td> <td>39.8</td> <td>74.0</td> <td>54.0</td> <td>-29.9</td> <td>-14.2</td> <td>V</td> </tr> <tr> <td>4.573</td> <td>9.8</td> <td>45.3</td> <td>33.0</td> <td>33.1</td> <td>3.1</td> <td>-44.5</td> <td>0.0</td> <td>1.0</td> <td>38.0</td> <td>25.7</td> <td>74.0</td> <td>54.0</td> <td>-36.0</td> <td>-28.3</td> <td>Noise Floor</td> </tr> <tr> <td>1.828</td> <td>9.8</td> <td>50.2</td> <td>44.9</td> <td>27.4</td> <td>1.9</td> <td>-43.3</td> <td>0.0</td> <td>1.0</td> <td>37.2</td> <td>31.8</td> <td>74.0</td> <td>54.0</td> <td>-36.8</td> <td>-22.2</td> <td>H</td> </tr> <tr> <td>2.744</td> <td>9.8</td> <td>48.7</td> <td>35.6</td> <td>30.0</td> <td>2.4</td> <td>-43.2</td> <td>0.0</td> <td>1.0</td> <td>38.8</td> <td>25.7</td> <td>74.0</td> <td>54.0</td> <td>-35.2</td> <td>-28.3</td> <td>H</td> </tr> <tr> <td>3.658</td> <td>9.8</td> <td>46.3</td> <td>36.5</td> <td>31.9</td> <td>2.7</td> <td>-43.7</td> <td>0.0</td> <td>1.0</td> <td>38.2</td> <td>28.4</td> <td>74.0</td> <td>54.0</td> <td>-35.8</td> <td>-25.6</td> <td>H</td> </tr> <tr> <td>4.573</td> <td>9.8</td> <td>43.8</td> <td>33.0</td> <td>33.1</td> <td>3.1</td> <td>-44.5</td> <td>0.0</td> <td>1.0</td> <td>36.6</td> <td>25.7</td> <td>74.0</td> <td>54.0</td> <td>-37.4</td> <td>-28.3</td> <td>Noise Floor</td> </tr> <tr> <td colspan="15" style="text-align: center;">No more Harmonic and Spurious emissions above 4th harmonic.</td> </tr> </tbody> </table>															f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes	The Fundamental Tx Frequency is 914.525MHz															Harmonics Emissions Measurement.															1.828	9.8	57.7	54.4	27.4	1.9	-43.3	0.0	1.0	44.6	41.4	74.0	54.0	-29.4	-12.6	V	2.744	9.8	52.5	42.4	30.0	2.4	-43.2	0.0	1.0	42.6	32.6	74.0	54.0	-31.4	-21.4	V	3.658	9.8	52.3	47.9	31.9	2.7	-43.7	0.0	1.0	44.1	39.8	74.0	54.0	-29.9	-14.2	V	4.573	9.8	45.3	33.0	33.1	3.1	-44.5	0.0	1.0	38.0	25.7	74.0	54.0	-36.0	-28.3	Noise Floor	1.828	9.8	50.2	44.9	27.4	1.9	-43.3	0.0	1.0	37.2	31.8	74.0	54.0	-36.8	-22.2	H	2.744	9.8	48.7	35.6	30.0	2.4	-43.2	0.0	1.0	38.8	25.7	74.0	54.0	-35.2	-28.3	H	3.658	9.8	46.3	36.5	31.9	2.7	-43.7	0.0	1.0	38.2	28.4	74.0	54.0	-35.8	-25.6	H	4.573	9.8	43.8	33.0	33.1	3.1	-44.5	0.0	1.0	36.6	25.7	74.0	54.0	-37.4	-28.3	Noise Floor	No more Harmonic and Spurious emissions above 4th harmonic.														
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																																																																																																																																																																																												
The Fundamental Tx Frequency is 914.525MHz																																																																																																																																																																																																											
Harmonics Emissions Measurement.																																																																																																																																																																																																											
1.828	9.8	57.7	54.4	27.4	1.9	-43.3	0.0	1.0	44.6	41.4	74.0	54.0	-29.4	-12.6	V																																																																																																																																																																																												
2.744	9.8	52.5	42.4	30.0	2.4	-43.2	0.0	1.0	42.6	32.6	74.0	54.0	-31.4	-21.4	V																																																																																																																																																																																												
3.658	9.8	52.3	47.9	31.9	2.7	-43.7	0.0	1.0	44.1	39.8	74.0	54.0	-29.9	-14.2	V																																																																																																																																																																																												
4.573	9.8	45.3	33.0	33.1	3.1	-44.5	0.0	1.0	38.0	25.7	74.0	54.0	-36.0	-28.3	Noise Floor																																																																																																																																																																																												
1.828	9.8	50.2	44.9	27.4	1.9	-43.3	0.0	1.0	37.2	31.8	74.0	54.0	-36.8	-22.2	H																																																																																																																																																																																												
2.744	9.8	48.7	35.6	30.0	2.4	-43.2	0.0	1.0	38.8	25.7	74.0	54.0	-35.2	-28.3	H																																																																																																																																																																																												
3.658	9.8	46.3	36.5	31.9	2.7	-43.7	0.0	1.0	38.2	28.4	74.0	54.0	-35.8	-25.6	H																																																																																																																																																																																												
4.573	9.8	43.8	33.0	33.1	3.1	-44.5	0.0	1.0	36.6	25.7	74.0	54.0	-37.4	-28.3	Noise Floor																																																																																																																																																																																												
No more Harmonic and Spurious emissions above 4th harmonic.																																																																																																																																																																																																											

