

MET Laboratories, Inc. *Safety Certification - EMI - Telecom Environmental Simulation*

914 WEST PATAPSCO AVENUE ! BALTIMORE, MARYLAND 21230-3432 ! PHONE (410) 354-3300 ! FAX (410) 354-3313

October 18, 2002

Benefon Oyj
PO Box 84
Salo, FINLAND FIN-2-4101

Reference: GSM/GPS PCS Phone - TGP79AE
FCC ID: QFPTGP79AE

Dear Mr. Petri Aarnio:

Enclosed is the EMC SAR Evaluation Report for the Benefon Oyj GSM/GPS PCS Phone - TGP79AE. The Benefon Oyj GSM/GPS PCS Phone - TGP79AE was tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C:01-01 and shown to be capable to be in compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992.

Thank you for using the testing services of MET Laboratories. If you have any questions regarding these results or if MET can be of further assistance to you, please feel free to contact me. We appreciate your business and look forward to working with you again soon.

Kindest Regards,

Marianne T. Bosley
EMC Administrator
MET LABORATORIES, INC.

Enclosures: (\Benefon Oyj\EMC12379B-SAR.rpt)

DOCTEM-23 Jan 02

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

Dosimetric Assessment

Test Report

for the

GSM/GPS PCS Phone - TGP79AE

**Tested And Evaluated
In Accordance With
FCC OET 65 Supplement C:01-01**

MET REPORT: EMC12379B-SAR

October 18, 2002

PREPARED FOR:

Benefon Oyj
PO Box 84
Salo, FINLAND FIN-2-4101

PREPARED BY:

MET Laboratories, Inc.
914 West Patapsco Avenue
Baltimore, Maryland 21230-3432

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

MET REPORT: EMC12379B-SAR

DOSIMETRIC ASSESSMENT

TEST REPORT

for the

GSM/GPS PCS Phone - TGP79AE

Tested And Evaluated

In Accordance With

FCC OET Supplement C:01-01

Prepared for

Benefon Oyj

PO Box 84

Salo, FINLAND FIN

Report Prepared By

A handwritten signature in blue ink, appearing to read "Marianne T. Bosley".

Marianne T. Bosley
EMC ADMINISTRATOR

Report Reviewed By

A handwritten signature in blue ink, appearing to read "Liming Xu".

Liming Xu
TEST ENGINEER

Final Review By

A handwritten signature in blue ink, appearing to read "Christopher R. Harvey".

CHRISTOPHER R. HARVEY
EMC LAB DIRECTOR

Engineering Statement: The measurements shown in this report were made in accordance with the procedures specified in Supplement C to OET Bulletin 65 of the Federal Communications Commission (FCC) Guidelines [FCC 2001] for uncontrolled exposure. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment evaluated is capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992.

SAR EVALUATION CERTIFICATE OF COMPLIANCE

FCC ID: **QFPTGP79AE**
APPLICANT: **Benefon Oyj**

APPLICANT NAME AND ADDRESS:	DATE OF TEST:	August 20, 2002
Benefon Oyj	TEST LOCATION:	MET LABORATORIES INC.
PO Box 84		914 West Patapsco Avenue
Salo, FINLAND FIN-2-4101		Baltimore, Maryland 21230

EUT:	GSM/GPS PCS Phone - TGP79AE		
Date of Receipt:	June 11, 2002		
Device Category:	Part 24 Licensed Portable Transmitter Held to Ear		
RF exposure environment:	Uncontrolled		
RF exposure category:	Portable		
Power supply:	Battery Operated		
Antenna:	Fixed PCS and Folding GPS (Receive) Antenna		
Production/prototype:	Identical Prototype		
Measured Standards:	PCS 1900		
Modulation:	GMSK		
Crest Factor:	GSM = 8		
TX Range:	GSM PCS 1900	1850.2 MHz - 1909.8 MHz	
RX Range:	GSM PCS 1900	1930.2 MHz - 1989.8 MHz	
Used TX Channels:	Low: ch.512	Centre: ch. 660	High: ch. 810
Maximum RF Power Output:	0.9 W EIRP	GSM PCS1900 (29.5 dBm)	
Maximum SAR Measurement (Averaged over 1g):	0.657 W/kg	PCS GSM Head;	0.270 W/kg PCS GSM Body

This wireless portable device has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001) and IEEE Std. 1528-200X (July 2001), and has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1 - 1992.

I attest to the accuracy of this data. All reported measurements were performed by me, or were made under my supervision, and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

I also certify that no party to this application has been denied the FCC benefits pursuant to Section 5.301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Chris Harvey
Director, EMC Laboratory

Table of Contents

Objective	1
Introduction	1
Summary of SAR test Report	2
Max results, Head Configuration	2
Max results, Body Configuration	2
Description of tested device	3
Picture of the phone	3
Description of Antenna	3
Battery Options	3
EUT Picture	4
Body Worn Accessories	5
Test Conditions	6
Test Details	7
Tissue Recipes	7
Material Parameters	7
System Validation	8
Performance Checking	9
SAR Results Summary	12
SAR Area Scans	17
Setup Pictures	42
Measurement System Used	56
Appendix	65
Z-axis Scans	66
FCC Exposure Criteria	67

List of Tables

Table 1.	Max SAR Value for Head Phantom.....	2
Table 2.	Max SAR Value for Body Worn	2
Table 3.	Summary of the Environmental Conditions.....	6
Table 4.	Tissue Parameters 1900 MHz	7
Table 5.	System Validation Results - Day 1	9
Table 6.	System Validation Results - Day 2	10
Table 7.	System Validation Results - Day 3	11
Table 8.	PCS Handset Results - Head Phantom (GPS In)	13
Table 9.	PCS Handset Results - Head Phantom (GPS OUT)	14
Table 10.	PCS Handset Results - Body Worn	15
Table 11.	Phantom Properties	60
Table 12.	Uncertainty Budget of SARA2	64
Table 13.	SAR Limit	67

List of Figures

Figure 1-6.	Photographs of EUT	4
Figure 7-12.	Photographs - of Accessories	5
Figure 13.	System Performance Check Setup diagram	8
Figure 14.	Validation Measurement - 1800 MHz - Day 1	9
Figure 15.	Validation Measurement - 1800 MHz - Day 2	10
Figure 16.	Validation Measurement - 1800 MHz - Day 3	11
Figure 17.	Block Diagram of SARA2	57
Figure 18.	Photograph of SARA2 System	63
Figure 19.	Phantom Reference Points	69
Figure 20.	The Cheek Position	71
Figure 21.	The Tilted Position	71
Figures S1-S25.	Photos of Test Positions	43-55

OBJECTIVE

The TGP79AE is a new GSM/GPS PCS Handset Phone from Benefon Oyj that operates in the 1850.2-1909.8 TX frequency range utilizing a fixed antenna. The system uses the GSM PCS 1900 standard.

The objective of the procedure was to perform a dosimetric assessment of one of the TGP79AE in the GSM PCS 1900 standard. The measurements have been carried out with the dosimetric assessment system "SARA2", and were made according to the Supplement C to OET Bulletin 65 of the Federal Communications Commission (FCC) Guidelines [FCC 2001] for evaluating compliance of mobile and portable devices with FCC limits for human exposure in the general population to radio frequency emissions.

INTRODUCTION

In the United States, the most recent FCC RF exposure criteria is documented in the publication OET 65 Supplement C Edition 01-01 [FCC 2001], which sets limits for human exposure to radio frequency electromagnetic fields in the frequency range 3kHz to 300GHz.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. (c) 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT).

SAR DEFINITION

Specific absorption rate (SAR) is the biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest. It is a measure of the power absorbed per unit mass and may be spatially averaged over the total mass of an exposed body or its parts.

In mathematical terms Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy absorbed by (dissipated in) an incremental mass contained in a volume element of a given density. It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body as given below. The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity σ and the mass density ρ of the biological tissue:

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

SAR is expressed in units of Watts per Kilogram (W/kg)

σ = Conductivity of the tissue-simulant material (S/m)

ρ = Mass density of the tissue-simulant material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

SUMMARY FOR SAR TEST REPORT

EUT	TGP79AE
FCC ID	QFPTGP79AE
Date of receipt	June 11, 2002
Date of Test	June 14, 2002-October 6, 2002
RF Exposure Category	Uncontrolled
Measured Standard	PCS 1900
Measurement done by	Liming Xu

Maximum Results Found during SAR Evaluation

The equipment is deemed to fulfil the requirements if the measured values are less than or equal to the limit.

Head Configuration

Phantom Configuration	Test Position	Power (dBm)	Channel (MID)	Frequency (GHz)	Max. 1g SAR (W/kg)
Right Side of Head/ 900 mAH Battery	Tilted (15 ⁰)	29.5	660	1.879	0.657

Table 1: The Max SAR value for Head Testing Handset model TGP79AE

Body Worn Configuration

Test Configurations	Power (dBm)	Channel (MID)	Frequency (GHz)	Max. 1g SAR (W/kg)
Black Carrying Case/External GPS	29.5	660	1.879	0.270

Table 2: The Max SAR value for Body Testing Handset model TGP79AE

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

DESCRIPTION OF TESTED DEVICE

FCC ID	QFPTGP79AE
Modes of Operation	PCS 1900
Modulation Mode(s)	GSM(GMSK)
Duty Cycle(s) (=1/ Crest Factor)	Crest Factor=8
Transmitter Frequency Range	1850.2-1909.8 MHz

Picture of Phone

Description of the Antenna

Fixed PCS Antenna and a Folding GPS Antenna.

Battery Options

There were two battery options one with 900mAH and other one with 1200mAH. SAR data is provided for both the battery options

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

EUT PICTURES

Fig 1. Front of EUT

Fig 2. Back of EUT

Fig 3. Bottom of EUT

Fig 4. Left Side of EUT

Fig 5. Right Side of EUT

Fig 6. Front of EUT - GPS Out

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

Body Worn Accessories

Fig 7-Both 900 and 1200mAH

Fig 8-Head Set

Fig 9-Data Cable

Fig 10-External GPS Antenna

Fig 11-Black Carrying Case

Fig 12-Gray Carrying Case

TEST CONDITIONS

Environment

Test Environment	Dedicated test area
Ambient temperature	24°C ± 1 °C
Tissue simulating liquid temperature	24.2°C ± 0.5 °C
Shielded Chamber	Anechoic material strategically positioned to minimize room reflections
Ambient Noise	Very low

Table 3: Summary of Test Environment conditions

Test Signal, Frequencies and Output Power

1. The measurements are first performed at the middle channel of the operating band of the EUT. If the SAR value of the middle channel for each test configuration (Left, Right, Cheek, Tilt, Extended, Retracted) is at least 2 dB below the SAR limit, testing at the high and low channels is optional for such test configurations.
2. The phone was set to maximum power level during all the tests and at the beginning of the each test the battery was fully charged. Power output was measured before and after each test.
3. The phone was equipped with a special firmware, which allowed controlling the transmitter from its keypad.
 - ✓ During SAR testing, the EUT (PCS phone) was operated and controlled by a Rhode & Schwartz CMU 200 Base Station Simulator.

During SAR testing, the EUT (PCS phone) was operated and controlled by an Agilent Base station HP 8924 E (with HP 83236B PCS Interface).

Other

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

TEST DETAILS

Tissue Recipes

The following recipes are provided in percentage by weight.

1900 MHz, Head: 54.90% De-Ionized Water
 0.18% Salt
 00% Sugar
 44.92% DGBE

1900 MHz, Body: 41% De-Ionized Water
 0.2% Salt
 58.8% Sugar

Material Parameters

Simulant	Freq [MHz]	Room Temp [C]	Liquid Temp [C]	Parameters	Target Value	Measured Value	Deviation [%]	Limit [%]
Body	1900	24.3	24.7	? _r	54	55.3	2.4	+/- 5%
				s	1.45	1.47	1.37	+/- 5%
Head	1900	24.3	24.7	? _r	39.9	41.2	3.26	+/- 5%
				s	1.42	1.44	1.41	+/- 5%

Table 4: Parameters of the tissue simulating liquid, 1900MHz Head/Body

NOTES:

1 Parameters were measured before and after testing. These values reflect both measurements.

System Validation

Following equipment is used for the system validation:

Signal Generator (Agilent E4432B)
 RF Amplifier (ALTO Scientific Co.)
 Dual Directional Coupler (HP 778D)
 The HP 8564E Spectrum Analyzer (used for RF power measurement)
 Cables, Attenuate and Adapters

The recommended (IEEE Std 1528) set-up was used:

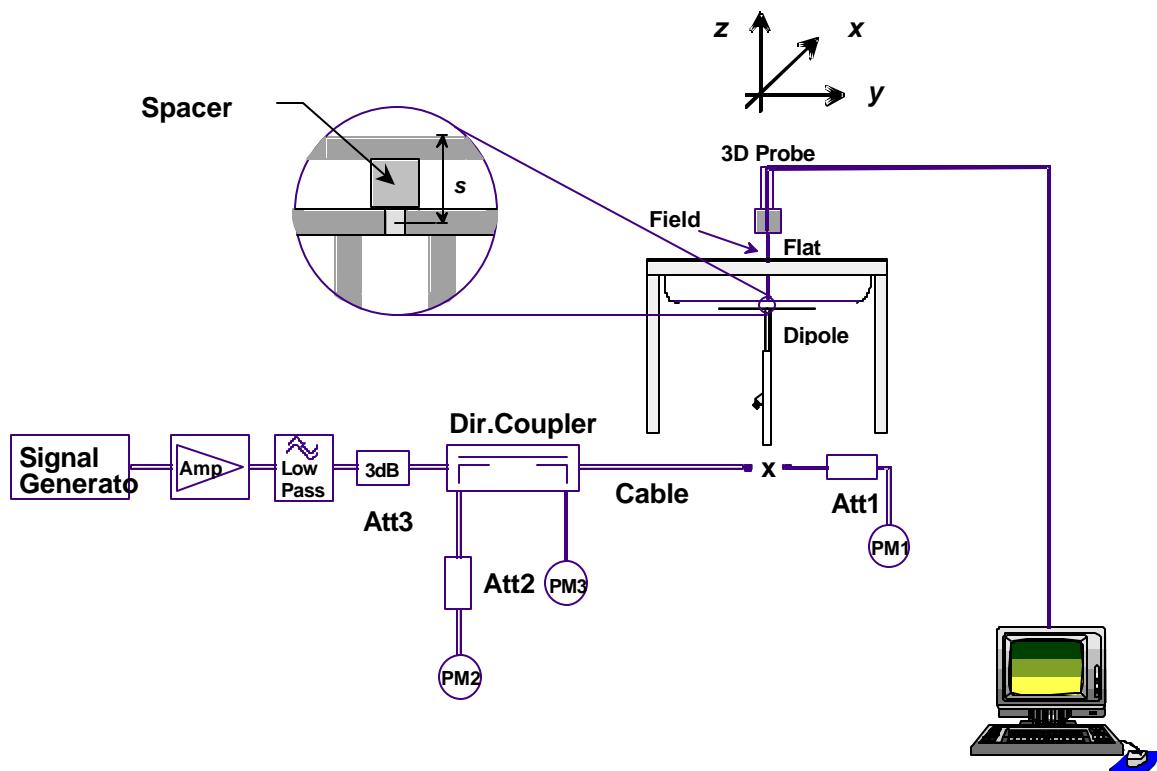


Figure 13. Performance Check Setup Diagram

Performance Checking

Test Position:

Test Date: Flat Phantom
 June 14, 2002
 Antenna Position: Balanced Dipole
 Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
 Med. Parameters: Head: $\gamma_r = 41.2$; $s = 1.44$
 Pre Test Room Temperature: 24.3 C
Post Test Room Temperature: 24.4 C
 Pre Test Simulant Liquid 24.7 C
 Post Test Simulant Liquid 24.9 C
 CH NA
 SAR Drift <2%
 SAR (1g): 35.539

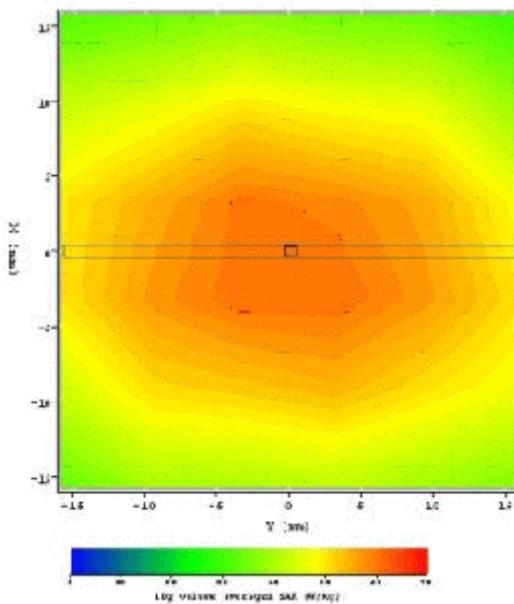


Figure 14. Day 1 Validation Measurement - 1800 MHz in head tissue

Simulant	Freq [MHz]	Room Temp [C]	Liquid Temp [C]	Parameter s	Target Value	Measured Value	Deviation [%]	Limit [%]
Head	1800	24.3	24.7	γ_r	39.9	41.2	3.26	+/- 5
				s	1.42	1.44	1.41	+/- 5
				1g SAR	38.1	35.39	6.72	+/- 10

Table 5. System Validation Results - Day June 14, 2002)

NOTE:

RF Forward power = 0.117W

Validation was done within 100MHz of test frequency

Test Position: Flat Phantom

Test Date: July 3, 2002

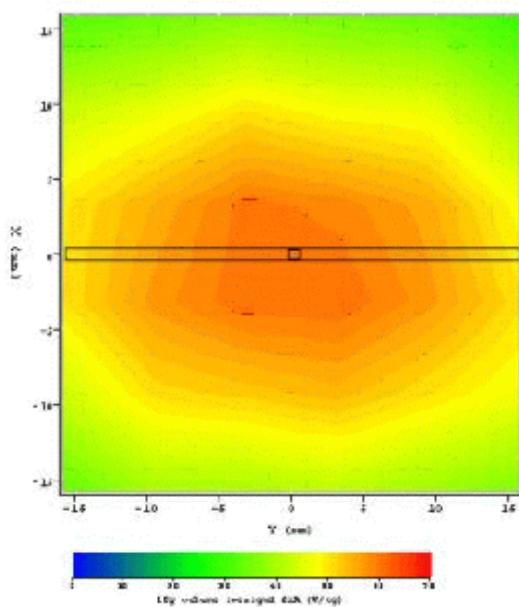
Antenna Position: Balanced Dipole

Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002

Med. Parameters: Head: $\rho_r = 41.2$; $s = 1.44$

Pre Test Room Temperature: 24.4 C

Post Test Room Temperature: 24.7 C


Pre Test Simulant Liquid 24.6 C

Post Test Simulant Liquid 25 C

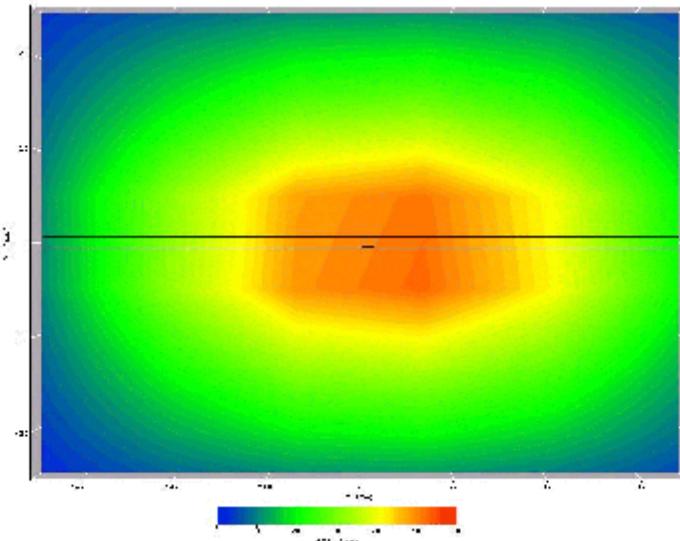
CH NA

SAR Drift < 2%

SAR (1g): 35.554

Figure 15. Day 2 Validation Measurement - 1800 MHz in head tissue

Simulant	Freq [MHz]	Room Temp [C]	Liquid Temp [C]	Parameter s	Target Value	Measured Value	Deviation [%]	Limit [%]
Head	1800	24.4	24.6	ρ_r	39.9	41.2	3.26	+/- 5
				s	1.42	1.44	1.41	+/- 5
				1g SAR	38.1	35.554	6.682	+/- 10


