

TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 443-390, Korea
TEL: 82 70 5008 1021
FAX: 82 505 299 8311

Report No.: KR16-SRF0011

Page (1) / (66) Pages

1. Applicant

Name: IRIVER LIMITED.

Address: Iriverhouse, 5, Bangbae-ro 18-gil, Seocho-gu, Seoul,
Korea

2. Sample Description:

FCC ID: QDMPDM11

Type of equipment: AK XB10

Basic Model: PDM11

3. Date of Test: August 18 ~ August 26, 2016**4. Test standard used:** FCC Part 15 Subpart C, 15.247
ANSI C63.10-2013**5. Test Results:**

Test Item: Refer to page 7

Result: Complied (Refer to page 8 ~ page 65)

Measurement Uncertainty: Refer to page 7

This result shown in this report refer only to the sample(s) tested unless otherwise stated.

Affirmation

Tested by

Name: EUI JUNG, KIM

Technical Manager

A handwritten signature in black ink, appearing to read 'CHANG MIN, KIM'.

Name: CHANG MIN, KIM

2016. 08. 26

KCTL Inc.

[Contents]

1. Client information	3
2. Laboratory information.....	4
3. Description of E.U.T.....	5
3.1 Basic description.....	5
3.2 General description.....	5
3.3 Test frequency.....	6
3.4 Test Voltage	6
4. Summary of test results.....	7
4.1 Standards & results	7
4.2 Uncertainty	7
5. Test results.....	8
5.1 Antenna Requirement	8
5.2 Maximum Peak Output Power.....	9
5.3 Carrier Frequency Separation	12
5.4 20 dB Channel Bandwidth.....	17
5.5 Number of Hopping Channels	26
5.6 Time of Occupancy(Dwell Time)	31
5.7 Spurious Emission, Band edge and Restricted bands	44
5.8 Conducted Emission	64
6. Test equipment used for test	66

1. Client information

Applicant: IRIVER LIMITED.
Address: Iriverhouse, 5, Bangbae-ro 18-gil, Seocho-gu, Seoul, Korea
Telephone number: +82-2-3409-3911
Facsimile number: +82-2-3409-5692
Contact person: Gu Wang, Kwon / nineking@rapa.or.kr

Manufacturer: IRIVER LIMITED.
Address: Iriverhouse, 5, Bangbae-ro 18-gil, Seocho-gu, Seoul, Korea

2. Laboratory information

Address

KCTL Inc.

65 Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea
Telephone Number: 82-70-5008-1016 Facsimile Number: 82-505-299-8311

Certificate

KOLAS No.: KT231

FCC Site Designation No.: KR0040

FCC Site Registration No.: 687132

VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849

IC Site Registration No.: 8035A-2

SITE MAP

3. Description of E.U.T.

3.1 Basic description

Applicant	IRIVER LIMITED.
Address of Applicant	Iriverhouse, 5, Bangbae-ro 18-gil, Seocho-gu, Seoul, Korea
Manufacturer	IRIVER LIMITED.
Address of Manufacturer	Iriverhouse, 5, Bangbae-ro 18-gil, Seocho-gu, Seoul, Korea
Type of equipment	AK XB10
Basic Model	PDM11
Serial number	N/A

3.2 General description

Frequency Range	2 402 MHz ~ 2 480 MHz
Type of Modulation	GFSK, $\pi/4$ DQPSK, 8DPSK
The number of channels	79 ch
Type of Antenna	Chip Antenna
Antenna Gain	2.3 dBi
Transmit Power	10.16 dBm
Power supply	DC 3.7 V
Product SW/HW version	V1.0 / V1.0
Radio SW/HW version	V1.0 / V1.0
Test SW Version	CSR BlueSuite 2.6.2
RF power setting in TEST SW	DH5 : 63, 2-DH5, 3-DH5 : 105

Note : The above EUT information was declared by the manufacturer.

3.3 Test frequency

	Frequency
Lowest frequency	2 402 MHz
Middle frequency	2 441 MHz
Highest frequency	2 480 MHz

3.4 Test Voltage

Mode	Voltage
Nominal Voltage	DC 3.7 V

※ 15.247 Requirements for Bluetooth transmitter

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
 - 1) This system is hopping pseudo-randomly.
 - 2) Each frequency is used equally on the average by each transmitter.
 - 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
 - 4) The receiver shifts frequencies in synchronization with the transmitted signals.
- 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

4. Summary of test results

4.1 Standards & results

FCC Rule	IC Rule	Parameter	Report Section	Test Result
15.203, 15.247(b)(4)	-	Antenna Requirement	5.1	C
15.247(b)(1), (4)	RSS-247, 5.4 (2)	Maximum Peak Output Power	5.2	C
15.247(a)(1)	RSS-247, 5.1 (2)	Carrier Frequency Separation	5.3	C
15.247(a)(1)	RSS-247, 5.1 (1)	20dB Channel Bandwidth	5.4	C
-	RSS-GEN, 6.6	Occupied Bandwidth	5.4	C
15.247(a)(iii) 15.247(b)(1)	RSS-247, 5.1	Number of Hopping Channels	5.5	C
15.247(a) (iii)	RSS-247, 5.1 (4)	Time of Occupancy(Dwell Time)	5.6	C
15.247(d), 15.205(a), 15.209(a)	RSS-247, 5.5 RSS-GEN, 8.9, 10	Spurious Emission, Band edge and Restricted bands	5.7	C
15.207(a)	RSS-GEN, 8.8	Conducted Emissions	5.8	C

Note: C = complies, NC = Not complies, NT = Not tested, NA = Not Applicable

Note : The general test methods used to test on this device are ANSI C63.10-2013

4.2 Uncertainty

Measurement Item	Expanded Uncertainty $U = kU_c (k = 2)$	
Conducted RF power	1.44 dB	
Conducted Spurious Emissions	1.52 dB	
Radiated Spurious Emissions	30 MHz ~ 300 MHz:	+ 4.94 dB, - 5.06 dB
		+ 4.93 dB, - 5.05 dB
Conducted Emissions	300 MHz ~ 1 000 MHz:	+ 4.97 dB, - 5.08 dB
		+ 4.84 dB, - 4.96 dB
Conducted Emissions	1 GHz ~ 25 GHz:	+ 6.03 dB, - 6.05 dB
	9 kHz ~ 150 kHz:	3.75 dB
	150 kHz ~ 30 MHz:	3.36 dB

5. Test results

5.1 Antenna Requirement

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result

-Complied

The transmitter has the chip antenna which is attached on PCB permanently.

5.2 Maximum Peak Output Power

5.2.1 Regulation

According to §15.247(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to §15.247(b)(1), for frequency hopping systems operating in the 2 400-2 483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725-5 850 MHz band: 1 watt. For all other frequency hopping systems in the 2 400-2 483.5 MHz band: 0.125 watts.

According to §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation.

The hopping shall be disabled for this test:

a) Use the following spectrum analyzer settings:

- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW \geq RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

NOTE:

A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

5.2.3 Test Result

- Complied

- GFSK

Channel	Frequency [MHz]	Result [dBm]	Limit [dBm]	Margin [dB]	Average Power [dBm]
Lowest	2 402	9.16	30.00	20.84	7.75
Middle	2 441	10.16	30.00	19.84	8.77
Highest	2 480	10.06	30.00	19.94	8.72

- $\pi/4$ DQPSK

Channel	Frequency [MHz]	Result [dBm]	Limit [dBm]	Margin [dB]	Average Power [dBm]
Lowest	2 402	8.05	30.00	21.95	4.62
Middle	2 441	9.46	30.00	20.54	6.54
Highest	2 480	9.36	30.00	20.64	6.33

- 8DPSK

Channel	Frequency [MHz]	Result [dBm]	Limit [dBm]	Margin [dB]	Average Power [dBm]
Lowest	2 402	8.35	30.00	21.65	4.67
Middle	2 441	9.66	30.00	20.34	6.55
Highest	2 480	9.46	30.00	20.54	6.36

NOTE:

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.
2. It was measured by power sensor.

5.3 Carrier Frequency Separation

5.3.1 Regulation

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.3.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) \geq RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

5.3.3 Test Result

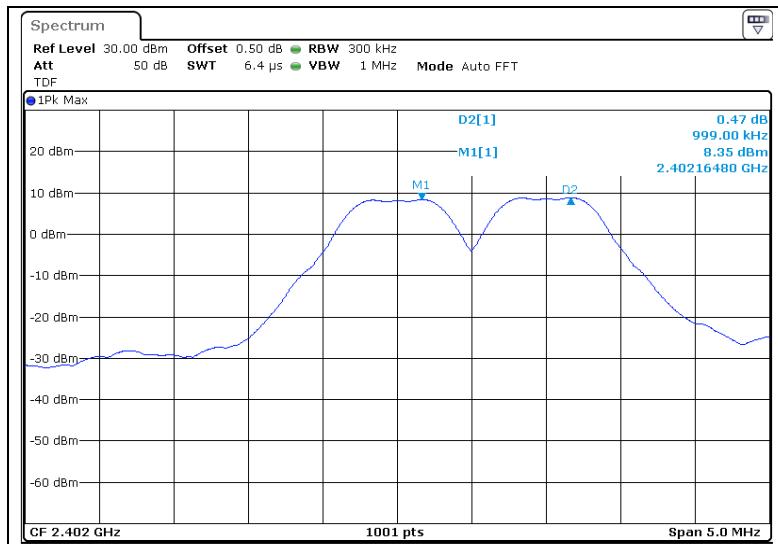
- Complied

- GFSK

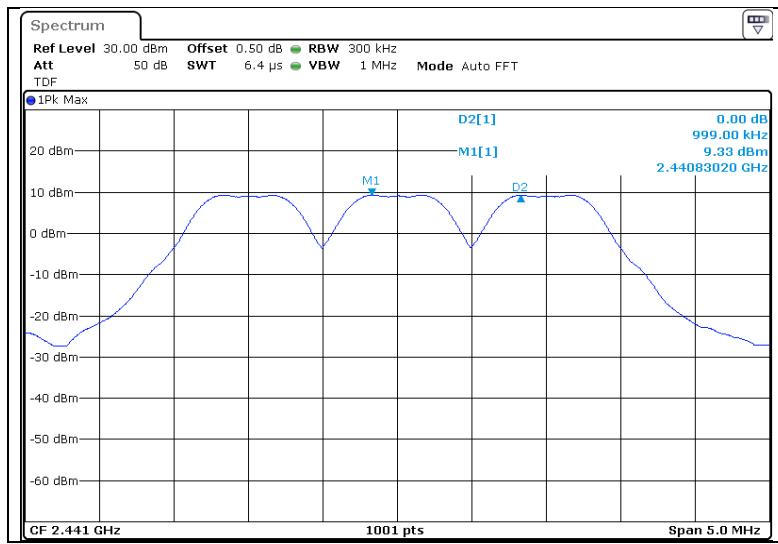
Operating Mode	Channel	Carrier frequency separation [MHz]	Limit
Hopping	Lowest	0.999	≥ 25 kHz or two-thirds of the 20 dB bandwidth
	Middle	0.999	≥ 25 kHz or two-thirds of the 20 dB bandwidth
	Highest	0.999	≥ 25 kHz or two-thirds of the 20 dB bandwidth

- 8DPSK

Operating Mode	Channel	Carrier frequency separation [MHz]	Limit
Hopping	Lowest	1.004	≥ 25 kHz or two-thirds of the 20 dB bandwidth
	Middle	1.004	≥ 25 kHz or two-thirds of the 20 dB bandwidth
	Highest	1.004	≥ 25 kHz or two-thirds of the 20 dB bandwidth


NOTE: We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.3.4 Test Plot

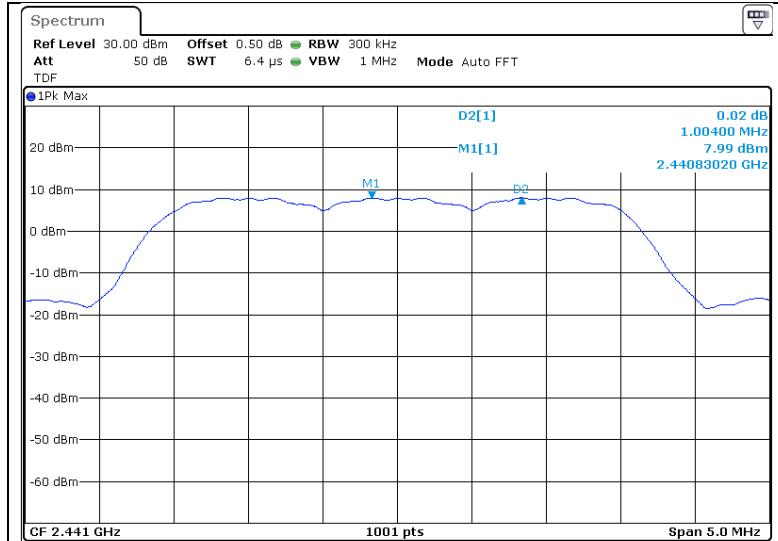

Figure 1. Plot of the Carrier Frequency Separation (Conducted)

- GFSK

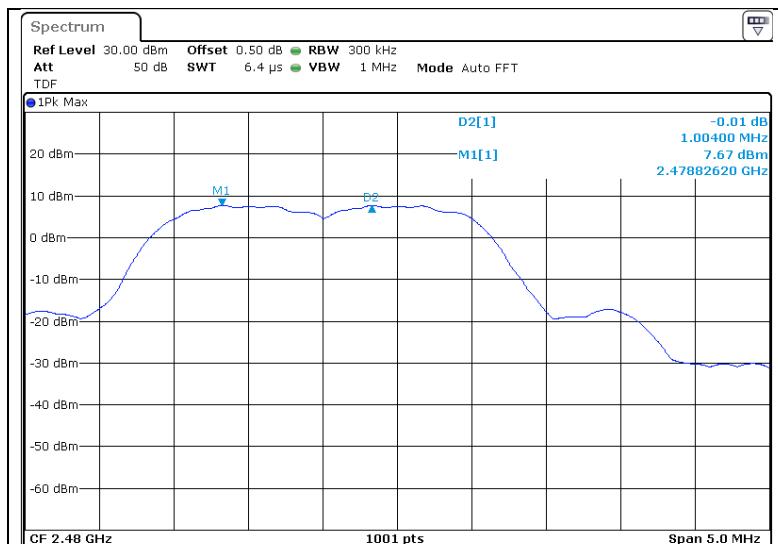
Lowest Channel (2.402 MHz)

Middle Channel (2.441 MHz)

Highest Channel (2 480 MHz)



- 8DPSK


Lowest Channel (2 402 MHz)

Middle Channel (2.441 MHz)

Highest Channel (2.480 MHz)

5.4 20 dB Channel Bandwidth

5.4.1 Regulation

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.4.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

The occupied bandwidth is measured as the width of the spectral envelope of the modulated signal, at an amplitude level reduced from a reference value by a specified ratio (or in decibels, a specified number of dB down from the reference value). Typical ratios, expressed in dB, are -6 dB, -20 dB, and -26 dB, corresponding to 6 dB BW, 20 dB BW, and 26 dB BW, respectively. In this subclause, the ratio is designated by “-xx dB.” The reference value is either the level of the unmodulated carrier or the highest level of the spectral envelope of the modulated signal, as stated by the applicable requirement. Some requirements might specify a specific maximum or minimum value for the “-xx dB” bandwidth; other requirements might specify that the “-xx dB” bandwidth be entirely contained within the authorized or designated frequency band.

