

FCC SAR Compliance Test Report

Project Name: HUAWEI MediaPad 7 Lite

Model : S7-932u

FCC ID : QISS7-932U

Report No. : SYBH(Z-SAR) 040082012-2

	APPROVED (Lab Manager)	CHECKED	PREPARED
BY	Liu Chumbin	Alvinway	Mi Wenping
DATE	2012-09-11	2012-09-11	2012-09-11

The test results of this test report relate exclusively to the item(s) tested, The HUAWEI does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of HUAWEI.

Reliability Laboratory of Huawei Technologies Co., Ltd.

Tel: +86 755 28780808 Fax: +86 755 89652518

Table of Contents

1	General Information	4
1.	1 Statement of Compliance	4
1.	2 RF exposure limits	4
1.	3 EUT Description	4
	1.3.1 General Description	4
1.		
1.	5 Testing laboratory	(
1.		
1.	7 Application details	(
1.	8 Ambient Condition	(
2	SAR Measurement System	
2.	1 SAR Measurement Set-up	
2.		
2.	3 Data Acquisition Electronics description	8
2.	4 Probe description	9
2.		
2.		
2.		
3	SAR Measurement Procedure	
3.		
3.	· ·	
3.		
	System Verification Procedure	
4.		
4.	,	
_ 4.		
	Measurement Uncertainty Evaluation	
5.		
5.	, ,	
	SAR Test Configuration	
6.		
6.	5	
6.		
	SAR Measurement Results	
7.	·	
	7.1.1 Conducted power measurements GSM850	
	·	
	7.1.3 Conducted power measurements UMTS Band V	
	7.1.4 Conducted power measurements UMTS Band II	24
	7.1.6 Conducted power measurements WiFi	
7.	·	
	7.2.1 SAR measurement Result of GSM850	
	7.2.2 SAR measurement Result of GSM1900	
	7.2.3 SAR measurement Result of UMTS Band V	
	7.2.4 SAR measurement Result of UMTS Band II	
	7.2.5 SAR measurement Result of WiFi	
7.		
	endix A. System Check Plots	
	endix B. SAR Measurement Plots	
	endix C. Calibration Certificate	
	endix D. Photo documentation	

% % Modified History % %

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev. 1.0	Initial Test Report Release	2012-08-30	Mi Wenping
Rev.1.1	Revised the description for simultaneous transmission about BT and WiFi in page 30	2012-09-11	Mi Wenping

2012-09-11 Page 3 of 31

1 General Information

1.1 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for S7-932u are as below Table 1.

Band	Position	Measured MAX SAR _{1g} (W/kg)	Conducted Power (dBm)	Tune-up Power(dBm)	Extraploted Result(W/kg)
GSM 850	Body(0mm)	1.010	29.94	30.80	1.231
GSM1900	Body(0mm)	0.799	27.28	28.30	1.011
UMTS Band V	Body(0mm)	0.870	22.46	23.80	1.184
UMTS Band II	Body(0mm)	1.070	22.22	23.50	1.440
WiFi	Body(0mm)	0.547	15.37	/	/
Simultaneous SARMax is 1.558W/kg					

Table 1: Summary of test result

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1992, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2003 & IEEE Std 1528a-2005 and FCC OET Bulletin 65 Supplement C Edition 01-01.

1.2 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain/Body/Arms/Legs)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 2: RF exposure limits

The limit applied in this test report is shown in **bold** letters **Notes**:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.

2012-09-11 Page 4 of 31

1.3 EUT Description

Device Information:				
DUT Name:	HUAWEI MediaPad	7 Lite		
Type Identification:	S7-932u			
FCC ID:	QISS7-932U			
IMEI:	354524040167018			
Device Type :	portable device			
Exposure Category:	uncontrolled environ	ment / general popu	lation	
Hardware Version :	SH1931UM			
Software Version :	S7-932u V100R0010	C001		
Antenna Type :	internal antenna			
Others Accessories	Headset			
Device Operating Configurations:				
Supporting Mode(s)	GSM 850/1900, UM	TS Band V /II(tested),WiFi(Tested)	
Test Modulation	GSM(GMSK), UMT	S (QPSK)		
Device Class	В			
	Band	Tx (MHz)	Rx (MHz)	
	GSM850	824-849	869-894	
Operating Frequency Range(s)	GSM1900	1850-1910	1930-1990	
	UMTS Band V	824-849	869-894	
	UMTS Band II	1850-1910	1930-1990	
	Max Number of Time	eslots in Uplink:	2	
GPRS Multislot Class(10)	Max Number of Timeslots in Downlink:		4	
	Max Total Timeslot:		5	
	Max Number of Timeslots in Uplink:		2	
EGPRS Multislot Class(10)	Max Number of Timeslots in Downlink:		4	
	Max Total Timeslot:		5	
HSDPA UE Category	6			
	4,tested with power level 5(GSM 850)			
Power Class:	1,tested with power level 0(GSM 1900)			
Fower Class.	3, tested with power control "all 1"(UMTS Band V)			
	3, tested with power control "all 1"(UMTS Band II)			
	128-190-251 (GSM850)			
Test Channels (low-mid-high):	512-661-810 (GSM1900)			
rest Orianneis (iow-iniu-nigh).	4132-4182-4233 (UMTS Band V)			
	9262-9400-9538 (UMTS Band II)			

