

FCC SAR Compliance Test Report

Product Name: HiLink

Model: HWD32

Report No.: SYBH(Z-SAR)005102014-2

FCC ID: QISHWD32

	APPROVED (Lab Manager)	PREPARED (Test Engineer)
BY	Wei Huarbin	Gong Zhong
DATE	2014-12-02	2014-12-02

The test results of this test report relate exclusively to the item(s) tested . The HUAWEI does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of HUAWEI.

Reliability Laboratory of Huawei Technologies Co., Ltd.

Tel: +86 755 28780808 Fax: +86 755 89652518

Table of Contents

1	Gene	eral Informationeral Information	4
	1.1	Statement of Compliance	
	1.2	RF exposure limits	
	1.3	EUT Description	6
	1.3.1		
	1.4	Test specification(s)	
	1.5	Testing laboratory	8
		Applicant and Manufacturer	
		Application details	
	1.8	Ambient Condition	8
2	SAR	Measurement System	9
	2.1	SAR Measurement Set-up	9
		Test environment	
	2.3	Data Acquisition Electronics description	.10
		Probe description	
		Phantom description	
	2.6	Device holder description	.13
		Test Equipment List	
3		Measurement Procedure	
		Scanning procedure	
		Spatial Peak SAR Evaluations	
		Data Storage and Evaluation	
4		em Verification Procedure	
		Tissue Verification	
		System Check	
		System check Procedure	
5		measurement variability and uncertainty	
		SAR measurement variability	
		SAR measurement uncertainty	
		Test Configuration	
		UMTS Test Configuration	
		LTE Test Configuration	
7		Measurement Results	
		Conducted power measurements	
	7.1.1		.32
	7.1.2		.33
	7.1.3		
		SAR measurement Results	
	7.2.1		
	7.2.2		
	7.2.3		
	7.2.4		
		endix A. System Check Plots	
		endix B. SAR Measurement Plots	
		endix C. Calibration Certificate	
	Anno	andix D. Photo documentation	30

% % Modified History % %

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	2014-12-02	Gong Zhong

2014-12-02 Page 3 of 39 Report No.: SYBH(Z-SAR)005102014-2 FCC ID:QISHWD32

General Information

Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for HWD32 is as below Table 1.

Band	Band Position	
UMTS Band V	Body 5mm	0.731
UMTS Band II	Body 5mm	1.018
LTE Band XVII	Body 5mm	0.673

Table 1:Summary of test result

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits according to the FCC rule §2.1093, the ANSI C95.1:1992/IEEE C95.1:1991, the NCRP Report Number 86 for uncontrolled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2003 & IEEE Std 1528a-2005.

2014-12-02 Page 4 of 39

1.2 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain/Body/Arms/Legs)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 2: RF exposure limits

The limit applied in this test report is shown in **bold** letters

Notes:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.

2014-12-02 Page 5 of 39

1.3 EUT Description

Device Information:				
Product Name:	HiLink			
Model:	HWD32			
FCC ID:	QISHWD32			
SN No.:	G5C0114B1000014	4		
Device Type :	Portable device			
Device Phase:	Identical Prototype			
Exposure Category:		nment / general population	on	
Hardware Version:	CL2KD01UM			
Software Version:	11.992.10.10.824			
Antenna Type :	Internal antenna			
Device Operating Configurations:				
	Supporting Mode(s) UMTS Band V/II,LTE Band XVII			
Test Modulation	UMTS(QPSK),LTE(QPSK/16QAM),		
	Band	Tx (MHz)	Rx (MHz)	
Operating Frequency Range(s)	UMTS Band V	824-849	869-894	
Operating Frequency Range(3)	UMTS Band II	1850-1910	1930-1990	
	LTE Band XVII	704-716	734-746	
HSDPA UE Category	14			
HSUPA UE Category	6			
DC-HSDPA UE Category	24			
	3, tested with power control "all 1"(UMTS Band V)			
Power Class:	3, tested with power control "all 1"(UMTS Band II)			
	3, tested with power control all Max.(LTE Band XVII)			
	4132-4182-4233(UMTS Band V)			
Test Channels(low-mid-high):	9262-9400-9538(UMTS Band II)			
1 cot chainleid(low line liigh).	23755-23790-23825(LTE Band XVII BW=5MHz)			
	23780-23790-23800	(LTE Band XVII BW=10	MHz)	

Table 3:Device information and operating configuration

2014-12-02 Page 6 of 39

1.3.1 General Description

HWD32 is a LTE/UMTS dual mode USB dongle; It supports 3G WCDMA and 4G LTE wireless internet accessing function. About 3G WCDMA wireless mode, it supports WCDMA and DC-HSDPA/HSDPA/HSPA+, operating in Band1, Band 2, Band 5 and the 4G LTE, operating in Band 3, Band 11, Band 17, Band 18, Band 28, Band 41.HWD32 supports 1Tx2Rx for 3G WCDMA and 4G LTE.

The location of the antennas inside device is shown as below picture:

Note:

- 1) The Diversity antenna is used to improve the acceptance of performance of the main antenna. it does not have a transmitter function.
- 2) Per KDB 447498D02, the USB dongle has an rotatable USB connector so that it can be positioned at 90° from the horizontal position. As the main antenna location distance is > 25 mm from the USB connector, so additional SAR testing in these configurations is not required.