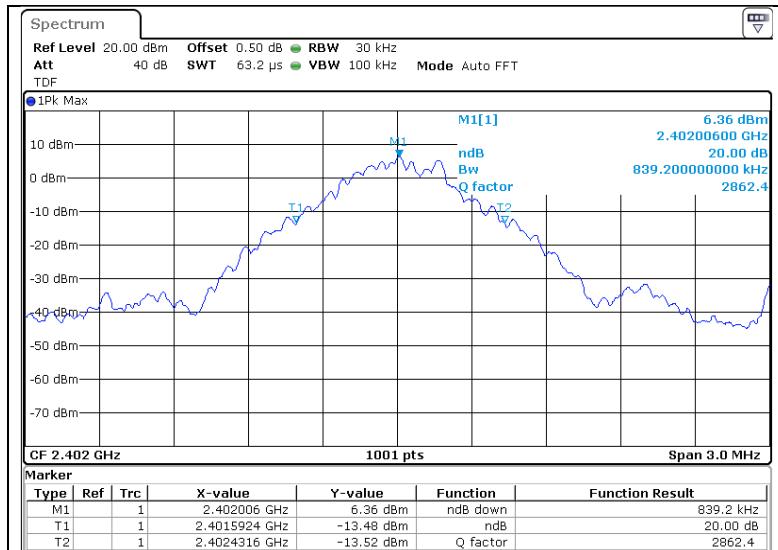
- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (\text{OBW}/\text{RBW})]$ below the reference level. Specific guidance is given in 4.1.5.2.
- d) Steps a) through c) might require iteration to adjust within the specified tolerances.
- e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target “-xx dB down” requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
- f) Set detection mode to peak and trace mode to max hold.

- g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
- h) Determine the “-xx dB down amplitude” using [(reference value) – xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.
- i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).
- j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the “-xx dB down amplitude” determined in step h). If a marker is below this “-xx dB down amplitude” value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the “-xx dB down amplitude” determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.
- k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

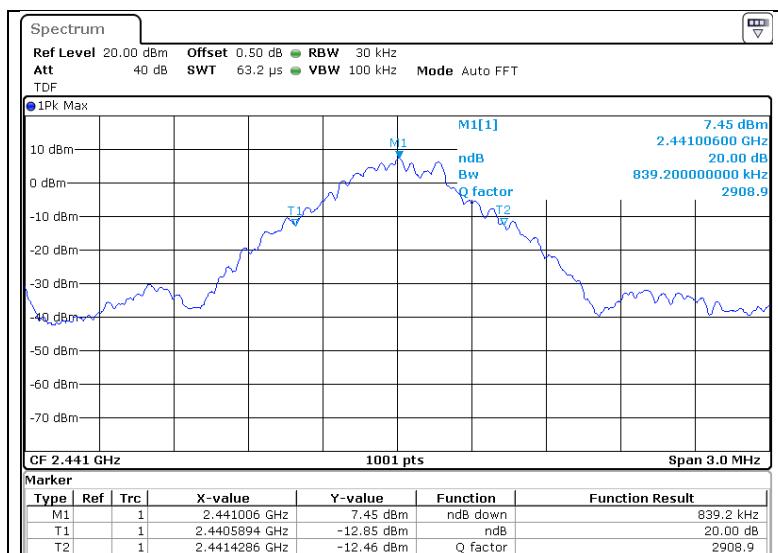
5.4.3 Test Result

- Complied

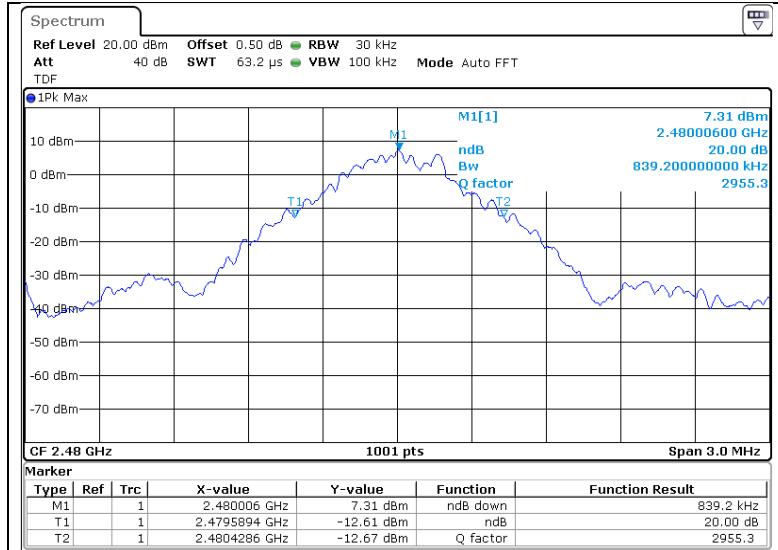
Mode	Channel	20 dB Channel Bandwidth [MHz]	Occupied Bandwidth (99 % BW) [MHz]
GFSK	Lowest	0.839	0.866
	Middle	0.839	0.863
	Highest	0.839	0.863
8DPSK	Lowest	1.259	1.172
	Middle	1.262	1.205
	Highest	1.265	1.205


NOTE: We took the insertion loss of the cable loss into consideration within the measuring instrument.

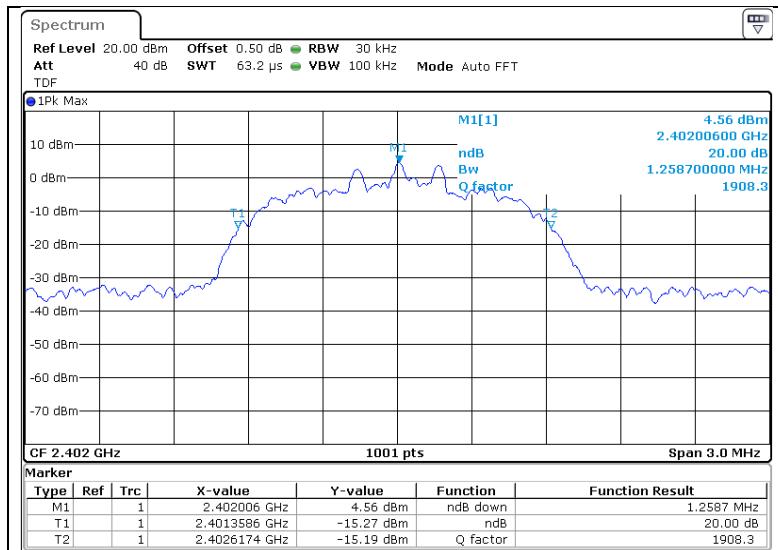
5.4.4 Test Plot


Figure 2. Plot of the 20 dB Channel Bandwidth / Occupied Bandwidth (Conducted)

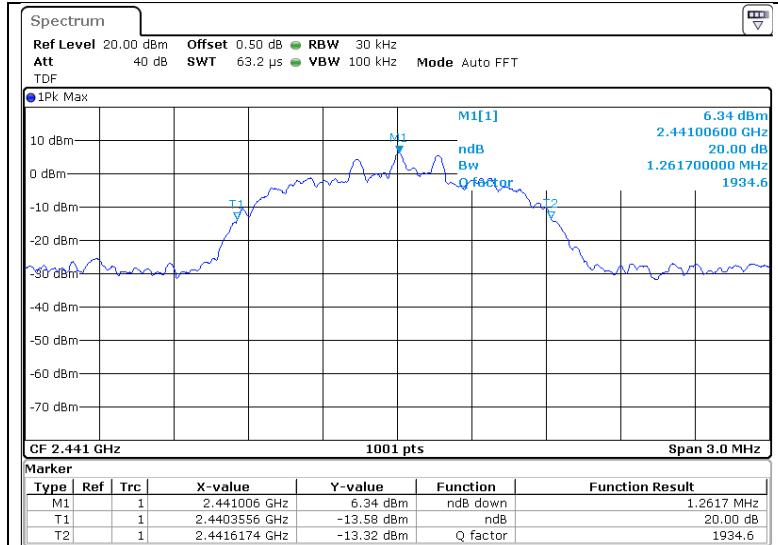
- GFSK (20 dB Channel Bandwidth)


Lowest Channel (2 402 MHz)

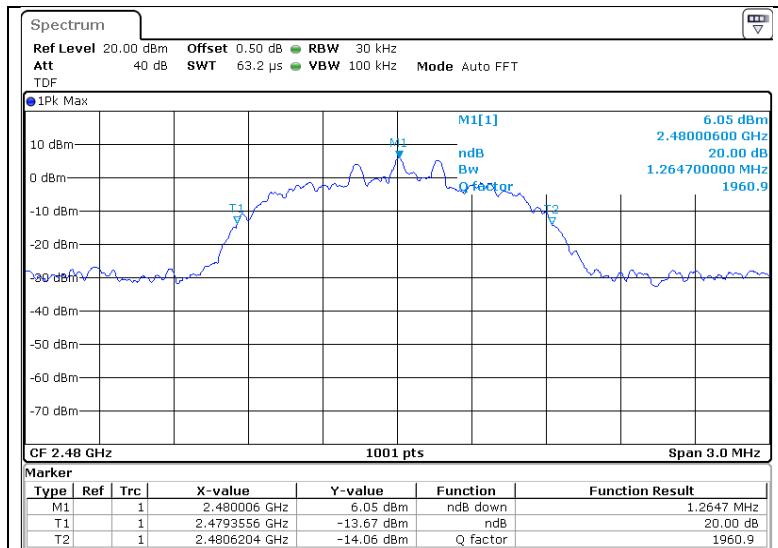
Middle Channel (2 441 MHz)



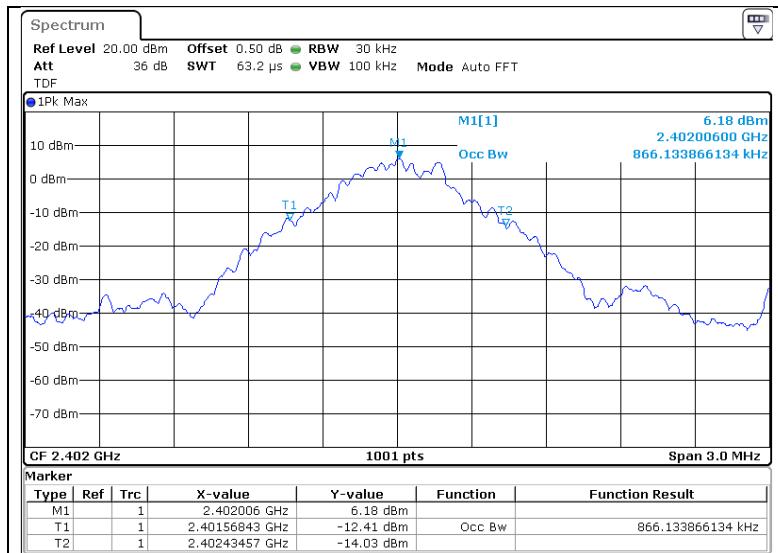
Highest Channel (2 480 MHz)



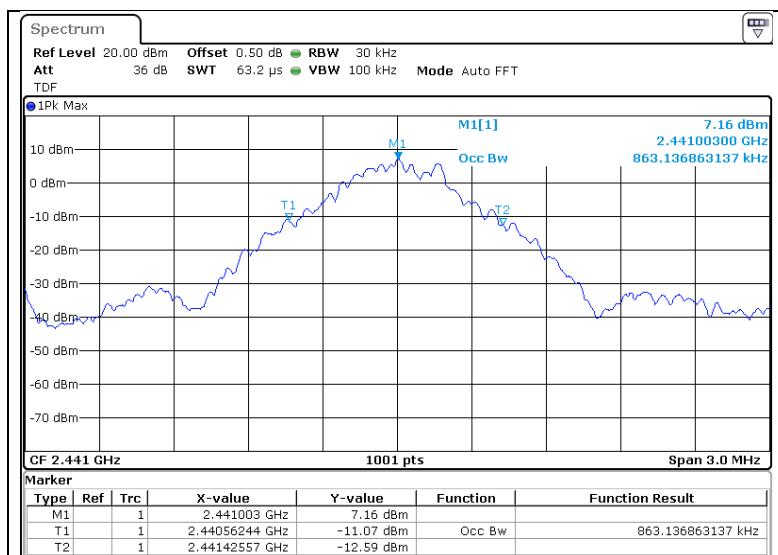
- 8DPSK (20 dB Channel Bandwidth)


Lowest Channel (2 402 MHz)

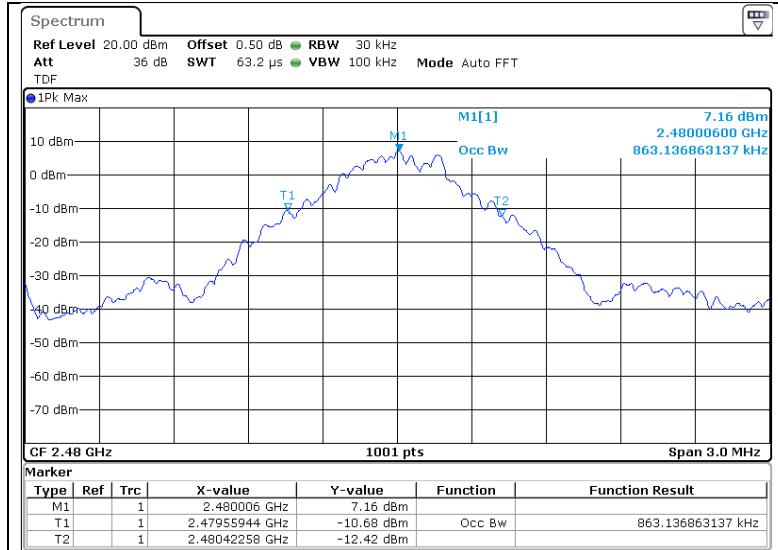
Middle Channel (2.441 MHz)



