477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com

Test Report

Product Name: 4LED pager (Receiver)

FCCID: QBT-LT2009

Model No.: LT2009

Applicant:
Lee Technology Korea Co., Ltd.

3rd FL #499-2, Sang 3-dong, Wonmi-gu, Bucheon-city, Kyungki-do, KOREA

Date Receipt : 01/20/2009

Date Tested: 01/20/2009

Date Issued: 01/30/2009

APPLICANT: Lee Technology Korea Co., Ltd.

477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com

APPLICANT: Lee Technology Korea Co., Ltd.

FCCID: QBT-LT2009

TABLE OF CONTENTS FOR A RECEIVER REPORT

PAGE 1-2..... TEST EQUIPMENT LIST

PAGE 3..... TEST PROCEDURE

PAGE 4-6..... RADIATED EMISSIONS TEST DATA

PAGE 7-9..... POWERLINE CONDUCTED EMISSIONS

APPLICANT: Lee Technology Korea Co., Ltd.

THRU Lab & Engineering.
477-6, Hager-Ri, Yoju-Up, Yoju-Gun
Kyunggi-Do,469-803, Korea T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com

EMC Equipment List

No	Description	Manufacturer	Model No.	Serial No.	Due Cal.	Used	
1	Test Receiver	Rohde & Schwarz	ESHS 10	862970/018	2009.05.13	\boxtimes	
2	Test Receiver	Rohde & Schwarz	Schwarz ESVS 10		2009.06.20	\boxtimes	
3	Spectrum Analyzer	Hewlett Packard	8566B	2311A02394	2009.06.10	\boxtimes	
4	Spectrum Analyzer	Advantest Corp.	R3261C	61720208	2009.06.10		
	Spectrum Analyzer	Advantest Corp.	R3273	101003536	2009.09.05		
5	Modulation Analyzer	Hewlett Packard	8901B	3438A05094	2009.05.29		
6	Audio analyzer	Hewlett Packard	8903B	3011A12915	2009.05.29		
7	Preamplifer	Hewlett Packard	8447F	2805A02570	2009.05.26		
8	Preamplifer	A.H. Systems	PAM-0118	164	2009.04.27		
9	Signal Generator	Hewlett Packard	8673D	2708A00448	2009.06.10		
10	Power Meter	Hewlett Packard	437B	312U24787	2009.04.29		
11	Power Sensor	Hewlett Packard	8482B	3318A06943	2009.06.29		
12	Loop Antenna	Rohde & Schwarz	HFH2-Z2.335.4711.52	826532/006	2009.01.31		
13	Dipole Antenna	Rohde & Schwarz	VHAP	574	2010.07.07		
14	Dipole Antenna	Rohde & Schwarz	VHAP	575	2010.07.17		
15	Dipole Antenna	Rohde & Schwarz	UHAP	546	2010.07.07		
16	Dipole Antenna	Rohde & Schwarz	UHAP	547	2010.07.07		
17	Biconical Antenna	Eaton Corp.	94455-1	0977	2010.07.03		
18	Biconical Antenna	EMCO	3104C	9111-2468	2010.07.03	\boxtimes	
19	Log Periodic Antenna	EMCO	3146	2051	2010.06.05	\boxtimes	
20	Log Periodic Antenna	EMCO	3146	8901-2320	2010.07.03		
21	Horn Antenna	A.H. Systems	SAS-571	414	2009.03.17		
22	LISN	EMCO	3825/2	9111-1912	2008.12.12		
23	LISN	Kyoritsu	KNW-242	8-923-2	2009.05.23		

APPLICANT: Lee Technology Korea Co., Ltd.

THRU Lab & Engineering. 477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea

T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com

24	Waveform Generator	Hewlett Packard	33120A	US34001190	2009.05.29	
25	Digital Oscilloscope	Tektronix	TDS 340A	B012287	2009.06.10	
26	Dummy Load	Bird Electronics	8251	11511	2009.02.02	

APPLICANT: Lee Technology Korea Co., Ltd.