2014-12-02 Page 7 of 39

1.4 Test specification(s)

ANSI Std C95.1-1992	Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991)	
IEEE Std 1528-2003	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	
IEEE Std 1528a-2005 IEEE Std 1528a-2005 IEEE Std 1528a-2005 IEEE Recommended Practice for Determining the Peak Spatial-Av Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques Amendment 1: CAD File for Human Head Model (SAM Phantom)		
RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 4 of March 2010))		
KDB941225 D01	3G SAR Procedures v03	
KDB941225 D05	SAR for LTE Devices v02r03	
KDB447498 D01 General RF Exposure Guidance v05r02		
KDB447498 D02 SAR Procedures for Dongle Xmtr v02		
KDB865664 D01	SAR measurement 100 MHz to 6 GHz v01r03	
KDB865664 D02	SAR Reporting v01r01	
KDB690783 D01	SAR Listings on Grants v01r03	

1.5 Testing laboratory

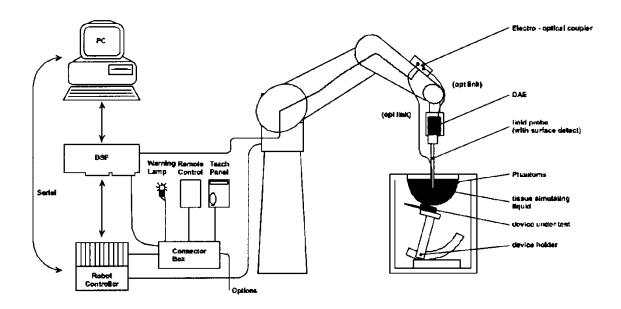
Test Site	The Reliability Laboratory of Huawei Technologies Co., Ltd.	
Test Location	Zone K3, Huawei Industrial Base, Bantian Industry Area, Longgang District, Shenzhen, Guangdong, China	
Telephone	+86 755 28780808	
Fax	+86 755 89652518	
State of accreditation	The Test laboratory (area of testing) is accredited according to ISO/IEC 17025. CNAS Registration number: L0310 A2LA TESTING CERT #2174.01	

1.6 Applicant and Manufacturer

Company Na	ame	HUAWEI TECHNOLOGIES CO., LTD
Address		Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

1.7 Application details

Start Date of test	2014-11-29
End Date of test	2014-11-30


1.8 Ambient Condition

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2014-12-02 Page 8 of 39

2 SAR Measurement System

2.1 SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>E</u>lectro-<u>O</u>ptical <u>C</u>oupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 7.
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System check dipoles allowing to validate the proper functioning of the system.

2014-12-02 Page 9 of 39

2.2 Test environment

The DASY5 measurement system is placed at the head end of a room with dimensions: $5 \times 2.5 \times 3 \text{ m}^3$, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

2.3 Data Acquisition Electronics description

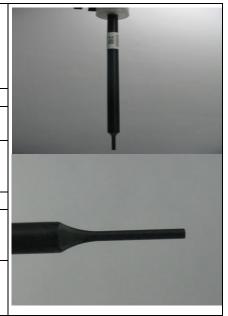
The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

DAE4		
Input Impedance	200MOhm	Extend & Parker Expressing AD
The Inputs	symmetrical and floating	TYPE: DAE 4 PART Nr.: SD 000 DOA BJ SERIAL Nr.: 851
Common mode rejection	above 80 dB	DATE: 03/08

2014-12-02 Page 10 of 39



2.4 Probe description

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Isotropic E-Field Probe ES3DV3 for Dosimetric Measurements

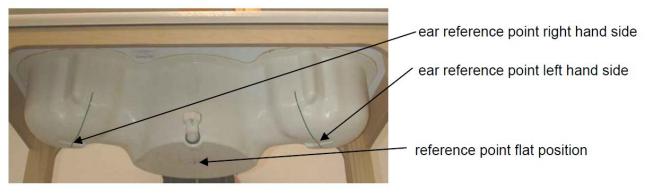
isotropic E-i leid Frobe ESSDVS for Dosimetric Measurements				
Symmetrical design with triangular core				
Interleaved sensors				
Built-in shielding against static charges				
PEEK enclosure material (resistant to organic				
solvents, e.g., DGBE)				
ISO/IEC 17025 calibration service available.				
10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4				
GHz)				
± 0.2 dB in HSL (rotation around probe axis)				
± 0.3 dB in tissue material (rotation normal to				
probe axis)				
5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB				
Overall length: 337 mm (Tip: 20 mm)				
Tip diameter: 3.9 mm (Body: 12 mm)				
Distance from probe tip to dipole centers: 2.0 mm				
General dosimetry up to 4 GHz				
Dosimetry in strong gradient fields				
Compliance tests of mobile phones				

Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic range	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB(noise:typically<1μW/g)
Dimensions	Overall length: 337 mm (Tip:20 mm) Tip diameter:2.5 mm (Body:12 mm) Typical distance from probe tip to dipole centers: 1mm
Application	High precision dosimetric measurements in any exposure scenario(e.g.,very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%

2014-12-02 Page 11 of 39

2.5 Phantom description


SAM Twin Phantom

Shell Thickness	2mm +/- 0.2 mm; The ear region: 6mm	
Filling Volume	Approximately 25 liters	
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet	
Measurement Areas	Left hand Right hand Flat phantom	

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

The following figure shows the definition of reference point:

ELI4 Phantom

Shell Thickness	2mm +/- 0.2 mm	
Filling Volume	Approximately 30 liters	
Dimensions	Major axis:600mm; Minor axis:400mm;	
Measurement Areas	Flat phantom	38 89

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

The phantom shell material is resistant to all ingredients used in the tissue-equivalent liquid recipes. The shell of the phantom including ear spacers is constructed from low permittivity and low loss material, with a relative permittivity $2 \le \varepsilon \le 3$ GHz, $3 \le \varepsilon \le 4$ at > 3 GHz and and a loss tangent ≤ 0.05 .