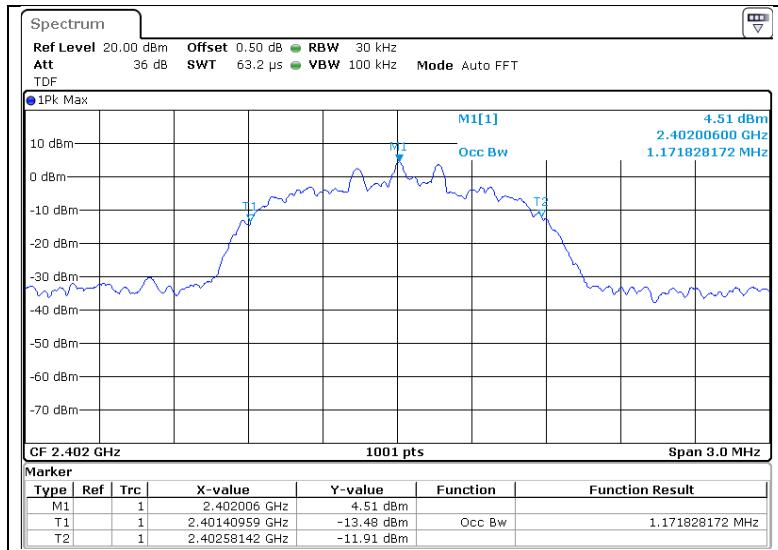
Highest Channel (2.480 MHz)



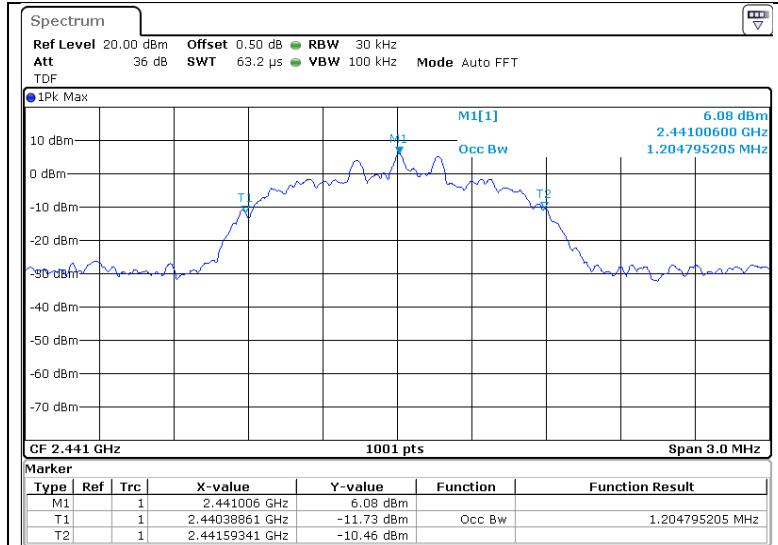
- GFSK (Occupied Bandwidth)


Lowest Channel (2 402 MHz)

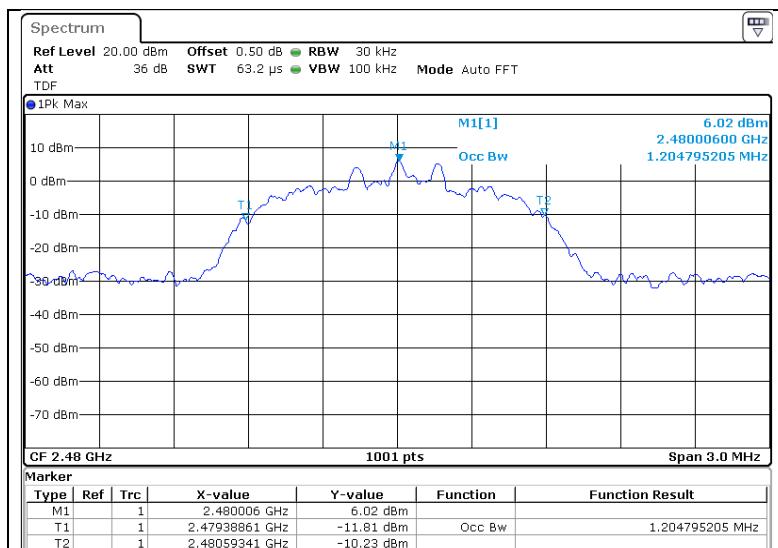
Middle Channel (2 441 MHz)



Highest Channel (2 480 MHz)



- 8DPSK (Occupied Bandwidth)


Lowest Channel (2 402 MHz)

Middle Channel (2.441 MHz)

Highest Channel (2.480 MHz)

5.5 Number of Hopping Channels

5.5.1 Regulation

According to §15.247(a)(1)(iii), Frequency hopping systems in the 2 400-2 483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. According to §15.247(b)(1), For frequency hopping systems operating in the 2 400-2 483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725-5 850 MHz band: 1 watt. For all other frequency hopping systems in the 2 400-2 483.5 MHz band: 0.125 watts.

5.5.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

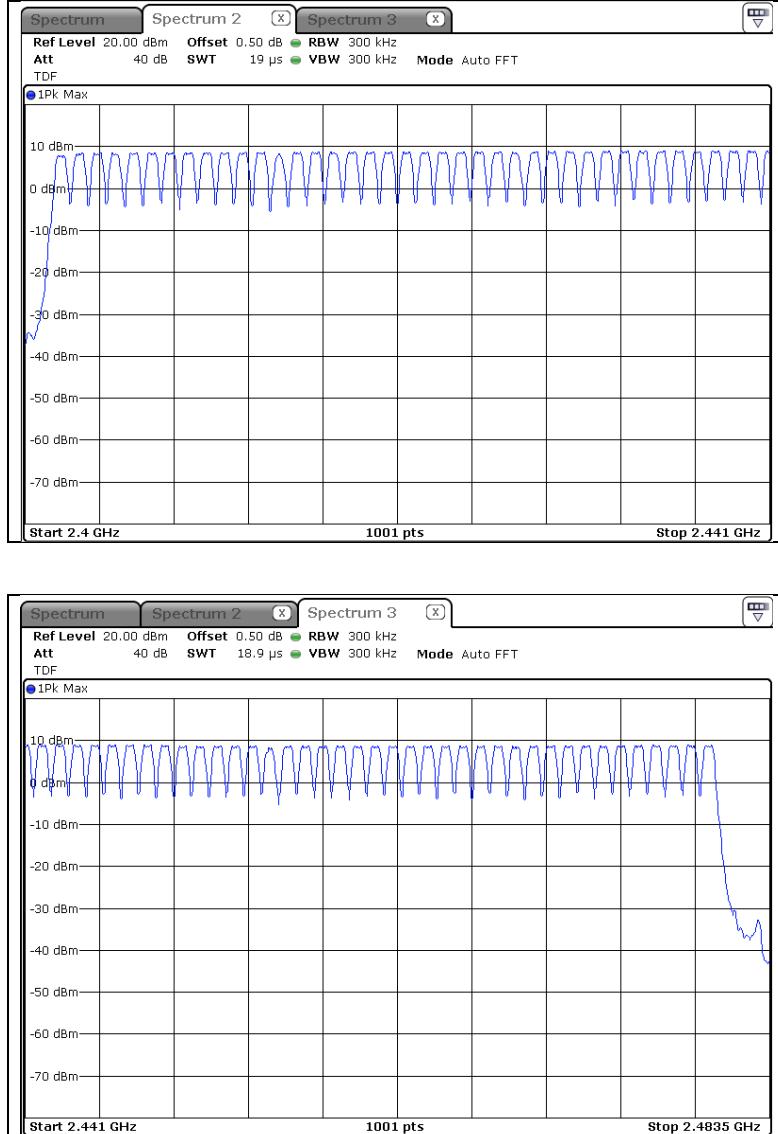
- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW \geq RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

5.5.3 Test Result

- Complied

Mode	Frequency	Number of hopping channel	Limit
GFSK	2 402 – 2 480 MHz	79	≥15
π/4DQPSK	2 402 – 2 480 MHz	79	≥15
8DPSK	2 402 – 2 480 MHz	79	≥15


NOTE:

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.
2. Measurement is made with EUT operating in hopping mode between 79 channels providing a worse case scenario as compared to AFH mode hopping between 20 channels.

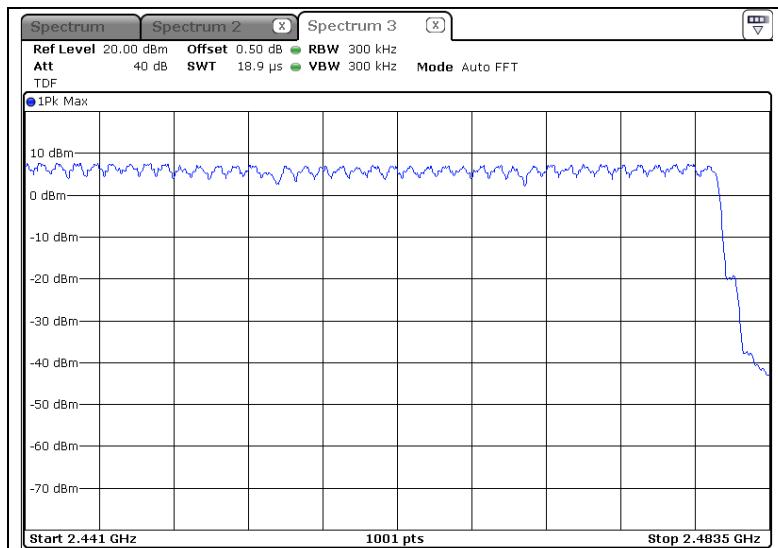
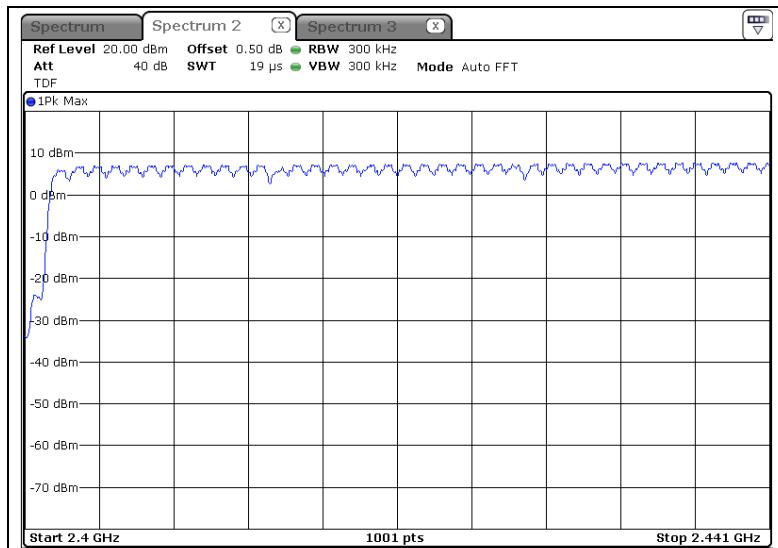
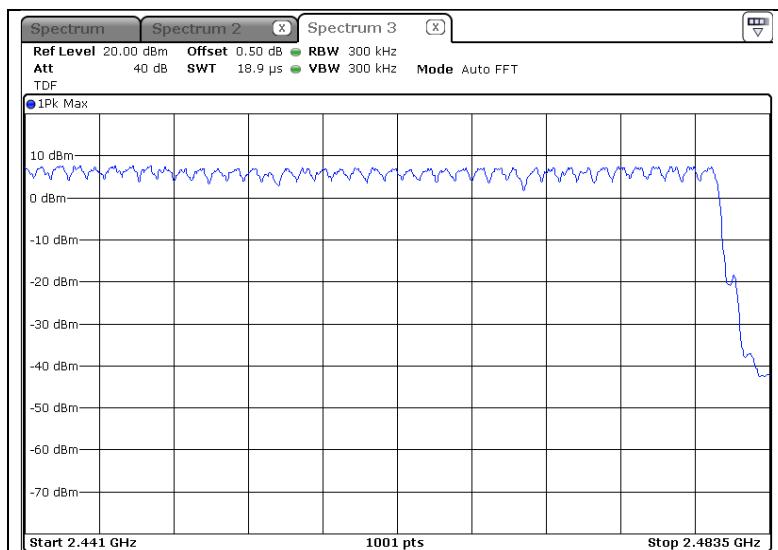
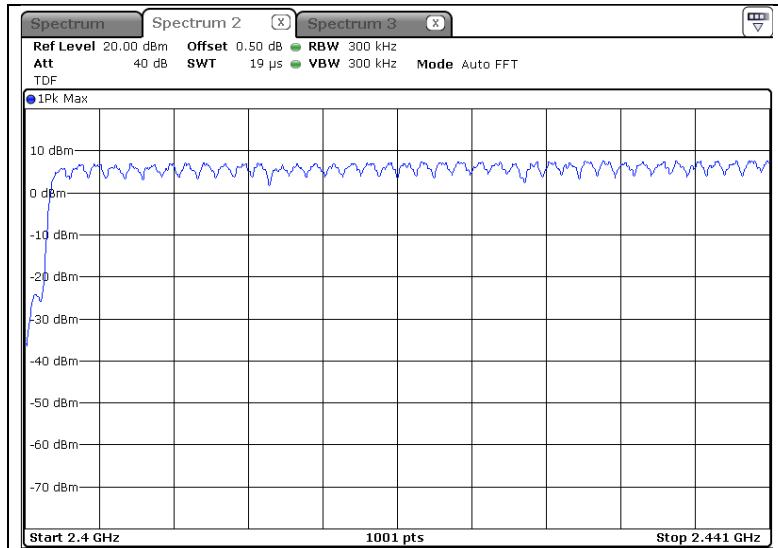


5.5.4 Test Plot

Figure 3. Plot of the Number of Hopping Channels (Conducted)



- GFSK

- $\pi/4$ DQPSK

- 8DPSK

5.6 Time of Occupancy(Dwell Time)

5.6.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2 400-2 483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.6.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be \leq channel spacing and where possible RBW should be set $\gg 1 / T$, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

$$\begin{aligned} &(\text{Number of hops in the period specified in the requirements}) = \\ &(\text{number of hops on spectrum analyzer}) \times (\text{period specified in the requirements} / \text{analyzer sweep time}) \end{aligned}$$

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

5.6.3 Test Result

- Complied

- Non-AFH

Hopping mode	Modulation	Frequency [MHz]	Reading[ms]	Hopping rate [hop/s]	Number of Channels	Result[s]	Limit[s]
Non-AFH	DH1	2 441	0.385	800.000	79	0.123	0.40
	DH3	2 441	1.641	400.000	79	0.263	0.40
	DH5	2 441	2.887	266.667	79	0.308	0.40
	2-DH1	2 441	0.388	800.000	79	0.124	0.40
	2-DH3	2 441	1.654	400.000	79	0.265	0.40
	2-DH5	2 441	2.901	266.667	79	0.309	0.40
	3-DH1	2 441	0.389	800.000	79	0.124	0.40
	3-DH3	2 441	1.656	400.000	79	0.265	0.40
	3-DH5	2 441	2.904	266.667	79	0.310	0.40