Table 6. System Validation Results - Day 1(July 3, 2002)**NOTE:**

RF Forward power = 0.117W

Validation was done within 100MHz of test frequency

Test Position:

Test Date: October 6, 2002
 Antenna Position: Balanced Dipole
 Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
 Med. Parameters: Head: $\rho_r = 41.3$; $s = 1.43$
 Pre Test Room Temperature: 24.4 C
 Post Test Room Temperature: 24.5 C
 Pre Test Simulant Liquid 24.6 C
 Post Test Simulant Liquid 24.8 C
 CH NA
 SAR Drift < 2%
 SAR (1g): 35.832

Figure 16. Day 3 Validation Measurement - 1800 MHz in head tissue

Simulant	Freq [MHz]	Room Temp [C]	Liquid Temp [C]	Parameter s	Target Value	Measured Value	Deviation [%]	Limit [%]
Head	1800	24.4	24.6	ρ_r	39.9	41.3	3.26	+/- 5
				s	1.42	1.43	1.41	+/- 5
				1g SAR	38.1	35.832	5.952	+/- 10

Table 7. System Validation Results - Day 3(October 6, 2002)

NOTE:

RF Forward power = 0.148W

Validation done within 100MHz of test frequency

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

SAR Results Summary

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

MEASUREMENT RESULTS (Head SAR)

Phantom Configuration	Test Position	Power dBm	Channel	Frequency (GHz)	Max. 1g SAR (W/kg)	2 nd spot (W/kg)
Left Side of Head/ 1200 mAH Battery	Cheek (0 ⁰)	29.7	660(MID)	1.879	0.316	NA
	Tilted (15 ⁰)	29.7	660(MID)	1.879	0.52	NA
Right Side of Head/ 1200 mAH Battery	Cheek (0 ⁰)	29.7	660(MID)	1.879	0.568	NA
	Tilted (15 ⁰)	29.7	660(MID)	1.879	0.646	NA
Left Side of Head/ 900 mAH Battery	Cheek (0 ⁰)	29.7	660(MID)	1.879	0.308	0.048
	Tilted (15 ⁰)	29.7	660(MID)	1.879	0.537	NA
Right Side of Head/ 900 mAH Battery	Cheek (0 ⁰)	29.7	660(MID)	1.879	0.534	NA
	Tilted (15 ⁰)	29.7	660(MID)	1.879	0.657	NA

Table 8. Measured head-phantom results for PCS Handset for the model TGP79AE - GPS Antenna In

NOTES:

- 1 The measurements are first performed at the middle channel of the operating band of the EUT. If the SAR value of the middle channel for each test configuration (Left, Right, Cheek, Tilt, Extended, Retracted) is at least 2 dB below the SAR limit, testing at the high and low channels is optional for such test configurations.
- 2 The test data reported are the worst-case SAR values with the antenna-head position set in a typical configuration.
- 3 All modes of operation are investigated and worst case are reported.
- 4 Multiple Hot Spots None ✓SAR was less than 2 dB of the highest peak ✓Reported
- 5 Battery Type Standard Extended ✓Both
- 6 Power Measured ✓Conducted EIRP ERP
- 7 SAR Measurement System SARA2
- 8 SAR Configuration ✓Head Body
- 9 Before the measurements, the test site ambient conditions were checked performing SAR measurements with the phone powered off.

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

MEASUREMENT RESULTS (Head SAR, continued)

Phantom Configuration	Test Position	Power dBm	Channel	Frequency (GHz)	Max. 1g SAR (W/kg)	2 nd spot (W/kg)
Left Side of Head/ 1200 mAH Battery	Cheek (0 ⁰)	29.7	660(MID)	1.879	0.269	0.074
	Tilted (15 ⁰)	29.7	660(MID)	1.879	0.396	NA
Right Side of Head/ 1200 mAH Battery	Cheek (0 ⁰)	29.7	660(MID)	1.879	0.406	NA
	Tilted (15 ⁰)	29.7	660(MID)	1.879	0.541	NA
Left Side of Head/ 900 mAH Battery	Cheek (0 ⁰)	29.7	660(MID)	1.879	0.306	0.036
	Tilted (15 ⁰)	29.7	660(MID)	1.879	0.4	NA
Right Side of Head/ 900 mAH Battery	Cheek (0 ⁰)	29.7	660(MID)	1.879	0.491	NA
	Tilted (15 ⁰)	29.7	660(MID)	1.879	0.534	NA

Table 9. Measured head-phantom results for PCS Handset for the model TGP79AE - GPS Antenna Out

NOTES:

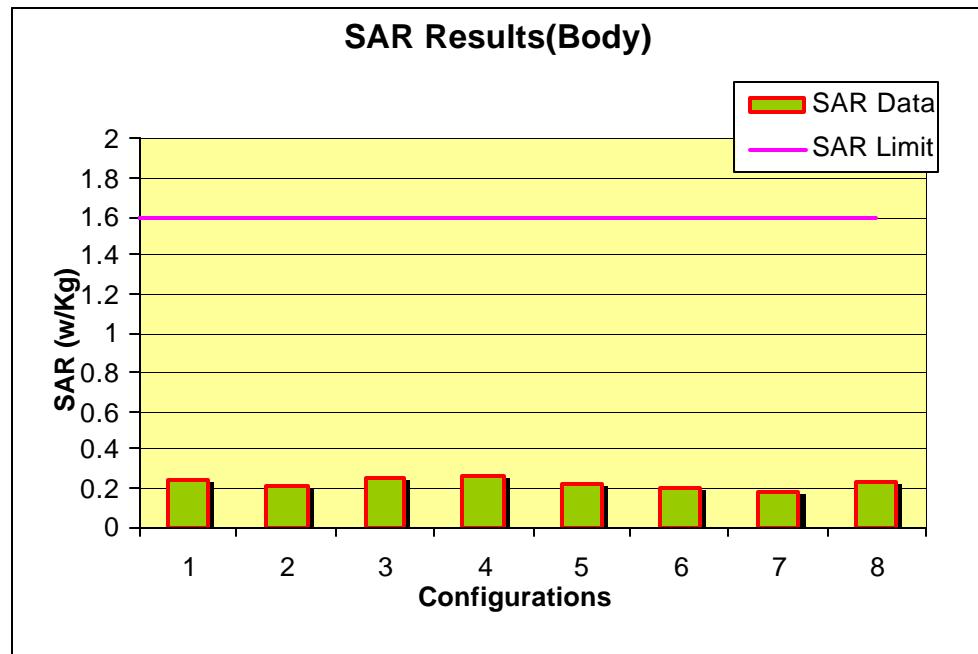
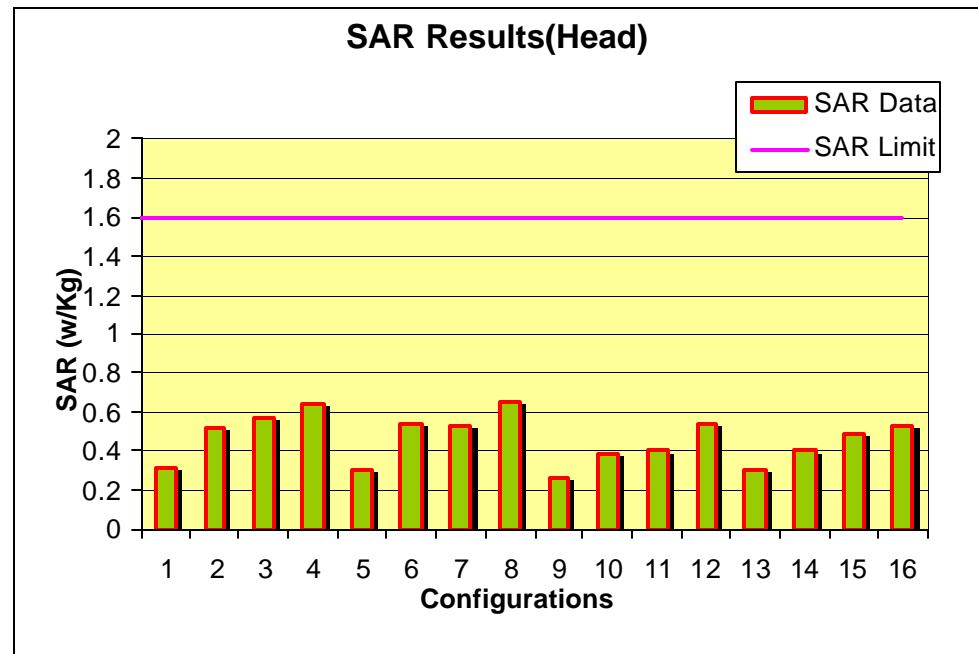
- 1 The measurements are first performed at the middle channel of the operating band of the EUT. If the SAR value of the middle channel for each test configuration (Left, Right, Cheek, Tilt, Extended, Retracted) is at least 2 dB below the SAR limit, testing at the high and low channels is optional for such test configurations.
- 2 The test data reported are the worst-case SAR values with the antenna-head position set in a typical configuration.
- 3 All modes of operation are investigated and worst case are reported.
- 4 Multiple Hot Spots None ✓SAR was less than 2 dB of the highest peak ✓Reported
- 5 Battery Type Standard Extended ✓Both
- 6 Power Measured ✓Conducted EIRP ERP
- 7 SAR Measurement System SARA2
- 8 SAR Configuration ✓Head Body
- 9 Before the measurements, the test site ambient conditions were checked performing SAR measurements with the phone powered off.

MEASUREMENT RESULTS (Body)

Config	Description	Battery Option	Power dBm	Channel	Frequency (GHz)	Max. 1g SAR (W/kg)	2 nd spot (W/kg)
1	Black Carrying Case	900 mAH	29.7	660	1.879	0.242	NA
2	Black Carrying Case/Headset		29.7	660	1.879	0.210	NA
3	Black Carrying Case/Data Cable		29.7	660	1.879	0.260	NA
4	Black Carrying Case/External GPS		29.7	660	1.879	0.270	0.041
5	Black Carrying Case	1200 mAH	29.7	660	1.879	0.219	NA
6	Black Carrying Case/Headset		29.7	660	1.879	0.206	NA
7	Black Carrying Case/Data Cable		29.7	660	1.879	0.181	NA
8	Black Carrying Case/External GPS		29.7	660	1.879	0.237	0.201

Table 10. Measured Body SAR results for the Handset model TGP79AE

NOTES:



1 Identical metallic component on both of the carrying harnesses. Therefore data is provided only for one of them,
i.e. black carrying harness.

2 The measurements are first performed at the middle channel of the operating band of the EUT. If the SAR value
of the middle channel for each test configuration (Left, Right, Cheek, Tilt, Extended, Retracted) is at least 2
dB below the SAR limit, testing at the high and low channels is optional for such test configurations.

3 The test data reported are the worst-case SAR values with the antenna-head position set in a typical
configuration.

4 All modes of operation are investigated and worst case are reported.

5	Multiple Hot Spots	None	✓ SAR was less than 2 dB of the highest peak	✓ Reported
6	Battery Type	Standard	Extended	✓ Both
7	Power Measured	✓ Conducted	EIRP	ERP
8	SAR Measurement System	SARA2		
9	SAR Configuration	Head	✓ Body	
10	Before the measurements, the test site ambient conditions were checked performing SAR measurements with the phone powered off.			

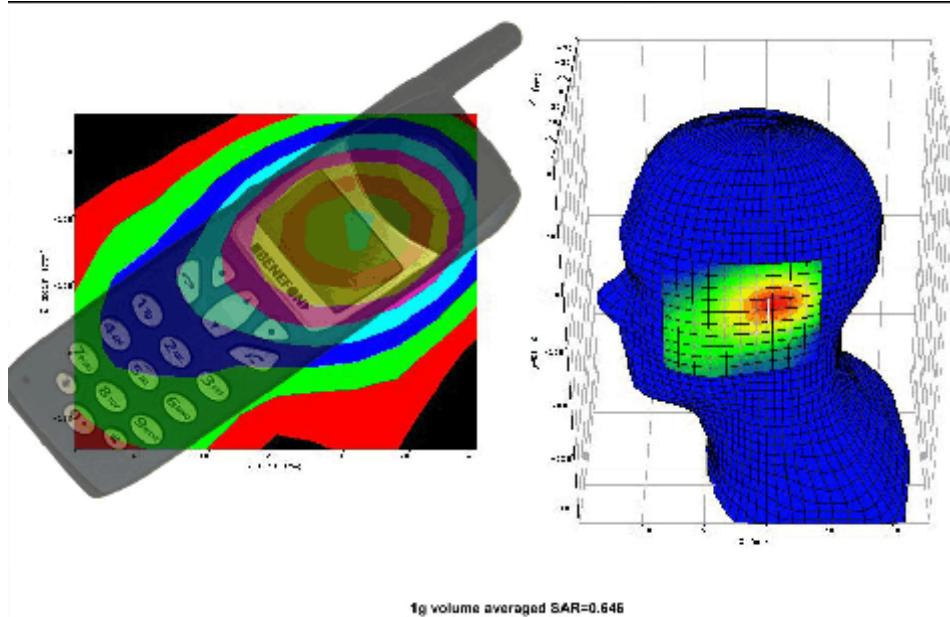
SAR Results (Continued)

Benefon Oyj

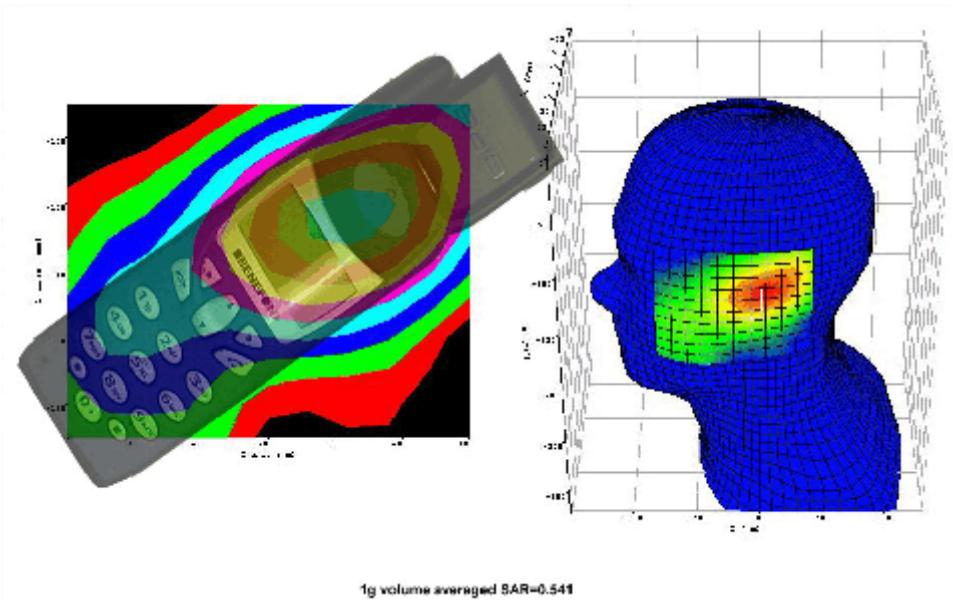
GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

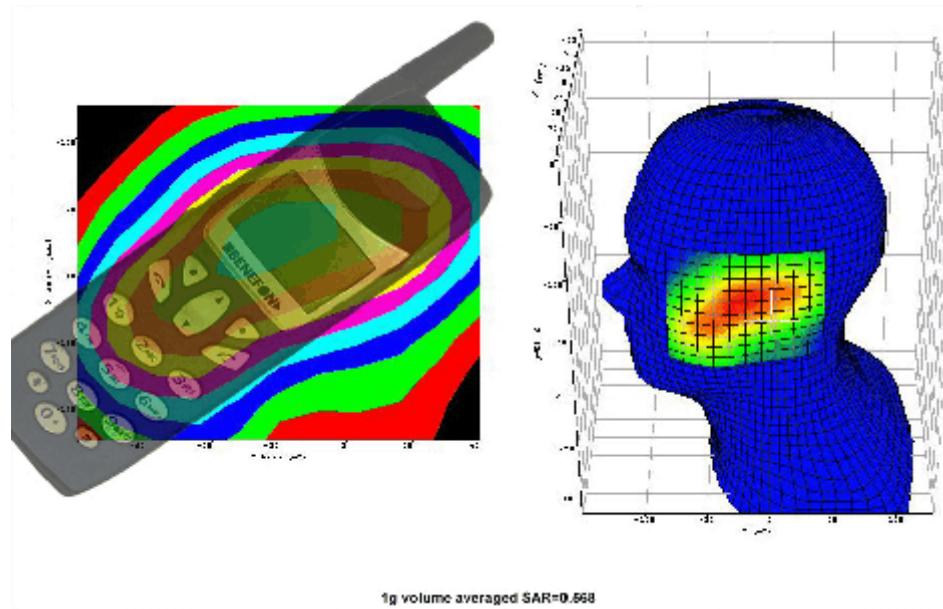
October 18, 2002



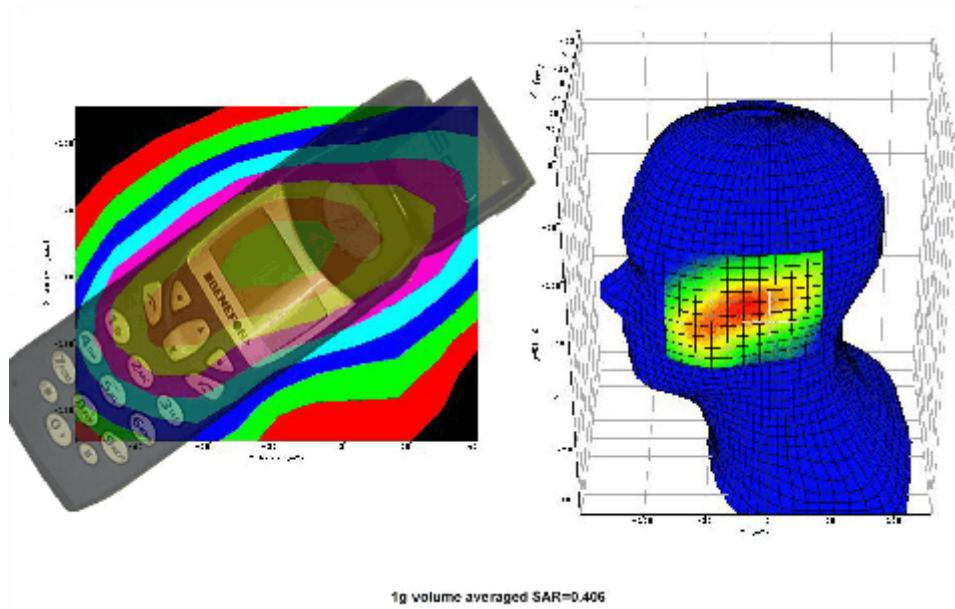
SAR DISTRIBUTIONS (AREA SCANS)