2014-12-02 Page 12 of 39

2.6 Device holder description

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ϵ =3 and loss tangent σ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The device holder permits the device to be positioned with a tolerance of $\pm 1^{\circ}$ in the tilt angle.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

2014-12-02 Page 13 of 39

2.7 Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked X

	Manufacturer	Device	Туре	Serial number	Date of last calibration	Valid period
\boxtimes	SPEAG	Dosimetric E-Field Probe	ES3DV3	3168	2014-09-24	One year
\boxtimes	SPEAG	750 MHz Dipole	D750V3	1044	2014-09-19	Three years
\boxtimes	SPEAG	835 MHz Dipole	D835V2	4d059	2013-05-02	Three years
	SPEAG	1750 MHz Dipole	D1750V2	1123	2014-07-08	Three years
\boxtimes	SPEAG	1900 MHz Dipole	D1900V2	5d143	2014-09-23	Three years
	SPEAG	2450 MHz Dipole	D2450V2	860	2014-01-23	Three years
	SPEAG	2600 MHz Dipole	D2600V2	1021	2014-07-16	Three years
\boxtimes	SPEAG	Data acquisition electronics	DAE4	852	2014-04-30	One year
	SPEAG	Software	DASY 5	N/A	NCR	NCR
	SPEAG	Twin Phantom	SAM1	TP-1475	NCR	NCR
	SPEAG	Twin Phantom	SAM2	TP-1474	NCR	NCR
\boxtimes	SPEAG	Twin Phantom	SAM3	TP-1597	NCR	NCR
\boxtimes	SPEAG	Twin Phantom	SAM4	TP-1620	NCR	NCR
	SPEAG	Flat Phantom	ELI 4.0	TP-1038	NCR	NCR
	SPEAG	Flat Phantom	ELI 4.0	TP-1111	NCR	NCR
\boxtimes	R & S	Universal Radio Communication Tester	CMU 200	111379	2014-07-11	One year
\boxtimes	R&S	Universal Radio Communication Tester	CMW 500	126855	2014-07-11	One year
\boxtimes	Agilent	Network Analyser	E5071C	MY46213349	2014-02-25	One year
\boxtimes	Agilent	Dielectric Probe Kit	85070E	2484	NCR	NCR
\boxtimes	Agilent	Signal Generator	N5181A	MY47420989	2014-01-18	One year
\boxtimes	MINI-CIRCUITS	Amplifier	ZHL-42W	QA1402001	NCR	NCR
	MINI-CIRCUITS	Amplifier	ZVE-8G+	129601322	NCR	NCR
	AR	Directional Coupler	DC7144M1	0423264	2014-04-02	One year
\boxtimes	R&S	Power Meter	NRP	100740	2014-07-11	One year
	R&S	Power Meter Sensor	NRP-Z11	106288	2014-07-11	One year
	Agilent	Power Meter	E4417A	MY45101339	2014-01-18	One year
	Agilent	Power Meter Sensor	E9321A	MY44420359	2014-01-18	One year

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement.
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

2014-12-02 Page 14 of 39

Report No.: SYBH(Z-SAR)005102014-2 FCC ID:QISHWD32

SAR Measurement Procedure

Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension(≤2GHz), 12 mm in x- and ydimension(2-4 GHz) and 10mm in x- and y- dimension(4-6GHz). If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in Appendix B.
- A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine grid with maximum scan spatial resolution: Δx_{zoom} , $\Delta y_{zoom} \leq$ 2GHz - \leq 8mm, 2-4GHz - \leq 5 mm and 4-6 GHz- \leq 4mm; Δ z_{zoom} \leq 3GHz - \leq 5 mm, 3-4 GHz- \leq 4mm and 4-6GHz-≤2mm where the robot additionally moves the probe along the z-axis away from the bottom of the Phantom. DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in Appendix B. Test results relevant for the specified standard (see chapter 1.4.) are shown in table form form in chapter 7.2.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2 mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength - also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in Appendix B.

2014-12-02 Page 15 of 39

Report No.: SYBH(Z-SAR)005102014-2 FCC ID:QISHWD32

The following table su	mmarizes the area	scan and zoom scan	resolutions per l	FCC KDB 865664D01
THE IOHOWING LADIE SU	IIIIIIaiizes ilie alea s	scan anu zuum scan	162010110112 061 1	-CC NDD 00000 4 D01.