Table 3: Device information and operating configuration

1.3.1 General Description

HSDPA/UMTS/EDGE/GPRS/GSM information terminal HUAWEI MediaPad 7 Lite with Bluetooth and Wi-Fi is subscriber equipment in the WCDMA/GSM system. The HSPA/HSDPA /UMTS frequency band is Band II and Band V. The EDGE/GPRS/GSM frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900. Band II/Band V/ GSM850/ DCS1900 test data included in the report. HUAWEI MediaPad 7 Lite (MediaPad 7 Lite for short) is a 7 inch tablet computer that simultaneously supports 3G and Wi-Fi data services, and has an ultra high definition IPS screen with a resolution of up to 1024 × 600 pixels. MediaPad 7 Lite is based on the Android operating system, enjoying both Google Android Play Store and Huawei's unique Cloud+ solutions.

2012-09-11 Page 5 of 31

1.4 Test specification(s)

ANSI C95.1-1992	Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C 95.1-1991)
Recommended Practice for Determining the Peak Spatial-A Specific Absorption Rate (SAR) in the Human Head from Wi Communications Devices: Measurement Techniques	
IEEE 1528a-2005	IEEE Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques Amendment 1: CAD File for Human Head Model (SAM Phantom)
OET Bulletin No. 65, Supplement C– 2001	Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic FieldsAdditional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions
Canada's Safety Code 6	Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)
RSS-102	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 4 of March 2010)
KDB941225 D01	SAR test for 3G devices v02
KDB941225 D03	SAR Test Reduction GSM GPRS EDGE vo1
KDB 248227 D01	SAR meas for 802.11 a/b/g v01r02
KDB447498 D01	Mobile Portable RF Exposure v04

1.5 Testing laboratory

Test Site	Reliability Laboratory of Huawei Technologies Co., Ltd.	
Test Location	Zone K3, Huawei Industrial Base, Bantian Industry Area, Longgang District, Shenzhen, Guangdong, China	
Telephone	+86 755 28780808	
Fax	+86 755 89652518	
State of accreditation	The Test laboratory (area of testing) is accredited according to ISO/IEC 17025. CNAS Registration number: L0310; A2LA CERT #2174.01	

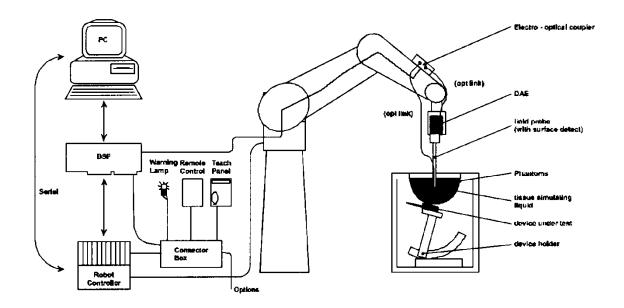
1.6 Applicant and Manufacturer

Company Name	HUAWEI TECHNOLOGIES CO., LTD
Address	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

1.7 Application details

Start Date of test	2012-08-16
End Date of test	2012-08-29

1.8 Ambient Condition


Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2012-09-11 Page 6 of 31

2 SAR Measurement System

2.1 SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>E</u>lectro-<u>O</u>ptical <u>C</u>oupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows XP.
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

2012-09-11 Page 7 of 31

2.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions: $5 \times 2.5 \times 3 \text{ m}^3$, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

2.3 Data Acquisition Electronics description

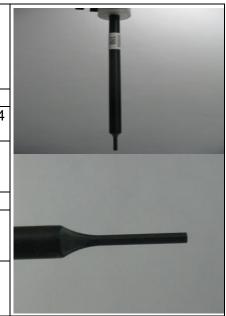
The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

Input Impedance	200MOhm	Extensión à Partice Engineering ACI
The Inputs	symmetrical and floating	TYPE: DAE 4 PART No: SO 000 D04 BJ SERIAL No: 851
Common mode rejection	above 80 dB	DATE: 03/08

2012-09-11 Page 8 of 31



2.4 Probe description

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Isotropic E-Field Probe ES3DV3 for Dosimetric Measurements

ISUTIOPIC E-FIEIU FI	TODE ESSENS TO POSITIETIC MEasurements			
	Symmetrical design with triangular core Interleaved sensors			
Construction	Built-in shielding against static charges			
	PEEK enclosure material (resistant to organic			
	solvents, e.g., DGBE)			
Calibration	ISO/IEC 17025 calibration service available.			
Eroguenev	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4			
Frequency	GHz)			
	± 0.2 dB in HSL (rotation around probe axis)			
Directivity	± 0.3 dB in tissue material (rotation normal to			
	probe axis)			
Dynamic range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB			
	Overall length: 337 mm (Tip: 20 mm)			
Dimensions	Tip diameter: 3.9 mm (Body: 12 mm)			
	Distance from probe tip to dipole centers: 2.0 mm			
	General dosimetry up to 4 GHz			
Application	Dosimetry in strong gradient fields			
11	Compliance tests of mobile phones			

Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic range	10 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB (noise: typically<1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20mm) Tip length: 2.5 mm (Body: 12mm) Typical distance from probe tip to dipole centers: 1mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