7.1.2. WORST-CASE RADIATED EMISSIONS BELOW 1 GHZ

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

COMPLIANCE Certification Services		Project #: 04U2670-1 Report #: 040422C2 Date & Time: 04/22/04 10:20 AM Test Engr: Thanh Nguyen																																																																																																											
FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP 561F MONTEREY ROAD, SAN JOSE, CA 95037-9001 PHONE: (408) 463-0885 FAX: (408) 463-0888																																																																																																													
Company: GameTech EUT Description: 2 Way Base Station Modem 900MHz Test Configuration : EUT, 8Port Base station Controller Type of Test: FCC Part15.249 Class B Mode of Operation: Continuously Transmit Packet at normal position.																																																																																																													
<< Main Sheet																																																																																																													
<table border="1"> <thead> <tr> <th>Freq. (MHz)</th> <th>Reading (dBuV)</th> <th>AF (dB)</th> <th>Closs (dB)</th> <th>Pre-amp (dB)</th> <th>Level (dBuV/m)</th> <th>Limit FCC_B</th> <th>Margin (dB)</th> <th>Pol (H/V)</th> <th>Az (Deg)</th> <th>Height (Meter)</th> <th>Mark (P/Q/A)</th> </tr> </thead> <tbody> <tr> <td>66.35</td> <td>50.40</td> <td>7.08</td> <td>1.33</td> <td>27.24</td> <td>31.57</td> <td>40.00</td> <td>-8.43</td> <td>3mV</td> <td>0.00</td> <td>1.00</td> <td>P</td> </tr> <tr> <td>38.18</td> <td>43.90</td> <td>13.45</td> <td>1.05</td> <td>27.32</td> <td>31.07</td> <td>40.00</td> <td>-8.93</td> <td>3mV</td> <td>0.00</td> <td>1.00</td> <td>P</td> </tr> <tr> <td>55.29</td> <td>47.20</td> <td>9.86</td> <td>1.24</td> <td>27.28</td> <td>31.02</td> <td>40.00</td> <td>-8.98</td> <td>3mH</td> <td>0.00</td> <td>1.50</td> <td>P</td> </tr> <tr> <td>33.27</td> <td>43.30</td> <td>13.46</td> <td>0.98</td> <td>27.34</td> <td>30.39</td> <td>40.00</td> <td>-9.61</td> <td>3mV</td> <td>0.00</td> <td>1.00</td> <td>P</td> </tr> <tr> <td>232.25</td> <td>45.70</td> <td>12.38</td> <td>2.35</td> <td>26.56</td> <td>33.88</td> <td>46.00</td> <td>-12.12</td> <td>3mV</td> <td>0.00</td> <td>1.00</td> <td>P</td> </tr> <tr> <td>431.32</td> <td>37.70</td> <td>16.84</td> <td>3.30</td> <td>27.28</td> <td>30.56</td> <td>46.00</td> <td>-15.44</td> <td>3mV</td> <td>0.00</td> <td>1.00</td> <td>P</td> </tr> <tr> <td colspan="13">6 Worst Data</td> </tr> </tbody> </table>													Freq. (MHz)	Reading (dBuV)	AF (dB)	Closs (dB)	Pre-amp (dB)	Level (dBuV/m)	Limit FCC_B	Margin (dB)	Pol (H/V)	Az (Deg)	Height (Meter)	Mark (P/Q/A)	66.35	50.40	7.08	1.33	27.24	31.57	40.00	-8.43	3mV	0.00	1.00	P	38.18	43.90	13.45	1.05	27.32	31.07	40.00	-8.93	3mV	0.00	1.00	P	55.29	47.20	9.86	1.24	27.28	31.02	40.00	-8.98	3mH	0.00	1.50	P	33.27	43.30	13.46	0.98	27.34	30.39	40.00	-9.61	3mV	0.00	1.00	P	232.25	45.70	12.38	2.35	26.56	33.88	46.00	-12.12	3mV	0.00	1.00	P	431.32	37.70	16.84	3.30	27.28	30.56	46.00	-15.44	3mV	0.00	1.00	P	6 Worst Data												
Freq. (MHz)	Reading (dBuV)	AF (dB)	Closs (dB)	Pre-amp (dB)	Level (dBuV/m)	Limit FCC_B	Margin (dB)	Pol (H/V)	Az (Deg)	Height (Meter)	Mark (P/Q/A)																																																																																																		
66.35	50.40	7.08	1.33	27.24	31.57	40.00	-8.43	3mV	0.00	1.00	P																																																																																																		
38.18	43.90	13.45	1.05	27.32	31.07	40.00	-8.93	3mV	0.00	1.00	P																																																																																																		
55.29	47.20	9.86	1.24	27.28	31.02	40.00	-8.98	3mH	0.00	1.50	P																																																																																																		
33.27	43.30	13.46	0.98	27.34	30.39	40.00	-9.61	3mV	0.00	1.00	P																																																																																																		
232.25	45.70	12.38	2.35	26.56	33.88	46.00	-12.12	3mV	0.00	1.00	P																																																																																																		
431.32	37.70	16.84	3.30	27.28	30.56	46.00	-15.44	3mV	0.00	1.00	P																																																																																																		
6 Worst Data																																																																																																													

