

Test Report

FCC Part 15.247 Industry Canada RSS210

DTS Devices Operating in range 2400-2483.5MHz and 5725–5850 MHz

Model #: PP12S

Broadcom Corporation 190 Mathilda Place Sunnyvale, CA 94086

FCC ID: QDS-BRCM1031 IC ID: 4324A-BRCM1031

TEST REPORT #: EMC_BROAD_062_08002_15.247_BRCM1031 DATE: 2008-12-03

FCC listed: A2LA accredited

IC recognized # 3462B

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: +1 (408) 586 6200 • Fax: +1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686

Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

Date of Report: **2008-12-03** Page 2 of 48


ASSESSMENT		
2 ADMINISTRATIVE DATA	5	
2.1 Identification of the Testing Laboratory Issuing	the EMC Test Report5	
2.2 Identification of the Client	5	
2.3 Identification of the Manufacturer	5	
3 EQUIPMENT UNDER TEST (EUT)	6	
3.1 Specification of the Equipment under Test		
3.2 Identification of the Equipment under Test (EUT	7)7	
3.3 Identification of Accessory equipment	7	
4 SUBJECT OF INVESTIGATION	8	
5 RADIATED MEASUREMENTS	9	
5.1.1 Limits	adiated)9	
	510	
5.2.2 Sub-band 1 2400-2483.5MHz	10	
5.3.2 RESULTS Sub-band 1 2400-2483.5MHz		
5.4.1 Limits	32 32 33	
6 CONDUCTED MEASUREMENTS		
	38	
6.1.1 Limit	38 38	
6.2.1 Limit		
6.2.2 Results	39	

48

Date of Report:	2008-12-03	Page 3 of 48	
6.3 Power Spec	tral Density		39
6.3.1 Limit			39
6.4 Conducted	Spurious Emission		40
6.4.1 Limit			40
6.4.2 Results:			40
		NS § 15.107/207	
6.5.1 LIMITS			41
6.5.2 RESULT	S Tx mode, Line		42
6.5.3 RESU	LTS Tx mode, Neutral		43
6.5.4 RESULT	S Rx mode, Line		44
6.5.5 RESULT	S Rx mode, Neutral		45
7 TEST EQUI	PMENT AND ANCILLARI	ES USED FOR TESTS	46
8 BLOCK DIA	AGRAMS		47

REVISION HISTORY _____

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Part 15.247 of the Code of Federal Regulations.

Company	Model #
Broadcom Corp.	PP12S

This report is reviewed by:

Lothar Schmidt (Director Regulatory and

(Director Regulatory and					
2008-12-03 EMC & Radio Antenna Services)					
Date	Section	Name	Signature		
This report is prepared by:					
		Peter Mu			

2008-12-03	EMC & Radio	(EMC Project Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	EMC
Address:	411 Dixon Landing Road Milpitas, CA 95035
	U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Responsible Test Lab Manager:	Lothar Schmidt
Responsible Project Leader:	Peter Mu
Date of test:	2008-10-30 to 2008-12-2

2.2 Identification of the Client

APPLICANT			
Applicant (Company Name) Broadcom Corp.			
Street Address	190 Mathilda Place		
City/Zip Code	Sunnyvale, CA 94086		
Country	U.S.A.		
Contact Person	Dan Lawless		
Telephone	408-922-5870		
Fax	408-543-3399		
e-mail dlawless@broadcom.com			

2.3 Identification of the Manufacturer

Same as applicant

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

EUT		
Marketing Name of EUT		
(if not same as Model	PP12S	
No.):		
Model No:	PP12S	
FCC ID:	QDS-BRCM1031	
IC ID:	4324A-BRCM1031	

	2400-2483.5MHz	
	Channel 1, 6, 11 for 802.11b/g and 802.11n HT20 mode	
Frequency Range:	Channel 2, 6, 10 for 802.11n HT40 mode	
	5725–5850 MHz	
	Channel 149, 157, 165 for 802.11a and 802.11n HT20 mode	
	Channel 151, 159, 167 for 802.11n HT40 mode	
Type(s) of Modulation:	OFDM	
	Amphenol IFA Antenna	
	Peak Gain 2400-2483.5MHz: 2.38dBi.	
Antenna Type:	Peak Gain 5725-5850MHz: 1.64dBi.	
Timemia Type.	Yageo IFA Antenna	
	Peak Gain 2400-2483.5MHz: 0.64dBi.	
	Peak Gain 5725-5850MHz: 1.63dBi.	
	Sub-band 1, 2400-2483.5MHz 802.11b:	
	Radiated: 24.38dBm (274mW) EIRP	
	Conducted: 22.0dBm (159mW)	
	Sub-band 1, 2400-2483.5MHz 802.11g:	
Max Output Power:	Radiated: 21.28dBm (134mW) EIRP	
	Conducted: 18.9dBm (77.6mW)	
	Sub-band 1, 2400-2483.5MHz 802.11n HT20:	
	Radiated: 24.18dBm (262mW) EIRP	
	Conducted: 21.8dBm (151.4mW)	

Sub-band 1, 2400-2483.5MHz 802.11n HT40:

Radiated: 19.18dBm (82.8mW) EIRP

Conducted: 16.8dBm (47.9mW)

Sub-band 2, 5725-5850MHz 802.11a:

Radiated: 18.34dBm (68.2mW) EIRP

Conducted: 16.7dBm (46.8mW)

Sub-band 2, 5725-5850MHz 802.11n HT20:

Radiated: 21.44dBm (139mW) EIRP

Conducted: 19.8dBm (95.5mW)

Sub-band 2, 5725-5850MHz 802.11n HT40:

Radiated: 21.5dBm (143mW) EIRP

Conducted: 19.9dBm (97.7mW)

3.2 Identification of the Equipment under Test (EUT)

EUT#	TYPE	MANF.	MODEL	SERIAL#
1	EUT Host Laptop	Dell	PP12S	AMG-E2-C1

3.3 Identification of Accessory equipment

AE#	TYPE	MANF.	MODEL	SERIAL #
1	AC/DC ADAPTER	Dell	FA65NE0-00	CN-0RX929-73245- 87N-1806

Date of Report: 2008-12-03 Page 8 of 48

4 **Subject Of Investigation**

All testing was performed on the product referred to in Section 3 as EUT. EUT operates in the band 2400-2483.5MHz in legacy 802.11b/g and 802,11n mode, and in 5725–5850 MHz in legacy 802.11a and 802.11n mode.

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT operating under all operating modes as specified by Sony per requirements listed in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations. The maximization of portable equipment is conducted in accordance with ANSI C63.4

There are two sets of antennae being implemented in the host platform with this module. They are differentiated by having the additional "bump" on top of the LCD screen.

There are two antenna manufacturers for each set of antennae, Yageo and Amphenol. Please reference the table below for a complete depiction of the antennae gains at different bands and in different modes of operation.