2012-09-11 Page 9 of 31

2.5 Phantom description

SAM Twin Phantom

Shell Thickness	2mm +/- 0.2 mm; The ear region: 6mm	1
Filling Volume	Approximately 30 liters	
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet	
Measurement Areas	Left hand Right hand Flat phantom	L

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

ELI4 Phantom

Shell Thickness	2mm +/- 0.2 mm
Filling Volume	Approximately 30 liters
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet
Measurement Areas	Flat phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

2.6 Device holder description

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

2012-09-11 Page 10 of 31

2.7 Test Equipment List

This table gives a complete overview of the SAR measurement equipment

Devices used during the test described are marked |

	Manufacturer	Device	Туре	Serial number	Date of last calibration)*
	SPEAG	Dosimetric E-Field Probe	ES3DV3	3168	2011-09-27
	SPEAG	Dosimetric E-Field Probe	EX3DV4	3661	2012-01-27
\boxtimes	SPEAG	Dosimetric E-Field Probe	EX3DV4	3744	2012-07-27
\boxtimes	SPEAG	835 MHz Validation Dipole	D835V2	4d126	2011-11-07
	SPEAG	900 MHz Validation Dipole	D900V2	1d112	2011-03-09
	SPEAG	1800 MHz Validation Dipole	D1800V2	2d184	2011-03-08
\boxtimes	SPEAG	1900 MHz Validation Dipole	D1900V2	5d143	2011-09-26
	SPEAG	2000 MHz Validation Dipole	D2000V2	1052	2011-03-10
	SPEAG	2300 MHz Validation Dipole	D2300V2	1016	2011-04-13
\boxtimes	SPEAG	2450 MHz Validation Dipole	D2450V2	860	2011-03-08
	SPEAG	2600 MHz Validation Dipole	D2600V2	1021	2011-04-13
\boxtimes	SPEAG	Data acquisition electronics	DAE4	851	2012-07-25
\boxtimes	SPEAG	Data acquisition electronics	DAE4	679	2011-12-23
	SPEAG	Data acquisition electronics	DAE4	1236	2012-03-28
\boxtimes	SPEAG	Software	DASY 5	N/A	N/A
\boxtimes	SPEAG	Twin Phantom	SAM1	TP-1475	N/A
\boxtimes	SPEAG	Twin Phantom	SAM2	TP-1474	N/A
	SPEAG	Twin Phantom	SAM3	TP-1597	N/A
	SPEAG	Twin Phantom	SAM4	TP-1620	N/A
	SPEAG	Flat Phantom	ELI 4.0	TP-1038	N/A
	SPEAG	Flat Phantom	ELI 4.0	TP-1111	N/A
\boxtimes	R&S	Universal Radio Communication Tester	CMU 200	113989	2012-06-07
\boxtimes	Agilent)*	Network Analyser	E5071B	MY42404956	2012-02-14
\boxtimes	Agilent	Dielectric Probe Kit	85070E	2484	N/A
\boxtimes	Agilent	Signal Generator	N5181A	MY47420989	2012-02-14
\boxtimes	MINI-CIRCUITS	Amplifier	ZHL-42W	QA0746001	N/A
\boxtimes	Agilent	Power Meter	E4417A	MY45101339	2012-02-14
\boxtimes	Agilent	Power Meter Sensor	E9321A	MY44420359	2012-02-14

Note: All the test equipments are calibrated once a year, except the dipoles, which are calibrated every three years. Moreover, we have self-calibration every year to the dipoles.

- 1) Per KDB 450824 D02 requirements for dipole calibration, Huawei SAR lab has adopted three years calibration interval. But each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C
- a) There is no physical damage on the dipole;
- b) System validation with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

2012-09-11 Page 11 of 31

3 SAR Measurement Procedure

3.1 Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The referenceand drift measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The surface check measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The area scan measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in Appendix B.
- A 7x7x7 zoom scan measures the field in a volume around the 2D peak SAR value acquired in the previous coarse scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY5 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in Appendix B. Test results relevant for the specified standard (see chapter 1.4.) are shown in table form in chapter 7.2.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and candepending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in Appendix B.

2012-09-11 Page 12 of 31

3.2 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of $7 \times 7 \times 7$ points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum
 the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline
 interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the
 boundary of the measurement area) the evaluation will be started on the corners of the bottom plane
 of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY5 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes.

2012-09-11 Page 13 of 31

3.3 Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor
 Diode compression point
 Dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ - Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \circ cf/dcp_i$$

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

2012-09-11 Page 14 of 31

H-field probes: $H_i = (V_i)^{1/2} (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i (i = x, y, z) Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^{2} \cdot \sigma) / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

2012-09-11 Page 15 of 31

4 System Verification Procedure

4.1 Tissue Verification

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within \pm 5% of the target values.

The following materials are used for producing the tissue-equivalent materials.