	Maximun	Maximun Zoom Scan spatial resolution				
Frequency	Area Scan resolution	Zoom Scan spatial	Uniform Grid	Graded Grad		zoom scan
	$(\Delta x_{area}, \Delta y_{area})$	resolution $(\Delta x_{Zoom}, \Delta y_{Zoom})$	$\Delta z_{Zoom}(n)$	Δz _{Zoom} (1)*	Δz _{Zoom} (n>1)*	volume (x,y,z)
≤2GHz	≤15mm	≤8mm	≤5mm	≤4mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥30mm
2-3GHz	≤12mm	≤5mm	≤5mm	≤4mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥30mm
3-4GHz	≤12mm	≤5mm	≤4mm	≤3mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥28mm
4-5GHz	≤10mm	≤4mm	≤3mm	≤2.5mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥25mm
5-6GHz	≤10mm	≤4mm	≤2mm	≤2mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥22mm

3.2 Spatial Peak SAR Evaluations

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 5 x 5 x 7 points(with 8mm horizontal resolution) or 7 x 7 x 7 points(with 5mm horizontal resolution) or 8 x 8 x 7 points(with 4mm horizontal resolution). The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR - values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three onedimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

2014-12-02 Page 16 of 39

DASY5 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes.

3.3 Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension "DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity - Conversion factor	Norm _i , a_{i0} , a_{i1} , a_{i2} ConvF _i
	 Diode compression point 	Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	 Conductivity 	σ
	- Density	ho

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

 $V_i = U_i + U_i^2 \cdot cf/dcp_i$ with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

2014-12-02 Page 17 of 39

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$ H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^{2} \circ \sigma) / (\rho \circ 1000)$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

 ρ = equivalent tissue density in g/cm $^{\circ}$

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

2014-12-02 Page 18 of 39

4 System Verification Procedure

4.1 Tissue Verification

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within \pm 5% of the target values.

The following materials are used for producing the tissue-equivalent materials

Ingredients (% of weight)	Body Tissue						
Frequency Band (MHz)	MSL750	MSL750 MSL835 MSL1750 MSL1900 MSL2450 MSL260					
Water	50.4	52.4	69.91	69.91	73.2	64.493	
Salt (NaCl)	1.6	1.40	0.13	0.13	0.04	0.024	
Sugar	47	45.0	0.0	0.0	0.0	0.0	
HEC	0.0	1.0	0.0	0.0	0.0	0.0	
Bactericide	0.0	0.1	0.0	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	
DGBE	0.0	0.0	29.96	29.96	26.7	32.252	

Table 4: Tissue Dielectric Properties

Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, $16M\Omega$ + resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

2014-12-02 Page 19 of 39

Tissue	Measured	Target 1	Tissue	Measured Tissue		Liquid	
Type	Frequency (MHz)	εr (+/-5%)	σ (S/m) (+/- 5%)	εr	σ (S/m)	Temp.	Test Date
	705	55.7 (52.92~58.49)	0.96 (0.91~1.01)	55.73	0.915		
750B	710	55.7 (52.92~58.49)	0.96 (0.91~1.01)	55.69	0.920	21.7°C	2014-11-29
	750	55.5 (52.73~58.28)	0.96 (0.91~1.01)	55.27	0.954		
	825	55.20 (52.44~57.96)	0.97 (0.92~1.02)	53.83	0.943		
835B	835	55.20 (52.44~57.96)	0.97 (0.92~1.02)	53.71	0.956	21.4°C	2014-11-30
	850	55.20 (52.44~57.96)	0.99 (0.94~1.04)	53.54	0.978		
	1850	53.30 (50.64~55.97)	1.52 (1.44~1.60)	51.76	1.485		
1900B	1880	53.30 (50.64~55.97)	1.52 (1.44~1.60)	51.71	1.514	21.4°C	2014-11-30
19005	1900	53.30 (50.64~55.97)	1.52 (1.44~1.60)	51.64	1.532	21.4 0	2014-11-30
	1910	53.30 (50.64~55.97)	1.52 (1.44~1.60)	51.60	1.541		
		ε _r = Rela	tive permittivity	, σ= Conductiv	⁄ity		

Table 5:Measured Tissue Parameter

Note: 1) The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

- 2) KDB 865664 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies.
- 3) The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits.

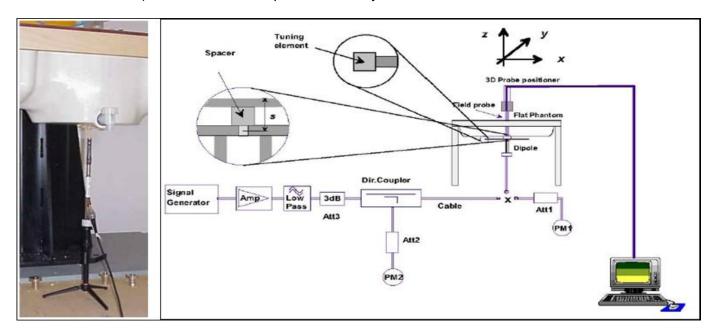
2014-12-02 Page 20 of 39

4.2 System Check

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows system check results for all frequency bands and tissue liquids used during the tests(Graphic Plot(s) see Appendix A).