Test Position:

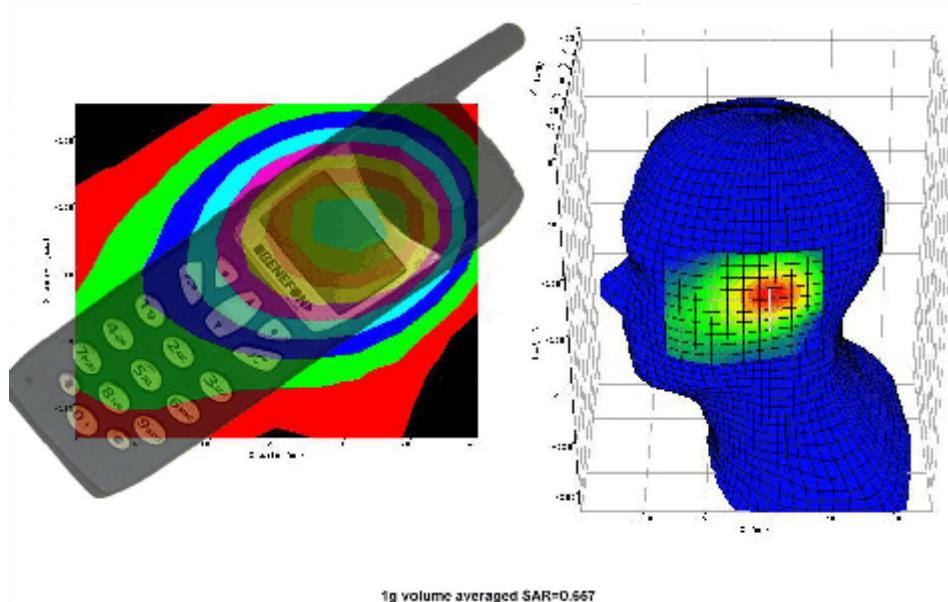
Upright Phantom; Right Hand Section; Tilted Position; 1200 mAH Battery
Test Date: June 14, 2002
Antenna Position: Fixed PCS Antenna and GPS Antenna IN
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.3 C
Post Test Room Temperature: 24.4 C
Pre Test Simulant Liquid 24.7 C
Post Test Simulant Liquid 24.9 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.646 W/Kg


Test Position:

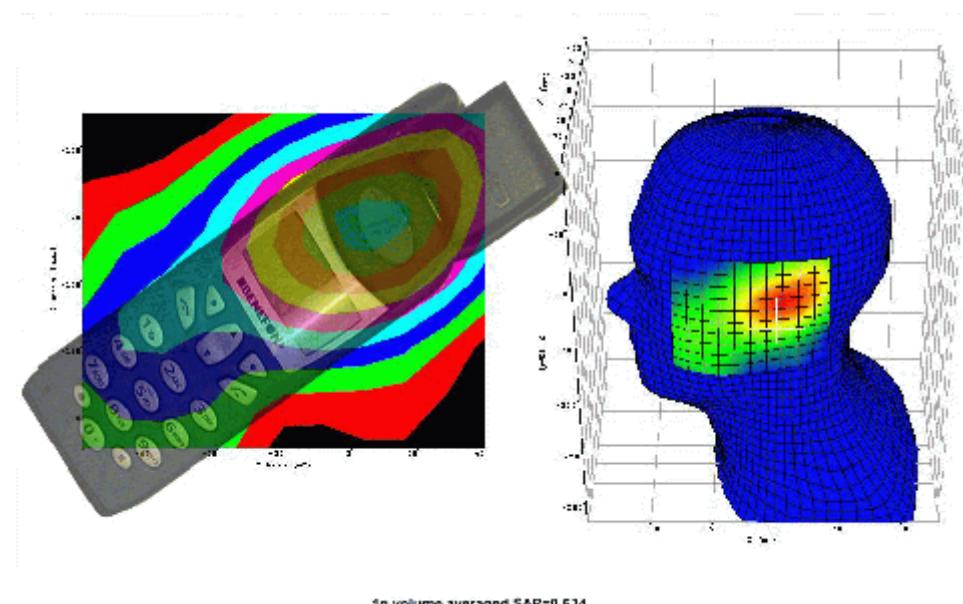
Upright Phantom; Right Hand Section; Tilted Position; 1200 mAH Battery
Test Date: June 14, 2002
Antenna Position: Fixed PCS Antenna and GPS Antenna OUT
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.3 C
Post Test Room Temperature: 24.4 C
Pre Test Simulant Liquid 24.7 C
Post Test Simulant Liquid 24.9 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.541 W/Kg


Test Position:

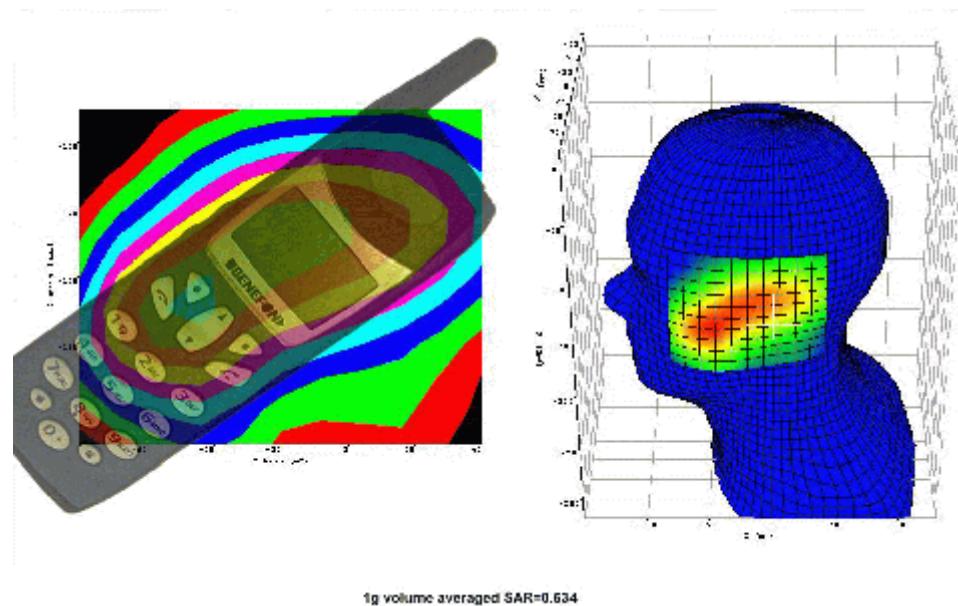
Upright Phantom; Right Hand Section; Cheek Position; 1200 mAH Battery
Test Date: June 14, 2002
Antenna Position: Fixed PCS Antenna and GPS antenna IN
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.3 C
Post Test Room Temperature: 24.4 C
Pre Test Simulant Liquid 24.7 C
Post Test Simulant Liquid 24.9 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.568 W/Kg


Test Position:

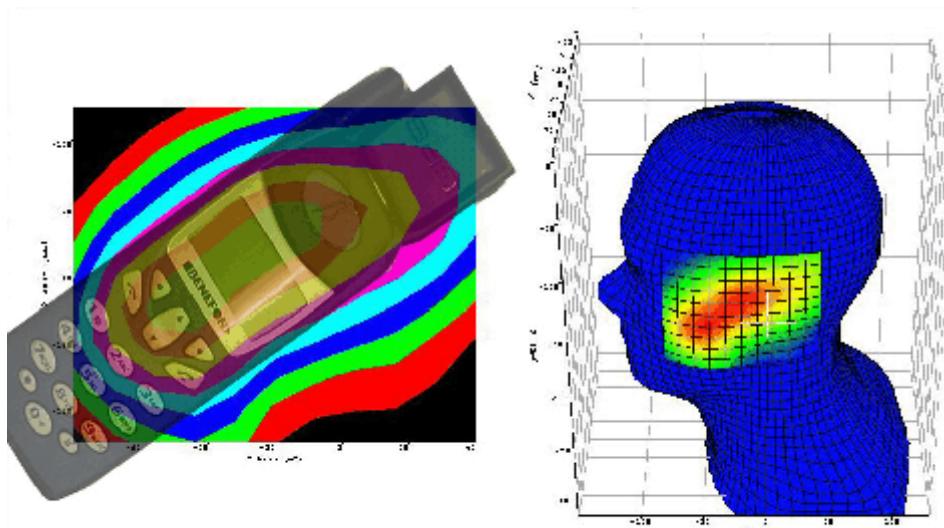
Upright Phantom; Right Hand Section; Cheek Position; 1200 mAH Battery
Test Date: June 14, 2002
Antenna Position: Fixed PCS Antenna and GPS antenna OUT
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.3 C
Post Test Room Temperature: 24.4 C
Pre Test Simulant Liquid 24.7 C
Post Test Simulant Liquid 24.9 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.406 W/Kg


Test Position:

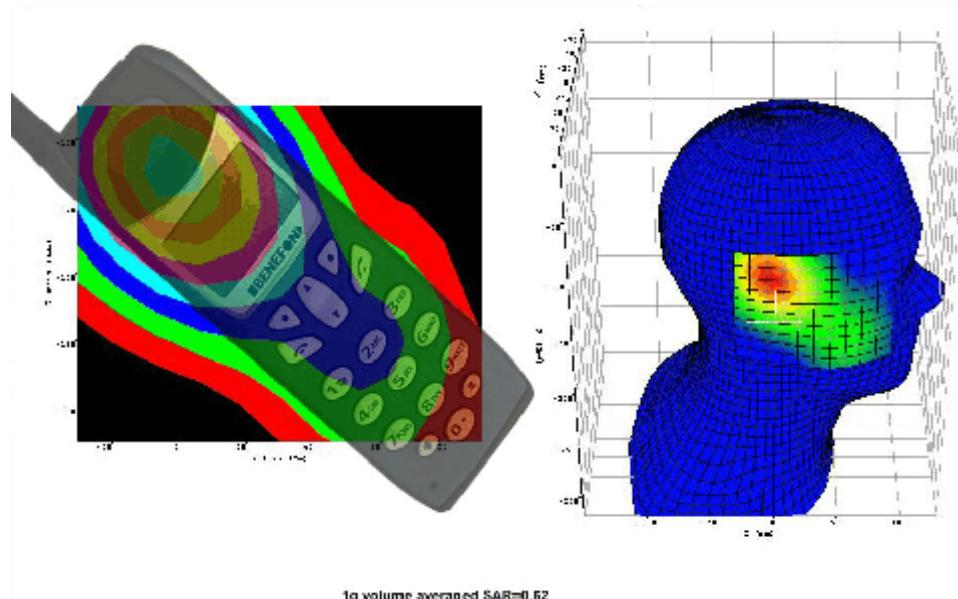
Upright Phantom; Right Hand Section; Tilted Position; 900 mAH Battery
Test Date: June 14, 2002
Antenna Position: Fixed PCS Antenna and GPS Antenna IN
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.3 C
Post Test Room Temperature: 24.4 C
Pre Test Simulant Liquid 24.7 C
Post Test Simulant Liquid 24.9 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.657 W/Kg


Test Position:

Upright Phantom; Right Hand Section; Tilted Position; 900 mAH Battery
Test Date: June 14, 2002
Antenna Position: Fixed PCS Antenna and GPS Antenna OUT
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.3 C
Post Test Room Temperature: 24.4 C
Pre Test Simulant Liquid 24.7 C
Post Test Simulant Liquid 24.9 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.534 W/Kg


Test Position:

Upright Phantom; Right Hand Section; Cheek Position; 900 mAH Battery
Test Date: June 14, 2002
Antenna Position: Fixed PCS Antenna and GPS Antenna IN
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.3 C
Post Test Room Temperature: 24.4 C
Pre Test Simulant Liquid 24.7 C
Post Test Simulant Liquid 24.9 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.534 W/Kg


Test Position:

Upright Phantom; Right Hand Section; Cheek Position; 900 mAH Battery
Test Date: June 14, 2002
Antenna Position: Fixed PCS Antenna and GPS antenna OUT
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.3 C
Post Test Room Temperature: 24.4 C
Pre Test Simulant Liquid 24.7 C
Post Test Simulant Liquid 24.9 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.491 W/Kg

Test Position:

Upright Phantom; Left Hand Section; Tilted Position; 1200 mAH Battery
Test Date: June 14, 2002
Antenna Position: Fixed PCS Antenna and GPS Antenna IN
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.3 C
Post Test Room Temperature: 24.4 C
Pre Test Simulant Liquid 24.7 C
Post Test Simulant Liquid 24.9 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.520 W/Kg

Test Position:

Upright Phantom; Left Hand Section; Tilted Position; 1200 mAH Battery

Test Date:

July 3, 2002

Antenna Position:

Fixed PCS Antenna and GPS antenna OUT

Probe:

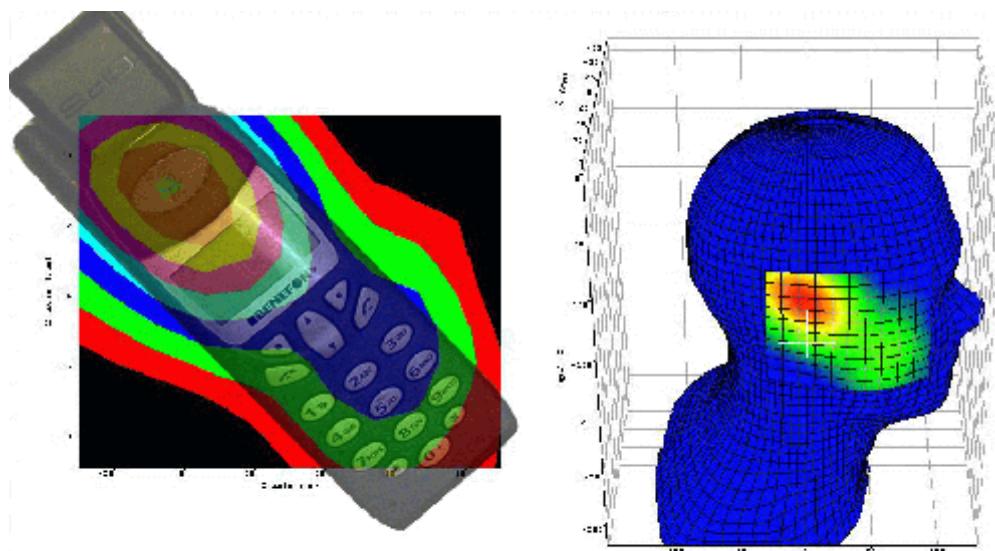
IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002

Med. Parameters:

1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$

Pre Test Room Temperature: 24.4 C

Post Test Room Temperature: 24.7 C


Pre Test Simulant Liquid 24.6 C

Post Test Simulant Liquid 25 C

CH 660; Crest Factor = 8(GSM)

SAR Drift < 2%

SAR (1g): 0.396 W/Kg

Test Position:

Upright Phantom; Left Hand Section; Cheek Position; 1200 mAH Battery

Test Date: July 3, 2002

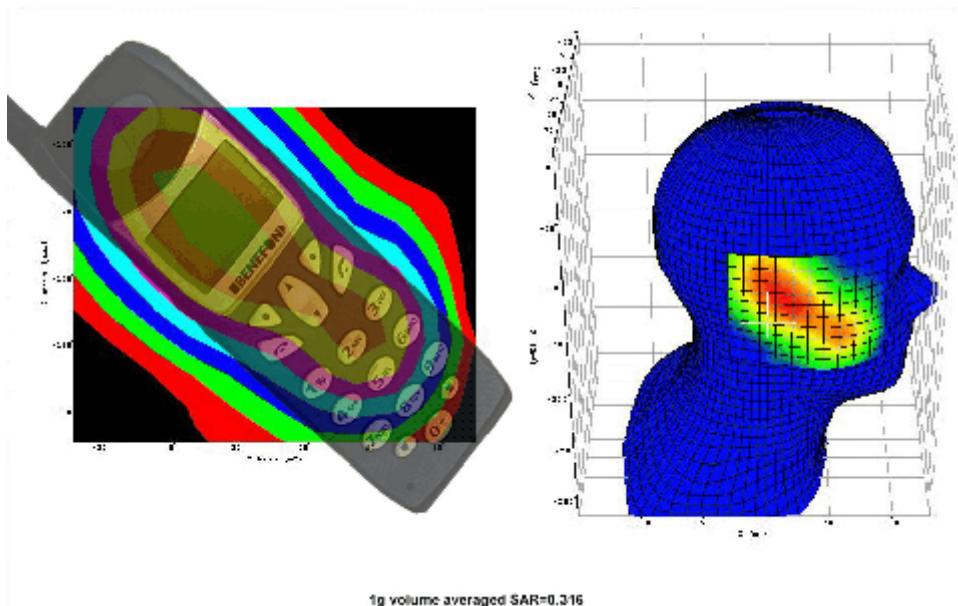
Antenna Position: Fixed PCS Antenna and GPS antenna In

Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002

Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$

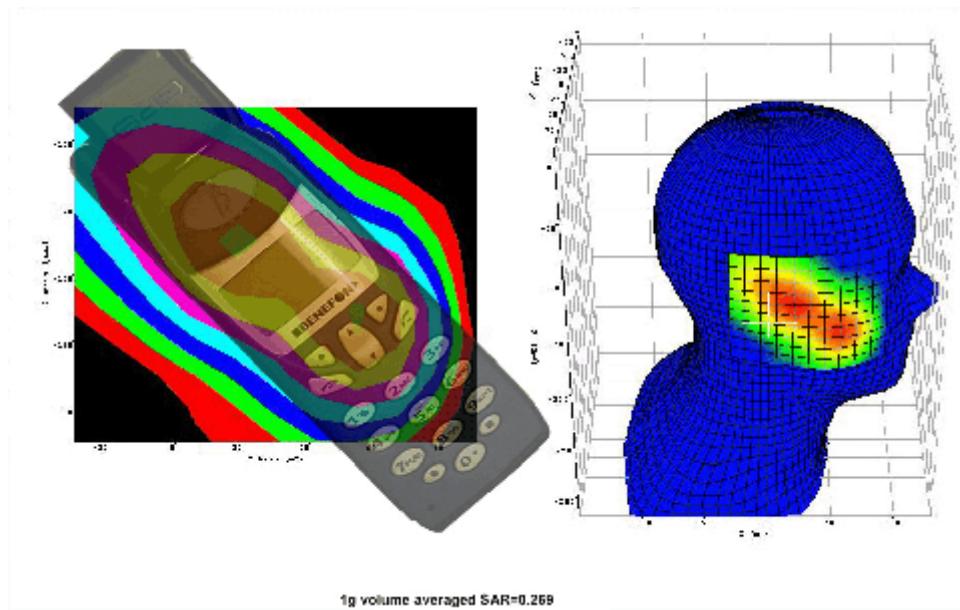
Pre Test Room Temperature: 24.4 C

Post Test Room Temperature: 24.7 C

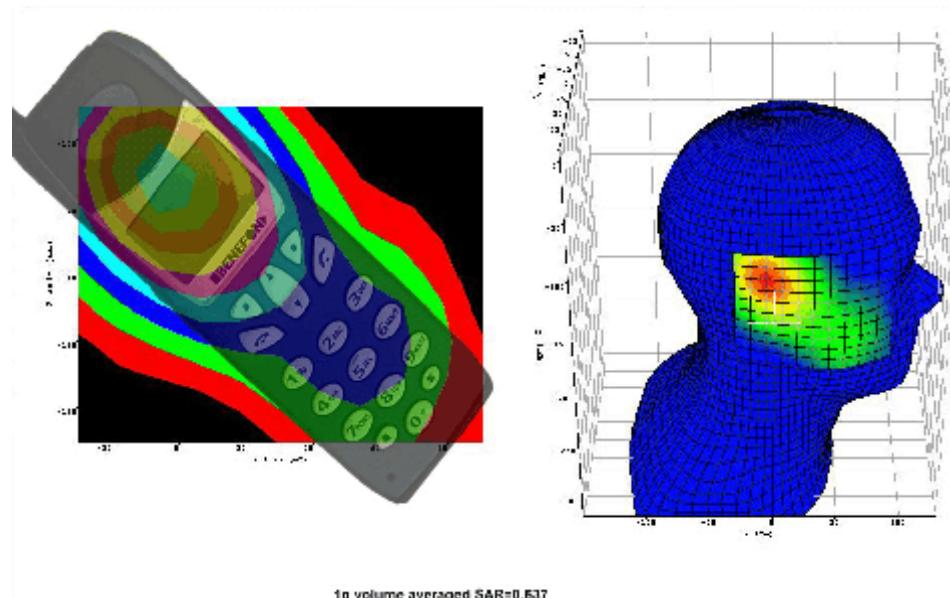

Pre Test Simulant Liquid 24.6 C

Post Test Simulant Liquid 25 C

CH 660; Crest Factor = 8(GSM)