No	Antenna Manufacturer	Max Peak gain (2.4GHz)	Max Peak gain (5GHz)	Configuration
1	Amphenol	TX2 (-0.44) dBi(H)	TX2 1.644dBi(H)	Bump out TA mode
2	Amphenol	TX2 (-1.089)dBi(H)	TX2 (- 0.083)dBi(H)	No Bump TA mode
3	Yageo	Main 0.39dBi(H)	Aux 1.52dBi(V)	Bump out TA mode
4	Yageo	Main (-0.85)dBi(V)	Aux 0.67dBi(V)	No Bump TA mode
5	Amphenol	Main 2.38dBi(H)	Main 1.37dBi(V)	Bump out PC mode
6	Amphenol	Main 2.38dBi(H)	Main 1.37dBi(V)	No Bump PC mode
7	Yageo	Main 0.64dBi(V)	Main (-0.27)dBi(V)	Bump out PC mode
8	Yageo	Main (-0.40)dBi(V)	Main 1.63dBi(V)	No Bump PC mode

Since the Amphenol "bump" antenna has the highest numeric gain in both 2.4GHz and 5GHz band, all tests are conducted with this antenna in the corresponding configuration where the highest gain is obtained.

That is, in 2.4GHz band the EUT is tested in Laptop PC configuration and in 5GHz band the EUT is tested in Tablet PC mode.

5 Radiated Measurements

5.1 Maximum Peak Output Power § 15.247 (b)(1) (Radiated)

5.1.1 Limits

FCC15.247 (b) (1): 4W (36dBm), with antenna gain < 6dBi.

RSS-210 A8.4 (4): 4W (36dBm)

5.1.2 Results:

EIRP is calculated as EIRP = Conducted Peak Power + Antenna Gain

EIRP 802.11 a/b/g Mode:

F				
TEST CONDITIONS T _{nom} (23)°C, V _{nom} VDC	Channel Frequency	EIRP (dBm)	EIRP (mW)	Verdict
G 1 1 11 2400 2402 5 MH	2412	24.38	274.16	PASS
Sub-band 1: 2400-2483.5MHz (802.11b)	2437	24.28	267.92	PASS
(802.110)	2462	23.98	250.03	PASS
Sub-band 1: 2400-2483.5MHz	2412	21.28	134.28	PASS
(802.11g)	2437	21.18	131.22	PASS
(802.11g)	2462	19.18	82.79	PASS
C 1 1 12 5725 5050MH	5745	18.24	66.68	PASS
Sub-band 2: 5725-5850MHz (802.11a)	5785	18.24	66.68	PASS
(602.11a)	5825	18.34	68.23	PASS

EIRP 802.11n HT20 MODE:

TEST CONDITIONS T _{nom} (23)°C, V _{nom} VDC	Channel Frequency	EIRP (dBm)	EIRP (mW)	Verdict			
	2412	19.38	86.70	PASS			
Sub-band 1: 2400-2483.5MHz	2437	24.18	261.82	PASS			
	2462	19.08	80.91	PASS			
	5745	21.44	139.32	PASS			
Sub-band 2: 5725-5850MHz	5785	21.04	127.06	PASS			
	5825	21.24	133.05	PASS			

EIRP 802.11n HT40 MODE:

TEST CONDITIONS T _{nom} (23)°C, V _{nom} VDC	Channel Frequency	EIRP (dBm)	EIRP (mW)	Margin (mW)
Sub-band 1: 2400-2483.5MHz		18.48	70.47	PASS
	2437	19.18	82.79	PASS
	2452	17.18	52.24	PASS
Sub-band 2: 5725-5850MHz	5755	21.54 142.56		PASS
	5795	21.34	136.14	PASS

Date of Report: 2008-12-03 Page 10 of 48

5.2 Restricted Band Edge Compliance §15.247/15.205

5.2.1 Limits

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

^{*}PEAK LIMIT= 74dBuV/m

Notes:

- 1. Radiated emissions are maximized by rotating the EUT 360° at 0.5 meter height increments between 1 and 4 meters.
- 2. Measurements were performed with the EUT in X, Y and Z orientations with the measurement antenna in both horizontal and vertical polarity. The plots below show the results of the worst case orientation and polarity.

^{*}AVG. LIMIT= 54dBuV/m

5.2.2 Sub-band 1 2400-2483.5MHz

Lower band edge PEAK

Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

EUT:

Customer:: Broadcom
Test Mode: 802.11b Ch.1

ANT Orientation: H
EUT Orientation: H
Test Engineer: Chris
Voltage: AC Adapter

Comments:

SWEEP TABLE: "FCC15.247 LBE_PK"

Start Stop Detector Meas. IF Transducer

 $\label{eq:frequency} \textit{Frequency} \qquad \textit{Time} \qquad \textit{Bandw.}$

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

MaxPeak 2.389623246 GHz Marker: 60.55 dBµV/m Level [dBµV/m] 120 110 100 90 80 70 60 50 40 2.31G 2.34G 2.36G 2.38G 2.4G 2.44G Frequency [Hz]

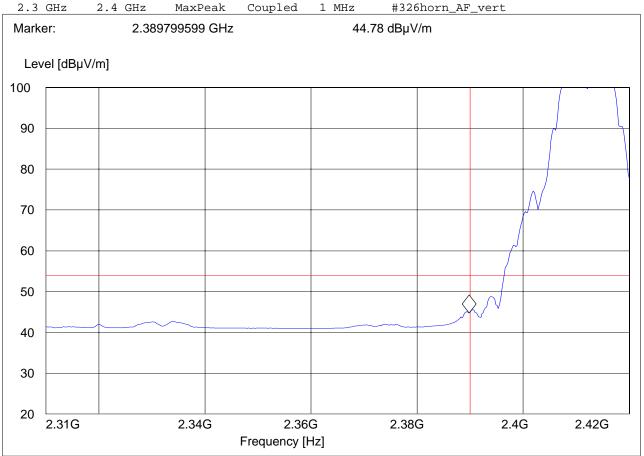
2008-12-03 Date of Report: Page 12 of 48

Lower band edge Average

Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

EUT:


Broadcom Customer:: Test Mode: 802.11b Ch.1

ANT Orientation: H EUT Orientation: H Test Engineer: Chris AC Adapter Voltage: Comments:

SWEEP TABLE: "FCC15.247 LBE_AVG"

IF Start Stop Detector Meas. Transducer

Frequency Frequency Time Bandw.

Date of Report: 2008-12-03 Page 13 of 48

High band edge PEAK

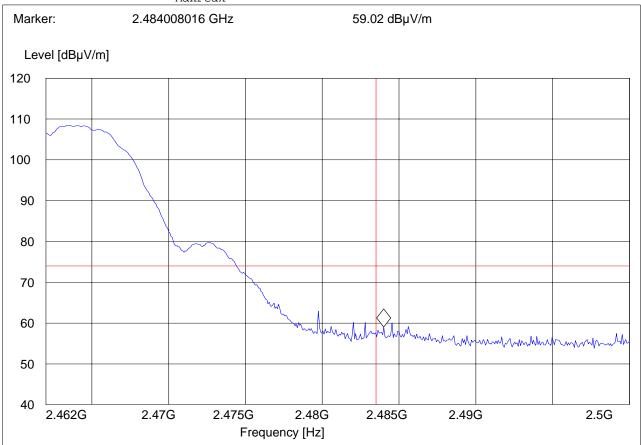
Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

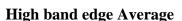
EUT:

Customer:: Broadcom
Test Mode: 802.11b Ch.11

ANT Orientation: H
EUT Orientation: H
Test Engineer: Chris
Voltage: AC Adapter
Comments:


SWEEP TABLE: "FCC15.247 HBE_PK"