System Check	Target SAR (1W) (+/-10%)		Measured SAR (Normalized to 1W)		Liquid	Test Date
(MHz)	1-g (mW/g)	10-g (mW/g)	1-g (mW/g)	10-g (mW/g)	Temp.	Test Date
750B	8.69 (7.82~9.56)	5.76 (5.18~6.33)	8.48	5.68	21.7°C	2014-11-29
835B	9.42 (8.48~10.36)	6.19 (5.57~6.80)	9.16	6.00	21.4°C	2014-11-30
1900B	40.20 (36.18~44.22)	21.30 (19.17~23.43)	40.40	20.60	21.4°C	2014-11-30

Table 6:System Check Results


2014-12-02 Page 21 of 39

4.3 System check Procedure

The system check is performed by using a system check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250 mW(below 5GHz) or 100mW(above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system check to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

2014-12-02 Page 22 of 39

Report No.: SYBH(Z-SAR)005102014-2 FCC ID:QISHWD32

SAR measurement variability and uncertainty

5.1 **SAR** measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r03, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The detailed repeated measurement results are shown in Section 7.2.

5.2 **SAR** measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2003 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

2014-12-02 Page 23 of 39

Report No.: SYBH(Z-SAR)005102014-2 FCC ID:0

6 SAR Test Configuration

6.1 UMTS Test Configuration

1) Output Power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

2) WCDMA

a. Body SAR Measurements

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode

3) HSDPA

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Per KDB941225 D01v03, the 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures for the highest reported SAR body exposure configuration in 12.2 kbps RMC.

HSDPA should be configured according to UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HAPRQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the below table, β_{hs} for HS-DPCCH is set automatically to the correct value when Δ ACK, Δ NACK, Δ CQI = 8. The variation of the β_c / β_d ratio causes a power reduction at sub-tests 2 - 4.

2014-12-02 Page 24 of 39

Sub-test₽	βe₽	β _d ₽	β _d (SF)₽	β _c /β _d ₽	β _{hs} (1)₽	CM(dB)(2)₽	MPR (dB)₽
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽
2₽	12/15(3)₽	15/15(3)	64₽	12/15(3)₽	24/15₽	1.0₽	0₽
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
4₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c \neq 0$

Note 2 : CM=1 for $\beta_c/\beta_{d=}$ 12/15, $\beta_{hs}/\beta_c=24/15$. For all other combinations of DPDCH,DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

Table 7: Sub-tests for UMTS Release 5 HSDPA

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 8:settings of required H-Set 1 QPSK acc. to 3GPP 34.121

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum HS-DSCH Transport Block Bits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 9:HSDPA UE category

2014-12-02 Page 25 of 39

4) HSUPA

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

Per KDB941225 D01v03, the 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures for the highest reported body exposure SAR configuration in 12.2 kbps RMC.

Due to inner loop power control requirements in HSDPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSDPA should be configured according to the values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Device' sections of 3G device.

Sub -test₽	βep	βd€	β _d (SF) _e	β₀∕β⋴ℴ	β _{hs} (1	βec↔	β _{ed} ₊³	βe c↔ (SF)↔	β _{ed} ↔ (code)↔	CM ⁽ 2)+ (dB)+	MP R↓ (dB)↓	AG(4)+ Inde X+	E- TFC I _e
1₽	11/15(3)+3	15/15(3)+2	64₽	11/15(3)(3)	22/15₽	209/22 5₽	1039/225₽	4 ₽	1₽	1.0₽	0.0₽	20₽	75₽
2€	6/15₽	15/15₽	64₽	6/15₽	12/15₽	12/15	94/75₽	4₽	1₽	3.0₽	2.0₽	12₽	67₽
3₽	15/15₽	9/15₽	64₽	15/94	30/15	30/15₽	β _{ed1} :47/1 5 _e β _{ed2} :47/1 5 _e	4₽	2₽	2.0₽	1.0₽	15₽	920
4₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	2/15₽	56/75₽	4₽	1₽	3.0₽	2.0₽	17₽	71₽
5₽	15/15(4)+3	15/15(4)	64₽	15/15(4)+3	30/15₽	24/15₽	134/15₽	4₽	1₽	1.0₽	0.0₽	21₽	81₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_{cv}$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 10: Subtests for UMTS Release 6 HSUPA

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
2	2	8	2	4	2798	1.4592

2014-12-02 Page 26 of 39

HUAWE

	2	4	10	4	14484	
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	10	2SF2&2SF	11484	5.76
(No DPDCH)	4	4	2	4	20000	2.00
7	4	8	2	2SF2&2SF	22996	?
(No DPDCH)	4	4	10	4	20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0).

Table 11:HSUPA UE category

2014-12-02 Page 27 of 39

Report No.: SYBH(Z-SAR)005102014-2 FCC ID:QISHWD32

5) DC-HSDPA

In DC-HSDPA implementation of this device, the uplink parameters are the same as HSDPA. No additional channels and modulations (16 QAM, and 64 QAM) are supported in uplink. The difference is only in the downlink parameters, where two carriers are supported. HSDPA settings were used on uplink.

For Rel. 8 DC-HSDPA apply the four subtests from HSDPA Release 5 except use fixed reference channel H-Set 12 for DC-HSDPA. And we can apply the same SAR test exclusion criteria used for Rel. 6 HSPA for Rel. 7 HSPA+ and Rel. 8 DC-HSDPA. That is, if the HSPA, HSPA+, or the DC-HSDPA maximum output is not more than 0.25 dB higher than WCDMA, SAR measurement for those modes is not required.