Ingredients (% of weight)	Head Tissue						
Frequency Band (MHz)	450	835	900	1800	1900	2450	
Water	38.56	41.45	40.92	52.64	55.242	62.7	
Salt (NaCl)	3.95	1.45	1.48	0.36	0.306	0.5	
Sugar	56.32	56.0	56.5	0.0	0.0	0.0	
HEC	0.98	1.0	1.0	0.0	0.0	0.0	
Bactericide	0.19	0.1	0.1	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	
DGBE	0.0	0.0	0.0	47.0	44.542	36.8	
Ingredients (% of weight)			Body Tis	sue			
Frequency Band (MHz)	450	835	900	1800	1900	2450	
Water	51.16	52.4	56.0	69.91	69.91	73.2	
Salt (NaCl)	1.49	1.40	0.76	0.13	0.13	0.04	
Sugar	46.78	45.0	41.76	0.0	0.0	0.0	
HEC	0.52	1.0	1.21	0.0	0.0	0.0	
Bactericide	0.05	0.1	0.27	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	
DGBE	0.0	0.0	0.0	29.96	29.96	26.7	

Table 4: Tissue Dielectric Properties

Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, $16M\Omega$ + resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1 1 3 3-tetramethylbutyl)phenyllether

THIOH X-			COI MONO [4-(1,1,3			ieriyijetrier I		
Tissue	Measured	rarget	Tissue	Measur	ed Tissue	Liquid		
Туре	Frequency (MHz)	εr (+/-5%)	σ (S/m) (+/-5%)	εr	σ (S/m)	Temp.	Test Date	
	825	55.20 (52.44~57.96)	0.97 (0.92~1.02)	53.72	0.97			
835 Body	835	55.20 (52.44~57.96)	0.97 (0.92~1.02)	53.66	0.97	21.4°C	2012-08-16	
Í	850	55.20 (52.44~57.96)	0.99 (0.94~1.04)	53.54	0.99			
	1850	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.41	1.50			
1900	1880	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.33	1.53	21.4°C	2012-08-28	
Body	1900	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.19	1.55	21.4 0	2012-00-20	
	1910	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.17	1.56			
	2410	52.8 (50.16~55.44)	1.91 (1.81~2.00)	52.21	1.94			
2450	2435	52.7 (50.07~55.34)	1.94 (1.84~2.04)	52.07	1.96	21.4°C	2012-8-17	
Body	2450	52.7 (50.07~55.34)	1.95 (1.85~2.05)	52.06	1.98	21.4 0	2012-0-17	
	2460	52.7 (50.07~55.34)	1.96 (1.86~2.06)	52.05	2.00			
		ε_r = Relati	ive permittivity, σ=	Conductiv	/ity		_	

2012-09-11 Page 16 of 31

Table 5: Measured Tissue Parameter

The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

Note:

- 1) KDB 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies.
- 2)The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits.

4.2 System Check

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system validation is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows validation results for all frequency bands and tissue liquids used during the tests (Graphic Plot(s) see Appendix A).

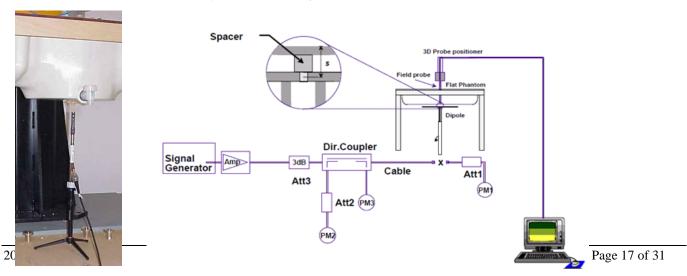

System Chask	Target SAR (1W) (+/-10%)		red SAR zed to 1W)	Liquid	Test Date	
System Check	1-g (mW/g)	10-g (mW/g)	•		Temp.	rest Date	
D835V2 Body	9.54 (8.59~10.49)	6.29 (5.66~6.92)	9.84	6.44	21.4°C	2012-08-16	
D1900V2 Body	41.40 (37.26~45.54)	21.80 (19.62~23.98)	43.20	21.60	21.4°C	2012-08-28	
D2450V2 Body	52.80 (47.52~58.08)	24.50 (22.05~26.95)	50.00	22.28	21.4°C	2012-08-17	

Table 6: System Check Results

4.3 Validation Procedure

The validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Validation results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

5 Measurement Uncertainty Evaluation

5.1 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is \pm 10.9% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 21.9%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Partner Engineering AG. Th								2
Error Sources	Uncertaint y Value	Probability Distribution	Divi -sor	c _i 1g	c _i 10g	Standard Uncertain ty 1g	Standard Uncertain ty10g	v _i ² or V _{eff}
Measurement System								
Probe calibration	± 6.0%	Normal	1	1	1	± 6.0%	± 6.0%	8
Axial isotropy	± 4.7%	Rectangular	√3	0.7	0.7	± 1.9%	± 1.9%	8
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 3.9%	± 3.9%	8
Spatial resolution	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	8
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Readout electronics	± 0.3%	Normal	1	1	1	± 0.3%	± 0.3%	8
Response time	± 0.8%	Rectangular	√3	1	1	± 0.5%	± 0.5%	8
Integration time	± 2.6%	Rectangular	√3	1	1	± 1.5%	± 1.5%	8
RF ambient conditions	± 3.0%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	8
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Test Sample Related								
Device positioning	± 2.9%	Normal	1	1	1	± 2.9%	± 2.9%	145
Device holder uncertainty	± 3.6%	Normal	1	1	1	± 3.6%	± 3.6%	5
Power drift	± 5.0%	Rectangular	√3	1	1	± 2.9%	± 2.9%	8
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	8
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	∞
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	8
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	8
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	8
Combined Uncertainty	$u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$					± 10.9%	± 10.7%	387
Expanded Std. Uncertainty	$u_e = 2u_c$	Normal		k=2		± 21.9%	± 21.4%	