SAR Drift < 2%

SAR (1g): 0.316 W/Kg


Test Position:

Upright Phantom; Left Hand Section; Cheek Position; 1200 mAH Battery
Test Date: July 3, 2002
Antenna Position: Fixed PCS Antenna and GPS Antenna OUT
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.4 C
Post Test Room Temperature: 24.7 C
Pre Test Simulant Liquid 24.6 C
Post Test Simulant Liquid 25 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.269 W/Kg

Test Position:

Upright Phantom; Left Hand Section; Tilted Position; 900 mAH Battery
Test Date: July 3, 2002
Antenna Position: Fixed PCS Antenna and GPS antenna IN
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.4 C
Post Test Room Temperature: 24.7 C
Pre Test Simulant Liquid 24.6 C
Post Test Simulant Liquid 25 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.537 W/Kg

Test Position:

Upright Phantom; Left Hand Section; Tilted Position; 900 mAH Battery

Test Date: July 3, 2002

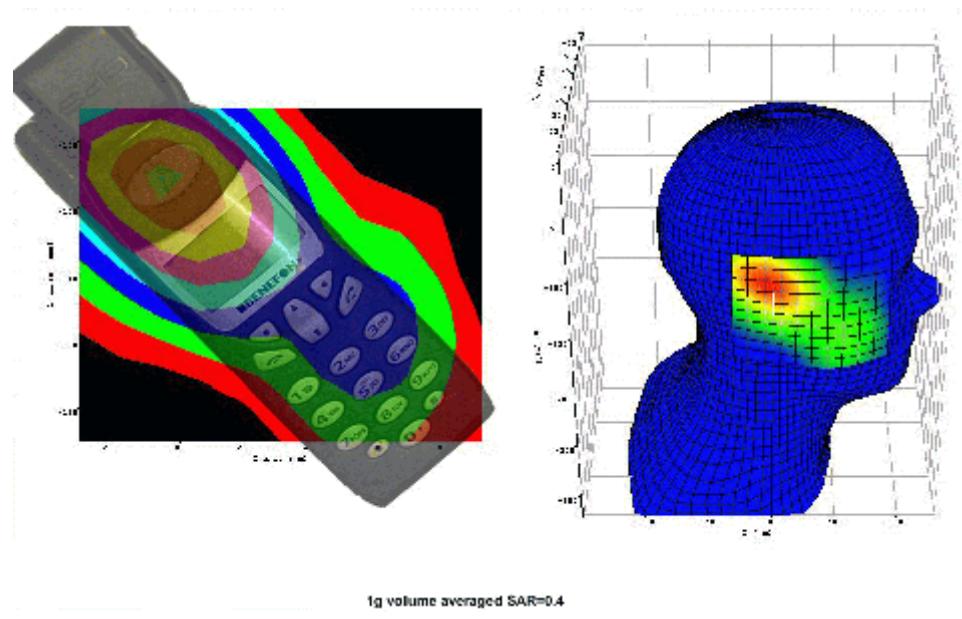
Antenna Position: Fixed PCS Antenna and GPS antenna OUT

Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002

Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$

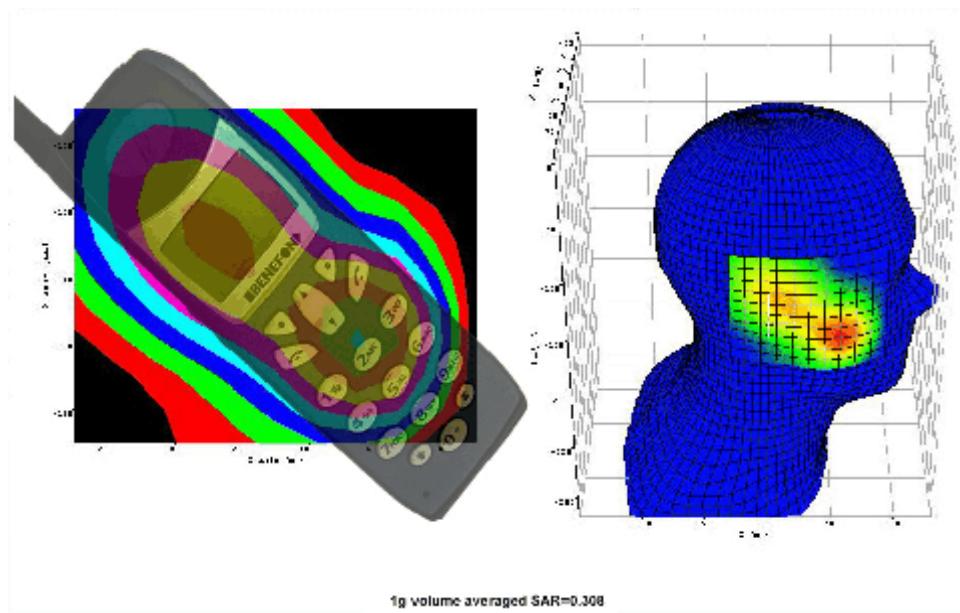
Pre Test Room Temperature: 24.4 C

Post Test Room Temperature: 24.7 C

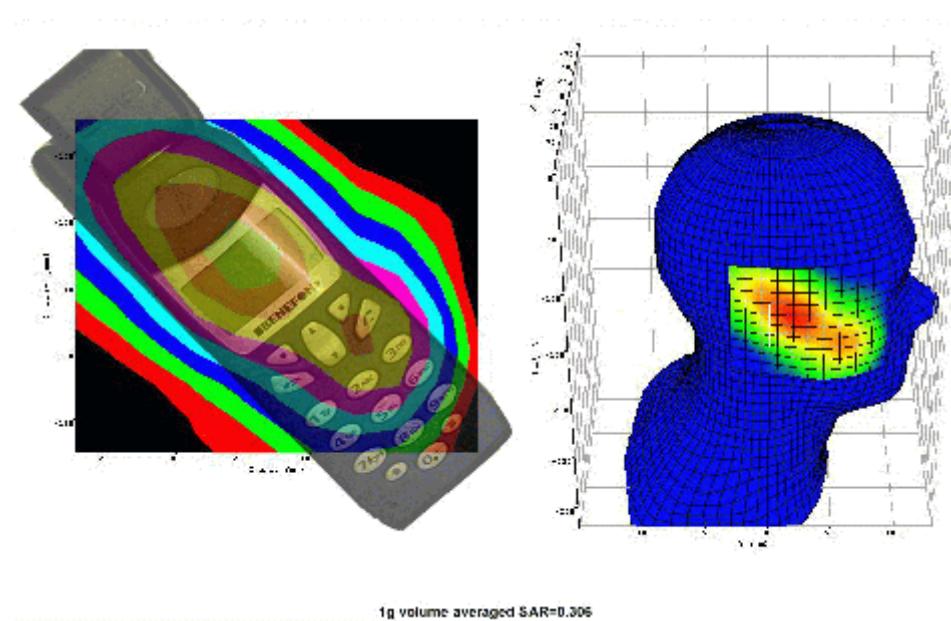

Pre Test Simulant Liquid 24.6 C

Post Test Simulant Liquid 25 C

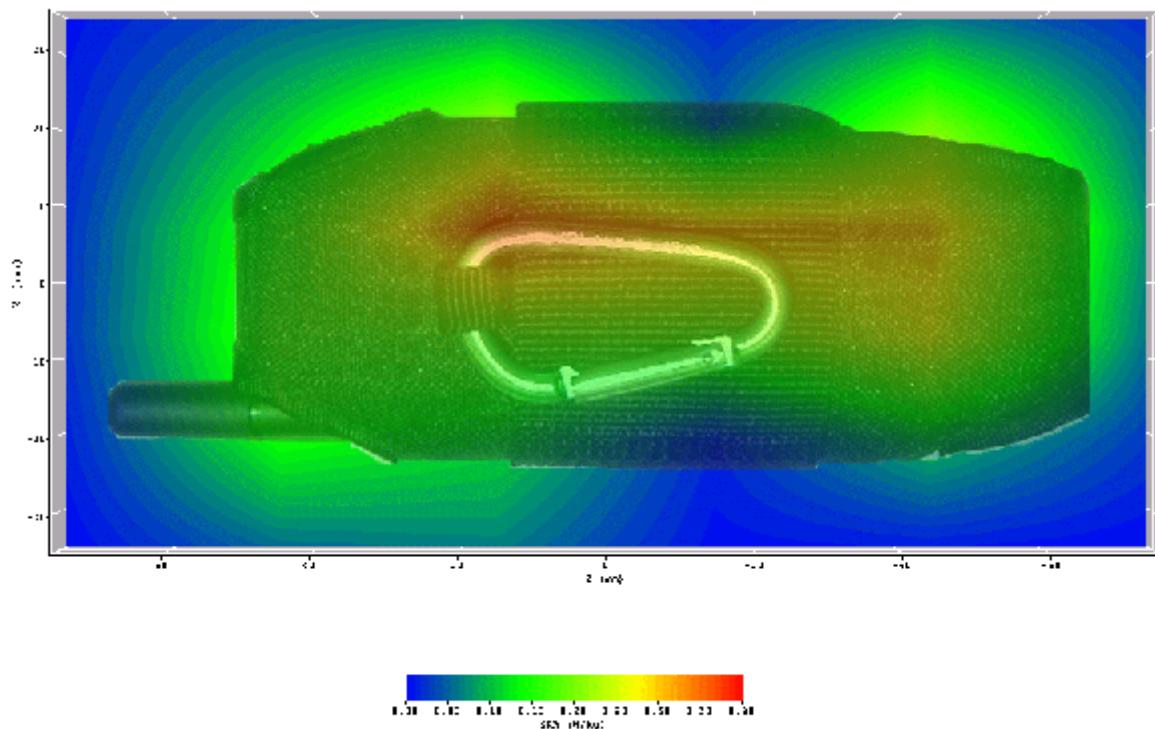
CH 660; Crest Factor = 8(GSM)


SAR Drift < 2%

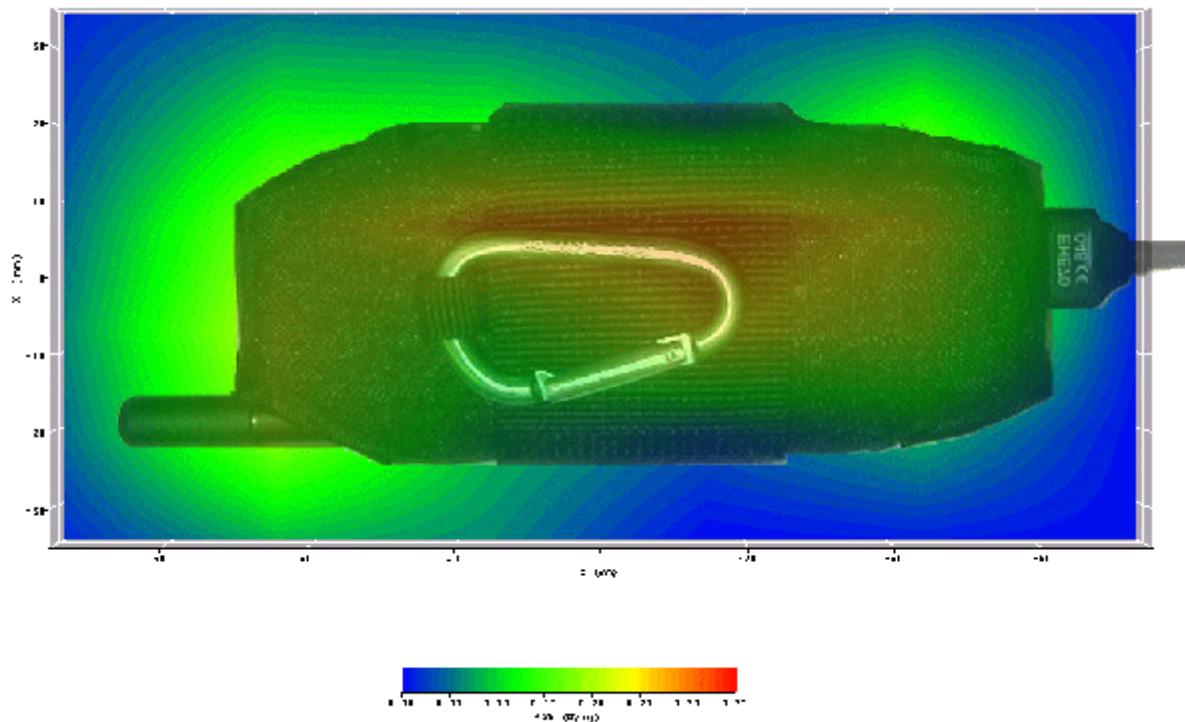
SAR (1g): 0.400 W/Kg


Test Position:

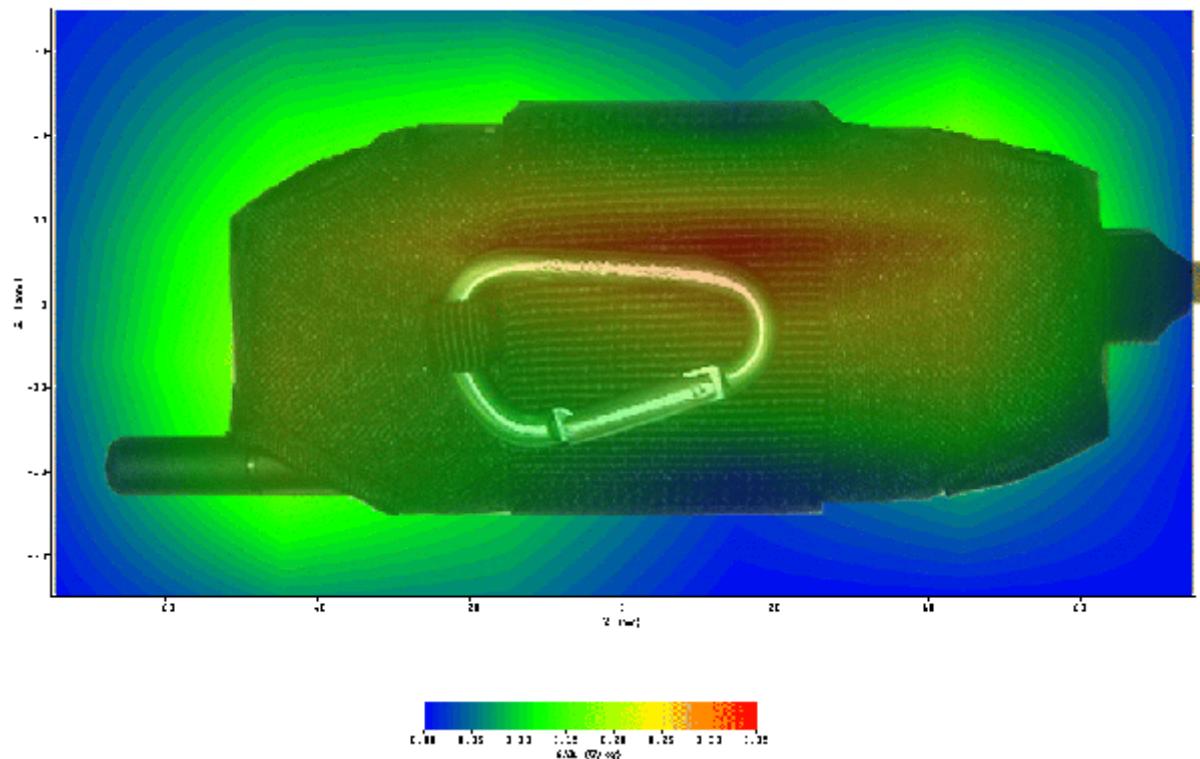
Upright Phantom; Left Hand Section; Cheek Position; 900 mAH Battery
Test Date: July 3, 2002
Antenna Position: Fixed PCS Antenna and GPS Antenna IN
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.4 C
Post Test Room Temperature: 24.7 C
Pre Test Simulant Liquid 24.6 C
Post Test Simulant Liquid 25 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.308 W/Kg


Test Position:

Upright Phantom; Left Hand Section; Cheek Position; 900 mAH Battery
Test Date: July 3, 2002
Antenna Position: Fixed PCS Antenna and GPS antenna OUT
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.2$; $s = 1.44$
Pre Test Room Temperature: 24.4 C
Post Test Room Temperature: 24.7 C
Pre Test Simulant Liquid 24.6 C
Post Test Simulant Liquid 25 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.306 W/Kg


Test Position:

Config1, per table 10
Test Date: October 6,2002
Antenna Position: Fixed PCS Antenna
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\rho_r = 41.3$; $s = 1.43$
Pre Test Room Temperature: 24.4 C
Post Test Room Temperature: 24.5 C
Pre Test Simulant Liquid 24.6 C
Post Test Simulant Liquid 24.8 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.242 W/Kg


Test Position:

Config2, per table 10
Test Date: October 6, 2002
Antenna Position: Fixed PCS Antenna
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\gamma_t = 41.3$; $s = 1.43$
Pre Test Room Temperature: 24.4 C
Post Test Room Temperature: 24.5 C
Pre Test Simulant Liquid 24.6 C
Post Test Simulant Liquid 24.8 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.210 W/Kg

Test Position:

Config3, per table 10
Test Date: October 6, 2002
Antenna Position: Fixed PCS Antenna
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\gamma_r = 41.3$; $s = 1.43$
Pre Test Room Temperature: 24.4 C
Post Test Room Temperature: 24.5 C
Pre Test Simulant Liquid 24.6 C
Post Test Simulant Liquid 24.8 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.260 W/Kg

Test Position:

Config4, per table 10

Test Date:

October 6, 2002

Antenna Position:

Fixed PCS Antenna

Probe:

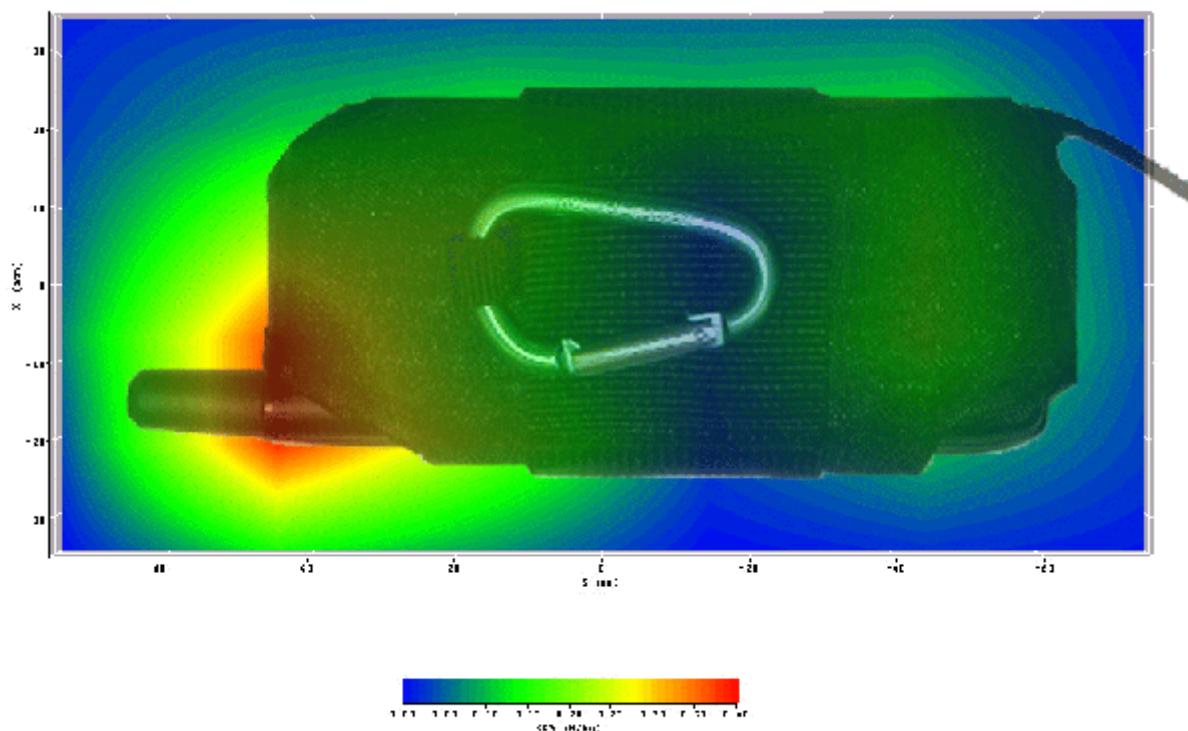
IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002

Med. Parameters:

1900 MHz Head: $\gamma_r = 41.3$; $s = 1.43$

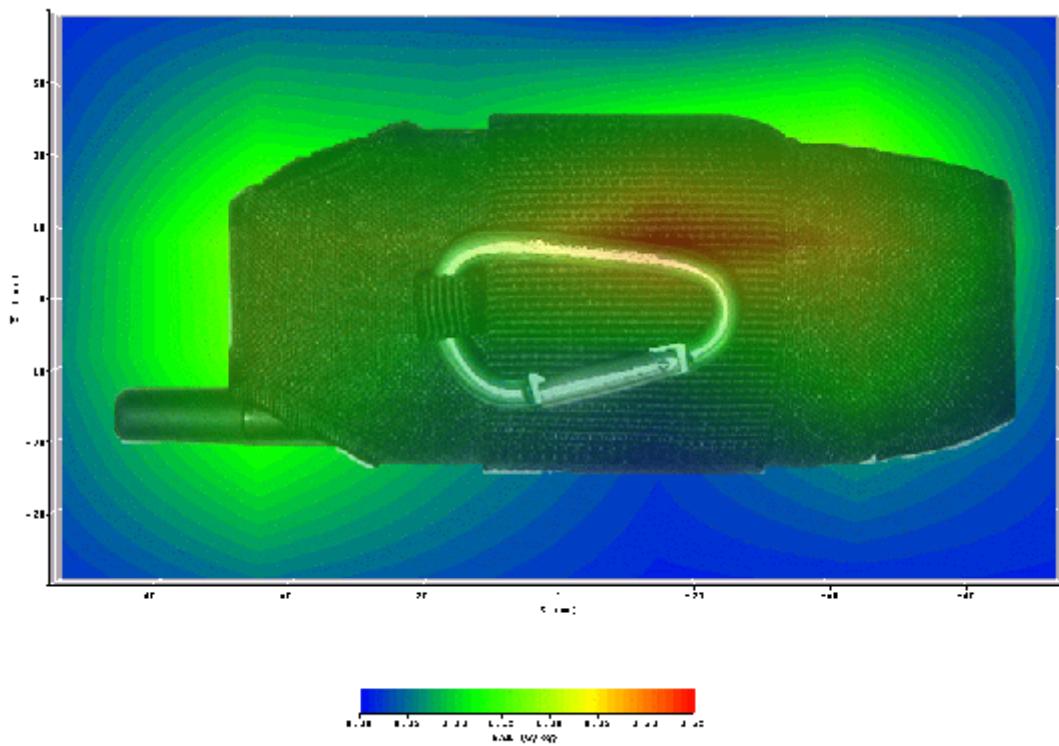
Pre Test Room Temperature: 24.4 C

Post Test Room Temperature: 24.5 C

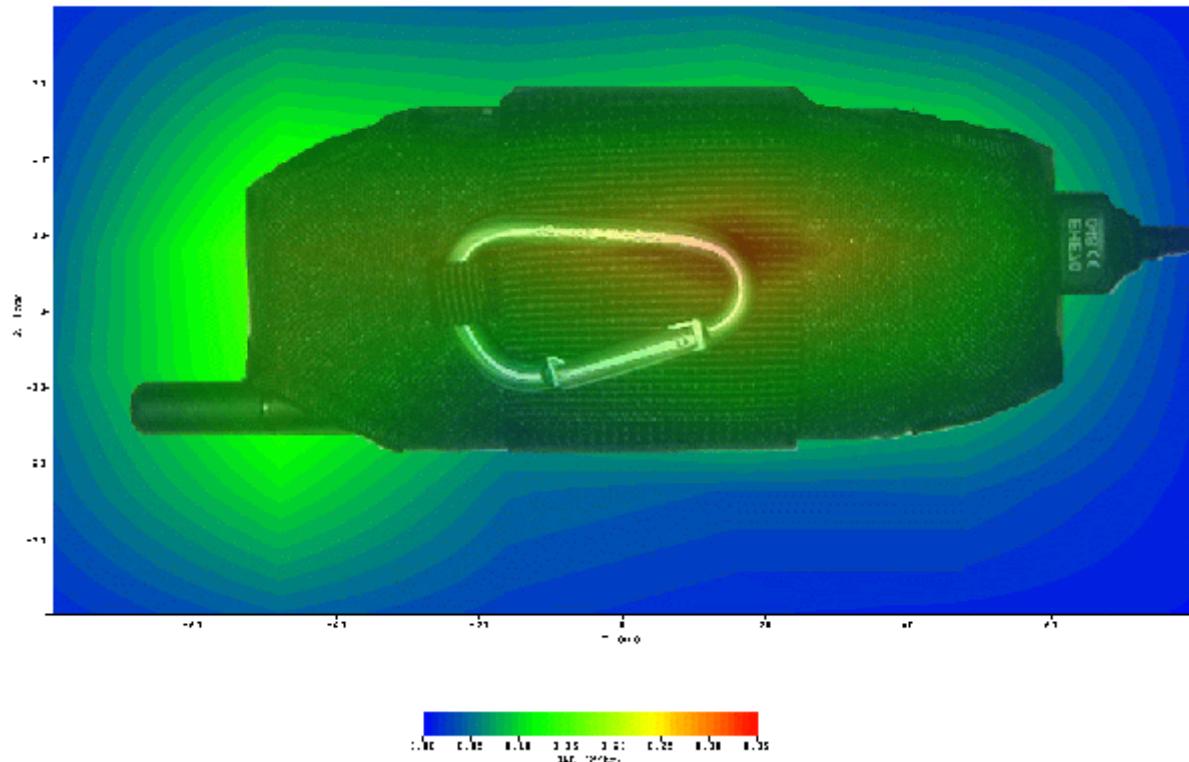

Pre Test Simulant Liquid 24.6 C

Post Test Simulant Liquid 24.8 C

CH 660; Crest Factor = 8(GSM)


SAR Drift < 2%

SAR (1g): 0.270 W/Kg


Test Position:

Config5, per table 10
Test Date: October 6, 2002
Antenna Position: Fixed PCS Antenna
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\tau_f = 41.3$; $s = 1.43$
Pre Test Room Temperature: 24.4 C
Post Test Room Temperature: 24.5 C
Pre Test Simulant Liquid 24.6 C
Post Test Simulant Liquid 24.8 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.219 W/Kg

Test Position:

Config6, per table 10
Test Date: October 6, 2002
Antenna Position: Fixed PCS Antenna
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\tau_f = 41.3$; $s = 1.43$
Pre Test Room Temperature: 24.4 C
Post Test Room Temperature: 24.5 C
Pre Test Simulant Liquid 24.6 C
Post Test Simulant Liquid 24.8 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.206 W/Kg

Test Position:

Config7, per table 10

Test Date:

October 6, 2002

Antenna Position:

Fixed PCS Antenna

Probe:

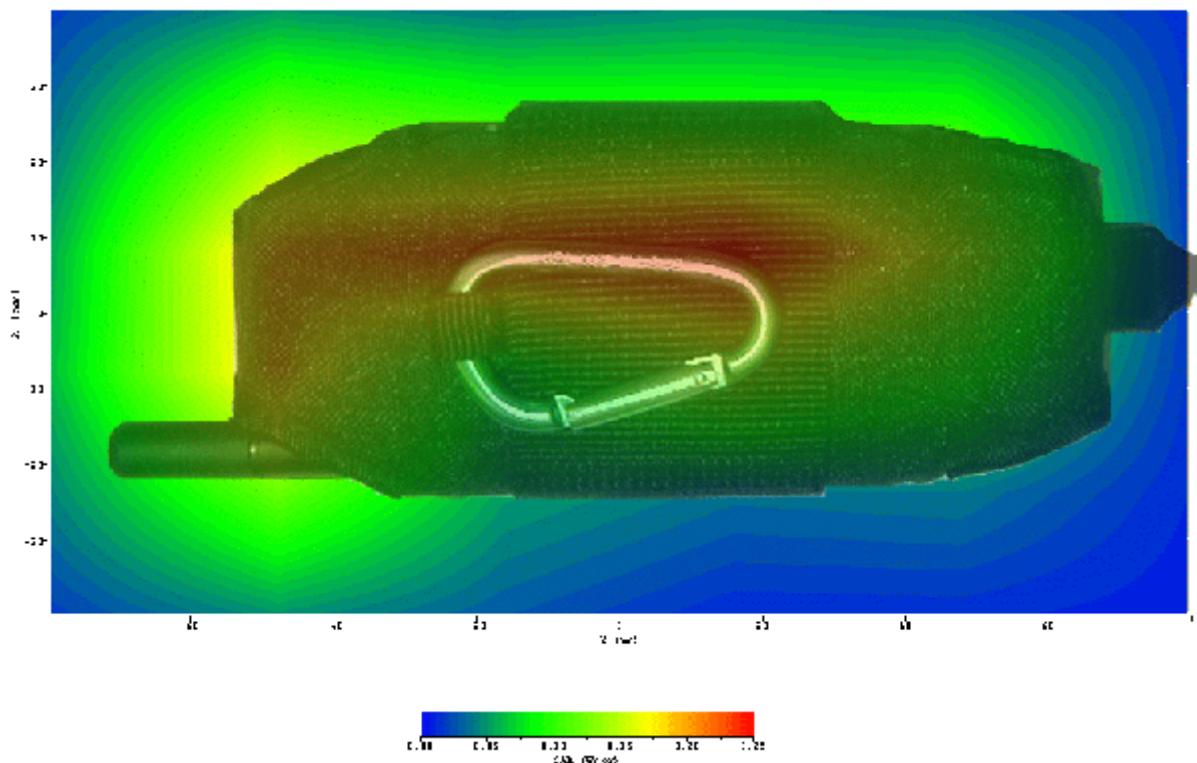
IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002

Med. Parameters:

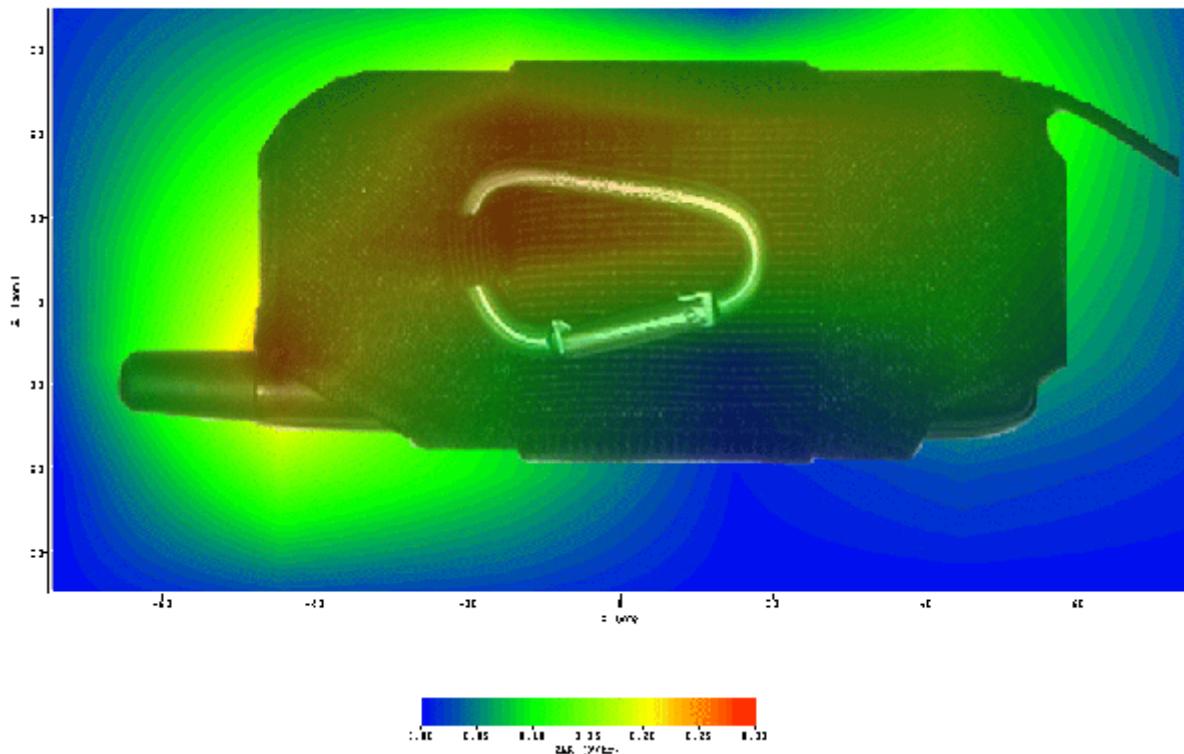
1900 MHz Head: $\tau_r = 41.3$; $s = 1.43$

Pre Test Room Temperature: 24.4 C

Post Test Room Temperature: 24.5 C


Pre Test Simulant Liquid 24.6 C

Post Test Simulant Liquid 24.8 C


CH 660; Crest Factor = 8(GSM)

SAR Drift < 2%

SAR (1g): 0.181 W/Kg

Test Position: Config8, per table 10
Test Date: October 6, 2002
Antenna Position: Fixed PCS Antenna
Probe: IXP-050/SN 0082 – SARf(0.51, 0.53, 0.53) Probe Cal Date 03/2002
Med. Parameters: 1900 MHz Head: $\gamma_r = 41.3$; $s = 1.43$
Pre Test Room Temperature: 24.4 C
Post Test Room 24.5 C
Pre Test Simulant Liquid 24.6 C
Post Test Simulant Liquid 24.8 C
CH 660; Crest Factor = 8(GSM)
SAR Drift < 2%
SAR (1g): 0.237 W/Kg

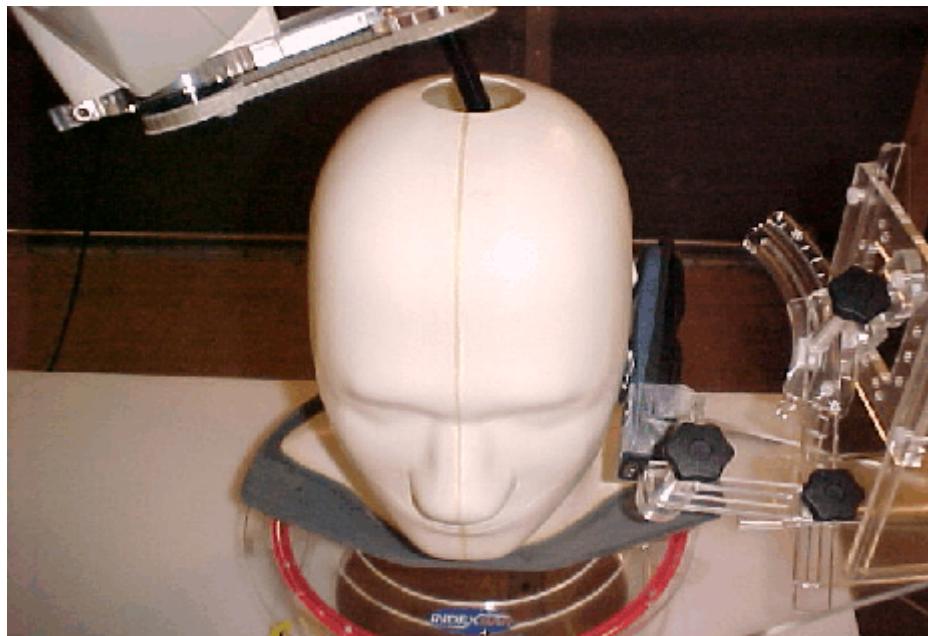
Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