Start Stop Detector Meas. IF Transducer


Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

MaxPeak

2008-12-03 Date of Report: Page 14 of 48

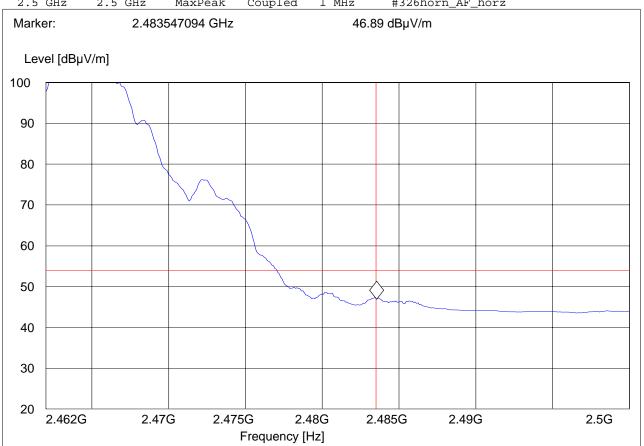
Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

CETECOM

EUT:

Customer:: Broadcom
Test Mode: 802 177
ANT Ord 802.11b Ch.11


ANT Orientation: H EUT Orientation: H Test Engineer: Chris AC Adapter Voltage: Comments:

SWEEP TABLE: "FCC15.247 HBE_AVG"

IF Start Stop Detector Meas. Transducer

Frequency Frequency Time Bandw.

Coupled 2.5 GHz #326horn_AF_horz 2.5 GHz 1 MHz MaxPeak

Date of Report: **2008-12-03** Page 15 of 48

5.3 Transmitter Spurious Emission § 15.247/15.205/15.209

5.3.1 Limits

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

^{*}PEAK LIMIT= 74dBuV/m


Notes:

- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. All measurements are done in peak mode using an average limit, unless specified with the plots.
- 3. Radiated emissions are maximized by rotating the EUT 360° at 0.5 meter height increments between 1 and 4 meters.
- 4. Measurements were performed with the EUT in X, Y and Z orientations with the measurement antenna in both horizontal and vertical polarity. The plots below show the results of the worst case orientation and polarity

Results for the radiated measurements below 30MHz according § 15.33

Frequency	Measured values	Remarks
9KHz – 30MHz	No emissions found, caused by the EUT	This is valid for all the tested
9KHZ – SUMHZ	No emissions found, caused by the EO I	channels

^{*}AVG. LIMIT= 54dBuV/m

5.3.2 RESULTS Sub-band 1 2400-2483.5MHz

30MHz – 1GHz, Antenna: Vertical

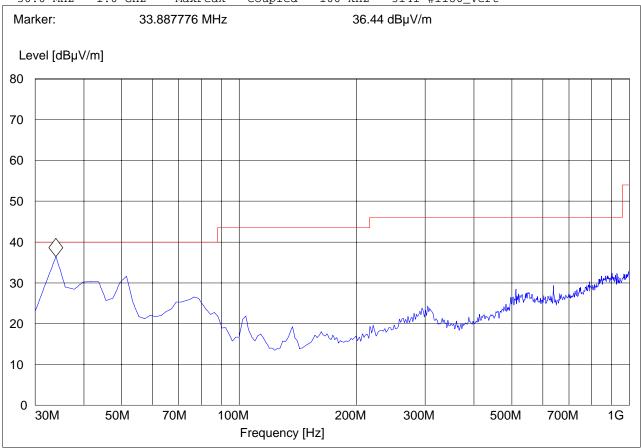
Note: This plot is valid for low, mid, high channels (worst-case plot). Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

Customer:: Broadcom

Test Mode: 802.11b; CH.11

ANT Orientation: V EUT Orientation: H; PC Test Engineer: Chris Voltage: AC


Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Detector Meas. IF Transducer Start Stop

Frequency Frequency Time Bandw.

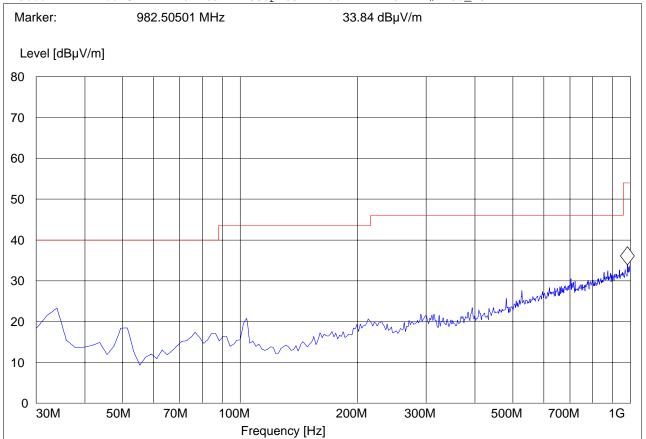
3141-#1186_Vert 30.0 MHz Coupled 100 kHz 1.0 GHz MaxPeak

Note: This plot is valid for low, mid, high channels (worst-case plot).

CETECOM

Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.


Customer:: Broadcom
Test Mode: 802.11b; CH.11

ANT Orientation: H EUT Orientation: H; PC Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

1-18GHz (2412MHz)

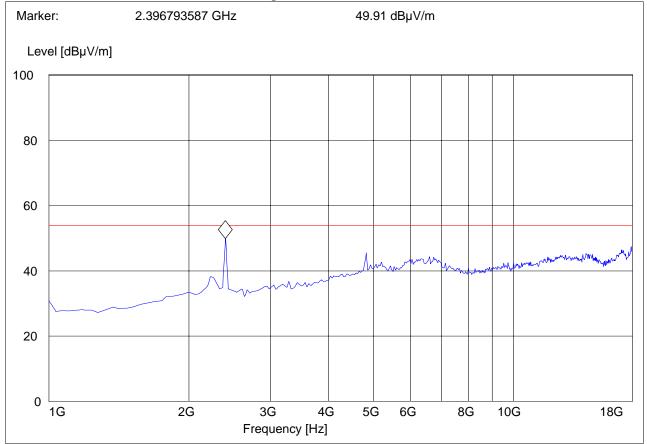
Note: Marked peak is the carrier freq. Note: Peak Reading vs. Average limit

Customer: Broadcom
Operation Mode: 802.11g; CH.1

ANT Orientation: : H

EUT Orientation:: H; tablet mode

Test Engineer: Chris Voltage: AC


Comments:: With 2.4 GHz notch filter

SWEEP TABLE: "FCC15.247_1-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_horz

EMC_BROAD_062_08002_15.247_BRCM1030 Test Report #:

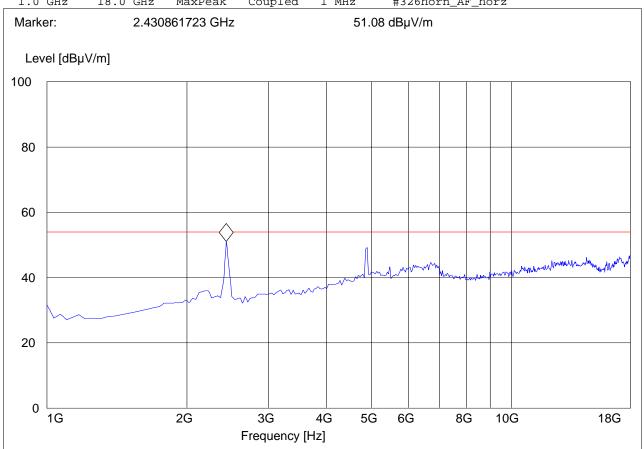
1-3GHz (2437MHz)

Note: Marked peak is the carrier freq. Note: Peak Reading vs. Average limit

Customer: Broadcom Operation Mode: 802.11g; CH.6

ANT Orientation: : H

EUT Orientation:: H; PC mode Test Engineer: Chris


Voltage: AC With 2.4 GHz notch filter Comments::

SWEEP TABLE: "FCC15.247_1-18G"

Meas. IF Transducer Start Stop

Frequency Frequency Time Bandw.