Table 7: Measurement uncertainties

2012-09-11 Page 18 of 31

5.2 Measurement uncertainty evaluation for system validation

The overall combined measurement uncertainty of the measurement system is \pm 9.5% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 18.9%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertaint y Value	Probability Distribution	Divi- sor	c _i 1g	c _i 10g	Standard Uncertaint y 1g	Standard Uncertaint y10g	v _i ² or v _{eff}
Measurement System								
Probe calibration	± 6.0%	Normal	1	1	1	± 6.0%	± 6.0%	8
Axial isotropy	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	∞
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 0.0%	± 0.0%	8
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Readout electronics	± 0.3%	Normal	1	1	1	± 0.3%	± 0.3%	8
Response time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	8
Integration time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	8
RF ambient conditions	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	∞
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	∞
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Dipole								
Deviation of experimental dipole	± 5.5%	Rectangular	√3	1	1	± 3.2%	± 3.2%	∞
Dipole axis to liquid distance	± 2.0%	Rectangular	1	1	1	± 1.2%	± 1.2%	8
Power drift	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	∞
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	∞
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	∞
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	∞
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	∞
Combined Uncertainty	$u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$					± 9.5%	± 9.2%	
Expanded Std. Uncertainty	$u_e = 2u_c$	Normal		k=2		± 18.9%	± 18.4%	

Table 8: Measurement uncertainties

2012-09-11 Page 19 of 31

6 SAR Test Configuration

6.1 **GSM Test Configuration**

SAR tests for GSM850 and GSM1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM850 and GSM 1900. The tests in the band of GSM850 and GSM1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 10 for this EUT, it has at most 2 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 10 for this EUT, it has at most 2 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot.

The allowed power reduction in the multi-slot configuration is as following:

			3	0		
Number of tuplink ass		Reduction of maximum output power, (dB)				
Band	Time Slots	GPRS (GMSK)	EGPRS (GMSK)	EGPRS (8PSK)		
GSM850	1 TX slot	0	0	0		
GSIVIOSO	2 TX slots	2	2	1		
GSM1900	1 TX slot	0	0	0		
G3W11900	2 TX slots	2	2	1		

Table 9: The allowed power reduction in the multi-slot configuration of GSM

6.2 UMTS Test Configuration

1) WCDMA

As the SAR body tests for UMTS Band II and UMTS Band V, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

- 1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to 'all 1'.
- 2) Test loop Mode 1.

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH₂-n)

	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
DPDCH₁	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640
DPDCH _n	960	960	4	1, 2, 3	640

2012-09-11 Page 20 of 31

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCHn, when supported by the EUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCHn configuration, are less than ¼ dB higher than those measured in 12.2 kbps RMC.

2) HSDPA

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average outputs of each RF channel with HSDPA active is at ¼ dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HAPRQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the below table, β_{hs} for HS-DPCCH is set automatically to the correct value when Δ ACK, Δ NACK, Δ CQI = 8. The variation of the β_c / β_d ratio causes a power reduction at sub-tests 2 - 4.

Sub-	βc₽	βd√⊃	β _d (SF)₽	βc / βd₽	βhs	CM(dB)(2	MPR (dB)₽
test₽					(1)₽)₽	
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽
2₽	12/15(3	15/15(3	64₊	12/15(3) ₄	24/15₽	1.0₽	0₽
)₽)₽					
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
4₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 . $A_{hs} = \beta_{hs}/\beta_c = 30/15$. $\beta_{hs} = 30/15$ * $\beta_c \neq \beta_c \neq \beta_s = 30/15$.

Note 2.: CM=1 for $\beta_c/\beta_d=12/15$, $\beta_{0s}/\beta_c=24/15$. For all other combinations of DPDCH_DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 11/15 and β_d = 15/15.

Table 10: Sub-tests for UMTS Release 5 HSDPA

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 11:settings of required H-Set 1 QPSK acc. to 3GPP 34.121

2012-09-11 Page 21 of 31

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum HS-DSCH Transport Block Bits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 12:HSDPA UE category

6.3 WiFi Test Configuration

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1,6and 11 respectively in the case of 2450 MHz.During the test,at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g/n modes are tested on channel 1,6,11; however,if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

2012-09-11 Page 22 of 31

7 SAR Measurement Results

7.1 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used.

SAR drift measured at the same position in liquid before and after each SAR test as below 7.2 chapter.

Note: CMU200 measures GSM peak and average output power for active timeslots.For SAR the timebased average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
timebased avg. power compared to slotted avg. power	-9dB	-6dB	-4.25dB	-3dB

The signalling modes differ as follows:

<u> </u>		
mode	coding scheme	modulation
GPRS	CS1 to CS4	GMSK
EDGE	MCS1 to MCS4	GMSK
EDGE	MCS5 to MCS9	8PSK

Apart from modulation change (GMSK/8PSK) coding schemes differ in code rate without influence on the RF signal. Therefore one coding scheme per mode was selected for conducted power measurements.