Setup Pictures

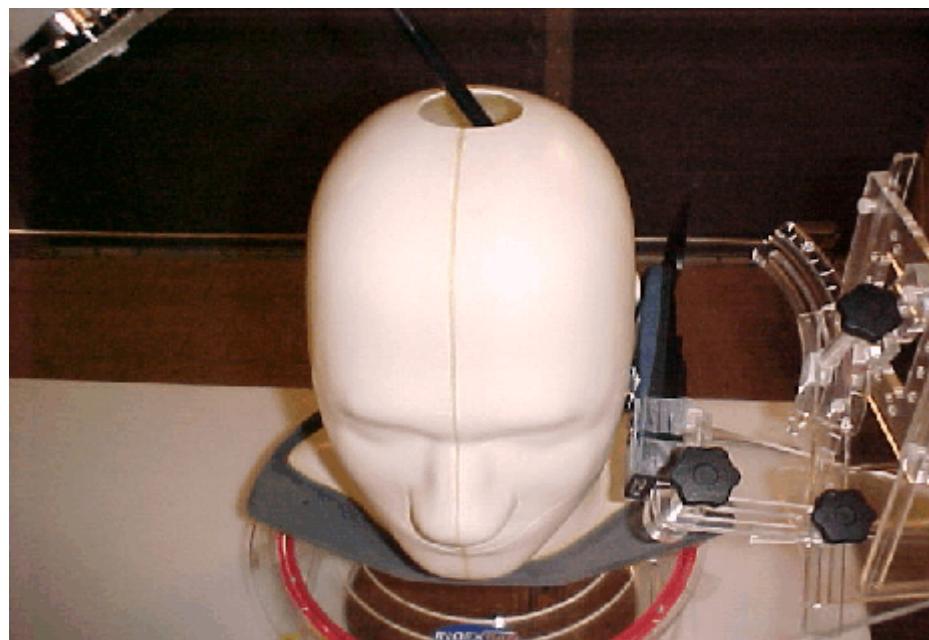
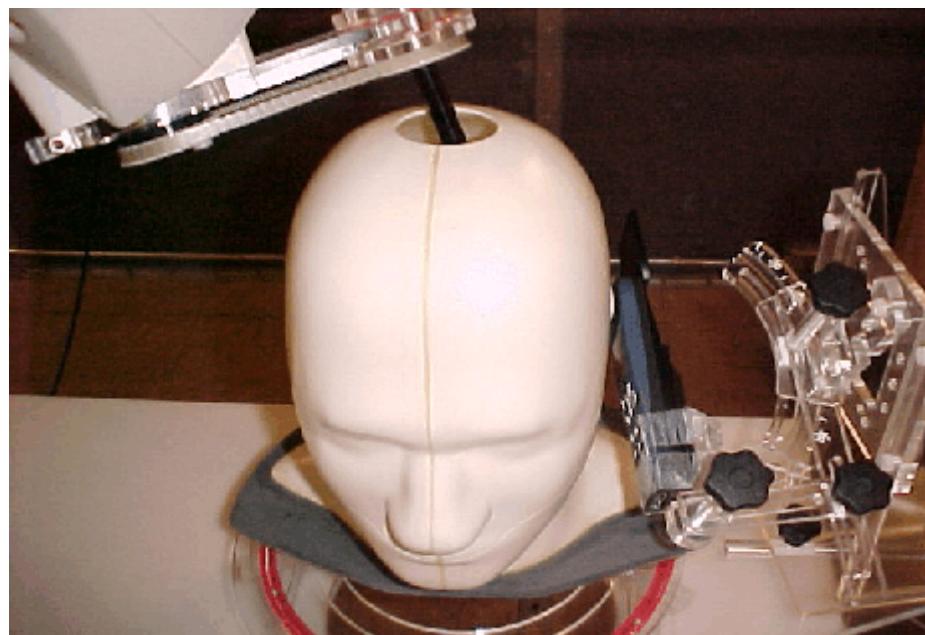


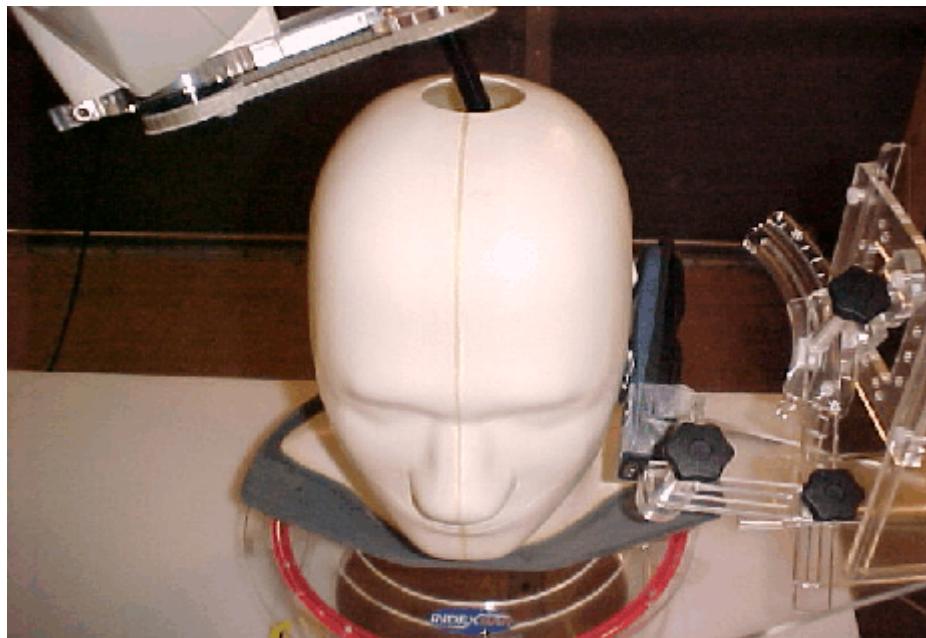
Test Positions for the Device Under Test

Figure S1. Configuration #1 - Tilt (15°) position, right side, GPS In, 1200 mAH Battery

Figure S2. Configuration #2 - Tilt (15°) position, right side, GPS Out, 1200 mAH Battery

FigureS3. Configuration #3 - Cheek (0⁰) position, right side, GPS In, 1200 mAH Battery


Figure S4. Configuration #4 - Cheek (0⁰) position, right side, GPS Out, 1200 mAH Battery

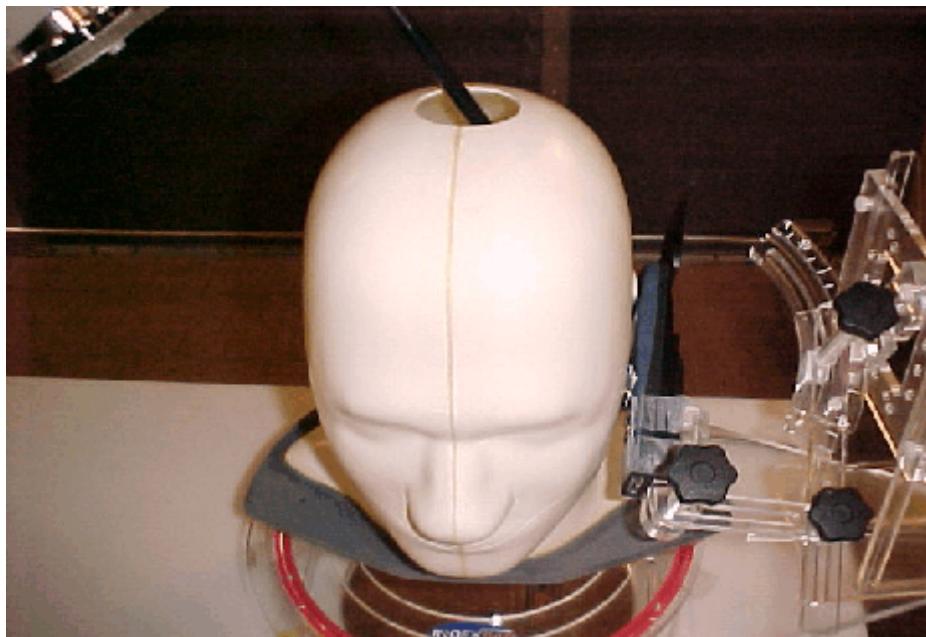

Figure S5. Configuration #5 - Tilt (15⁰) position, right side, GPS In, 900 mAH Battery

Figure S6. Configuration #6 - Tilt (15⁰) position, right side, GPS Out, 900 mAH Battery

Figure S7. Configuration #7 - Cheek (0°) position, right side, GPS In, 900 mAH Battery

Figure S8. Configuration #8 - Cheek (0°) position, right side, GPS Out, 900 mAH Battery

Figure S9. Configuration #9 - Tilt (15⁰) position, left side, GPS In, 1200 mAH Battery

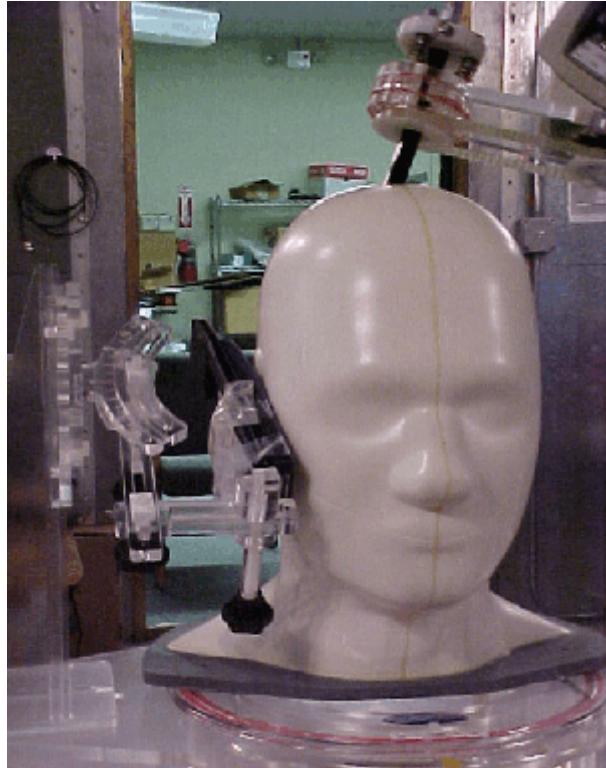
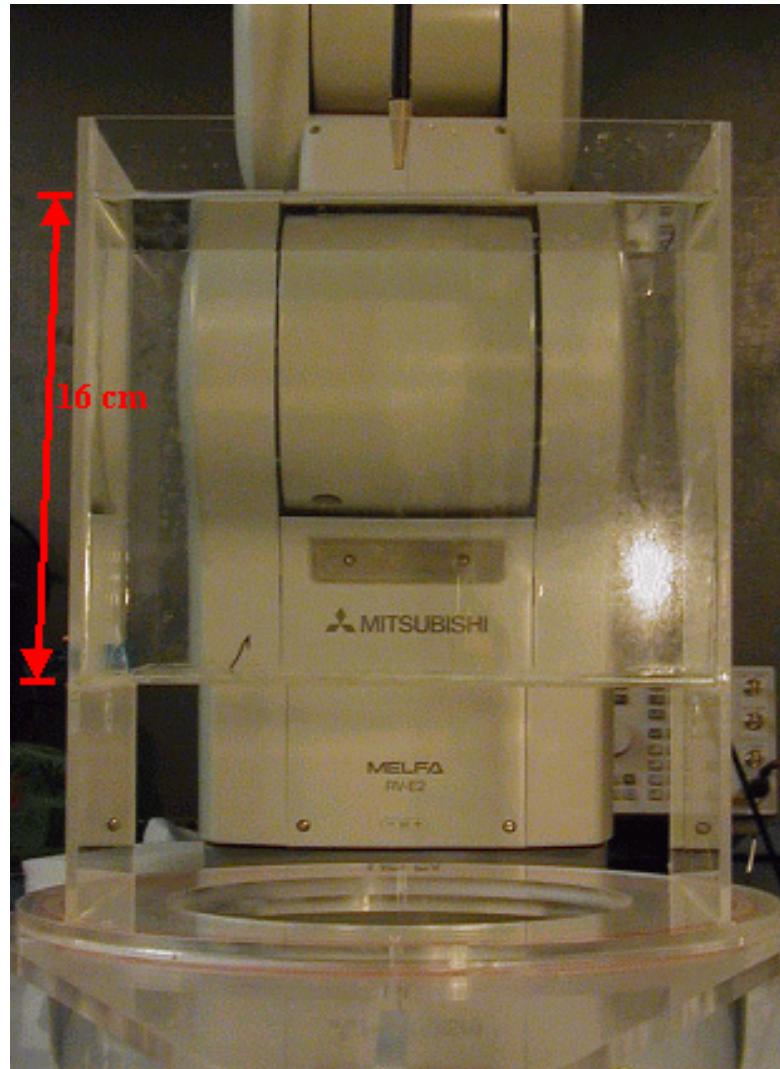
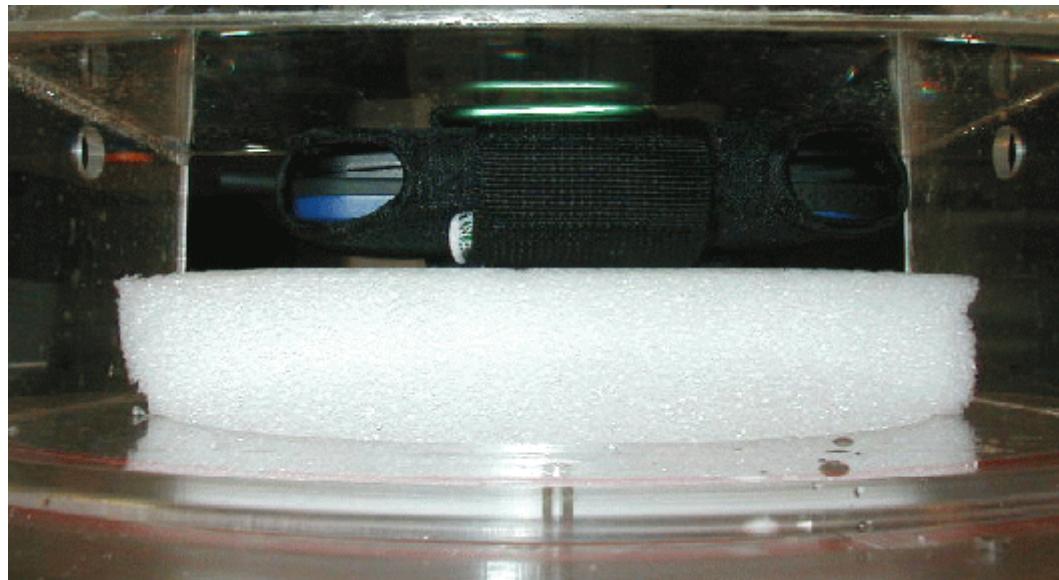

Figure S10. Configuration #13 - Tilt (15⁰) position, left side, GPS In, 900 mAH Battery

Figure S11. Configuration #10 - Tilt (15⁰) position, left side, GPS Out, 1200 mAH Battery

Figure S12. Configuration #11 - Cheek (0⁰) position, left side, GPS In, 1200 mAH Battery

Figure S13. Configuration #12 - Cheek (0⁰) position, left side, GPS Out, 1200 mAH Battery


Figure S14. Configuration #14 - Tilt (15⁰) position, left side, GPS Out, 900 mAH Battery


Figure S15. Configuration #15 - Cheek (0°) position, left side, GPS In, 900 mAH Battery

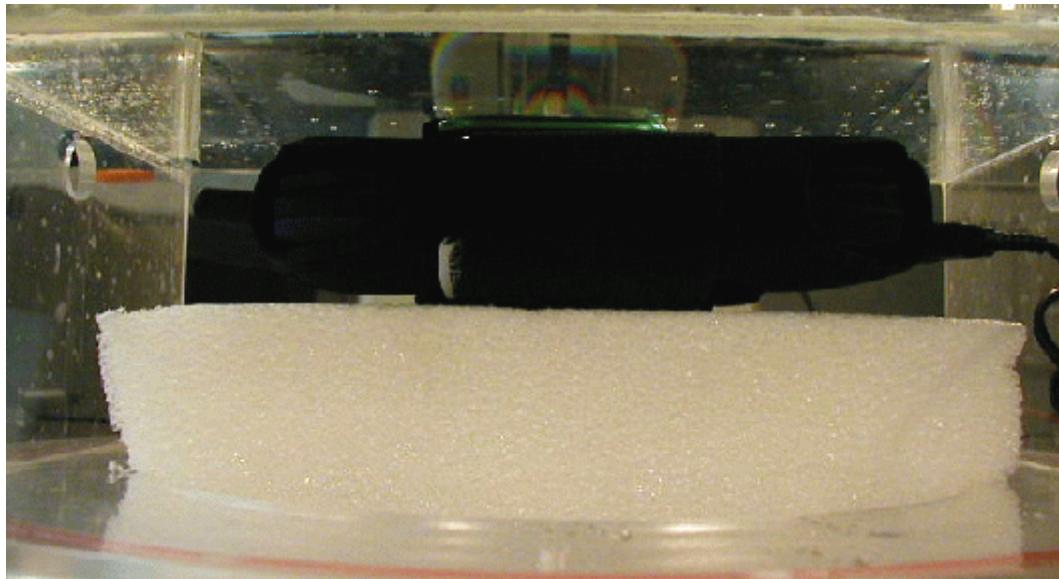

Figure S16. Configuration #16 - Cheek (0°) position, left side, GPS Out, 900 mAH Battery

Figure S17. Liquid depth maintained during body SAR testing is illustrated

Figure S18. Phone with, carrying case (black) - 900 mAH Battery

Figure S19. Phone w/headset and carrying case (black) - 900 mAH Battery

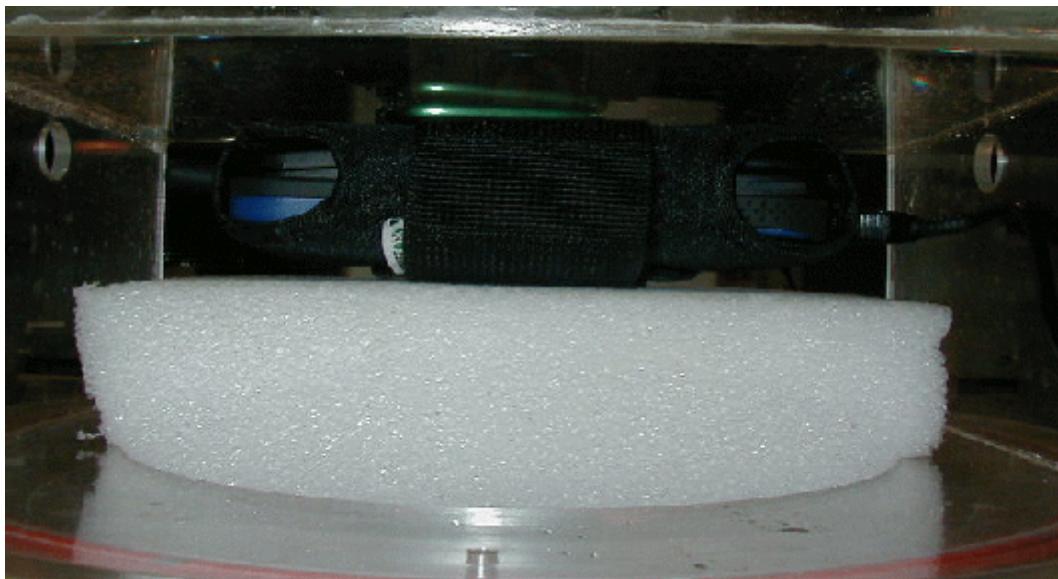


Figure S20. Phone w/Data Cable and carrying case (black) - 900 mAH Battery

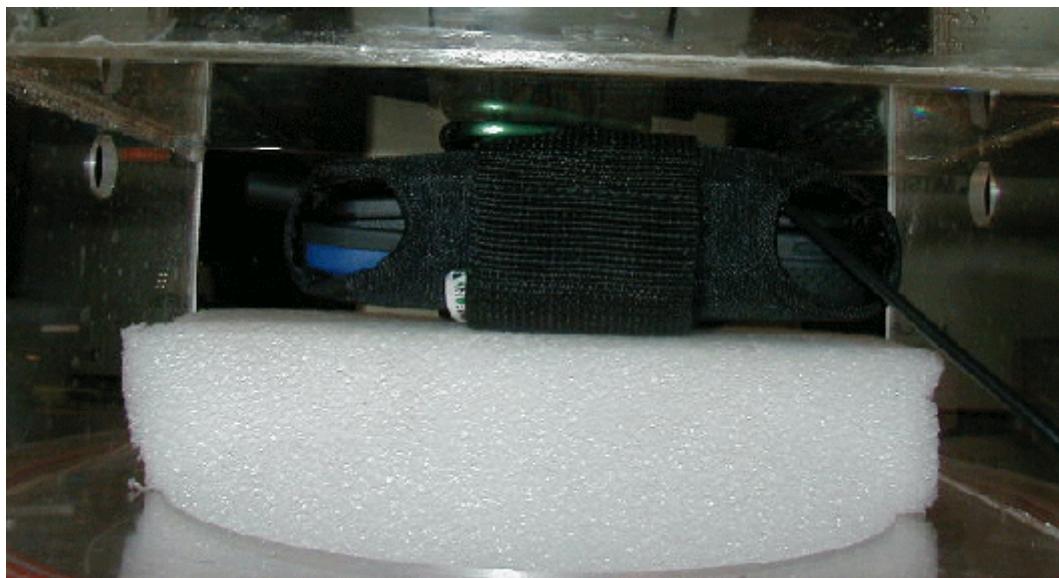


Figure S21. Phone w/External GPS Antenna and carrying case (black) - 900 mAH Battery