7.2. POWERLINE CONDUCTED EMISSIONS

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

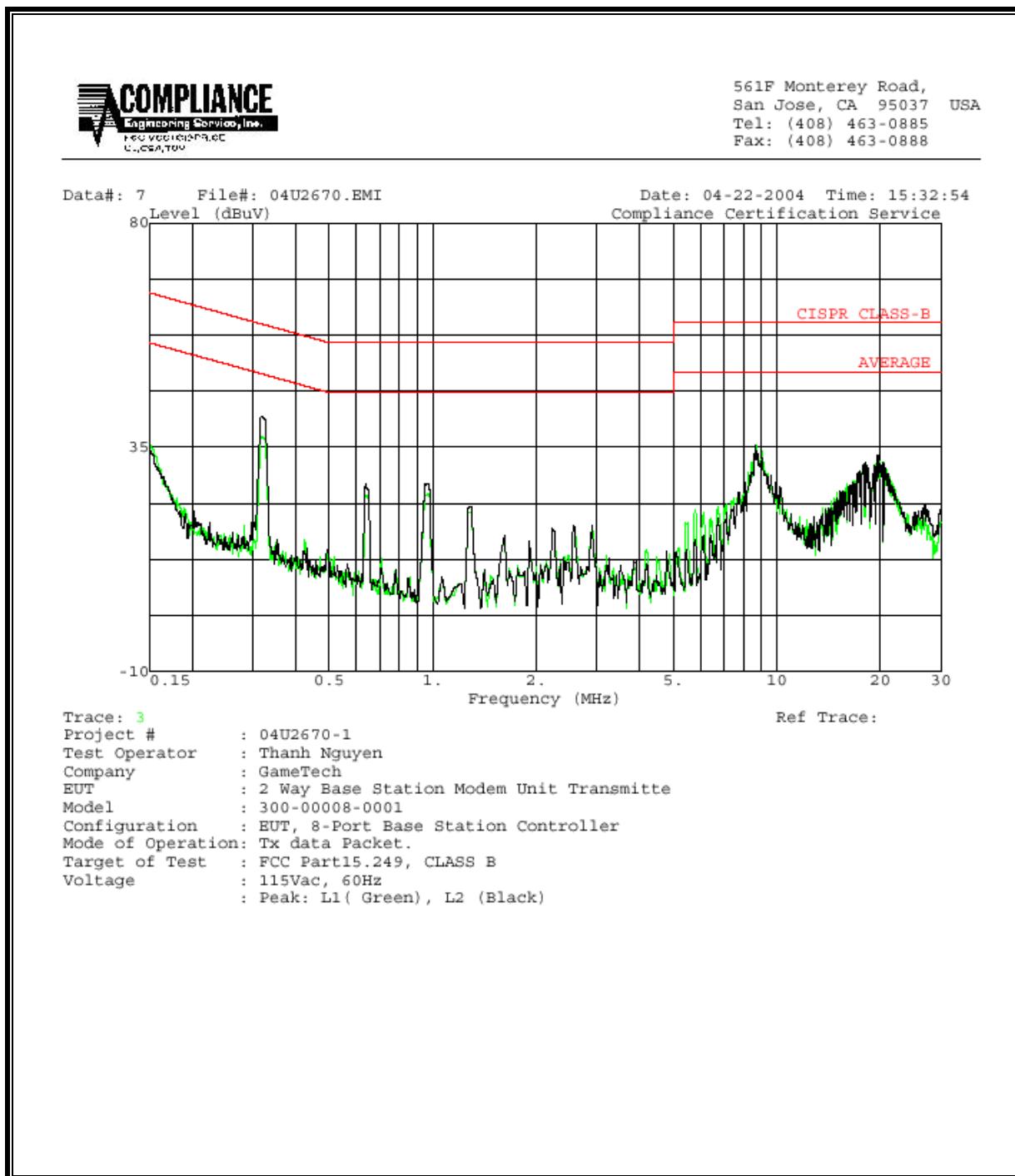
Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56 [*]	56 to 46 [*]