7.1.1 Conducted power measurements GSM850

GSM850		Burst-Ave	eraged outp (dBm)	out Power	Division Factors Frame-Averaged output (dBm)			tput Power
		128CH	190CH	251CH	raciois	128CH		
GSM	(CS)	32.68	32.41	31.92	-9	23.68	23.41	22.92
GPRS	1 Tx Slot	32.68	32.36	31.89	-9	23.68	23.36	22.89
(GMSK)	2 Tx Slot	30.11	29.88	29.48	-6	24.11	23.88	23.48
EDGE	1 Tx Slot	32.76	32.44	31.94	-9	23.76	23.44	22.94
(GMSK)	2 Tx Slot	30.16	29.94	29.54	-6	24.16	23.94	23.54
EDGE	1 Tx Slot	27.48	27.20	26.82	-9	18.48	18.20	17.82
(8PSK)	2 Tx Slot	26.39	26.13	25.82	-6	20.39	20.13	19.82

Table 13:Test results conducted power measurement GSM 850MHz

Note:

- 1. The conducted power of GSM850 is measured with RMS detector.
- 2. Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timesolts.

2012-09-11 Page 23 of 31

7.1.2 Conducted power measurements GSM1900

GSM	GSM1900		eraged outp (dBm)	out Power	Division	Frame-Averaged output Power (dBm)		
		512CH	661CH	810CH	Factors	512CH	661CH	810CH
GSM	I (CS)	29.55	29.47	29.28	-9	20.55	20.55 20.47	
GPRS	1 Tx Slot	29.54	29.38	29.26	-9	20.54	20.38	20.26
(GMSK)	2 Tx Slot	27.32	27.28	27.20	-6	21.32	21.28	21.20
EDGE	1 Tx Slot	29.54	29.38	29.26	-9	20.54	20.38	20.26
(GMSK)	2 Tx Slot	27.31	27.38	27.21	-6	21.31	21.38	21.21
EDGE	1 Tx Slot	26.14	26.07	25.96	-9	17.14	17.07	16.96
(8PSK)	2 Tx Slot	25.10	25.04	24.91	-6	19.10	19.04	18.91

Table 14:Test results conducted power measurement GSM 1900MHz Note:

- 1. The conducted power of GSM1900 is measured with RMS detector.
- 2. Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timesolts.

7.1.3 Conducted power measurements UMTS Band V

LIMTS	Pand V	Average Power (dBm)					
UMTS Band V		4132CH	4182CH	4233CH			
	12.2kbps RMC	21.90	22.46	22.28			
WCDMA	64kbps RMC	21.94	22.44	22.29			
VVCDIVIA	144kbps RMC	21.94	22.45	22.26			
	384kbps RMC	21.98	22.42	22.30			
	Subtest 1	21.50	21.89	21.75			
HSDPA	Subtest 2	21.29	21.76	21.64			
ПЭПЬЯ	Subtest 3	20.64	21.16	20.97			
	Subtest 4	19.62	20.22	20.02			

Table 15:Test results conducted power measurement UMTS Band V

Note: The conducted power of UMTS Band V is measured with RMS detector.

7.1.4 Conducted power measurements UMTS Band II

LIMTO	Band II	Average Power (dBm)				
UIVITS	Danu II	9262CH	9400CH	9538CH		
	12.2kbps RMC	22.45	22.22	22.05		
WCDMA	64kbps RMC	22.46	22.23	22.06		
VVCDIVIA	144kbps RMC	22.46	22.19	22.02		
	384kbps RMC	22.45	22.16	22.04		
	Subtest 1	21.56	21.17	20.93		
HSDPA	Subtest 2	21.51	21.02	21.03		
ПОДРА	Subtest 3	21.12	20.91	20.69		
	Subtest 4	20.16	19.92	19.67		

Table 16:Test results conducted power measurement UMTS Band II

Note:

The conducted power of UMTS Band II is measured with RMS detector.

2012-09-11 Page 24 of 31

7.1.5 Conducted power measurements BT

	Ave	Average Conducted Power (dBm)						
BT 2450MHz	0CH	39CH	78CH					
	7.19	8.58	8.63					

Table 17: Test results conducted power measurement BT 2450 MHz

7.1.6 Conducted power measurements WiFi

Wi-Fi	Channel		Average Power (dBm) for Data Rates (Mbps)								
2450MHz	Charine	1	2	5.5	11	/	/	/	/		
	1	15.28	15.21	15.29	15.26	/	/	/	/		
802.11b	6	15.16	15.35	15.27	15.21	/	/	/	/		
	11	15.37	15.28	15.36	15.17	/	/	/	/		
	Channel	6	9	12	18	24	36	48	54		
802.11g	1	13.38	13.37	13.23	13.26	13.24	13.32	13.33	13.36		
802.11g	6	13.37	13.41	13.32	13.27	13.38	13.21	13.17	13.35		
	11	13.26	13.31	13.37	13.32	13.24	13.42	13.31	13.25		
	Channel	6.5	13	19.5	26	39	52	58.5	65		
802.11n	1	13.42	13.34	13.35	13.36	13.41	13.37	13.39	13.35		
HT20	6	13.32	13.41	13.32	13.36	13.25	13.37	13.28	13.31		
	11	13.43	13.32	13.39	13.25	13.27	13.31	13.36	13.37		

Table 18: Test results conducted power measurement WiFi 2450MHz Note:

1.Per KDB248227, For each frequency band, Testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate.