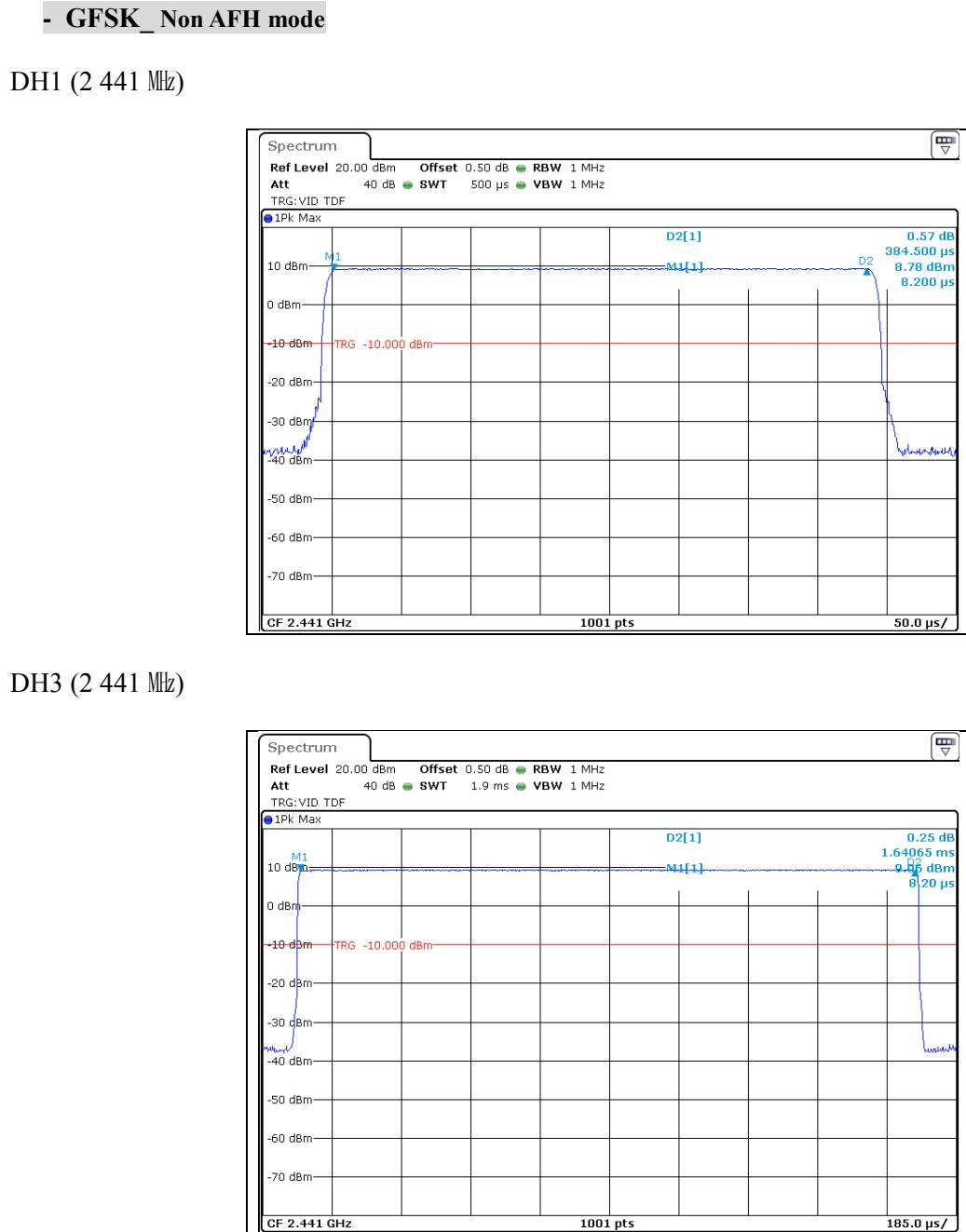
- AFH

Hopping mode	Modulation	Frequency [MHz]	Reading[ms]	Hopping rate [hop/s]	Number of Channels	Result[s]	Limit[s]
AFH	DH1	2 441	0.387	400.000	20	0.062	0.40
	DH3	2 441	1.641	200.000	20	0.131	0.40
	DH5	2 441	2.891	133.333	20	0.154	0.40
	2-DH1	2 441	0.388	400.000	20	0.062	0.40
	2-DH3	2 441	1.648	200.000	20	0.132	0.40
	2-DH5	2 441	2.900	133.333	20	0.155	0.40
	3-DH1	2 441	0.388	400.000	20	0.062	0.40
	3-DH3	2 441	1.651	200.000	20	0.132	0.40
	3-DH5	2 441	2.905	133.333	20	0.155	0.40

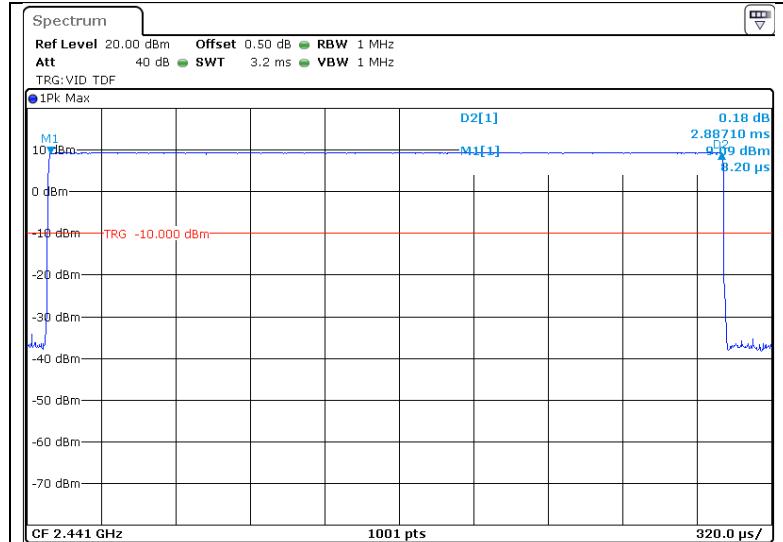
NOTE 1. Non AFH

Result = Number of Transmission in 31.6s x Length of Trnasmission

Test period = 0.4 [seconds / channel] × 79 [channel] = 31.6 [seconds]

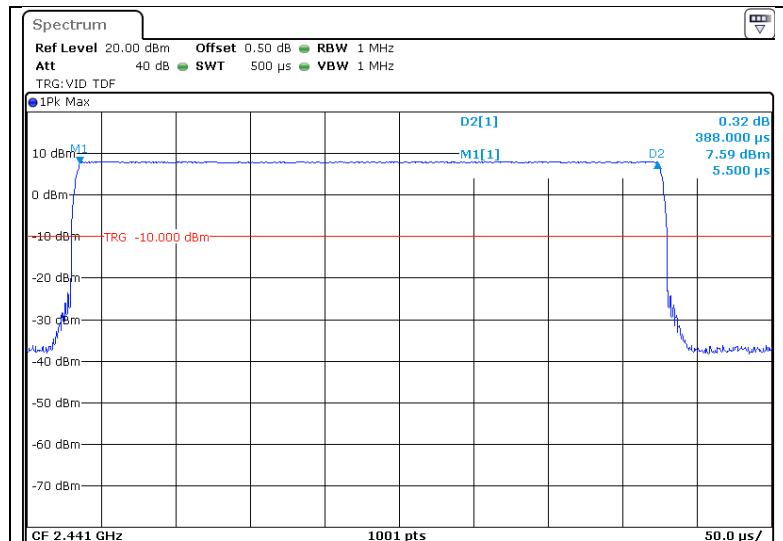

2. AFH

Result = Number of Transmission in 8s x Length of Trnasmission

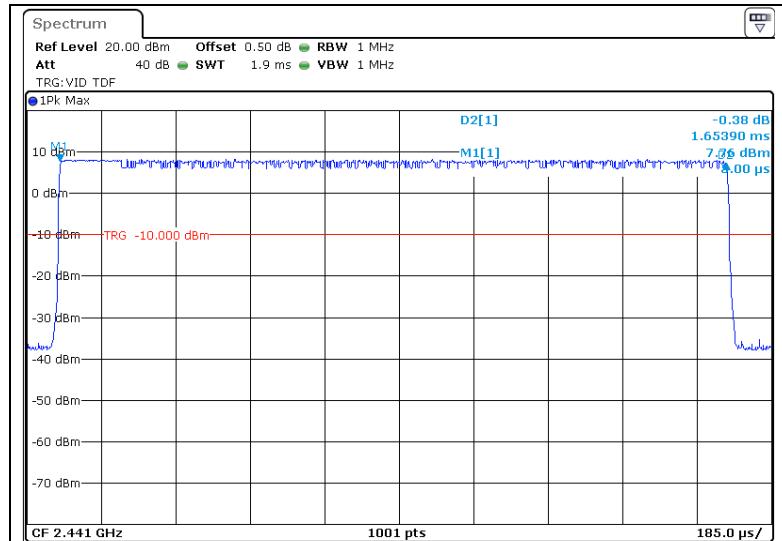

Test period = 0.4 [seconds / channel] × 20 [channel] = 8 [seconds]

5.6.4 Test Plot

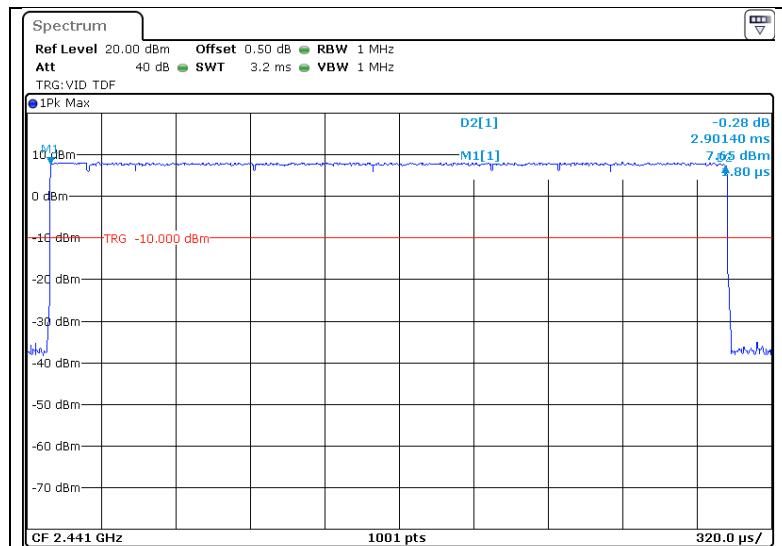
Figure 4. Plot of the Time of Occupancy (Conducted)



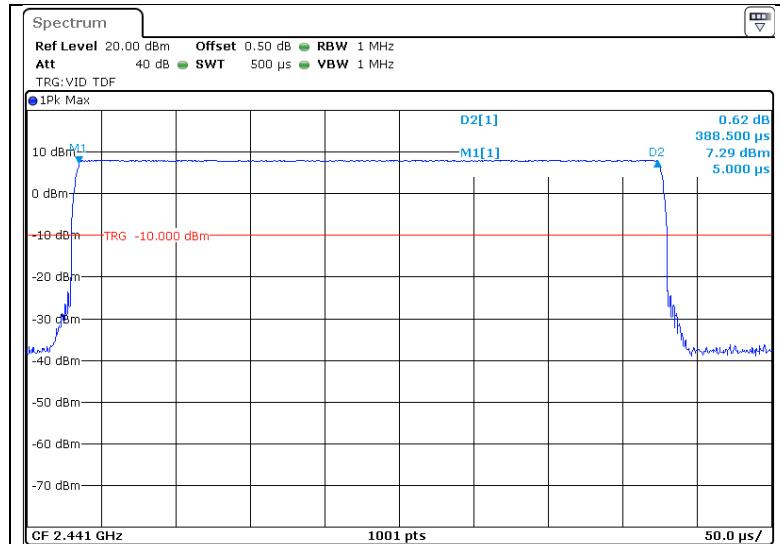
DH5 (2 441 MHz)



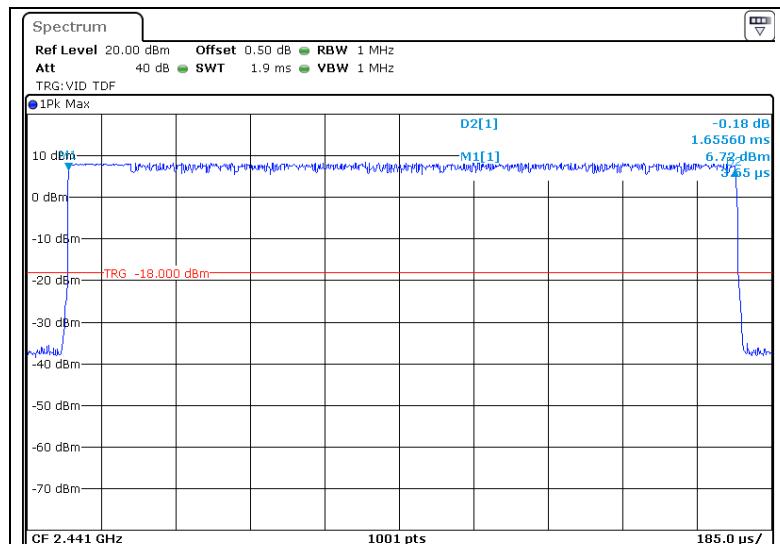
- π/4DQPSK_ Non AFH mode


2-DH1 (2 441 MHz)

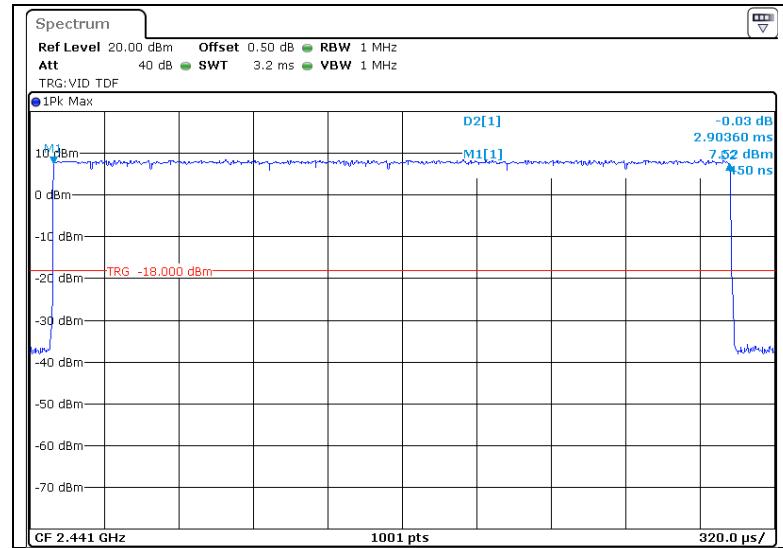
2-DH3 (2.441 MHz)