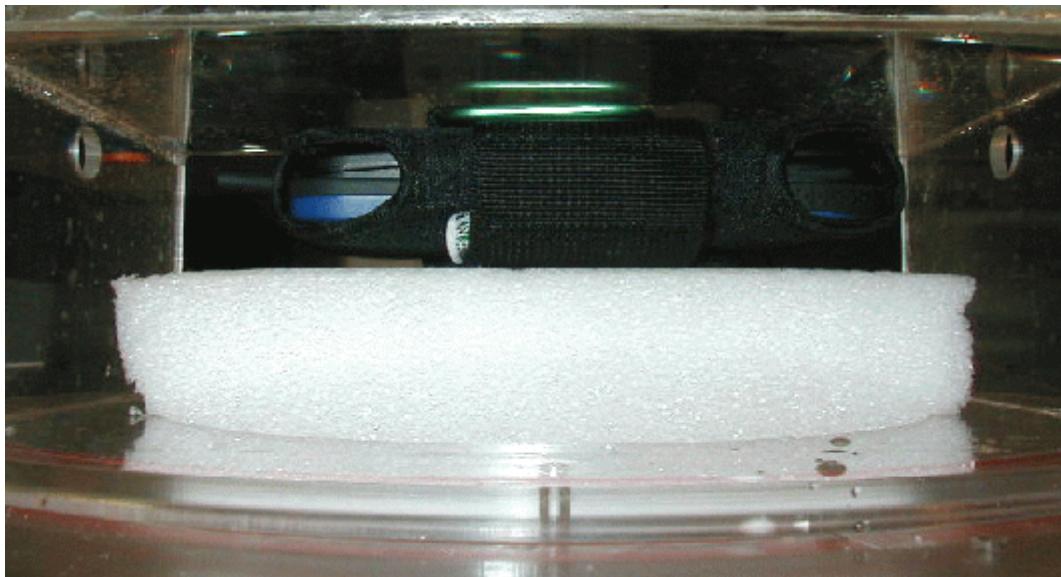


Figure S22. Phone with carrying case (black) - 1200 mAH Battery

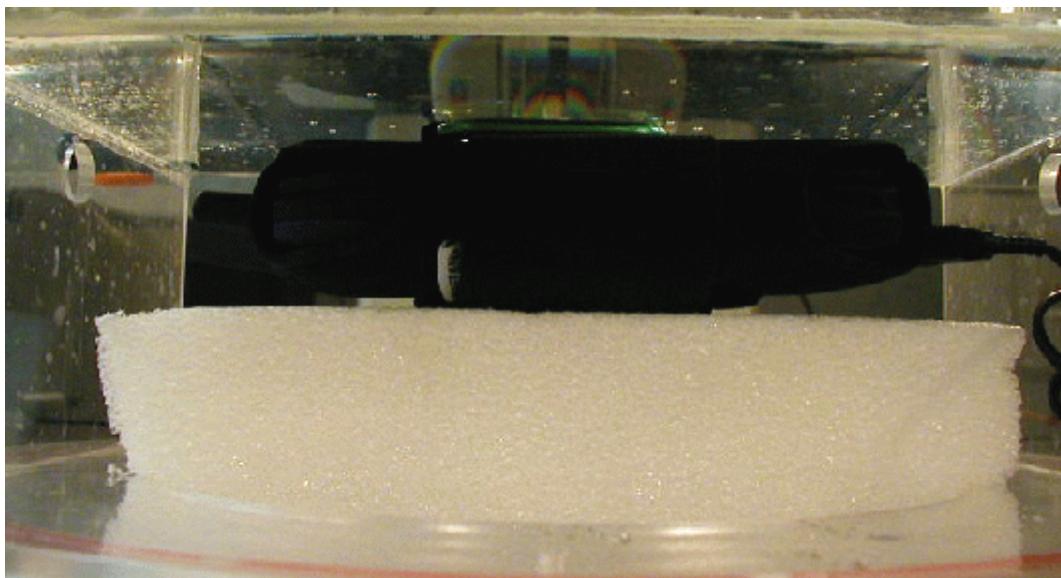
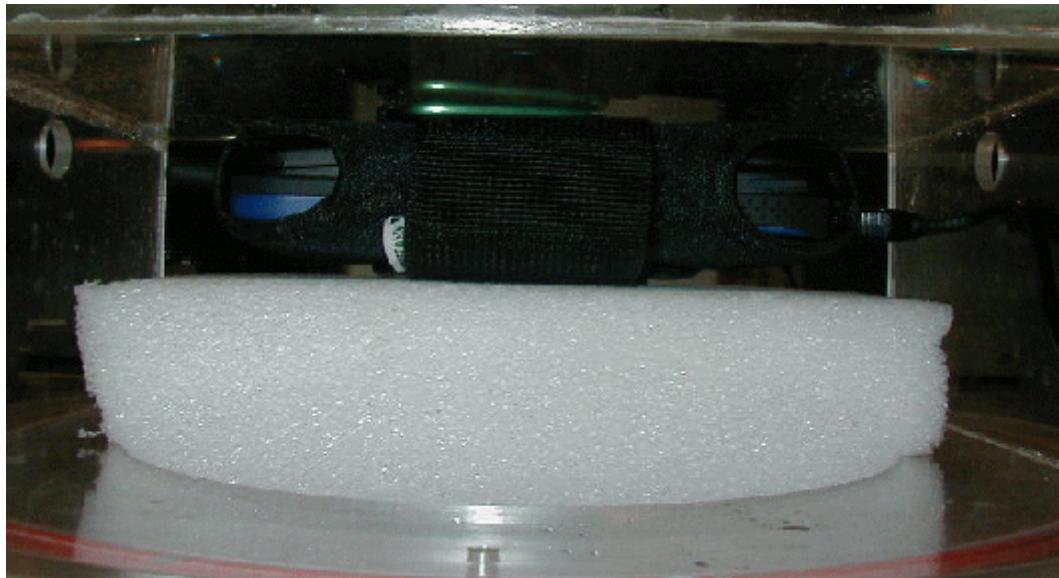
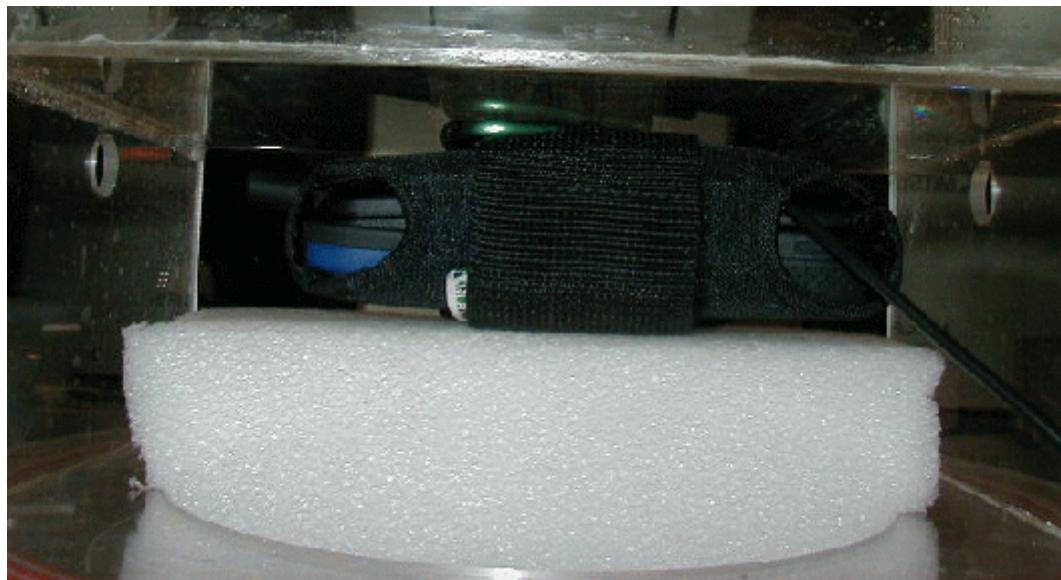




Figure S23. Phone w/headset and carrying case (black) - 1200 mAH Battery

Figure S24. Phone w/Data Cable and carrying case (black) - 1200 mAH Battery

Figure S25. Phone w/External GPS Antenna and carrying case (black) - 1200 mAH Battery

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

Measurement System Used

Measurement System - SARA2 System Specification

The SAR measurement system being used is the IndexSAR SARA2 system, which consists of a Mitsubishi RV-E2 6-axis robot arm and controller, IndexSAR probe and amplifier and SAM phantom Head Shape. The robot is used to articulate the probe to programmed positions inside the phantom head to obtain the SAR readings from the EUT.

The system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

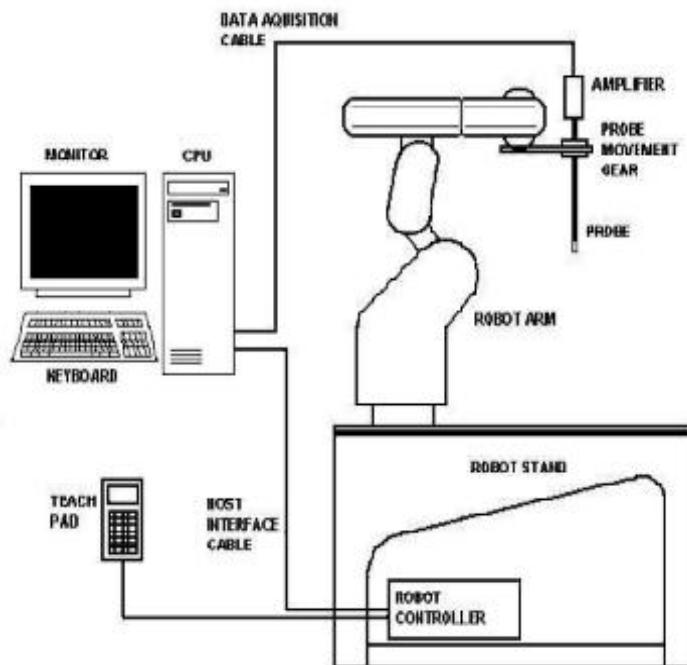
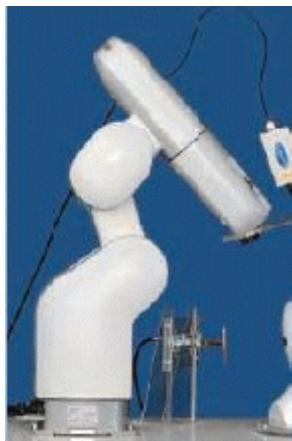


Figure 17. Block Diagram of SARA 2 System


The position and digitised shape of the phantom heads are made available to the software for accurate positioning of the probe and reduction of set-up time.

The SAM phantom heads are individually digitised using a Mitutoyo CMM machine to a precision of 0.001mm. The data is then converted into a shape format for the software, providing an accurate description of the phantom shell.

In operation, the system first performs an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

SPECIFICATIONS

ROBOTIC SYSTEM

Type: Mitsubishi Movemaster RV-2E/ 6 Axis vertical articulated robot

Dimensions (Robot): Height: 790mm (in home position)

Dimensions (Robot Stand): 1010L x 450W x 820H mm

Weight: Approx. 36 kgf

Position Repeatability: +/- 0.04mm

Drive Method: AC servomotor

CONTROLLER UNIT

Type: CR-E116

Dimensions: 422W x 512D x 202H mm

Weight: Approx. 27 kgf

Power source: single-phase AC200V +/- 10%, 50/60 Hz, 3KVA

E-FIELD PROBE

Type: Three orthogonal dipole sensors arranged on triangular, interlocking substrates

Dimensions: Overall length: 350mm

Tip length: 10mm

Body diameter: 12mm

Tip diameter: 5mm

Isotropy: Distance from probe tip to dipole centers: 2.5mm
+/- 0.5 dB in brain liquids (rotation about probe axis)
+/- 1.0 dB in brain liquids (rotation normal to probe axis)

Calibration: Indexsar calibration in brain tissue simulating liquids at frequencies of 900 MHz and 1800 MHz

Dynamic Range: 0.01 W/kg to 100 W/kg in liquid. Linearity +/- 0.2 W/kg

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

Data Acquisition

Processor	Pentium III
Clock Speed	700MHz
Operating System	Windows 98 or 2000
I/O	Two RS232, or One RS232 and One USB
Software	SARA2 Ver.xx, IXU-010X Utility Software Ver.xx, Microsoft Excel
Memory	10GB Hard drive, CDROM

IXP-050 IndexSAR isotropic immersible SAR probe

The probes are constructed using three orthogonal dipole sensors arranged on an interlocking, triangular prism core. The probes have built-in shielding against static charges and are contained within a PEEK cylindrical enclosure material at the tip. Probe calibration is described in the Calibration report appendix.

IXP-010 Amplifier

The amplifier unit has multi-pole connector to connect to the probe and a multiplexer selects between the 3-channel single-ended inputs. A 16-bit AtoD converter with programmable gain is used along with an on-board micro-controller with non-volatile firmware. Battery life is around 150 hours and data are transferred to the PC via 3m of duplex optical fibre and a self-powered RS232 to optical converter.

Amplifier Specification

1	Input	Multipole connector to suit probe in use
2	Channels	Mulipolewd 3 channel single ended inputs
3	Amplifier	16 bit A/D Converter with programable gain
4	Dimensions	120x60x30 mm
5	Weight	170g(with batteries)
6	Optical Link	3 m duplex optical fiber

PHANTOMS

SAM Twin Horizontal Phantom per IEEE Draft 1528

The SAM Twin Horizontal is fabricated to the CAD files as specified by FCC OET 65 Supplement C 01-01 and IEEE Draft 1528. It is mounted on a dielectric table which includes mounting brackets for EUT positioners and a shelf for dipole holders. The phantom has three integrated positioning reference points.

SAM Upright Phantom per CENELEC EN50361

The SAM Upright Phantom is fabricated to the CAD files as specified by CENELEC EN50361. It is mounted on the base table which holds the robotic positioner. The phantom and robot alignment is assured by both mechanical and laser registration systems.

Flat Bath Phantom for testing above 800 MHz

The Flat Bath Box Phantom is fabricated to the specifications of the OET 65 Supplement C and CENELEC EN50361 standard. It is mounted on a similar rotational base to that of which the SAM upright phantom is attached to. It is positioned in place of the SAM upright head when doing validations or flat bath testing.

Phantom Properties:

Phantom Type	Material	Permittivity (ϵ)	Conductivity (s - S/m)
SAM Upright Phantom	Head:polyurethane Resin Base:PVC	<3.15 above 200 MHz	<0.02 below 2 GHz
Box Phantom	Clear: Perspex	<2.85 above 500 MHz	<0.015 below 2 GHz

Table 11. Phamtom Properties

PHONE POSITIONER

Experience has shown that SAR results can vary considerably when plastic or material fixtures used to position the test devices are too close to the antennas (especially for phones with internal antennas). The MapSAR positioner has been designed to have no support material close the top of the phone and is arranged so that the phone pivots around the earpiece position. The positioner gives a range of phone angles from the starting touch position to +15° as required by CENELEC Pr EN 50361 or any position within a range of 30°. A graduated scale allows for easy setting. Adjustment is made by means of simple hand screws. For tests requiring phantom hands or hand material, space is made available behind the phone.

MEASUREMENT PROCEDURE

The major components of the test bench are shown in the picture above. A test set and dipole antenna control the handset via an air link and a low-mass phone holder can position the phone at either ear. Graduated scales are provided to set the phone in the 15 degree position. The upright phantom head holds approx. 7 liters of simulant liquid. The phantom is filled and emptied through a 45mm diameter penetration hole in the top of the head.

After an area scan has been performed at a fixed distance of 8mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

SARA2 INTERPOLATION AND EXTRAPOLATION SCHEMES

SARA2 software contains support for both 2D cubic B-spline interpolation as well as 3D cubic B-spline interpolation. In addition, for extrapolation purposes, a general n^{th} order polynomial fitting routine is implemented following a singular value decomposition algorithm presented in [4]. A 4th order polynomial fit is used by default for data extrapolation, but a linear-logarithmic fitting function can be selected as an option. The polynomial fitting procedures have been tested by comparing the fitting coefficients generated by the SARA2 procedures with those obtained using the polynomial fit functions of Microsoft Excel when applied to the same test input data.

INTERPOLATION OF 2D AREA SCAN

The 2D cubic B-spline interpolation is used after the initial area scan at fixed distance from the phantom shell wall. The initial scan data are collected with approx. 10mm spatial resolution and spline interpolation is used to find the location of the local maximum to within a 1mm resolution for positioning the subsequent 3D scanning.

EXTRAPOLATION OF 3D SCAN

For the 3D scan, data are collected on a spatially regular 3D grid having (by default) 6.4 mm steps in the lateral dimensions and 3.5 mm steps in the depth direction (away from the source). SARA2 enables full control over the selection of alternative step sizes in all directions.

The digitised shape of the head is available to the SARA2 software, which decides which points in the 3D array are sufficiently well within the shell wall to be 'visited' by the SAR probe. After the data collection, the data are extrapolated in the depth direction to assign values to points in the 3D array closer to the shell wall. A notional extrapolation value is also assigned to the first point outside the shell wall so that subsequent interpolation schemes will be applicable right up to the shell wall boundary.

INTERPOLATION OF 3D SCAN AND VOLUME AVERAGING

The procedure used for defining the shape of the volumes used for SAR averaging in the SARA2 software follow the method of adapting the surface of the 'cube' to conform with the curved inner surface of the phantom. This is called, here, the conformal scheme.

For each row of data in the depth direction, the data are extrapolated and interpolated to less than 1mm spacing and average values are calculated from the phantom surface for the row of data over distances corresponding to the requisite depth for 10g and 1g cubes. This results in two 2D arrays of data, which are then cubic B-spline interpolated to sub mm lateral resolution. A search routine then moves an averaging square around through the 2D array and records the maximum value of the

Benefon Oyj**GSM/GPS PCS Phone - TGP79AE****FCC ID: QFPTGP79AE****October 18, 2002**

corresponding 1g and 10g volume averages. For the definition of the surface in this procedure, the digitised position of the headshell surface is used for measurement in head-shaped phantoms. For measurements in rectangular, box phantoms, the distance between the phantom wall and the closest set of gridded data points is entered into the software.