477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of Thru lab & Engineering. Shielded interface cables were used in all cases except for cables connecting to the telephone line and the power cords. A test program was run which filled the screen with H's and also with the modem dialing out. Peripherals were turned on and operating.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2003 using a Rohde & Schwarz EMI Test Receiver ESVS10. The bandwidth of the test receiver was 120 kHz with an appropriate sweep speed. The test receiver was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 120 kHz. The ambient temperature of the UUT was 24°C with a humidity of 30%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the test receiver (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz) METER READING + ACF = FS

33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The UUT was placed in a manner that was representative of the way the EUT would be used. If the EUT had any peripherals, they were attached and placed in a similar manner. The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes. In addition, in the event of the test being for a computer set up, the modem and printer positions were swapped and cables were manipulated as much as possible. The monitor was not moved, as that would not represent a typical situation configuration.

The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSIC63.4-2003 with the EUT 40 cm from the vertical ground wall.

APPLICANT: Lee Technology Korea Co., Ltd.

477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com

APPLICANT: Lee Technology Korea Co., Ltd.

FCCID: QBT-LT2009

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NUMBER: 15.109,15.33(b)(3)

REQUIREMENTS: 30 to 88 MHz: 40.0 dBuV/M @ 3 METERS

88 to 216 MHz: 43.5 dBuV/M 216 to 960 MHz: 46.0 dBuV/M ABOVE 960 MHz: 54.0 dBuV/M

TEST RESULTS: A search was made of the spectrum from 30 to 1000 MHz and the measurements indicate that the unit DOES meet the FCC requirements.

TEST DATA:

* Tuning Frequency: 450.0000MHz

No	Emission Frequency (MHz)	Meter Reading dBuV/m	Ant. Polaritry	Correction Factor dB	Cable Loss dB	Field Strength (dBuv/m)	Margin (dBuv)	Limit (dBuv/m)
1	36.83	11.7	H	12.9	0.8	25.4	-14.6	40.0
2	39.45	14.5	н	12.8	0.8	28.1	-11.9	40.0
3	42.08	9.4	v	12.4	0.9	22.7	-17.3	40.0
4	71.30	14.2	Н	5.8	1.2	21.3	-18.7	40.0
5	212.50	6.9	v	10.8	2.7	20.3	-23.2	43.5
6	448.00	7.8	Н	16.4	4.5	28.7	-17.3	46.0
7	487.00	8.1	v	18.7	4.8	31.7	-14.3	46.0
8	513.50	9.3	Н	17.9	5.0	32.2	-13.8	46.0
9	860.00	12.0	Н	23.3	7.1	42.4	-3.6	46.0
10	920.00	8.7	Н	23.2	7.4	39.3	-6.7	46.0

SAMPLE CALCULATION: FSdBuV/m = MR(dBuV) + ACFdB.

TEST PROCEDURE: ANSI STANDARD C63.4-2003 using a Rohde & Schwarz EMI Test Receiver ESVS10, and an appropriate antenna – see the test equipment list. The bandwidth of test receiver was 120 kHz with an appropriate sweep speed. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported.

PERFORMED BY: Kyoung Moon Choi DATE: 01/20/2009

APPLICANT: Lee Technology Korea Co., Ltd.

477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com

APPLICANT: Lee Technology Korea Co., Ltd.

FCCID: QBT-LT2009

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NUMBER: 15.109,15.33(b)(3)

REQUIREMENTS: 30 to 88 MHz: 40.0 dBuV/M @ 3 METERS

88 to 216 MHz: 43.5 dBuV/M 216 to 960 MHz: 46.0 dBuV/M ABOVE 960 MHz: 54.0 dBuV/M

TEST RESULTS: A search was made of the spectrum from 30 to 1000 MHz and the measurements indicate that the unit DOES meet the FCC requirements.