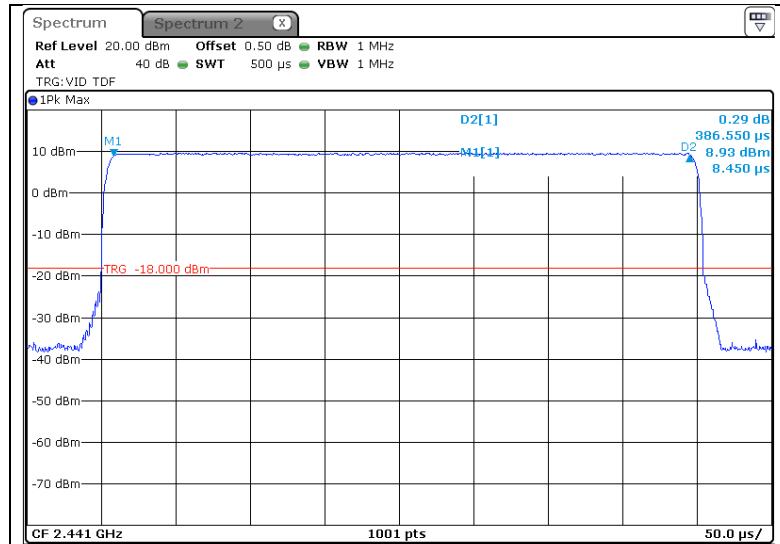
2-DH5 (2.441 MHz)



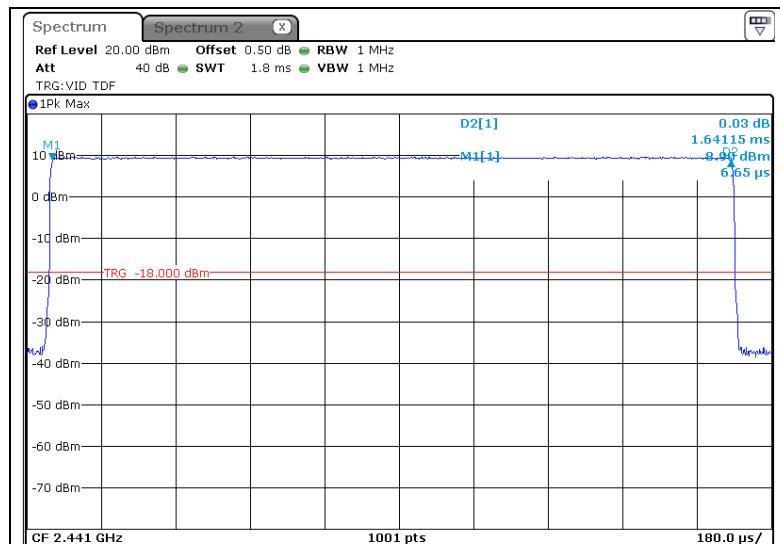
- 8DPSK_Non AFH mode


3-DH1 (2.441 MHz)

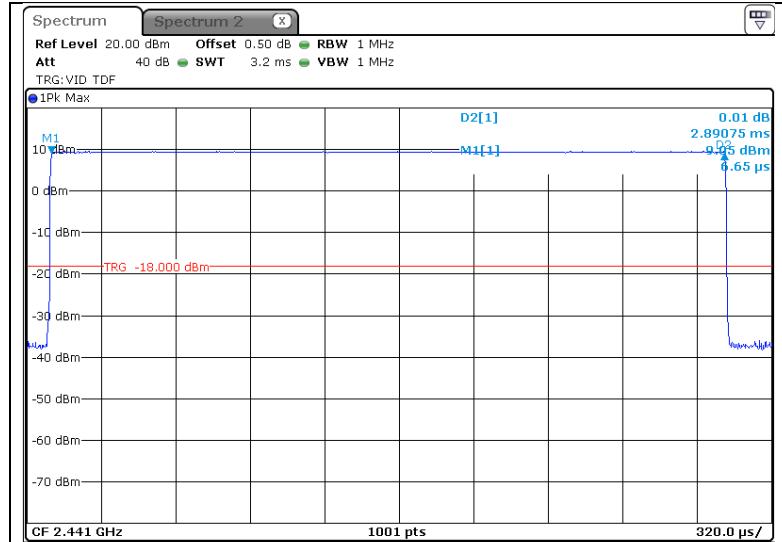
3-DH3 (2.441 MHz)



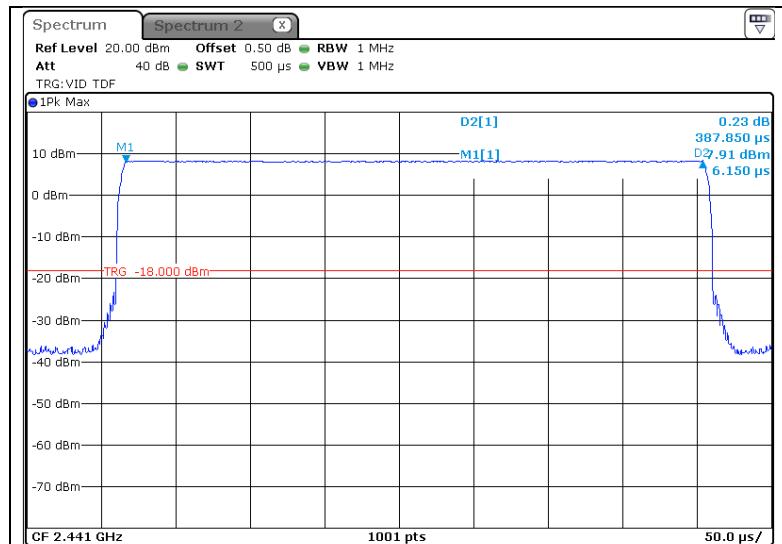
3-DH5 (2.441 MHz)



- GFSK_AFH mode

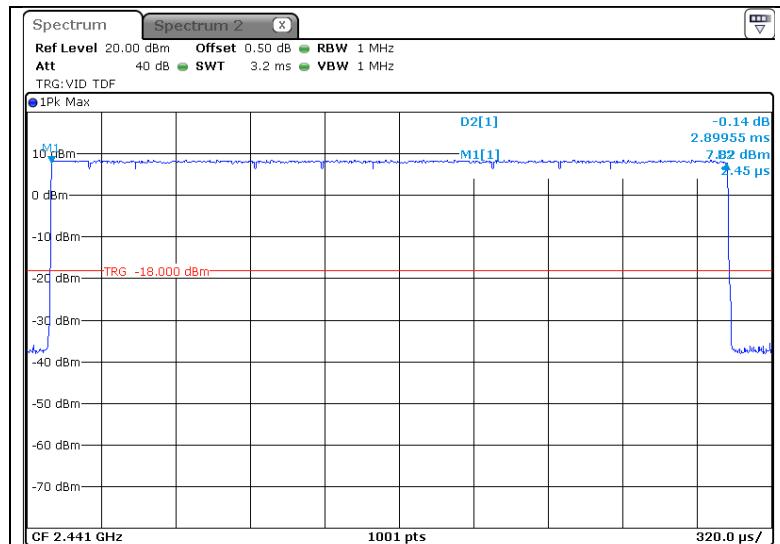

DH1 (2.441 MHz)

DH3 (2.441 MHz)

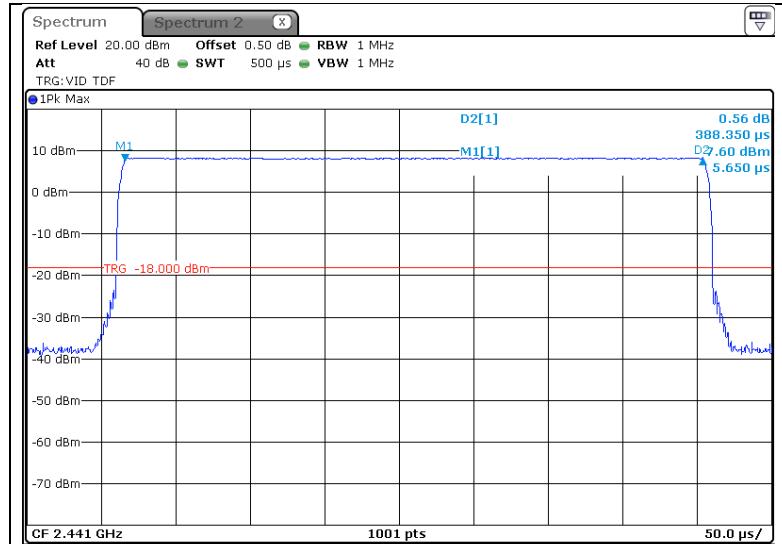


DH5 (2.441 MHz)

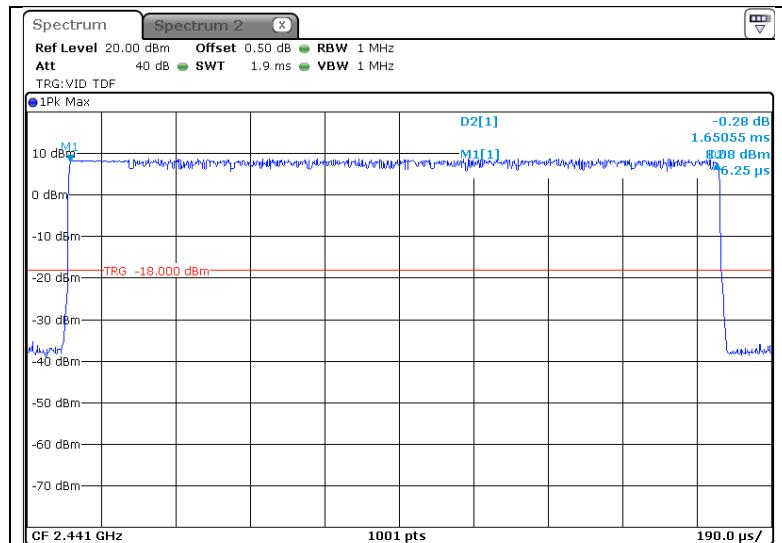
- π/4DQPSK_AFH mode


2-DH1 (2.441 MHz)

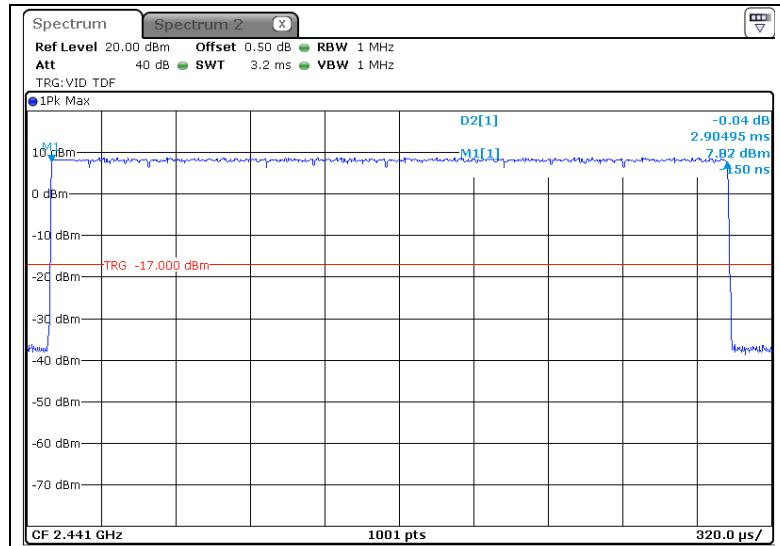
2-DH3 (2.441 MHz)



2-DH5 (2.441 MHz)



- 8DPSK_AFH mode


3-DH1 (2.441 MHz)

3-DH3 (2.441 MHz)

3-DH5 (2.441 MHz)

5.7 Spurious Emission, Band edge and Restricted bands

5.7.1 Regulation

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (μ V/m)	Measurement distance (m)
0.009 - 0.490	$2400/F(\text{kHz})$	300
0.490 - 1.705	$24000/F(\text{kHz})$	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	Above 38.6
13.36 - 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

5.7.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

1) Band-edge Compliance of RF Conducted Emissions

These procedures are applicable for determining compliance at authorized-band band-edges where the requirements are expressed as a value relative to the in-band signal level. Procedures for determining compliance with field strength limits at or close to the band-edges are given in 6.10.6 (see also Table A.2).

Band-edge tests are typically performed as a conducted test but may be performed as radiated measurements on a test site meeting the specifications in 5.2, at the measurement distances specified in 5.3. The instrumentation shall meet the requirements in 4.1.1 using the bandwidths and detectors Specified in 4.1.4.2.

When performing radiated measurements, the measurement antenna(s) shall meet the specifications in 4.3. The EUT shall be connected to an antenna and operated at the highest power settings following procedures in 6.3.

For other than frequency-hopping devices, this test sequence shall be performed once. For devices that support frequency hopping, this test sequence shall be performed twice: once with the hopping function turned OFF and then repeated with the hopping function turned ON. The purpose of the test with the hopping function turned on is to confirm that the RF power remains OFF while the device is changing frequencies, and that the oscillator stabilizes at the new frequency before RF power is turned back ON. Overshoot of any oscillator, including phase-lock-loop stabilized oscillators, can cause the device to be temporarily tuned to frequencies outside the authorized band, and it is important that no transmissions occur during such temporary periods. Particular attention to the hopping sequence requirements specified below is needed in the case of adaptive frequency-hopping devices:

- a) Connect the EMI receiver or spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described in step e) (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).
- b) Set the EUT to the lowest frequency channel (for the hopping on test, the hopping sequence shall include the lowest frequency channel).
- c) Set the EUT to operate at maximum output power and 100% duty cycle, or equivalent “normal mode of operation” as specified in 6.10.3.
- d) If using the radiated method, then use the applicable procedure(s) of 6.4, 6.5, or 6.6, and orient the EUT and measurement antenna positions to produce the highest emission level.
- e) Perform the test as follows:
 - 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation.
 - 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (\text{OBW}/\text{RBW})]$ below the reference level. Specific guidance is given in 4.1.5.2.
 - 3) Attenuation: Auto (at least 10 dB preferred).
 - 4) Sweep time: Coupled.
 - 5) Resolution bandwidth: 100 kHz.
 - 6) Video bandwidth: 300 kHz.
 - 7) Detector: Peak.
 - 8) Trace: Max hold.

- f) Allow the trace to stabilize. For the test with the hopping function turned ON, this can take several minutes to achieve a reasonable probability of intercepting any emissions due to oscillator overshoot.
- g) Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- h) Repeat step c) through step e) for every applicable modulation.
- i) Set the EUT to the highest frequency channel (for the hopping on test, the hopping sequence shall include the highest frequency channel) and repeat step c) through step d).
- j) The band-edge measurement shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

2) Spurious RF Conducted Emissions:

Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers.

Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer.

The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

3) Spurious Radiated Emissions:

1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an semi-anechoic chamber at a distance of 3 meters.
2. The EUT was placed on the top of the 0.8-meter height, 1 × 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1 000 MHz using the Bi-Log antenna, and from 1 000 MHz to 26 500 MHz using the horn antenna.
4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4 × 4 meter in an semi-anechoic chamber. The EUT was tested at a distance 3 meters.
5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
6. The 0.8m height is for below 1 G testing, and 1.5m is for above 1G testing.