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST PROCEDURE

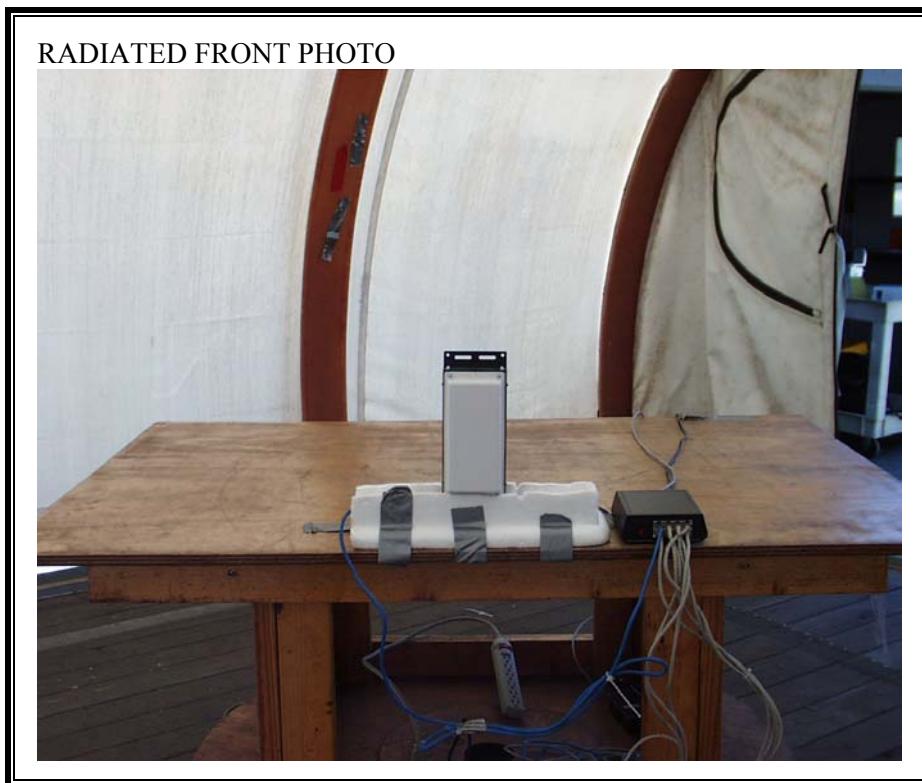
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:

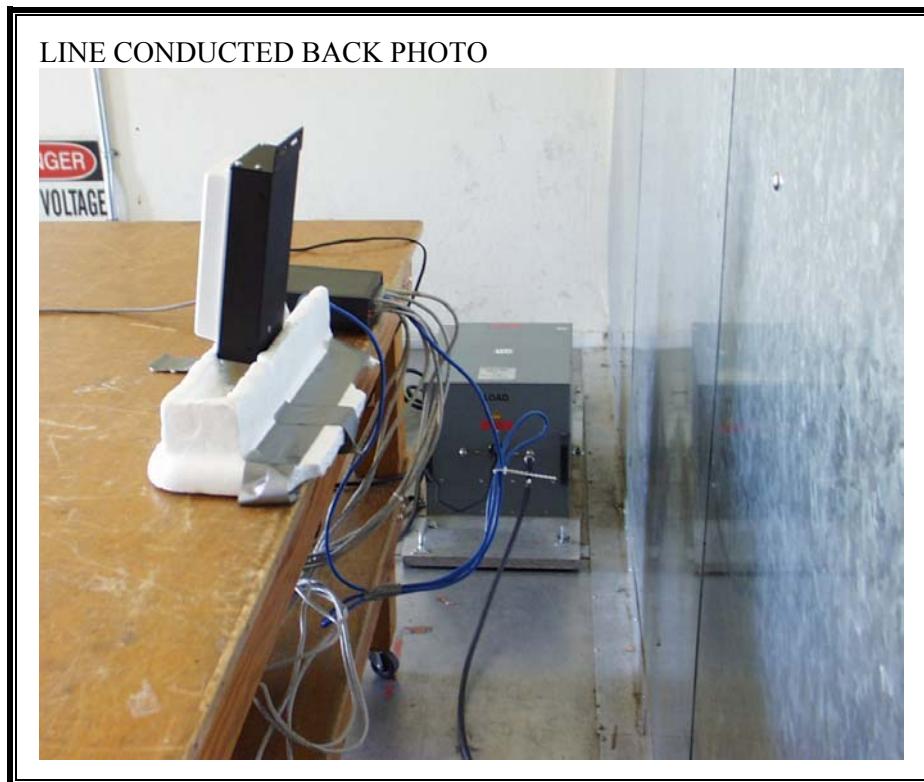

6 WORST EMISSIONS

CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq. (MHz)	Reading			Closs (dB)	Limit QP	EN_B AV	Margin		Remark	
	PK (dBuV)	QP (dBuV)	AV (dBuV)				QP (dB)	AV (dB)		
0.32	37.24	--	--	0.00	61.23	51.23	-23.99	-13.99	L1	
8.37	35.54	--	--	0.00	60.00	50.00	-24.46	-14.46	L1	
19.74	33.18	--	--	0.00	60.00	50.00	-26.82	-16.82	L1	
0.32	41.16	--	--	0.00	61.23	51.23	-20.07	-10.07	L2	
8.64	35.38	--	--	0.00	60.00	50.00	-24.62	-14.62	L2	
19.74	33.48	--	--	0.00	60.00	50.00	-26.52	-16.52	L2	
6 Worst Data										

LINE 1 and 2 RESULTS

8. SETUP PHOTOS

RADIATED MEASUREMENT SETUP


RADIATED BACK PHOTO

LINE CONDUCTED FRONT PHOTO

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

END OF REPORT