TEST DATA:

* Tuning Frequency: 457.5750MHz

No	Emission Frequency (MHz)	Meter Reading dBuV/m	Ant. Polaritry	Correction Factor dB	Cable Loss dB	Field Strength (dBuv/m)	Margin (dBuv)	Limit (dBuv/m)
1	31.58	8.9	v	13.1	0.7	22.6	-17.4	40.0
2	42.08	9.4	н	12.4	0.9	22.7	-17.3	40.0
3	89.85	7.6	v	10.4	1.5	19.5	-20.5	40.0
4	260.00	7.3	н	13.0	3.2	23.5	-22.5	46.0
5	299.00	8.7	Н	16.3	3.4	28.4	-17.6	46.0
6	432.00	8.1	v	15.9	4.4	28.5	-17.5	46.0
7	490.00	8.7	н	18.6	4.8	32.1	-13.9	46.0
8	516.30	7.5	v	17.8	5.0	30.4	-15.6	46.0
9	628.80	14.6	Н	20.6	5.7	41.0	-5.0	46.0
10	910.00	8.8	н	23.3	7.4	39.5	-6.5	46.0

SAMPLE CALCULATION: FSdBuV/m = MR(dBuV) + ACFdB.

TEST PROCEDURE: ANSI STANDARD C63.4-2003 using a Rohde & Schwarz EMI Test Receiver ESVS10, and an appropriate antenna – see the test equipment list. The bandwidth of test receiver was 120 kHz with an appropriate sweep speed. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported.

PERFORMED BY: Kyoung Moon Choi DATE: 01/20/2009

APPLICANT: Lee Technology Korea Co., Ltd.

477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com

APPLICANT: Lee Technology Korea Co., Ltd.

FCCID: QBT-LT2009

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NUMBER: 15.109,15.33(b)(3)

REQUIREMENTS: 30 to 88 MHz: 40.0 dBuV/M @ 3 METERS

88 to 216 MHz: 43.5 dBuV/M 216 to 960 MHz: 46.0 dBuV/M ABOVE 960 MHz: 54.0 dBuV/M

TEST RESULTS: A search was made of the spectrum from 30 to 1000 MHz and the measurements indicate that the unit DOES meet the FCC requirements.

TEST DATA:

* Tuning Frequency: 470.000MHz

No	Emission Frequency (MHz)	Meter Reading dBuV/m	Ant. Polaritry	Correction Factor dB	Cable Loss dB	Field Strength (dBuv/m)	Margin (dBuv)	Limit (dBuv/m)
1	36.80	8.7	Н	12.9	0.8	22.4	-17.6	40.0
2	89.90	11.2	v	10.4	1.5	23.1	-16.9	40.0
3	186.80	6.6	Н	13.9	2.4	22.9	-20.6	43.5
4	234.60	6.8	н	11.1	2.9	20.8	-25.2	46.0
5	239.00	7.1	v	11.3	3.0	21.4	-24.6	46.0
6	287.00	8.9	v	17.6	3.3	29.9	-16.1	46.0
7	430.30	8.0	н	15.9	4.4	28.3	-17.7	46.0
8	500.00	7.3	Н	18.2	4.9	30.4	-15.6	46.0
9	720.00	8.7	v	21.3	6.3	36.3	-9.7	46.0
10	924.00	8.8	Н	23.2	7.4	39.3	-6.7	46.0

SAMPLE CALCULATION: FSdBuV/m = MR(dBuV) + ACFdB.

TEST PROCEDURE: ANSI STANDARD C63.4-2003 using a Rohde & Schwarz EMI Test Receiver ESVS10, and an appropriate antenna – see the test equipment list. The bandwidth of test receiver was 120 kHz with an appropriate sweep speed. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported.

PERFORMED BY: Kyoung Moon Choi DATE: 01/20/2009

APPLICANT: Lee Technology Korea Co., Ltd.

477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com

APPLICANT: Lee Technology Korea Co., Ltd.