- Procedure for unwanted emissions measurements below 1 000 MHz

The procedure for unwanted emissions measurements below 1 000 MHz is as follows:

- a) Follow the requirements in 12.7.4.
- b) Compliance shall be determined using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

- Procedure for peak unwanted emissions measurements above 1 000 MHz

The procedure for peak unwanted emissions measurements above 1 000 MHz is as follows:

- a) Follow the requirements in 12.7.4.
- b) Peak emission levels are measured by setting the instrument as follows:
 - 1) RBW = 1 MHz.
 - 2) VBW $\geq [3 \cdot \text{RBW}]$.
 - 3) Detector = peak.
 - 4) Sweep time = auto.
 - 5) Trace mode = max hold.
 - 6) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, then the time required for the trace to stabilize will increase by a factor of approximately $1 / D$, where D is the duty cycle. For example, at 50% duty cycle, the measurement time will increase by a factor of two, relative to measurement time for continuous transmission.

- Procedures for average unwanted emissions measurements above 1 000 MHz

Method VB-A is averaging using reduced video bandwidth. The procedure for this method is as follows:

- a) RBW = 1 MHz.
- b) Video bandwidth:
 - 1) If the EUT is configured to transmit with $D \geq 98\%$, then set $\text{VBW} \leq \text{RBW} / 100$ (i.e., 10 kHz), but not less than 10 Hz.
 - 2) If the EUT D is $< 98\%$, then set $\text{VBW} \geq 1 / T$, where T is defined in item a1) of 12.2.
- c) Video bandwidth mode or display mode:
 - 1) The instrument shall be set with video filtering applied in the power domain. Typically, this requires setting the detector mode to RMS (power averaging) and setting the average-VBW type to power (rms).
 - 2) As an alternative, the instrument may be set to linear detector mode. Video filtering shall be applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode to accomplish this. Others have a setting for average-VBW type, which can be set to "voltage" regardless of the display mode.
- d) Detector = peak.
- e) Sweep time = auto.
- f) Trace mode = max hold.
- g) Allow max hold to run for at least 50 traces if the transmitted signal is continuous or has at least 98% duty cycle. For lower duty cycles, increase the minimum number of traces by a factor of $1/x$, where D is the duty cycle. For example, use at least 200 traces if the duty cycle is 25%. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 50 traces should be averaged.)

5.7.3 Test Result

- Complied

1. Band edge compliance of RF Conducted Emissions was shown in figure 5 & 6.
2. Measured value of the Field strength of spurious Emissions (Radiated)
3. It tested x,y and z – 3 axis each, mentioned only worst case data at this report.

- 9 kHz ~ 1 GHz data (Worst-case: GFSK)

GFSK_Middle Channel (2 441 MHz)

Frequency [MHz]	Receiver Bandwidth [kHz]	Pol. [V/H]	Reading [dB(µV)]	Cable Loss [dB]	Amp Gain [dB]	Antenna Factor [dB]	Factor [dB]	Result [dB(µV/m)]	Limit [dB(µV/m)]	Margin [dB]
Quasi-Peak DATA. Emissions below 30 MHz										
Below 30.00	Not Detected	-	-	-	-	-	-	-	-	-
Quasi-Peak DATA. Emissions below 1 GHz										
47.10	1 000	H	23.30	4.81	-32.51	14.40	-13.30	10.00	40.00	30.00
171.74	1 000	V	22.40	6.52	-32.49	9.27	-16.70	5.70	43.50	37.80
220.85	1 000	H	22.30	7.42	-32.49	11.87	-13.20	9.10	46.00	36.90
338.95	1 000	V	21.20	8.21	-32.57	14.46	-9.90	11.30	46.00	34.70
741.98	1 000	H	21.70	10.97	-32.77	20.10	-1.70	20.00	46.00	26.00
842.62	1 000	V	21.00	11.89	-32.39	21.40	0.90	21.90	46.00	24.10
Above 900.00	Not Detected	-	-	-	-	-	-	-	-	-

NOTE 1. Factor = Cable loss + Amp gain + Antenna factor

- 1 GHz ~ 26.5 GHz data

GFSK_Lowest channel (2 402 MHz)

Frequency [MHz]	Receiver Bandwidth [kHz]	Pol. [V/H]	Reading [dB(µV)]	Cable Loss [dB]	Amp Gain [dB]	Antenna Factor [dB]	Factor [dB]	Result [dB(µV/m)]	Limit [dB(µV/m)]	Margin [dB]
Peak DATA. Emissions above 1 GHz										
2 376.00 ¹⁾	1 000	H	54.30	2.83	-44.54	31.91	-9.80	44.50	74.00	29.50
4 803.75 ²⁾	1 000	V	54.60	7.16	-46.09	34.63	-4.30	50.30	74.00	23.70
7 205.63 ²⁾	1 000	H	54.30	8.40	-45.98	35.88	-1.70	52.60	74.00	21.40
18 039.31	1 000	H	45.30	12.40	-45.80	44.00	10.60	55.90	74.00	18.10
19 871.06	1 000	H	46.20	13.00	-46.70	44.90	11.20	57.40	74.00	16.60
24 563.06	1 000	V	43.30	14.70	-47.50	45.20	12.40	55.70	74.00	18.30
Above 25 000.00	Not Detected	-	-	-	-	-	-	-	-	-
Average DATA. Emissions above 1 GHz										
2 376.00 ¹⁾	1 000	H	47.70	2.83	-44.54	31.91	-9.80	37.90	54.00	16.10
4 803.75 ²⁾	1 000	V	47.90	7.16	-46.09	34.63	-4.30	43.60	54.00	10.40
7 205.63 ²⁾	1 000	H	46.30	8.40	-45.98	35.88	-1.70	44.60	54.00	9.40
18 039.31	1 000	H	36.90	12.40	-45.80	44.00	10.60	47.50	54.00	6.50
19 871.06	1 000	H	36.50	13.00	-46.70	44.90	11.20	47.70	54.00	6.30
24 563.06	1 000	V	35.10	14.70	-47.50	45.20	12.40	47.50	54.00	6.50
Above 25 000.00	Not Detected	-	-	-	-	-	-	-	-	-

NOTE 1. Factor = Cable loss + Amp gain + Antenna factor

¹⁾ Restricted band.

²⁾ Harmonic

GFSK_Middle channel (2 441 MHz)

Frequency [MHz]	Receiver Bandwidth [kHz]	Pol.	Reading [dB(µV)]	Cable Loss [dB]	Amp Gain [dB]	Antenna Factor [dB]	Factor [dB]	Result [dB(µV/m)]	Limit [dB(µV/m)]	Margin [dB]
Peak DATA. Emissions above 1 GHz										
4 880.63 ¹⁾	1 000	H	57.80	7.20	-46.16	34.76	-4.20	53.60	74.00	20.40
7 323.75 ¹⁾	1 000	H	54.40	8.48	-45.84	35.86	-1.50	52.90	74.00	21.10
14 246.25	1 000	V	44.50	12.12	-44.00	39.38	7.50	52.00	74.00	22.00
18 077.56	1 000	V	45.50	12.40	-45.80	44.00	10.60	56.10	74.00	17.90
19 832.81	1 000	V	44.10	13.00	-46.70	44.90	11.20	55.30	74.00	18.70
24 043.50	1 000	H	44.00	14.40	-47.40	44.90	11.90	55.90	74.00	18.10
Above 25 000.00	Not Detected	-	-	-	-	-	-	-	-	-
Average DATA. Emissions above 1 GHz										
4 880.63 ¹⁾	1 000	H	51.40	7.20	-46.16	34.76	-4.20	47.20	54.00	6.80
7 323.75 ¹⁾	1 000	H	47.40	8.48	-45.84	35.86	-1.50	45.90	54.00	8.10
14 246.25	1 000	V	30.90	12.12	-44.00	39.38	7.50	38.40	54.00	15.60
18 077.56	1 000	V	37.30	12.40	-45.80	44.00	10.60	47.90	54.00	6.10
19 832.81	1 000	V	36.40	13.00	-46.70	44.90	11.20	47.60	54.00	6.40
24 043.50	1 000	H	35.60	14.40	-47.40	44.90	11.90	47.50	54.00	6.50
Above 25 000.00	Not Detected	-	-	-	-	-	-	-	-	-

NOTE 1. Factor = Cable loss + Amp gain + Antenna factor

¹⁾ Harmonic

GFSK_Highest channel (2 480 MHz)

Frequency [MHz]	Receiver Bandwidth [kHz]	Pol.	Reading [dB(µV)]	Cable Loss [dB]	Amp Gain [dB]	Antenna Factor [dB]	Factor [dB]	Result [dB(µV/m)]	Limit [dB(µV/m)]	Margin [dB]
Peak DATA. Emissions above 1 GHz										
2 483.50 ¹⁾	1 000	H	60.10	2.55	-44.29	32.04	-9.70	50.40	74.00	23.60
3 198.75	1 000	V	57.00	7.28	-47.45	32.37	-7.80	49.20	74.00	24.80
4 959.38 ²⁾	1 000	H	54.60	7.25	-46.24	34.89	-4.10	50.50	74.00	23.50
7 440.00 ²⁾	1 000	H	54.50	8.55	-45.78	35.83	-1.40	53.10	74.00	20.90
18 039.31	1 000	H	45.60	12.40	-45.80	44.00	10.60	56.20	74.00	17.80
20 066.56	1 000	V	45.80	13.00	-46.70	45.10	11.40	57.20	74.00	16.80
24 576.87	1 000	V	43.10	14.70	-47.50	45.20	12.40	55.50	74.00	18.50
Above 25 000.00	Not Detected	-	-	-	-	-	-	-	-	-
Average DATA. Emissions above 1 GHz										
2 483.50 ¹⁾	1 000	H	45.30	2.55	-44.29	32.04	-9.70	35.60	54.00	18.40
3 198.75	1 000	V	37.70	7.28	-47.45	32.37	-7.80	29.90	54.00	24.10
4 959.38 ²⁾	1 000	H	48.30	7.25	-46.24	34.89	-4.10	44.20	54.00	9.80
7 440.00 ²⁾	1 000	H	47.10	8.55	-45.78	35.83	-1.40	45.70	54.00	8.30
18 039.31	1 000	H	37.10	12.40	-45.80	44.00	10.60	47.70	54.00	6.30
20 066.56	1 000	V	36.20	13.00	-46.70	45.10	11.40	47.60	54.00	6.40
24 576.87	1 000	V	35.00	14.70	-47.50	45.20	12.40	47.40	54.00	6.60
Above 25 000.00	Not Detected	-	-	-	-	-	-	-	-	-

NOTE 1. Factor = Cable loss + Amp gain + Antenna factor

¹⁾ Restricted band.

²⁾ Harmonic

8DPSK_Lowest channel (2 402 MHz)

Frequency [MHz]	Receiver Bandwidth [kHz]	Pol.	Reading [dB(µV)]	Cable Loss [dB]	Amp Gain [dB]	Antenna Factor [dB]	Factor [dB]	Result [dB(µV/m)]	Limit [dB(µV/m)]	Margin [dB]
Peak DATA. Emissions above 1 GHz										
2 376.00 ¹⁾	1 000	H	53.70	2.83	-44.54	31.91	-9.80	43.90	74.00	30.10
4 803.75 ²⁾	1 000	H	53.80	7.16	-46.09	34.63	-4.30	49.50	74.00	24.50
7 205.63 ²⁾	1 000	H	49.30	8.40	-45.98	35.88	-1.70	47.60	74.00	26.40
18 025.50	1 000	H	44.90	12.40	-45.80	44.00	10.60	55.50	74.00	18.50
19 728.69	1 000	H	44.30	12.90	-46.70	44.90	11.10	55.40	74.00	18.60
24 381.37	1 000	V	43.90	14.60	-47.60	45.10	12.10	56.00	74.00	18.00
Above 25 000.00	Not Detected	-	-	-	-	-	-	-	-	-
Average DATA. Emissions above 1 GHz										
2 376.00 ¹⁾	1 000	H	41.80	2.83	-44.54	31.91	-9.80	32.00	54.00	22.00
4 803.75 ²⁾	1 000	H	44.30	7.16	-46.09	34.63	-4.30	40.00	54.00	14.00
7 205.63 ²⁾	1 000	H	40.30	8.40	-45.98	35.88	-1.70	38.60	54.00	15.40
18 025.50	1 000	H	37.20	12.40	-45.80	44.00	10.60	47.80	54.00	6.20
19 728.69	1 000	H	36.70	12.90	-46.70	44.90	11.10	47.80	54.00	6.20
24 381.37	1 000	V	35.40	14.60	-47.60	45.10	12.10	47.50	54.00	6.50
Above 25 000.00	Not Detected	-	-	-	-	-	-	-	-	-

NOTE 1. Factor = Cable loss + Amp gain + Antenna factor

¹⁾ Restricted band.