2. The conducted power of WiFi is measured with RMS detector.

2012-09-11 Page 25 of 31

7.2 SAR measurement Result

7.2.1 SAR measurement Result of GSM850

Test Position	Test		SAR Valu	e (W/kg)	Power	Limit	Liquid	
of Body with 0mm	channel /Frequency	Test Mode	1-g	10-g	Drift (dB)	(W/kg)	Temp.	
	128/824.2		0.774	0.447	-0.120	1.6	21.4°C	
Rear Side	190/836.6	GPRS 1TS	0.873	0.504	0.080	1.6	21.4°C	
	251/848.8		0.848	0.494	0.050	1.6	21.4°C	
	128/824.2		0.886	0.505	0.140	1.6	21.4°C	
Rear Side	190/836.6	GPRS 2TS	0.996	0.563	-0.070	1.6	21.4°C	
	251/848.8		0.986	0.547	-0.020	1.6	21.4°C	
Left Side	190/836.6	GPRS 2TS	0.675	0.372	-0.140	1.6	21.4°C	
Top Side	190/836.6	GPRS 2TS	0.305	0.167	-0.150	1.6	21.4°C	
	128/824.2		0.780	0.452	-0.030	1.6	21.4°C	
Rear Side	190/836.6	EDGE 1TS	0.868	0.507	-0.110	1.6	21.4°C	
	251/848.8		0.842	0.487	-0.100	1.6	21.4°C	
	128/824.2		0.923	0.526	0.000	1.6	21.4°C	
Rear Side	190/836.6	EDGE 2TS	1.010	0.574	0.020	1.6	21.4°C	
	251/848.8		1.000	0.571	-0.090	1.6	21.4°C	
Rear Side with headset	190/836.6	GSM	0.980	0.563	0.160	1.6	21.4°C	

Table 19:Test results body SAR GSM 850MHz

7.2.2 SAR measurement Result of GSM1900

Test Position	Test		SAR Valu	Value (W/kg) P		Limit	Liquid
of Body with 0mm	channel /Frequency	Test Mode	1-g	10-g	Drift (dB)	(W/kg)	Temp.
Rear Side	661/1880	GPRS 1TS	0.662	0.323	0.090	1.6	21.4°C
Rear Side	661/1880	GPRS 2TS	0.799	0.386	0.160	1.6	21.4°C
Left Side	661/1880	GPRS 2TS	0.611	0.277	0.000	1.6	21.4°C
Top Side	661/1880	GPRS 2TS	0.066	0.040	0.000	1.6	21.4°C
Rear Side	661/1880	EDGE 1TS	0.673	0.328	-0.150	1.6	21.4°C
Rear Side	661/1880	EDGE 2TS	0.694	0.314	0.170	1.6	21.4°C
Rear Side with headset	661/1880	GSM	0.692	0.322	0.140	1.6	21.4°C

Table 20:Test results body SAR GSM 1900MHz

Note: 1) The maximum SAR value of each test band is shown in **bold** letters.

- 2) Per KDB447498 D01,the SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.
- 3) For the device is a large tablet with a display and overall diagonal dimension > 20 cm, so SAR for the Front side is not required.
- 4) For it is not the most conservative antenna-to-user distance at edge mode as per KDB 447498 D01, so the Bottom and Right sides don't need to be tested.

2012-09-11 Page 26 of 31

7.2.3 SAR measurement Result of UMTS Band V

Test Position of Body	Test channel	Test	SAR Value (W/kg)		Power Drift	Limit	Liquid
with 0mm	/Frequency	Mode	1-g	10-g	(dB)	(W/kg)	Temp.
Rear Side	4132/826.4	RMC	0.839	0.462	-0.100	1.6	21.4°C
Rear Side	4182/836.4	RMC	0.872	0.479	-0.180	1.6	21.4°C
Rear Side	4233/846.6	RMC	0.818	0.447	-0.050	1.6	21.4°C
Left Side	4182/836.4	RMC	0.508	0.274	-0.070	1.6	21.4°C
Top Side	4182/836.4	RMC	0.204	0.111	0.150	1.6	21.4°C
Rear Side	4182/836.4	HSDPA	0.804	0.439	0.160	1.6	21.4°C
Rear Side with headset	4182/836.4	RMC	0.834	0.456	0.000	1.6	21.4°C

Table 21:Test results body SAR UMTS Band V

7.2.4 SAR measurement Result of UMTS Band II

Test Position of Body with 0mm	Test channel	Test Mode	SAR Value (W/kg)		Power Drift	Limit (W/kg)	Liquid Temp.
Body With Onlin	/Frequency		1-g	10-g	(dB)	(W/Kg)	remp.
Rear Side	9262/1852.4	RMC	1.040	0.508	-0.160	1.6	21.4°C
Rear Side	9400/1880	RMC	1.070	0.522	0.090	1.6	21.4°C
Rear Side	9538/1907.6	RMC	1.030	0.504	-0.130	1.6	21.4°C
Left Side	9262/1852.4	RMC	0.886	0.403	0.060	1.6	21.4°C
Left Side	9400/1880	RMC	0.920	0.418	0.020	1.6	21.4°C
Left Side	9538/1907.6	RMC	0.960	0.433	0.140	1.6	21.4°C
Top Side	9400/1880	RMC	0.095	0.061	0.150	1.6	21.4°C
Rear Side	9400/1880	HSDPA	0.901	0.442	0.040	1.6	21.4°C
Rear Side with headset	9400/1880	RMC	1.040	0.506	-0.030	1.6	21.4°C

Table 22:Test results body SAR UMTS Band II

Note: 1) The maximum SAR value of each test band is shown in **bold** letters.