Coupled #326horn_AF_horz 1.0 GHz 18.0 GHz MaxPeak 1 MHz

EMC_BROAD_062_08002_15.247_BRCM1030 Test Report #:

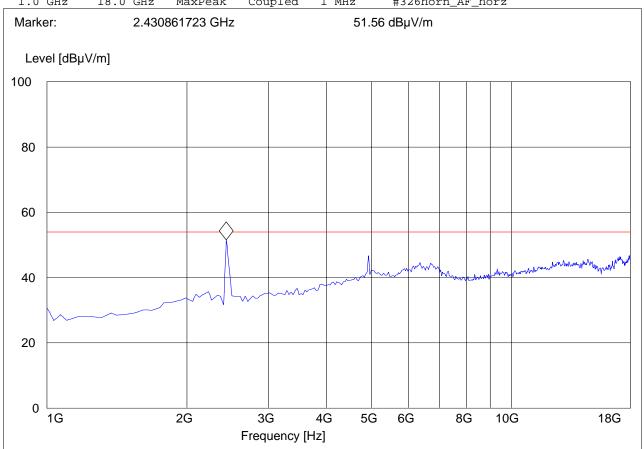
1-18GHz (2462MHz)

Note: Marked peak is the carrier freq. Note: Peak Reading vs. Average limit

Customer: Broadcom Operation Mode: 802.11g; CH.11

ANT Orientation: : H

EUT Orientation:: H; PC mode Test Engineer: Chris


Voltage: AC With 2.4 GHz notch filter Comments::

SWEEP TABLE: "FCC15.247_1-18G"

Meas. IF Transducer Start Stop

Frequency Frequency Time Bandw.

Coupled #326horn_AF_horz 1.0 GHz 18.0 GHz MaxPeak 1 MHz

Date of Report: 2008-12-03 Page 21 of 48

18-25GHz (2412MHz)

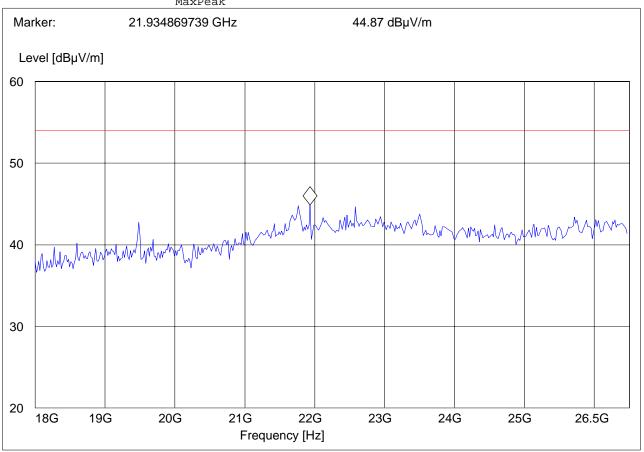
Note: Peak Reading vs. Average limit

Customer:: Broadcom

Test Mode: 802.11g; CH.1

ANT Orientation: H EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:


SWEEP TABLE: "FCC15.247_18-26.5G"


Start Stop Detector Meas. IF Transducer

Bandw. Frequency Frequency Time

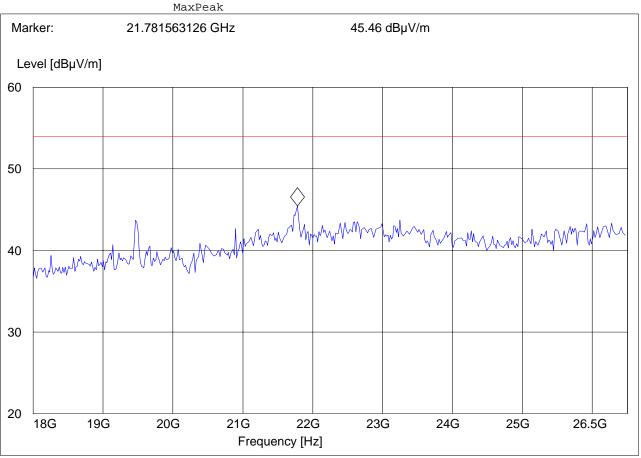
18.0 GHz 26.5 GHz MaxPeak Coupled 100 kHz Horn # 3116_18-40G

MaxPeak

18-25GHz (2437MHz)

Note: Peak Reading vs. Average limit

Customer:: Broadcom Test Mode: 802.11g; CH.6


ANT Orientation: H EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_18-26.5G"

Start Stop Detector Meas. ΙF Transducer

Time Bandw. Frequency Frequency Horn # 3116_18-40G 18.0 GHz 26.5 GHz MaxPeak Coupled 100 kHz

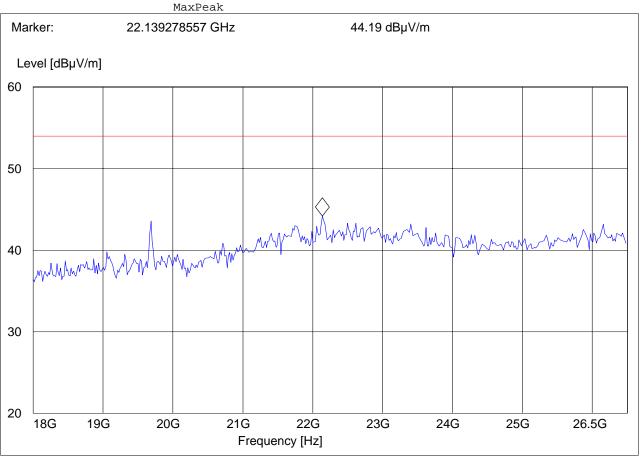
18-25GHz (2462MHz)

Date of Report:

Note: Peak Reading vs. Average limit

Customer:: Broadcom Test Mode: 802.11g; CH.11

ANT Orientation: H EUT Orientation: H Test Engineer: Chris Voltage: AC


Comments:

SWEEP TABLE: "FCC15.247_18-26.5G"

IF Transducer Start Stop Detector Meas.

Frequency Frequency Time Bandw.