MODEL #: QBT-LT2009

NAME OF TEST: POWER LINE CONDUCTED INTERFERENCE

RULES PART NO.: 15.107

REQUIREMENTS: QUASI-PEAK AVERAGE

.15 - 0.5 MHz 66-56 dBuV 56-46 dBuV 0.5 - 5.0 56 46 5.0 - 30. 60 50

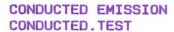
TEST PROCEDURE: ANSI STANDARD C63.4-2003. The spectrum was scanned

from .15 to 30 MHz.

TEST DATA:

THE HIGHEST EMISSION READ FOR LINE 1 WAS 33.6dBuV @ 0.159MHz(Quasi-Peak)

THE HIGHEST EMISSION READ FOR LINE 2 WAS 30.8dBuV @ 0.177MHz(Quasi-Peak)

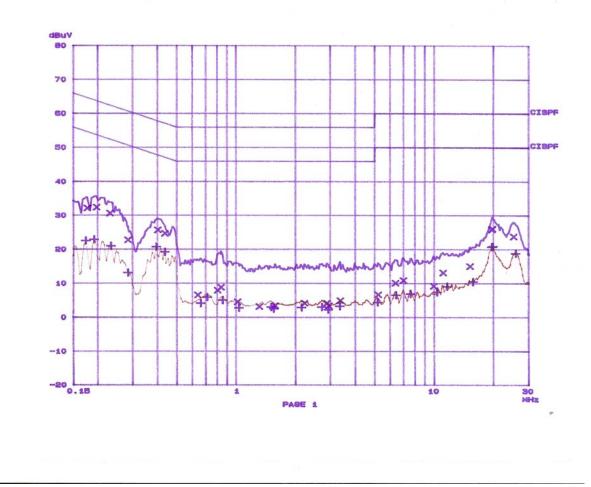

THE GRAPHS ON THE FOLLOWING PAGE REPRESENT THE EMISSIONS TAKEN FOR THIS DEVICE.

TEST RESULTS: Both lines were observed. The measurements indicate that the unit DOES appear to meet the FCC requirements for this class of equipment.

PERFORMED BY: Kyoung Moon Choi DATE: 01/20/2009

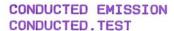
APPLICANT: Lee Technology Korea Co., Ltd.

477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com Line1(H)



19. Jan 09 28: 05

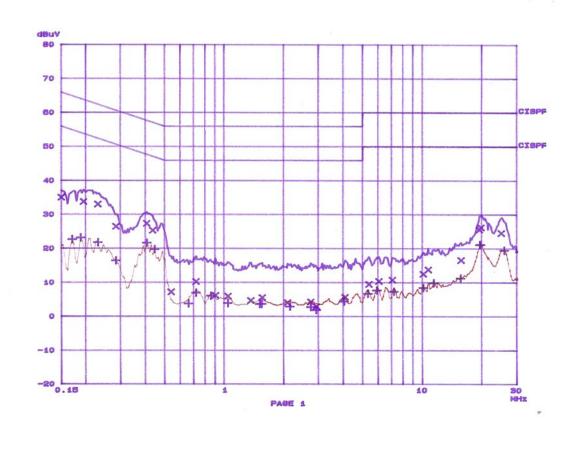
EUT: PAGER Henuf: LEETE Op Cond: LINE: Operator: THRU


Final Measurement: x GP / + AV Meas Time: :

Subranges: 25 Acc Margin: 50di

APPLICANT: Lee Technology Korea Co., Ltd.

477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea T82-31-883-5092/F82-31-883-5169 email thrukang@paran.com Line2(N)



19. Jan 09 23: 27

EUT: PAGER
Menuf: LEETEN
Op Cond: LINE2
Operator: THRU
Test Spec: FN22

Final Measurement: x GP / + AV

Meas Time: 1 s Subranges: 25 Acc Margin: 50ds

APPLICANT: Lee Technology Korea Co., Ltd.