²⁾ Harmonic

8DPSK_Middle channel (2 441 MHz)

Frequency [MHz]	Receiver Bandwidth [kHz]	Pol.	Reading [dB(µV)]	Cable Loss [dB]	Amp Gain [dB]	Antenna Factor [dB]	Factor [dB]	Result [dB(µV/m)]	Limit [dB(µV/m)]	Margin [dB]
Peak DATA. Emissions above 1 GHz										
4 880.63 ¹⁾	1 000	H	53.80	7.20	-46.16	34.76	-4.20	49.60	74.00	24.40
7 323.75 ¹⁾	1 000	H	49.00	8.48	-45.84	35.86	-1.50	47.50	74.00	26.50
14 145.00	1 000	H	44.40	12.07	-43.72	39.35	7.70	52.10	74.00	21.90
18 064.81	1 000	V	45.10	12.40	-45.80	44.00	10.60	55.70	74.00	18.30
19 728.69	1 000	H	45.60	12.90	-46.70	44.90	11.10	56.70	74.00	17.30
24 576.87	1 000	V	43.60	14.70	-47.50	45.20	12.40	56.00	74.00	18.00
Above 25 000.00	Not Detected	-	-	-	-	-	-	-	-	-
Average DATA. Emissions above 1 GHz										
4 880.63 ¹⁾	1 000	H	43.80	7.20	-46.16	34.76	-4.20	39.60	54.00	14.40
7 323.75 ¹⁾	1 000	H	41.20	8.48	-45.84	35.86	-1.50	39.70	54.00	14.30
14 145.00	1 000	H	31.10	12.07	-43.72	39.35	7.70	38.80	54.00	15.20
18 064.81	1 000	V	37.20	12.40	-45.80	44.00	10.60	47.80	54.00	6.20
19 728.69	1 000	H	36.60	12.90	-46.70	44.90	11.10	47.70	54.00	6.30
24 576.87	1 000	V	35.10	14.70	-47.50	45.20	12.40	47.50	54.00	6.50
Above 25 000.00	Not Detected	-	-	-	-	-	-	-	-	-

NOTE 1. Factor = Cable loss + Amp gain + Antenna factor

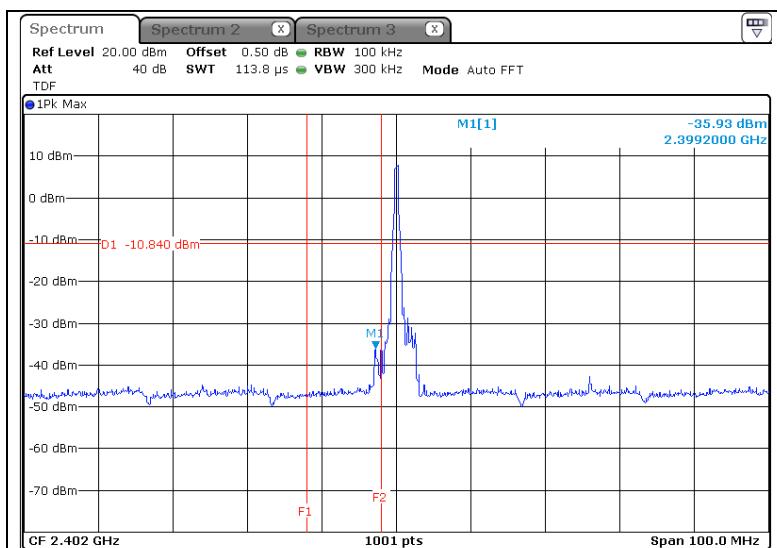
¹⁾ Harmonic

8DPSK_Highest channel (2 480 MHz)

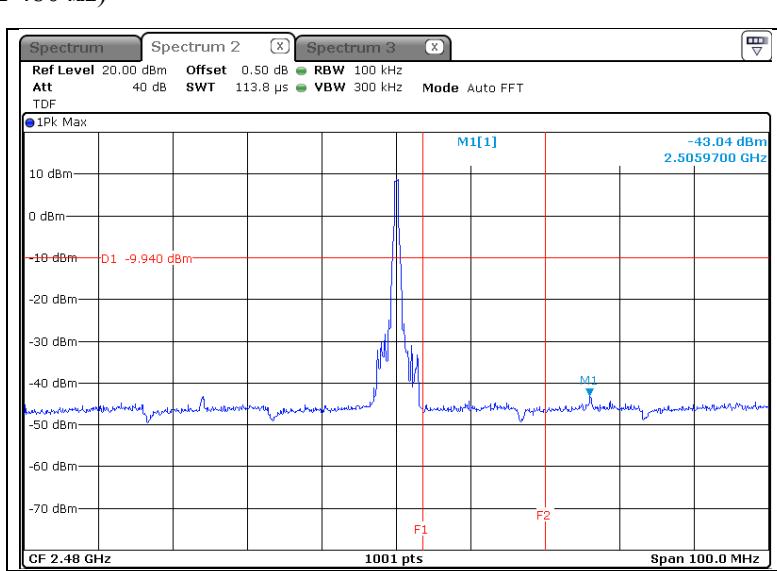
Frequency [MHz]	Receiver Bandwidth [kHz]	Pol.	Reading [dB(µV)]	Cable Loss [dB]	Amp Gain [dB]	Antenna Factor [dB]	Factor [dB]	Result [dB(µV/m)]	Limit [dB(µV/m)]	Margin [dB]
Peak DATA. Emissions above 1 GHz										
2 483.50 ¹⁾	1 000	H	57.50	2.55	-44.29	32.04	-9.70	47.80	74.00	26.20
4 959.38 ²⁾	1 000	H	54.50	7.25	-46.24	34.89	-4.10	50.40	74.00	23.60
7 438.13 ²⁾	1 000	H	47.60	8.55	-45.78	35.83	-1.40	46.20	74.00	27.80
18 052.06	1 000	H	45.10	12.40	-45.80	44.00	10.60	55.70	74.00	18.30
19 780.75	1 000	H	45.10	13.00	-46.70	44.90	11.20	56.30	74.00	17.70
26 408.62	1 000	V	43.00	15.00	-47.00	45.90	13.90	56.90	74.00	17.10
Above 27 000.00	Not Detected	-	-	-	-	-	-	-	-	-
Average DATA. Emissions above 1 GHz										
2 483.50 ¹⁾	1 000	H	42.70	2.55	-44.29	32.04	-9.70	33.00	54.00	21.00
4 959.38 ²⁾	1 000	H	44.90	7.25	-46.24	34.89	-4.10	40.80	54.00	13.20
7 438.13 ²⁾	1 000	H	38.90	8.55	-45.78	35.83	-1.40	37.50	54.00	16.50
18 052.06	1 000	H	37.30	12.40	-45.80	44.00	10.60	47.90	54.00	6.10
19 780.75	1 000	H	36.50	13.00	-46.70	44.90	11.20	47.70	54.00	6.30
26 408.62	1 000	V	33.70	15.00	-47.00	45.90	13.90	47.60	54.00	6.40
Above 27 000.00	Not Detected	-	-	-	-	-	-	-	-	-

NOTE 1. Factor = Cable loss + Amp gain + Antenna factor

¹⁾ Restricted band.

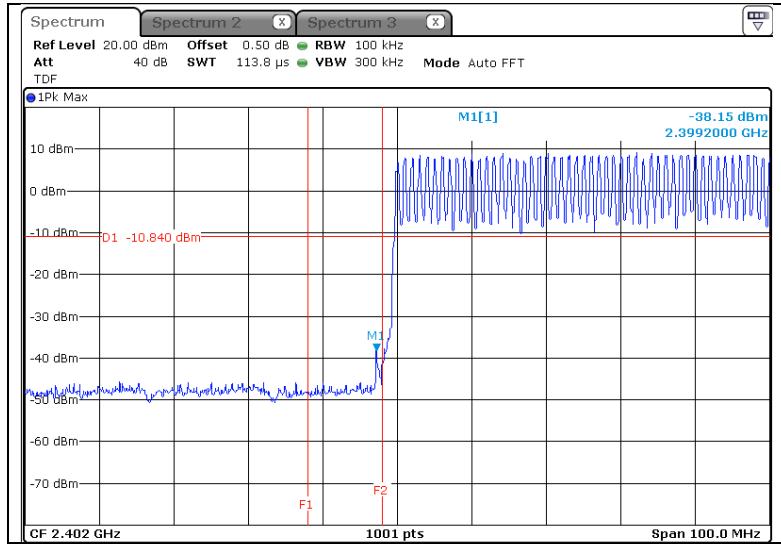

²⁾ Harmonic

5.7.4 Test Plot

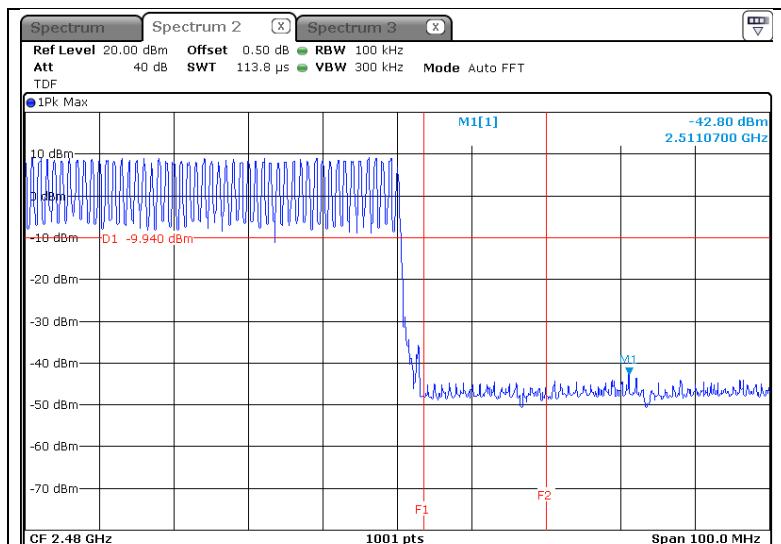

Figure 5. Plot of the Band Edge (Conducted)

- GFSK (Without hopping)

Lowest Channel (2 402 MHz)

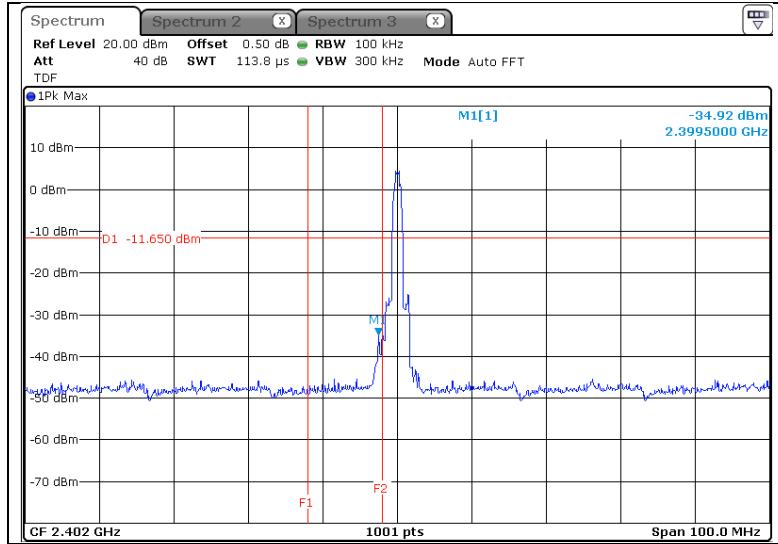


Highest Channel (2 480 MHz)

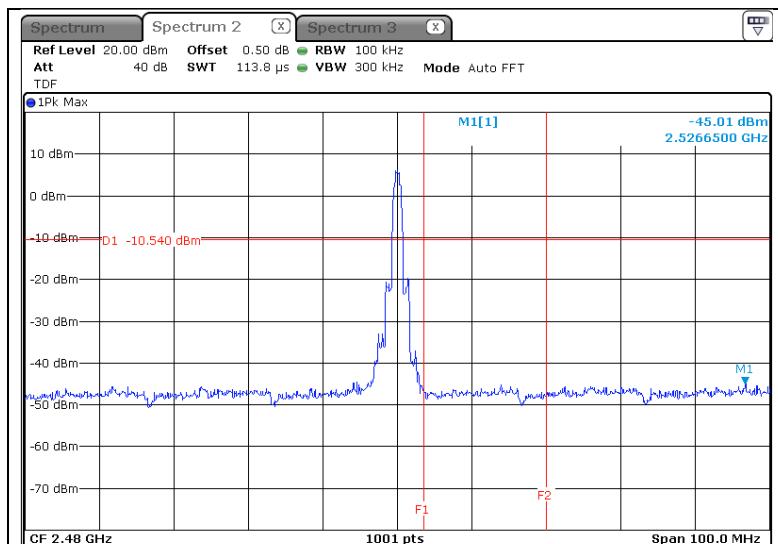

- GFSK (With hopping)

Lowest Channel (2 402 MHz)

- Result of 2 400.0 MHz (F1 ~ F2: 2 390 MHz ~ 2 400 MHz)

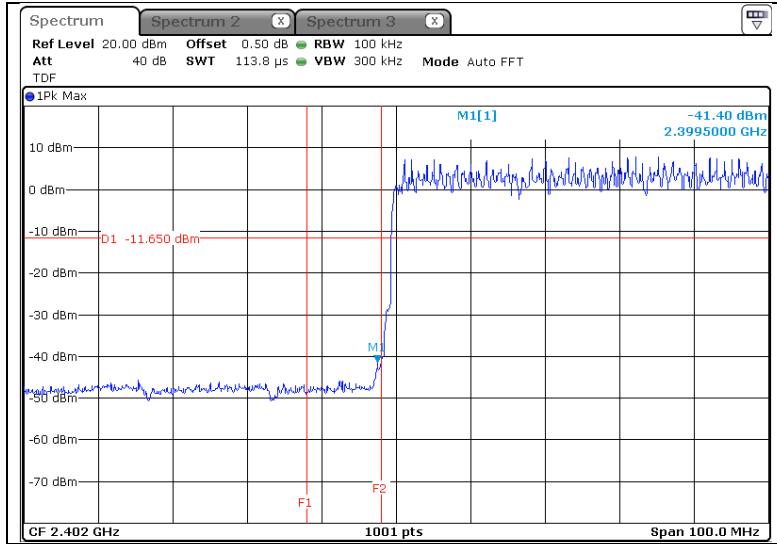

Highest Channel (2 480 MHz)

- Result of 2 483.5 MHz (F1 ~ F2: 2 483.5 MHz ~ 2 500 MHz)

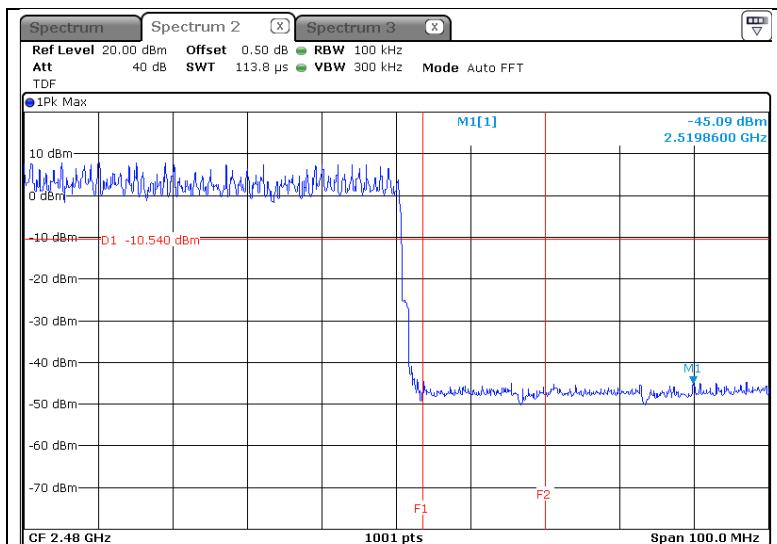

- 8DPSK (Without hopping)

Lowest Channel (2 402 MHz)

- Result of 2 400.0 MHz (F1 ~ F2: 2 390 MHz ~ 2 400 MHz)


Highest Channel (2 480 MHz)