MaxPeak 18.0 GHz 100 kHz Horn # 3116_18-40G 26.5 GHz Coupled

5.3.3 RESULTS Sub-band 2, 5725–5850MHz

30MHz – 1GHz, Antenna: Vertical

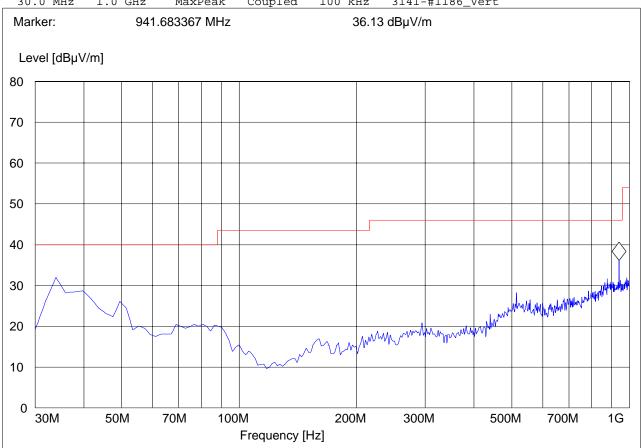
Note: This plot is valid for low, mid, high channels (worst-case plot). Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

Customer:: Broadcom Test Mode: 802.11a

ANT Orientation: H

EUT Orientation: H; Tablet Test Engineer: Chris Voltage: AC Adapter


Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Meas. IF Transducer Start Stop Detector

Frequency Frequency Bandw. Time

30.0 MHz 1.0 GHz Coupled 100 kHz 3141-#1186_Vert MaxPeak

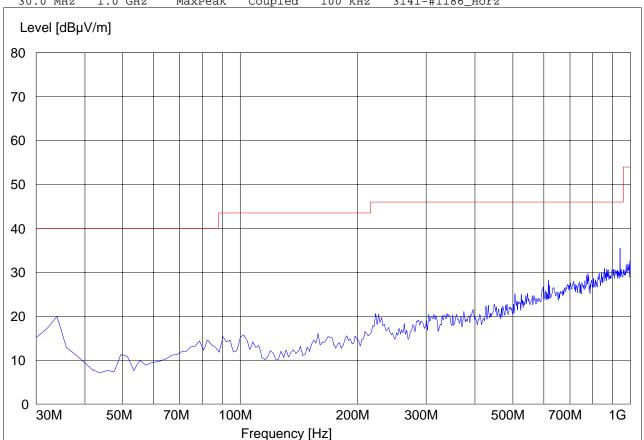
Note: This plot is valid for low, mid, high channels (worst-case plot).

CETECOM

Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

Customer:: Broadcom
Test Mode: 802.11a
ANT Orientation: H


EUT Orientation: H; Tablet
Test Engineer: Chris
Voltage: AC Adapter

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

Date of Report: 2008-12-03 Page 26 of 48

1-7GHz (5745MHz)

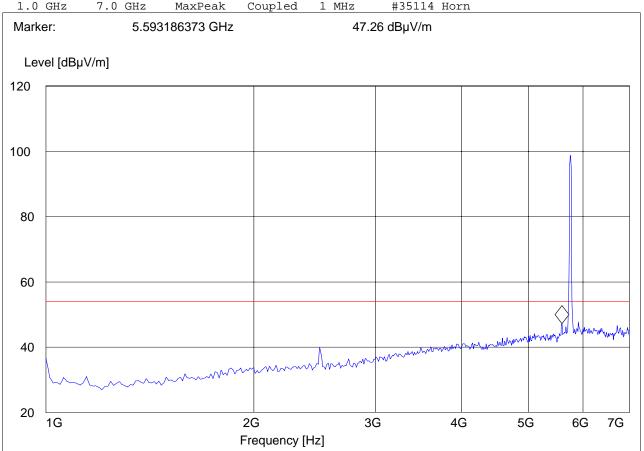
Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

Customer:: Broadcom
Test Mode: 802.11a


ANT Orientation: H

EUT Orientation: H; Tablet
Test Engineer: Chris
Voltage: AC Adapter

Comments:

SWEEP TABLE: "FCC 15.407 1-7G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1 0 СП-	7 0 CH2	MayDoak	Coupled	1 MU-	#2511/ Horn

Date of Report: 2008-12-03 Page 27 of 48

1-7GHz (5785MHz)

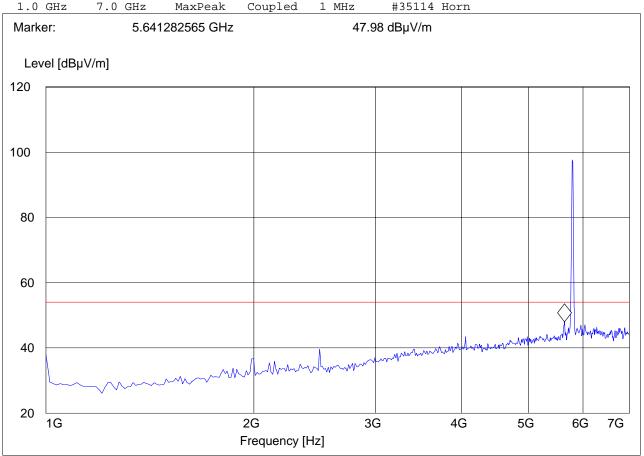
Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

Customer:: Broadcom
Test Mode: 802.11a


ANT Orientation: H

EUT Orientation: H; Tablet Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "FCC 15.407 1-7G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

Date of Report: 2008-12-03 Page 28 of 48

1-7GHz (5825MHz)

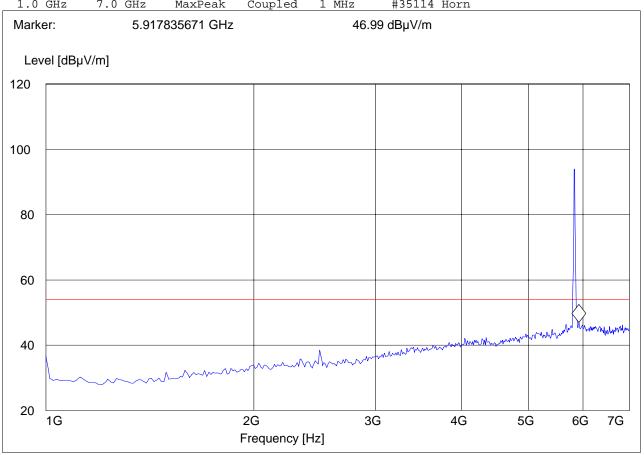
Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

Customer:: Broadcom
Test Mode: 802.11a


ANT Orientation: H

EUT Orientation: H; Tablet Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "FCC 15.407 1-7G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1 0 047	7 0 CH2	MayDeak	Coupled	1 MU-	#3511/ Horn

Date of Report: Page 29 of 48 2008-12-03

7-18GHz

Note: This plot is valid for low, mid, high channels (worst-case plot).

Note: Peak Reading vs. Average limit

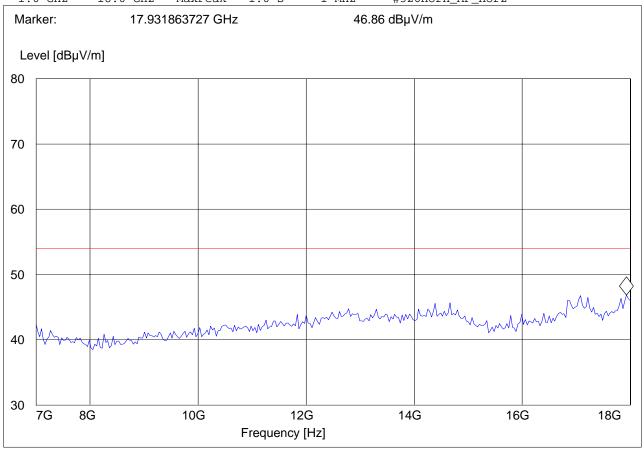
Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

Customer:: Broadcom Test Mode: 802.11a

ANT Orientation: H

EUT Orientation: H; Tablet Test Engineer: Chris AC Adapter Voltage:


Comments:

SWEEP TABLE: "FCC 15.407 7-18G"

Stop IF Transducer Start Meas. Detector

Frequency Frequency Time Bandw.