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS 34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Table E.5.0: Levels for HSDPA connection setup

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

The measurements were performed with a Fixed Reference Channel (FRC) H-Set 12 with QPSK

Parameter	Value
Nominal average inf. bit rate	60 kbit/s
Inter-TTI Distance	1 TTI's
Number of HARQ Processes	6 Processes
Information Bit Payload	120 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	960 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	3200 SMLs
Coding Rate	0.15
Number of Physical Channel Codes	1

Table 12:settings of required H-Set 12 QPSK acc. to 3GPP 34.121

Note:

- 1. The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table above.
- 2.Maximum number of transmission is limited to 1,i.e.,retransmission is not allowed. The redundancy and constellation version 0 shall be used.

2014-12-02 Page 28 of 39

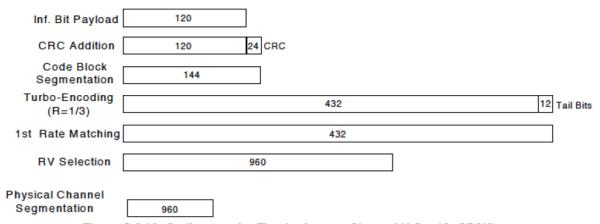


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 5 procedures. A summary of subtest settings are illustrated below:

Sub-test₽	βe₽	$eta_{\mathbf{d}^{e^2}}$	$\beta_{d}(SF)$	$\beta_c \cdot / \beta_{d^{e^2}}$	β _{hs} ·(1) _Θ	CM(dB)(2)	MPR (dB)
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽
2₽	12/15(3)	15/15(3)	64₽	12/15(3)	24/15₽	1.0₽	0₽
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
4₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c = 30/15$

Note 2 : CM=1 for $\beta_c/\beta_d=12/15$, $\beta_{hs}/\beta_c=24/15$. For all other combinations of DPDCH,DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

Up commands are set continuously to set the UE to Max power.

Note:

- 1. The Dual Carriers transmission only applies to HSDPA physical channels
- 2. The Dual Carriers belong to the same Node and are on adjacent carriers.
- 3. The Dual Carriers do not support MIMO to serve UEs configured for dual cell operation
- 4. The Dual Carriers operate in the same frequency band .
- 5.The device doesn't support the modulation of 16QAM in uplink but 64QAM in downlink for DC-HSDPA mode.
- 6. The device doesn't support carrier aggregation for it just can operate in Release 8.

2014-12-02 Page 29 of 39

6.2 LTE Test Configuration

SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices v02r03. The CMW500 WideBand Radio Communication Tester was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR test were performed with the same number of RB and RB offsets transmitting on all TTI frames(Maximum TTI)

1) Spectrum Plots for RB configurations

A properly configured base station simulator was used for LTE output power measurements and SAR testing. Therefore, spectrum plots for RB configurations were not required to be included in this report.

2) MPR

When MPR is implemented permanently within the UE, regardless of network requirements, only those RB configurations allowed by 3GPP for the channel bandwidth and modulation combinations may be tested with MPR active. Configurations with RB allocations less than the RB thresholds required by 3GPP must be tested without MPR.

The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101:

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	N _{RB})	MPR (dB)					
	1.4	1.4 3.0 5 10 15 20						
	MHz	MHz	MHz	MHz	MHz	MHz		
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1	
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1	
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2	

The LTE Band XVII MPR of the device is as below:

	Channel bandwidth / Transmissio			
Modulation	5	10	MPR	
	MHz	MHz		
QPSK	≤8	≤ 12	0	
QPSK	>8	> 12	1	
16 QAM	≤8	≤ 12	0	
16 QAM	>8	> 12	1.5	

2014-12-02 Page 30 of 39

Report No.: SYBH(Z-SAR)005102014-2 FCC ID:QISHWD32

3) A-MPR

A-MPR(Additional MPR) has been disabled for all SAR tests by using Network Signalling Value of "NS_01" on the base station simulator.

4) LTE procedures for SAR testing

A) Largest channel bandwidth standalone SAR test requirements

i) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

ii) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in i) are applied to measure the SAR for QPSK with 50% RB allocation.

iii) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in i) and ii) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

iv) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

B) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

2014-12-02 Page 31 of 39

7 SAR Measurement Results

7.1 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU200&CMW500 was used. SAR drift measured at the same position in liquid before and after each SAR test as below 7.2 chapter.