- 2) Per KDB447498 D01,the SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.
- 3) For the device is a large tablet with a display and overall diagonal dimension > 20 cm, so SAR for the Front side is not required.
- 4) For it is not the most conservative antenna-to-user distance at edge mode as per KDB 447498 D01, so the Bottom and Right sides don't need to be tested.

2012-09-11 Page 27 of 31

7.2.5 SAR measurement Result of WiFi

Test Position of	Test Channe		SAR Value (W/kg)		Power Drift	Limit	Liquid
Body with 0mm	Wiode	/Frequency	1-g	10-g	(dB)	(W/kg)	Temp.
Rear Side	802.11b	11/2462	0.488	0.205	0.000	1.6	21.4°C
Right Side	802.11b	11/2462	0.547	0.213	-0.040	1.6	21.4°C
Top Side	802.11b	11/2462	0.136	0.058	0.190	1.6	21.4°C

Table 23: Test results body SAR WiFi 2450MHz

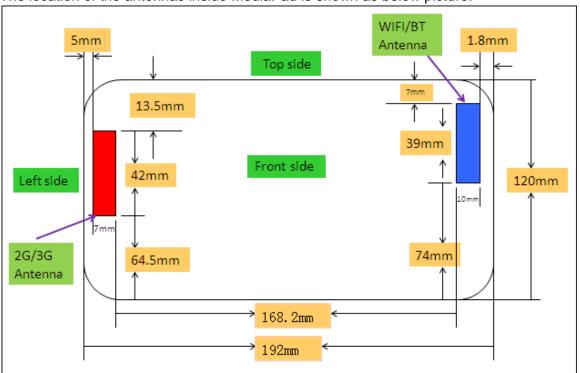
Note: 1) The maximum SAR value of each test band is shown in **bold** letters.

- 2) The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.
- 3) For the device is a large tablet with a display and overall diagonal dimension > 20 cm, so SAR for the Front side is not required.
- 4) For it is not the most conservative antenna-to-user distance at edge mode as per KDB 447498 D01, so the Bottom and Left sides don't need to be tested.

2012-09-11 Page 28 of 31

7.3 Multiple Transmitter Evaluation

Per KDB447498 D01 Mobile portable RF exposure v04, SAR is not required for the following simultaneous condition:


For the antennas that are located < 5cm from persons, where

- a. The closest antenna separation distance is > 5cm for all simultaneous transmitting antennas within the host or device; and
- b. The sum of the 1-g SAR is < 1.6W/kg for all simultaneous transmitting antennas that require standalone SAR evaluation or the SAR to peak location separation ratios are < 0.3 for all simultaneous transmitting antenna pairs; and
- c. The output power is $\leq 60/f(GHz)$ mW for any simultaneous transmitting antenna(s) for which standalone SAR evaluation is not required.

	2.45	5.15 - 5.35	5.47 - 5.85	GHz			
P_{Ref}	12	6	5	\mathbf{mW}			
Device output power should be rounded to the nearest mW to compare with values specified in this table.							

Table 24: Output Power Thresholds for Unlicensed Transmitters

The location of the antennas inside MediaPad is shown as below picture:

2012-09-11 Page 29 of 31

Stand-alone SAR

According to the output power measurement results and the distance between BT/WiFi antenna and GSM& UMTS antenna we can draw the conclusion that:

Stand-alone SAR evaluation is not required for BT, because the Max output power of BT unlicensed transmitter is 8.63dBm≤24mW (13.8dBm)

Stand-alone SAR evaluation is required for WiFi, because the output power of WiFi unlicensed transmitter is 15.37dBm >24mW (13.8dBm).

Simultaneous SAR

Simultaneous Transmission SAR evaluation is not required for WiFi and GSM&UMTS, because the sum of the 1g SAR is 1.558W/kg < 1.6W/kg for WiFi and GSM& UMTS

Simultaneous Transmission SAR evaluation is not required for BT and GSM& UMTS, because standalone SAR are not required for BT and its antenna(s) is 16.82cm>5.0 cm from main antenna.

Simultaneous Transmission SAR evaluation is not required for BT and WiFi, because they can't transmit at the same time by design.

2012-09-11 Page 30 of 31

Appendix A. System Check Plots

(Pls See Appendix A.)

Appendix B. SAR Measurement Plots

(Pls See Appendix B.)

Appendix C. Calibration Certificate

(Pls See Appendix C.)

Appendix D. Photo documentation

(PIs See Appendix D.)

End

2012-09-11 Page 31 of 31