1.0 GHz #326horn_AF_horz 18.0 GHz MaxPeak 1.0 s 1 MHz

Date of Report: Page 30 of 48 2008-12-03

18-26.5GHz

Note: This plot is valid for low, mid, high channels (worst-case plot).

Note: Peak Reading vs. Average limit

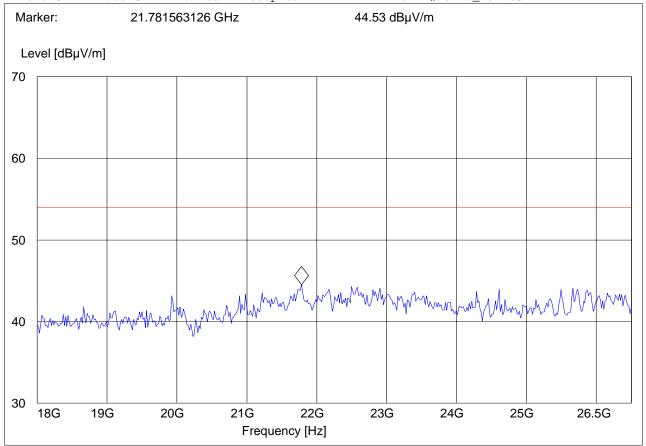
Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

Customer:: Broadcom Test Mode: 802.11a

ANT Orientation: H

EUT Orientation: H; Tablet Test Engineer: Chris AC Adapter Voltage:


Comments:

SWEEP TABLE: "FCC 15.407 18-26.5G"

Stop IF Transducer Start Meas. Detector

Frequency Frequency Time Bandw.

Horn # 3116_18-40G 18.0 GHz MaxPeak 26.5 GHz Coupled 1 MHz

26.5-40GHz

Note: This plot is valid for low, mid, high channels (worst-case plot).

Note: Peak Reading vs. Average limit

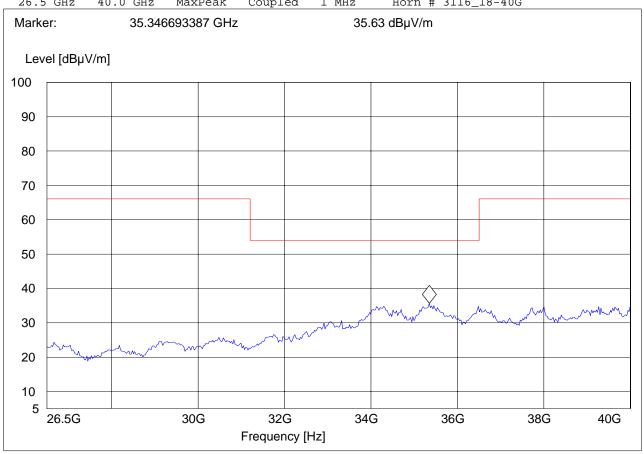
Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

Customer:: Broadcom 802.11a Test Mode:

ANT Orientation: H

EUT Orientation: H; Tablet Test Engineer: Chris Voltage: AC Adapter


Comments:

SWEEP TABLE: "FCC 15.407 26.5-40G"

Stop IF Transducer Start Detector Meas.

Frequency Frequency Time Bandw.

26.5 GHz MaxPeak Coupled Horn # 3116_18-40G 40.0 GHz 1 MHz

Date of Report: **2008-12-03** Page 32 of 48

5.4 Receiver Spurious Emission § 15.209/RSS210

5.4.1 Limits

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

NOTE:

- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. All measurements are done in peak mode using an average limit unless specified with the plots.
- 3. There are no measurable emissions up to 18GHz in Rx mode.
- 4. Receiver spurious emissions reported here are the worse case emissions for all receiver modes and between two receiving chains.

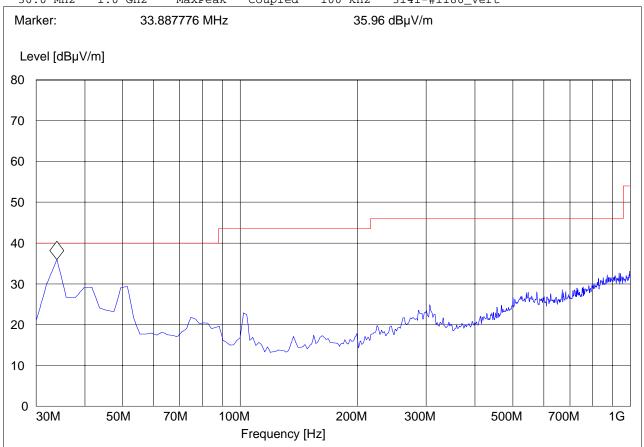
5.4.2 RESULTS

30MHz - 1GHz, Antenna: Vertical

Note: This plot is valid for low, mid, high channels (worst-case plot).

Customer:: Broadcom
Test Mode: Rx
ANT Orientation: V

Test Engineer: Chris
Voltage: AC


Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Vert

Date of Report: 2008-12-03 Page 34 of 48

30MHz – 1GHz, Antenna: Horizontal

Note: This plot is valid for low, mid, high channels (worst-case plot).

Customer:: Broadcom

Test Mode: Rx ANT Orientation: H

EUT Orientation: H; tablet Test Engineer: Chris Voltage: AC


Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

30.	.0 MHz	1.0 G	Hz	MaxPe	ak	Coupled	100 ki	Hz 3141	-#1186_	Horz					
Mar	ker:		996.11	2224 N	1Hz		3	3.68 dBµV	m 'm						
Lev	vel [dΒμV	//m]													
80														$\overline{}$	\neg
70													_	_	
60														_	_
50															
40													_	_	\downarrow
30												rahan m	walland	, Mary Mark	WM
20						\wedge	,,,,,	Jwwwwww.	MANN MANNEY MANN	WW WILLIAM	Malling				
10					~~	W.	,						_	_	
0	2014	F014	70	N.4	100	N 4	200	M 204)))	F00	NA.	700			
	30M	50M	70	IVI	100	м Frequency [ŀ	200l Hz]	M 300)IVI	500	IVI	7001	VI	10	J

EMC_BROAD_062_08002_15.247_BRCM1030 Test Report #:

1-18GHz

Date of Report:

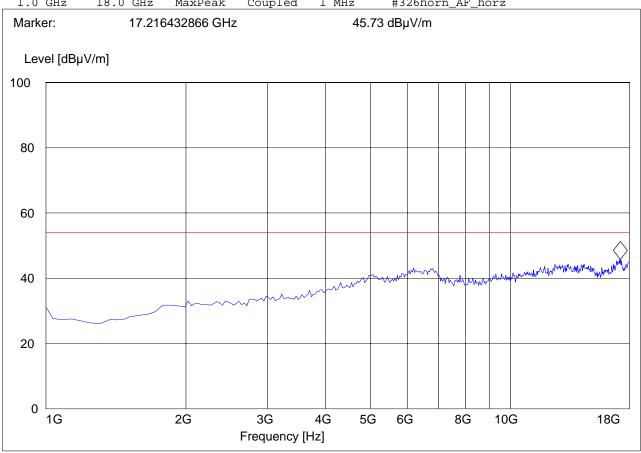
Note: Peak Reading vs. Average limit

Customer: Broadcom Operation Mode: Rx

ANT Orientation: : H

EUT Orientation:: H; tablet mode

Test Engineer: Chris Voltage: AC


Comments::

SWEEP TABLE: "FCC15.247_1-18G"

Stop Detector Meas. IF Transducer Start

Frequency Frequency Time Bandw.