7.1.1 Conducted power measurements of UMTS Band V

UMTS Band V		T	C	onducted Power (dB	m)
		Tune-up	4132CH	4182CH	4233CH
	12.2kbps RMC	23.00	21.92	21.96	21.83
WCDMA	64kbps RMC	23.00	21.91	21.86	21.83
WCDIVIA	144kbps RMC	23.00	21.91	21.86	21.92
	384kbps RMC	23.00	21.91	21.87	21.93
	Subtest 1	23.00	21.63	21.43	21.74
HCDDA	Subtest 2	23.00	21.83	21.54	21.48
HSDPA	Subtest 3	22.50	21.42	21.52	20.95
	Subtest 4	22.50	21.06	21.53	21.10
	Subtest 1	21.50	20.52	20.66	20.58
	Subtest 2	20.50	19.70	19.84	19.63
HSUPA	Subtest 3	21.00	19.69	19.71	19.60
	Subtest 4	21.50	19.94	19.89	19.77
	Subtest 5	21.50	20.52	20.59	20.42
	Subtest 1	23.00	21.62	21.45	21.83
DC-HSDPA	Subtest 2	23.00	21.81	21.56	21.47
DC-HODPA	Subtest 3	22.50	21.43	21.53	20.96
	Subtest 4	22.50	21.08	21.54	21.08

Table 13: Conducted power measurement results of UMTS Band V

Note:

- 1) The conducted power of UMTS Band V is measured with RMS detector.
- 2) The bolded 12.2kbps RMC mode was selected for SAR testing(the primary mode).
- 3) Per KDB941225 D01v03, When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

2014-12-02 Page 32 of 39

7.1.2 Conducted power measurements of UMTS Band II

UMTS Band II		T	Conducted Power (dBm)					
UIVITS	s Band II	Tune-up	9262CH	9400CH	9538CH			
	12.2kbps RMC	23.00	22.33	22.27	22.18			
WCDMA	64kbps RMC	23.00	22.33	22.27	22.19			
VVCDIVIA	144kbps RMC	23.00	22.33	22.27	22.17			
	384kbps RMC	23.00	22.34	22.30	22.17			
	Subtest 1	22.50	21.77	22.09	21.88			
HSDPA	Subtest 2	22.50	21.04	21.65	21.92			
ПОДРА	Subtest 3	22.50	20.70	21.28	21.46			
	Subtest 4	22.50	20.96	21.37	21.14			
	Subtest 1	21.50	20.76	20.76	20.67			
	Subtest 2	20.50	19.87	20.01	19.90			
HSUPA	Subtest 3	20.50	19.69	19.83	19.75			
	Subtest 4	21.50	19.98	20.08	19.86			
	Subtest 5	21.50	20.68	20.66	20.65			
DC-HSDPA	Subtest 1	22.50	21.78	22.07	21.87			
	Subtest 2	22.50	21.06	21.64	21.90			
	Subtest 3	22.50	20.71	21.29	21.47			
	Subtest 4	22.50	20.97	21.35	21.16			

Table 14: Conducted power measurement results of UMTS Band II

Note:

- 1) The conducted power of UMTS Band II is measured with RMS detector.
- 2) The bolded 12.2kbps RMC mode was selected for SAR testing(the primary mode).
- 3) Per KDB941225 D01v03, When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

2014-12-02 Page 33 of 39

7.1.3 Conducted power measurements of LTE Band XVII

Donalusialth	NA - ded - Com	DD =:==	DD 044004	Tune-	Channel	Channel	Channel
Bandwidth	Modulation	RB size	RB offset	up	23755CH	23790CH	23825CH
		1	0	23.00	22.02	22.09	22.11
		1	13	23.00	21.98	21.94	22.13
		1	24	23.00	21.88	21.99	21.92
	QPSK	12	0	22.00	20.79	20.90	20.99
		12	6	22.00	20.79	20.87	20.95
		12	13	22.00	20.76	20.79	20.98
5MHz		25	0	22.00	20.78	20.79	20.96
SIVIFIZ		1	0	23.00	22.41	22.27	22.52
		1	13	23.00	22.14	22.11	22.52
		1	24	23.00	22.24	22.25	22.45
	16QAM	12	0	21.50	20.40	20.42	20.46
		12	6	21.50	20.38	20.43	20.38
		12	13	21.50	20.36	20.35	20.48
		25	0	21.50	20.30	20.26	20.48
Bandwidth	Modulation	RB size	RB offset	Tune-	Channel	Channel	Channel
		ND SIZE	IVD OIISEL	up	23780CH	23790CH	23800CH
	QPSK	1	0	23.00	22.27	22.04	22.07
		1	25	23.00	21.90	21.59	22.00
		1	49	23.00	21.98	21.94	21.73
		25	0	22.00	20.97	20.82	20.95
		25	13	22.00	20.90	20.86	20.93
		25	25	22.00	20.75	20.71	20.81
10MHz		50	0	22.00	20.78	20.75	20.92
TOWINZ		1	0	23.00	22.75	22.53	22.18
	16QAM	1	25	23.00	22.60	22.61	22.34
		1	49	23.00	22.42	22.20	21.95
		25	0	21.50	20.23	20.21	20.41
		25	13	21.50	20.23	20.29	20.39
		25	25	21.50	20.19	20.14	20.28
		50	0	21.50	20.26	20.26	20.36

Table 15: Conducted power measurement results of LTE Band XVII

Note: The bolded mode was selected for SAR testing

2014-12-02 Page 34 of 39

Report No.: SYBH(Z-SAR)005102014-2 FCC ID:QISHWD32

SAR measurement Results

General Notes:

- 1) The maximum reported SAR of each test band is shown in **bold** letters.
- 2) Per KDB447498 D01v05r02, all measurement SAR results are scaled to the maximum tune-up tolerance limit to demostrate compliant.
- 3) Per KDB447498 D01v05r02, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 4) Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg,only one repeated measurement is required.
- 6) Per KDB865664 D02v01r01, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix B for details).