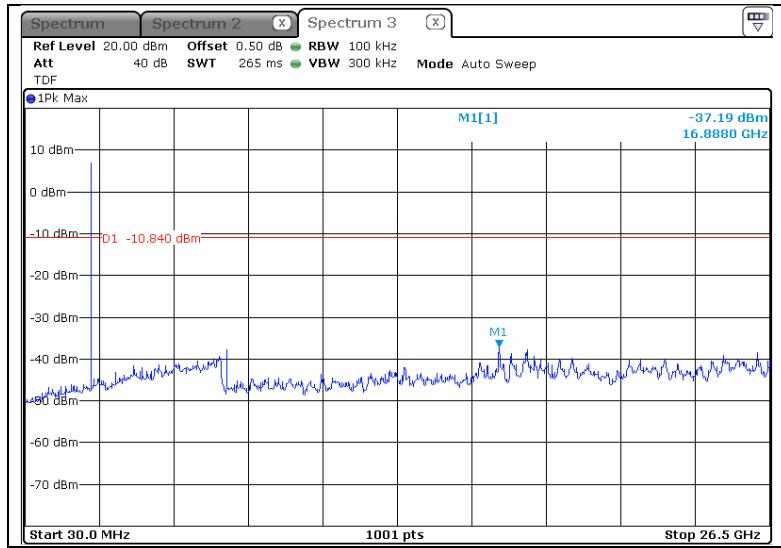
- Result of 2 483.5 MHz (F1 ~ F2: 2 483.5 MHz ~ 2 500 MHz)


- 8DPSK (With hopping)

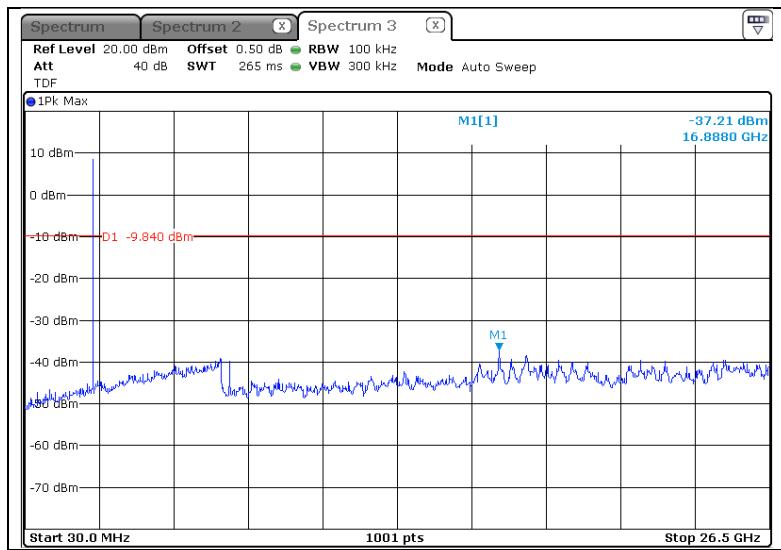
Lowest Channel (2 402 MHz)

- Result of 2 400.0 MHz (F1 ~ F2: 2 390 MHz ~ 2 400 MHz)

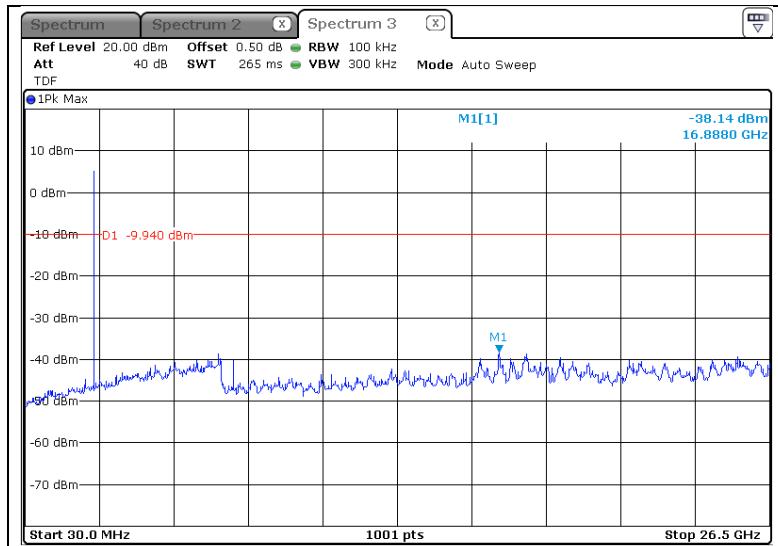
Highest Channel (2 480 MHz)



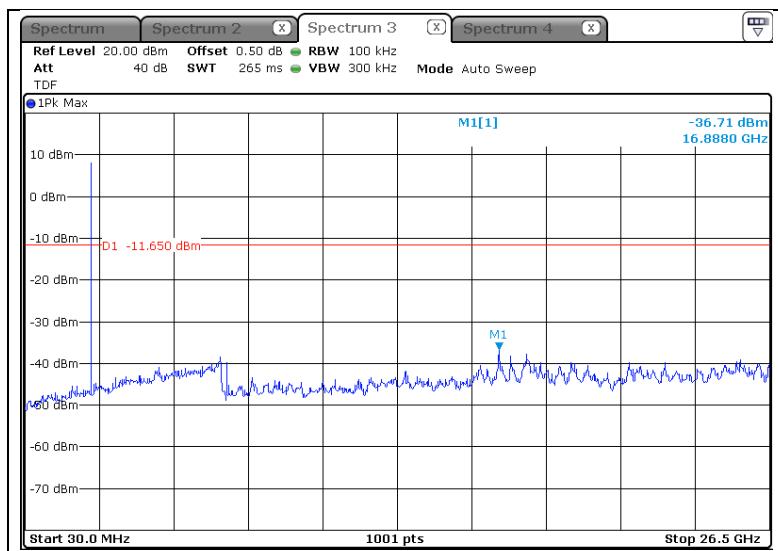
- Result of 2 483.5 MHz (F1 ~ F2: 2 483.5 MHz ~ 2 500 MHz)


Figure 6. Plot of the Spurious RF conducted emissions

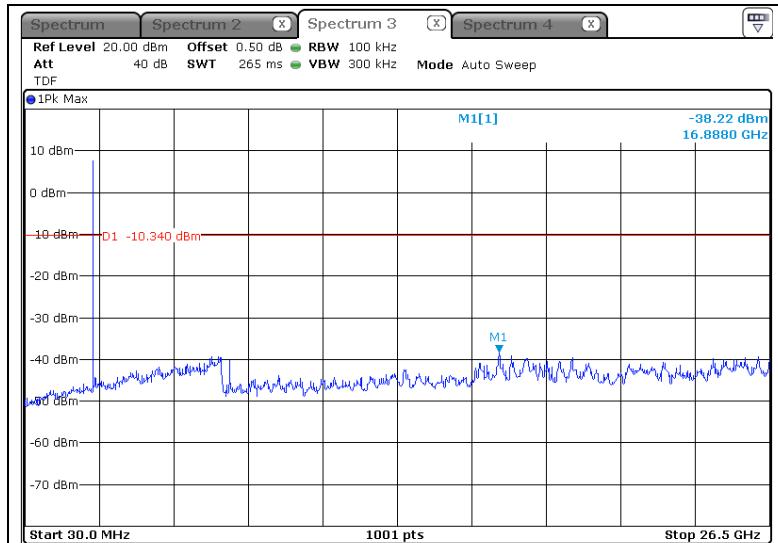
- GFSK


Lowest Channel (2 402 MHz)

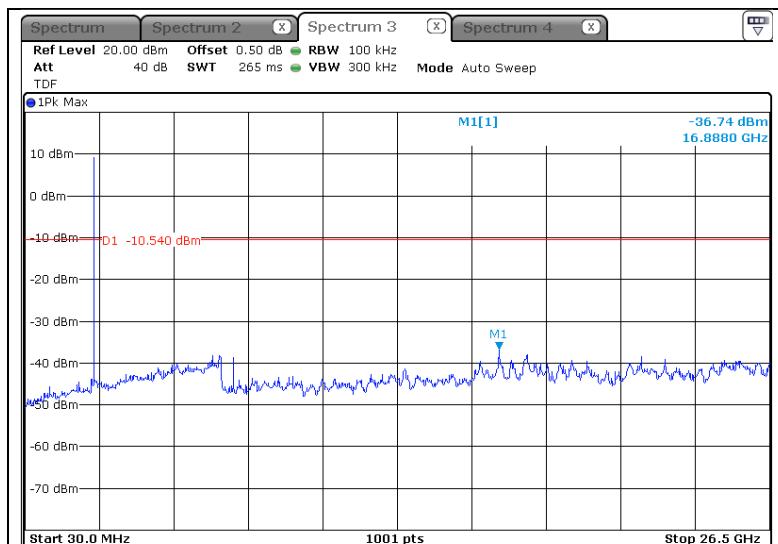
Middle Channel (2 441 MHz)



Highest Channel (2 480 MHz)



- 8DPSK


Lowest Channel (2 402 MHz)

Middle Channel (2 441 MHz)

Highest Channel (2 480 MHz)

5.8 Conducted Emission

5.8.1 Regulation

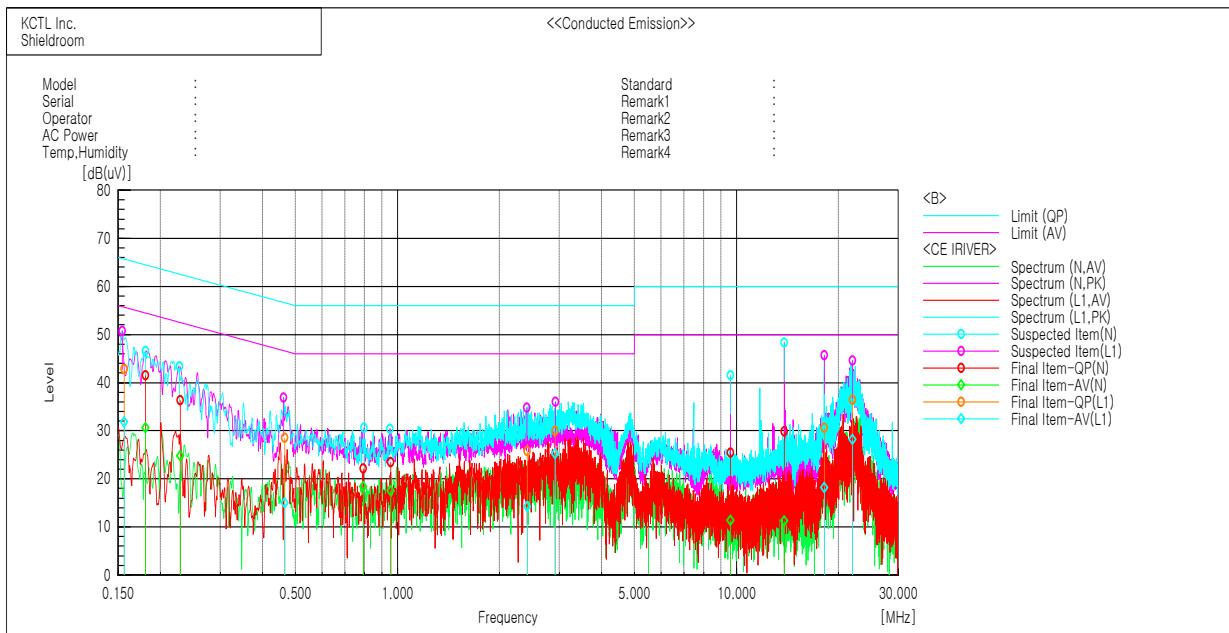
According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15 – 0.5	66 to 56 *	56 to 46 *
0.5 – 5	56	46
5 – 30	60	50

* Decreases with the logarithm of the frequency.

According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

5.8.2 Measurement Procedure


- 1) The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2) Each current-carrying conductor of the EUT power cord was individually connected through a 50 Ω /50 μ H LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3) Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4) The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
- 5) The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

5.8.3 Test Result

- Complied

Figure 8. plot of Conducted Emission

- Conducted worst-case data : GFSK_Middle Channel (2 441 MHz)

Final Result

--- N Phase ---

No.	Frequency [MHz]	Reading QP [dB(uV)]	Reading CAV [dB(uV)]	c.f	Result QP [dB]	Result CAV [dB(uV)]	Limit QP [dB(uV)]	Limit AV [dB(uV)]	Margin QP [dB]	Margin CAV [dB]
1	0.18093	31.6	20.7	9.9	41.5	30.6	64.4	54.4	22.9	23.8
2	0.22902	26.6	15.0	9.7	36.3	24.7	62.5	52.5	26.2	27.8
3	0.79349	12.3	8.6	9.8	22.1	18.4	56.0	46.0	33.9	27.6
4	0.95484	13.6	7.7	9.8	23.4	17.5	56.0	46.0	32.6	28.5
5	9.60905	15.5	1.4	9.9	25.4	11.3	60.0	50.0	34.6	38.7
6	13.83427	19.9	1.3	9.9	29.8	11.2	60.0	50.0	30.2	38.8

--- L1 Phase ---

No.	Frequency [MHz]	Reading QP [dB(uV)]	Reading CAV [dB(uV)]	c.f	Result QP [dB]	Result CAV [dB(uV)]	Limit QP [dB(uV)]	Limit AV [dB(uV)]	Margin QP [dB]	Margin CAV [dB]
1	0.15647	33.0	22.0	9.8	42.8	31.8	65.6	55.6	22.8	23.8
2	0.46496	18.6	5.1	9.9	28.5	15.0	56.6	46.6	28.1	31.6
3	2.41163	15.9	4.3	9.8	25.7	14.1	56.0	46.0	30.3	31.9
4	2.92075	20.2	15.4	9.8	30.0	25.2	56.0	46.0	26.0	20.8
5	18.13539	20.7	8.2	9.9	30.6	18.1	60.0	50.0	29.4	31.9
6	21.98098	26.5	18.3	9.9	36.4	28.2	60.0	50.0	23.6	21.8

6. Test equipment used for test

	Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
■	Spectrum Analyzer	R & S	FSV40	100989	17.01.07
■	DC Power Supply	Agilent	E3632A	KR75304571	17.07.07
■	Signal Generator	R & S	SMR40	100007	17.06.02
■	Wideband Power Sensor	R & S	NRP-Z81	100677	17.01.08
■	EMI TEST RECEIVER	R & S	ESCI	100710	17.02.26
■	Bi-Log Antenna	SCHWARZBECK	VULB 9163	552	18.06.27
■	Amplifier	SONOMA INSTRUMENT	310N	186280	17.04.07
■	Attenuator	SCHWARZBECK	DGA9552N	BU2404	17.04.08
■	Horn antenna	ETS.lindgren	3116	00086635	17.05.03
■	Double Ridged Horn Antenna	ETS.lindgren	3117-PA	OO161083	16.11.12
■	AMPLIFIER	L-3 Narda-MITEQ	JS44-18004000-33-8P	2000997	17.08.23
■	LOOP Antenna	R & S	HFH2-Z2	100355	18.03.03
■	Antenna Mast	MATURO	AM4.0	079/3440509	-
■	Turn Table	MATURO	CO2000-SOFT	-	-
■	Highpass Filter	Wainwright InstrumentsGmbH	WHKX3.0/18G-12SS	44	17.02.01
■	Vector Signal Generator	R & S	SMBV100A	257566	17.01.07
■	Cable Assembly	JUNFLON	MWX221-DMSDMS	J1012214	-