#326horn_AF_horz 1.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz

18-26.5GHz

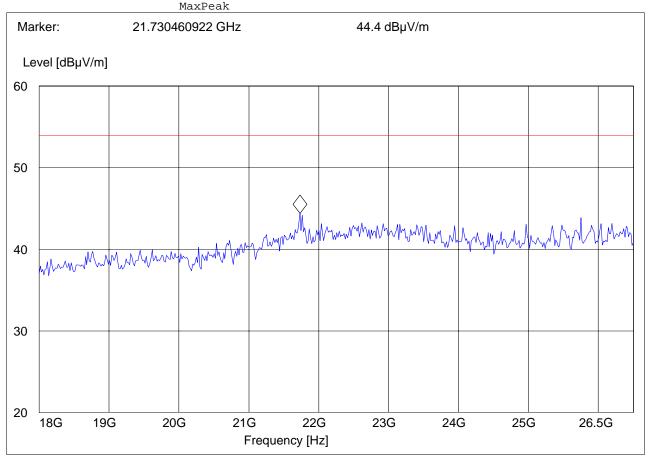
Note: Peak Reading vs. Average limit

Customer: Broadcom

Operation Mode: Rx ANT Orientation: : H

EUT Orientation:: H; tablet mode

Test Engineer: Chris Voltage: AC


Comments::

SWEEP TABLE: "FCC15.247_18-26.5G"

Start Stop Detector Meas. ΙF Transducer

Time Bandw. Frequency Frequency

Horn # 3116_18-40G 18.0 GHz 26.5 GHz MaxPeak Coupled 100 kHz

Date of Report: **2008-12-03** Page 37 of 48

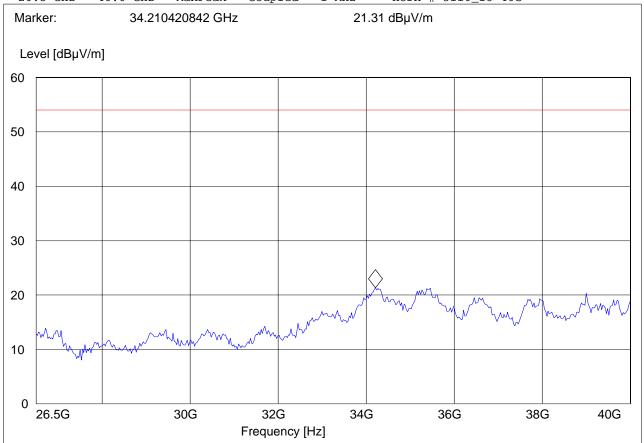
26.5-40GHz

Note: Peak Reading vs. Average limit

Customer: Broadcom
Operation Mode: Rx
ANT Orientation: : H

EUT Orientation:: H; tablet mode

Test Engineer: Chris Voltage: AC


Comments::

SWEEP TABLE: "FCC15.247_26.5-40G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

26.5 GHz 40.0 GHz MaxPeak Coupled 1 MHz Horn # 3116_18-40G

Date of Report: 2008-12-03 Page 38 of 48

6 Conducted Measurements

6.1 6dB bandwidth and 99% bandwidth.

6.1.1 Limit

FCC15.247(a)(2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

RSS210 A8.2 (a): The minimum 6 dB bandwidth shall be at least 500 kHz.

6.1.2 Measurement Result:

Test Not conducted. The EUT integrates an FCC approved module. All conducted measurements are referenced from the original report for the module.

Date of Report: **2008-12-03** Page 39 of 48

6.2 Conducted Power Measurement

6.2.1 Limit

FCC15.247 (b)(3): For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt

RSS210 A8.4(4): For systems employing digital modulation techniques operating in the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz, the maximum peak conducted output power shall not exceed 1 W. Except as provided in Section A8.4(5), the e.i.r.p. shall not exceed 4 W.

6.2.2 Results

Test Not conducted. The EUT integrates an FCC approved module. All conducted measurements are referenced from the original report for the module.

6.3 Power Spectral Density

6.3.1 Limit

FCC 15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.3.2 Results

Test Not conducted. The EUT integrates an FCC approved module. All conducted measurements are referenced from the original report for the module.

Date of Report: **2008-12-03** Page 40 of 48

6.4 Conducted Spurious Emission

6.4.1 Limit

§15.247(d) & RSS-210 (A8.5): -30dBc

6.4.2 Results:

Test Not conducted. The EUT integrates an FCC approved module. All conducted measurements are referenced from the original report for the module.

6.5 AC POWER LINE CONDUCTED EMISSIONS § 15.107/207

6.5.1 LIMITS

Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002)

 $\S15.107$ (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Limit

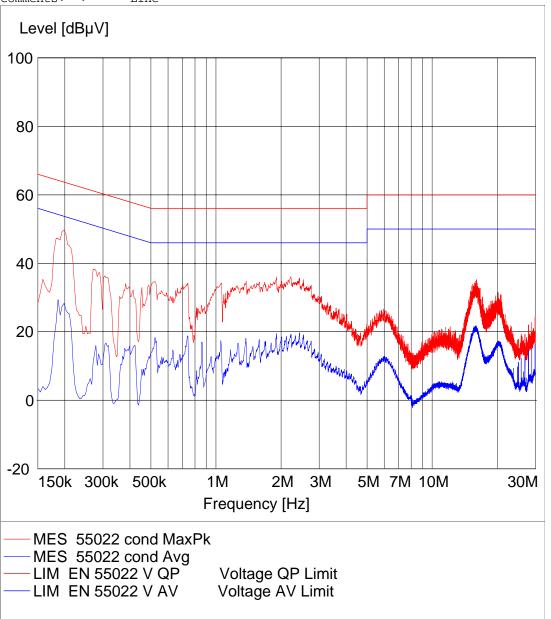
Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-Peak	Average			
0.15 - 0.5	66 to 56*	56 to 46*			
0.5 - 5	56	46			
5 – 30	60	50			
* Decreases with logarithm of the frequency					

ANALYZER SETTINGS: RBW = 10KHz

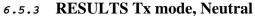
VBW = 10KHz

Note: AC Line Conducted Emission reported here are the worse cases among all operating modes.

Note: Worse case emission for all operating modes.


Note: Worse case emission for both Laptop and Table configuration.