UMTS Notes:

1) Per KDB941225 D01v03, When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

LTE notes:

- 1) The LTE test configurations are determined according to KDB941225 D05 SAR for LTE Devices v02r03. The general test procedures used for SAR testing can be found in Section 6.3.
- 2) A-MPR was disabled for all SAR test by setting NS 01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames(maximum TTI)

2014-12-02 Page 35 of 39

7.2.1 SAR measurement Result of UMTS Band V

Test Position of Body with 5mm	Test channel /Frequency	Test Mode	SAR Value (W/kg)		Power	Conducted	Tune- up	Scaled	Liquid
			1-g	10-g	Drift (dB)	Power (dBm)	Power (dBm)	SAR _{1-g} (W/kg)	Temp.
Front Side	4182/836.4	RMC	0.561	0.338	0.180	21.96	23.00	0.713	21.4°C
Back Side	4182/836.4	RMC	0.575	0.357	-0.020	21.96	23.00	0.731	21.4°C
Left Side	4182/836.4	RMC	0.284	0.177	0.190	21.96	23.00	0.361	21.4°C
Right Side	4182/836.4	RMC	0.428	0.261	-0.010	21.96	23.00	0.544	21.4°C
Tip Side	4182/836.4	RMC	0.090	0.045	0.170	21.96	23.00	0.115	21.4°C

Table 16: Body SAR test results of UMTS Band V

7.2.2 SAR measurement Result of UMTS Band II

	Test channel /Frequency	Test Mode	SAR Value (W/kg)		Power Drift	Conducted Power	Tune- up	Scaled SAR _{1-q}	Liquid
			1-g	10-g	(dB)	(dBm)	Power (dBm)	(W/kg)	Temp.
Front Side	9400/1880	RMC	0.380	0.225	0.030	22.27	23.00	0.450	21.4°C
Back Side	9538/1907.6	RMC	0.831	0.450	-0.020	22.18	23.00	1.004	21.4°C
Back Side- repeated*	9538/1907.6	RMC	0.843	0.455	0.110	22.18	23.00	1.018	21.4°C
Back Side	9400/1880	RMC	0.814	0.447	-0.170	22.27	23.00	0.963	21.4°C
Back Side	9262/1852.4	RMC	0.725	0.407	-0.190	22.33	23.00	0.846	21.4°C
Left Side	9400/1880	RMC	0.479	0.256	0.140	22.27	23.00	0.567	21.4°C
Right Side	9400/1880	RMC	0.317	0.177	-0.070	22.27	23.00	0.375	21.4°C
Tip Side	9400/1880	RMC	0.044	0.023	0.110	22.27	23.00	0.053	21.4°C

Table 17: Body SAR test results of UMTS Band II

Note: * - repeated at the highest SAR measurement according to the FCC KDB 865664.

2014-12-02 Page 36 of 39

7.2.3 SAR measurement Result of LTE Band XVII

Test Position of	Test channel	Test Mode	SAR Value (W/kg)		Power Drift	Conducte d Power	Tune- up	Scaled SAR _{1-q}	Liquid
Body with 5mm	/Frequency	Test Mode	1-g	10-g	(dB)	(dBm)	Power (dBm)	(W/kg)	Temp.
	1RB								
Front Side	23780/709	10M QPSK 1RB#0	0.311	0.202	0.060	22.27	23.00	0.368	21.7°C
Back Side	23780/709	10M QPSK 1RB#0	0.569	0.376	0.120	22.27	23.00	0.673	21.7°C
Left Side	23780/709	10M QPSK 1RB#0	0.145	0.092	0.170	22.27	23.00	0.172	21.7°C
Right Side	23780/709	10M QPSK 1RB#0	0.483	0.303	0.020	22.27	23.00	0.571	21.7°C
Tip Side	23780/709	10M QPSK 1RB#0	0.052	0.026	0.000	22.27	23.00	0.062	21.7°C
				50%RI	3				
Front Side	23780/709	10M QPSK 50%RB#0	0.248	0.160	-0.010	20.97	22.00	0.314	21.7°C
Back Side	23780/709	10M QPSK 50%RB#0	0.462	0.304	0.010	20.97	22.00	0.586	21.7°C
Left Side	23780/709	10M QPSK 50%RB#0	0.111	0.070	0.110	20.97	22.00	0.141	21.7°C
Right Side	23780/709	10M QPSK 50%RB#0	0.381	0.239	0.120	20.97	22.00	0.483	21.7°C
Tip Side	23780/709	10M QPSK 50%RB#0	0.040	0.020	0.040	20.97	22.00	0.050	21.7°C

Table 18: Body SAR test results of LTE Band XVII

2014-12-02 Page 37 of 39

7.2.4 Simultaneous Transmission Conlcusion

The device only has one main antenna. It does not support the simultaneous transmission condition. the therefore simultaneous transmission SAR with Volume Scans is not required per KDB 447498 D01v05r02.

2014-12-02 Page 38 of 39

Appendix A. System Check Plots (Pls See Appendix A.)

Appendix B. SAR Measurement Plots (Pls See Appendix B.)

Appendix C. Calibration Certificate (Pls See Appendix C.)

Appendix D. Photo documentation (PIs See Appendix D.)

End

2014-12-02 Page 39 of 39