For measurements in box-shaped phantoms, this distance is under the control of the user. The effective distance must be greater than 2.5mm as this is the tip-sensor distance and to avoid interface proximity effects, it should be at least 5mm. A value of 6 or 8mm is recommended. This distance is called dbe in EN 50361.

For automated measurements inside the head, the distance cannot be less than 2.5mm, which is the radius of the probe tip and to avoid interface proximity effects, a minimum clearance distance of x mm is retained. The actual value of dbe will vary from point to point depending upon how the spatially-regular 3D grid points fit within the shell. The greatest separation is when a grid point is just not visited due to the probe tip dimensions. In this case the distance could be as large as the step-size plus the minimum clearance distance (i.e with x=5 and a step size of 3.5, dbe will be between 3.5 and 8.5mm).

The default step size (dstep in EN 50361) used is 3.5mm, but this is under user-control. The compromise is with time of scan, so it is not practical to make it much smaller or scan times become long and power-drop influences become larger. The robot positioning system specification for the repeatability of the positioning (dss in EN50361) is +/- 0.04mm.

The phantom shell is made by an industrial moulding process from the CAD files of the SAM shape, with both internal and external moulds. For the upright phantoms, the external shape is subsequently digitised on a Mitutoyo CMM machine (Euro C574) to a precision of 0.001mm. Wall thickness measurements made non-destructively with an ultrasonic sensor indicate that the shell thickness (dph) away from the ear is 2.0 +/- 0.1mm. The ultrasonic measurements were calibrated using additional mechanical measurements on available cut surfaces of the phantom shells. See support document IXS-020x.

For the upright phantom, the alignment is based upon registration of the rotation axis of the phantom on its 253mm diameter baseplate bearing and the position of the probe axis when commanded to go to the axial position. A laser alignment tool is provided (procedure detailed elsewhere). This enables the registration of the phantom tip (dmis) to be assured to within approx. 0.2mm. This alignment is done with reference to the actual probe tip after installation and probe alignment. The rotational positioning of the phantom is variable – offering advantages for special studies, but locating pins ensure accurate repositioning at the principal positions (LH and RH ears).

Figure 18. Photograph of SARA2 System

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

UNCERTAINTY ASSESSMENT

Uncertainty Component	Sec.	Tol. (+/-)			Prob. Dist.	Divisor (descrip)	Divisor (value)	c1	Standard Uncertainty (%)
		(dB)		(%)					sqr
Measurement System									
Probe Calibration	E1.1			10	N	1 or k	2	1	5.00
Axial Isotropy	E1.2	0.25	5.93	5.93	R	$\sqrt{3}$	1.73	0	0.00
Hemispherical Isotropy	E1.2	0.5	12.2	12.20	R	$\sqrt{3}$	1.73	1	7.04
Boundary effects	E1.3		4	4.00	R	$\sqrt{3}$	1.73	1	2.31
Linearity	E1.4	0.04	0.93	0.93	R	$\sqrt{3}$	1.73	1	0.53
System Detection Limits	E1.5		1	1.00	R	$\sqrt{3}$	1.73	1	0.58
Readout Electronics	E1.6		1	1.00	N	1 or k	1.00	1	1
Response time	E1.7		0	0.00	R	$\sqrt{3}$	1.73	1	0
Integration time	E1.8		1.8	1.80	R	$\sqrt{3}$	1.73	1	1.04
RF Ambient Conditions	E5.1		3	3.00	R	$\sqrt{3}$	1.73	1	1.73
Probe Positioner Mechanical Tolerance	E5.2		0.6	0.60	R	$\sqrt{3}$	1.73	1	0.35
Probe Position wrt. Phantom Shell	E5.3		5	3.80	R	$\sqrt{3}$	1.73	1	2.19
SAR Evaluation Algorithms	E4.2		8	4.00	R	$\sqrt{3}$	1.73	1	2.31
Test Sample Related									
Test Sample Positioning	E3.2.1		10	10.00	R	$\sqrt{3}$	1.73	1	5.77
Device Holder Uncertainty	E3.1.1		10	8.00	R	$\sqrt{3}$	1.73	1	4.62
Output Power Variation	E5.6.2		5	5.00	R	$\sqrt{3}$	1.73	1	2.89
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and	E2.1		4	4.00	R	$\sqrt{3}$	1.73	0.5	1.15
Liquid conductivity (Deviation from	E2.2		5	5.00	R	$\sqrt{3}$	1.73	0.5	1.44
Liquid conductivity (measurement	E2.2		10	10.00	R	$\sqrt{3}$	1.73	0.5	2.89
Liquid permittivity (Deviation from	E2.2		5	5	R	$\sqrt{3}$	1.73	0.5	1.44
Liquid permittivity (measurement	E2.2		5	5.00	R	$\sqrt{3}$	1.73	0.5	1.44
Combined standard uncertainty					RSS			13.2	
Expanded uncertainty k=2 (95% Confidence Level)							25.9%		

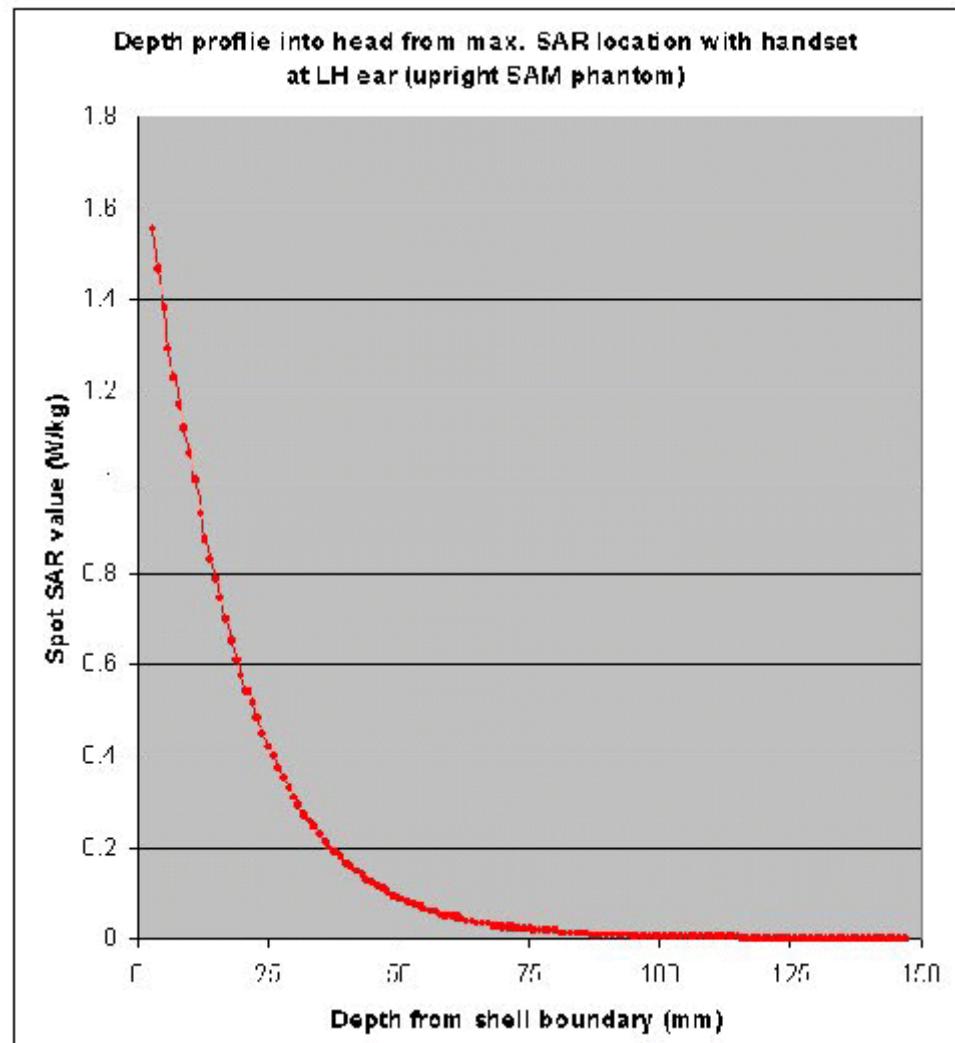
Table 12. Uncertainty budget of SARA2

Table 12 includes the preliminary uncertainty budget. The extended uncertainty is assessed to be 25.9%. This uncertainty includes probe calibration, positioning and evaluation errors, as well as errors of the correct dielectric parameters for the tissue simulating liquid, etc.

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE


October 18, 2002

Appendix

Z-SCAN PLOTS

FCC Exposure Criteria

In the USA the recent FCC exposure criteria [FCC 2001] are based upon the IEEE Standard C95.1 [IEEE 1999]. The IEEE standard C95.1 sets limits for human exposure to radio frequency electromagnetic fields in the frequency range 3 kHz to 300 GHz.

2.1 Distinction Between Exposed Population, Duration of Exposure and Frequencies

The American Standard [IEEE 1999] distinguishes between controlled and uncontrolled environment. Controlled environments are locations where there is exposure that may be incurred by persons who are aware of the potential for exposure as a concomitant of employment or by other cognizant persons. Uncontrolled environments are locations where there is the exposure of individuals who have no knowledge or control of their exposure. The exposures may occur in living quarters or workplaces. For exposure in controlled environments higher field strengths are admissible. In addition the duration of exposure is considered.

Due to the influence of frequency on important parameters, as the penetration depth of the electromagnetic fields into the human body and the absorption capability of different tissues, the limits in general vary with frequency.

2.2 Distinction between Maximum Permissible

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its parts. The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity s and the mass density r of the biological tissue:

The specific absorption rate describes the initial rate of temperature rise as a function of the specific heat capacity c of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits. The limits for E, H and S have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded. For the relevant frequency range the maximum permissible exposure may be exceeded if the exposure can be shown by appropriate techniques to produce SAR values below the corresponding limits.

2.3 SAR Limit

In this report the comparison between the American exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded. Having in mind a worst case consideration, the SAR limit is valid for uncontrolled environment and mobile respectively portable transmitters. According to Table 1 the SAR values have to be averaged over a mass of 1 g (SAR1g) with the shape of a cube.

Standard	Status	SAR limit [W/kg]
OET 65 Supplement C Edition 01-01	In Force	1.6

Table113. SAR Limit

The FCC Measurement Procedure

The Federal Communications Commission (FCC) has published a report and order on the 1st of August 1996 [FCC 1996], which requires routine dosimetric assessment of mobile telecommunications devices, either by laboratory measurement techniques or by computational modeling, prior to equipment authorization or use. In 2001 the Commission's Office of Engineering and Technology has released Edition 01-01 of Supplement C to OET Bulletin 65.

This revised edition, which replaces Edition 97-01, provides additional guidance and information for evaluating compliance of mobile and portable devices with FCC limits for human exposure to radiofrequency emissions [FCC 2001].

General Requirements

The test shall be performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity.

Device Operating Next to a Person's Ear

3.2.1 Phantom Requirements

The phantom is a simplified representation of the human anatomy and comprised of material with electrical properties similar to the corresponding tissues. The physical characteristics of the phantom model shall resemble the head and the neck of a user since the shape is a dominant parameter for exposure.

Test Positions

As it cannot be expected that the user will hold the mobile phone exactly in one well defined position, different operational conditions shall be tested. The Supplement C to OET Bulletin 65 requires two test positions. For an exact description helpful geometrical definitions are introduced and shown in Fig. 2 - 3.

There are two imaginary lines on the mobile, the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width w_t of the handset at the level of the acoustic output (point A on Fig. 2), and the midpoint of the width w_b of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Fig. 2). The two lines intersect at point A.

According to Fig. 3 the human head position is given by means of the following three reference points: auditory canal opening of both ears (RE and LE) and the center of the closed mouth (M). The ear reference points are 15-17 mm above the entrance to the ear canal along the BM line (back-mouth), as shown in Fig. 3. The plane passing through the two ear canals and M is defined as the reference plane. The line NF (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the reference pivoting line. Line BM is perpendicular to the NF line. With this definitions the test positions are given by;

Cheek position (see Fig. 4):

Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Fig. 3), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom. Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane). Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear. While maintaining the orientation of the phone retract the phone parallel to the reference plane far enough to enable a rotation of the phone by 15°. Rotate the phone around the horizontal line by 15°. While maintaining the orientation of the phone, move the phone parallel to the reference plane until any part of the phone touches the head. In this position, point A will be located on the line RE-LE.

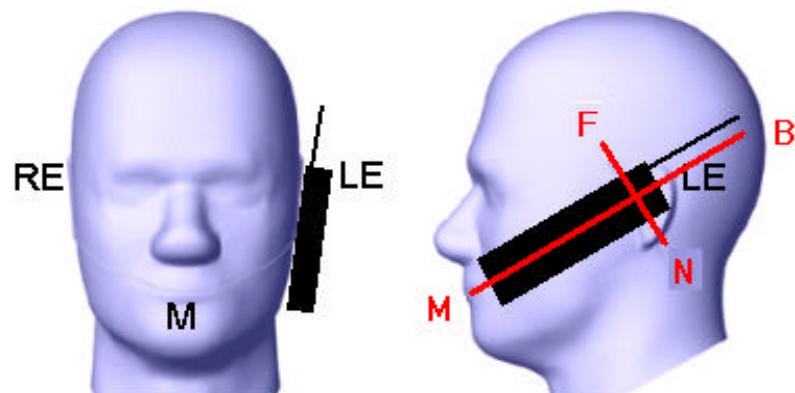
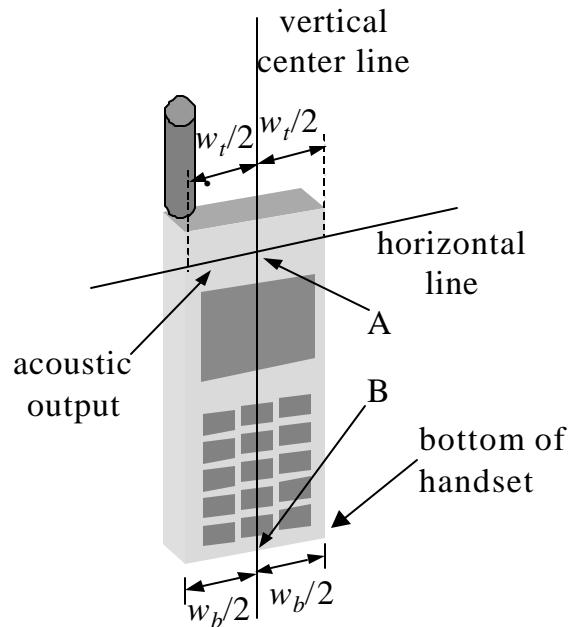



Fig.19: Phantom reference points.

Test to be Performed

The SAR test shall be performed with both phone positions described above, on the left and right side of the phantom. The device shall be measured for all modes operating when the device is next to the ear, even if the different modes operate in the same frequency band.

For devices with retractable antenna the SAR test shall be performed with the antenna fully extended and fully retracted. Other factors that may affect the exposure shall also be tested. For example, optional antennas or optional battery packs which may significantly change the volume, lengths, flip open/closed, etc. of the device, or any other accessories which might have the potential to considerably increase the peak spatial-average SAR value. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at the middle channel for each test configuration is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional.

Body-worn and Other Configurations**Phantom Requirements**

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Test Position

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration. Devices with a headset output shall be tested with a connected headset.

Test to be Performed

For purpose of determining test requirements, accessories may be divided into two categories: those that do not contain metallic components and those that do. For multiple accessories that do not contain metallic components, the device may be tested only with that accessory which provides the closest spacing to the body.

For multiple accessories that contain metallic components, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component, only the accessory that provides the closest spacing to the body must be tested.

If the manufacturer provides none body-worn accessories a separation distance of 1.5 cm between the back of the device and the flat phantom is recommended. Other separation distances may be used, but they shall not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

For devices with retractable antenna the SAR test shall be performed with the antenna fully extended and fully retracted. Other factors that may affect the exposure shall also be tested. For example, optional antennas or optional battery packs which may significantly change the volume, lengths, flip open/closed, etc. of the device, or any other accessories which might have the potential to considerably increase the peak spatial-average SAR value. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at the middle channel for each test configuration is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional.

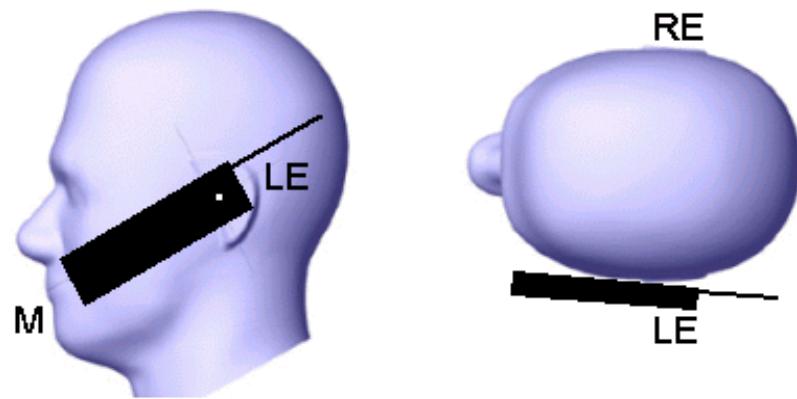


Fig.204: The cheek position.

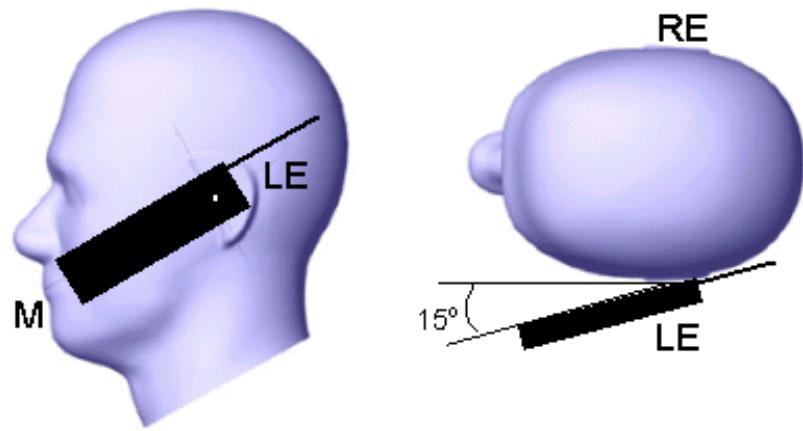


Fig. 21: The tilted position

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

List of Terms and Abbreviations

AC	Alternating Current
ANSI	American National Standards Institute
Cal	Calibration
d	Measurement Distance
dB	Decibels
dB μ A	Decibels above one microamp
dB μ V	Decibels above one microvolt
dB μ A/m	Decibels above one microamp per meter
dB μ V/m	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
CISPR	Comite International Special des Perturbations Radioelectriques (International Special Committee on Radio Interference)
GRP	Ground Reference Plane
H	Magnetic Field
Hz	Hertz
IEC	International Electrotechnical Commission
IEEE	Institute for Electrical and Electronic Engineers
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
MPE	Maximum Permissible Exposure
μ H	microhenry
μ F	microfarad
μ s	microseconds
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
SAR	Specific Absorption Rate
TWT	Traveling Wave Tube
V/m	Volts per meter

Benefon Oyj

GSM/GPS PCS Phone - TGP79AE

FCC ID: QFPTGP79AE

October 18, 2002

END OF REPORT