CETECOM

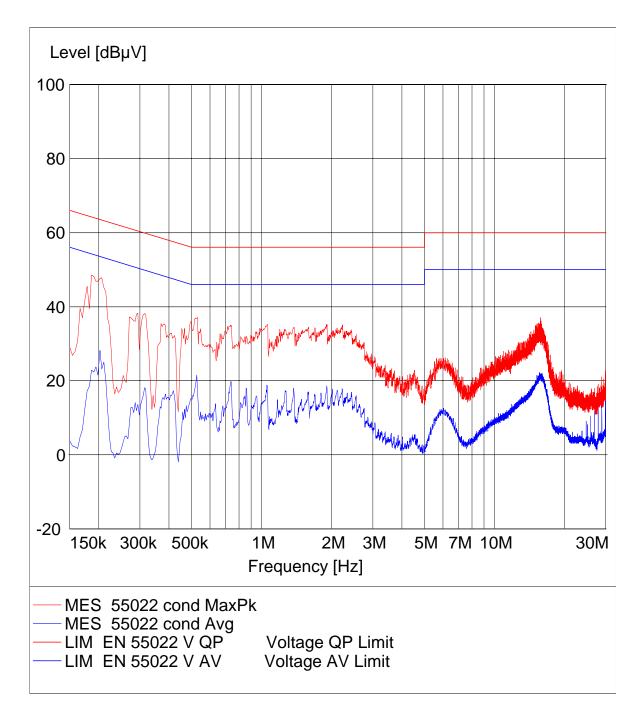

Manufacturer: Broadcom
Test Mode: 802 11g: Ch

Test Mode: 802.11g; Ch.6

ANT Orientation:: N/A
EUT Orientation:: H
Test Engineer:: Chris
Power Supply:: AC
Comments:: Line

Date of Report: 2008-12-03 Page 43 of 48

Note: Worse case emission for all operating modes.

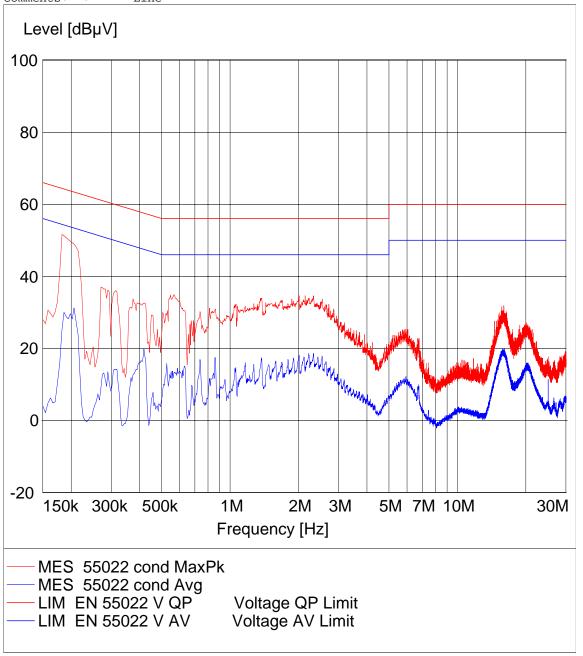

Note: Worse case emission for both Laptop and Table configuration.

CETECOM

Manufacturer: Broadcom

Test Mode: 802.11g; Ch.6

ANT Orientation:: N/A
EUT Orientation:: H
Test Engineer:: Chris
Power Supply:: AC
Comments:: Neutral

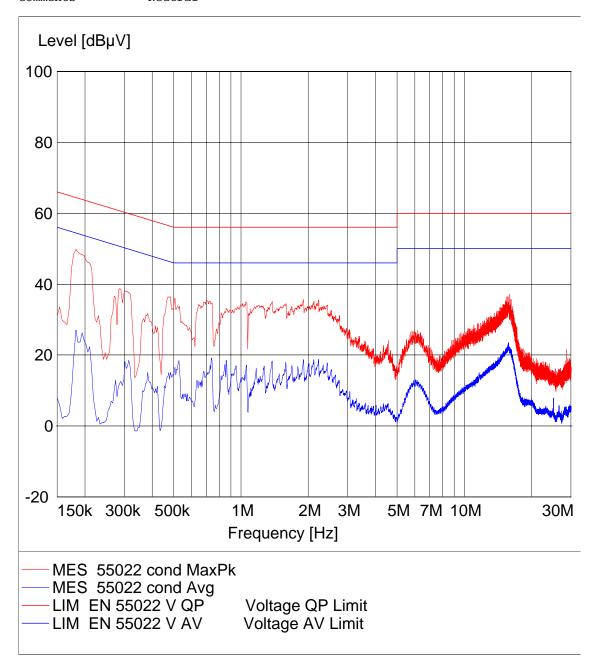

6.5.4 RESULTS Rx mode, Line

Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

Manufacturer: Broadcom

Test Mode: RX
ANT Orientation:: N/A
EUT Orientation:: H
Test Engineer:: Chris
Power Supply: : AC
Comments: : Line



Note: Worse case emission for all operating modes.

Note: Worse case emission for both Laptop and Table configuration.

CETECOM

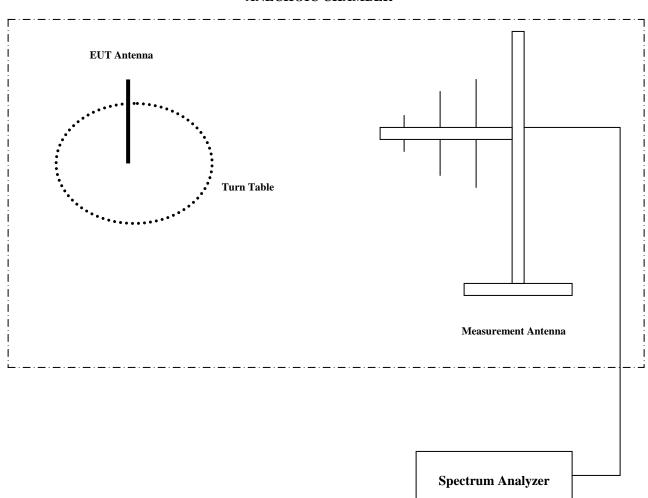
Manufacturer: Broadcom
Test Mode: RX
ANT Orientation:: N/A
EUT Orientation:: H; tablet
Test Engineer:: Chris
Power Supply: : AC
Comments: : Neutral

7 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillary	Type	Manufacturer	Serial No.	Cal Due	Interval
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2009	1 year
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	100017	August 2009	1 year
03	Signal Generator	SMY02	Rohde & Schwarz	836878/011	May 2009	1 year
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008.02	May 2009	1 year
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2009	1 year
06	Horn Antenna (1- 18GHz)	SAS-200/571	AH Systems	325	June 2009	1 year
07	Horn Antenna (18- 26.5GHz)	3160-09	EMCO	1240	June 2009	1 year
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2009	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4-00102600	Miteq	00616	May 2009	1 year
13	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807	May 2009	1 year
14	Digital Radio Comm. Tester	CMD-55	Rohde & Schwarz	847958/008	May 2009	1 year
15	Universal Radio Comm. Tester	CMU 200	Rohde & Schwarz	832221/06	May 2009	1 year
16	LISN	ESH3-Z5	Rohde & Schwarz	836679/003	May 2009	1 year
17	Loop Antenna	6512	EMCO	00049838	July 2009	2 years

Test Report #:

EMC_BROAD_062_08002_15.247_BRCM1030



Date of Report: 2008-12-03 Page 47 of 48

8 BLOCK DIAGRAMS

Radiated Testing

ANECHOIC CHAMBER

9 Revision History

2008-12-03: First Issue