

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C (15.247) DTS Specifications for an Intentional Radiator on the Aruba Networks Model: Aruba 52

FCC ID: Q9DARUBA52

GRANTEE: Aruba Networks

> 180 Great Oaks San Jose, CA 95119

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: June 20, 2003

FINAL TEST DATE: June 10 and June 11, 2003

AUTHORIZED SIGNATORY:

Mark Briggs

Director of Engineering

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model:

Aruba 52

Manufacturer:

Aruba Networks 180 Great Oaks San Jose, CA 95119

Tested to applicable standards:

RSS-210, Issue 5, November 2001 (Low Power License-Exempt Radiocommunication Devices)

FCC Part 15.247 (DTS)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV2** Dated August 12, 2001 Departmental Acknowledgement Number: IC2845 **SV4** Dated July 19, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 5); and that the equipment performed in accordance with the data submitted in this report.

Signature

Name Mark Briggs

Title Company Address Director of Engineering Elliott Laboratories Inc. 684 W. Maude Ave

Mark Brigg

Sunnyvale, CA 94086

USA

Date: June 20, 2003

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R51620 Page 2 of 18 Pages

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	5
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL OTHER EUT DETAILS. ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS. EUT OPERATION DURING TESTING. ANTENNA REQUIREMENTS	
TEST SITE	9
GENERAL INFORMATIONCONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION	10
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) POWER METER FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	
TEST PROCEDURES	12
EUT AND CABLE PLACEMENTCONDUCTED EMISSIONSRADIATED EMISSIONSCONDUCTED EMISSIONS FROM ANTENNA PORT	12
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	14
FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS SAMPLE CALCULATIONS - RADIATED EMISSIONS EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Data Log Sheets	2

SCOPE

An electromagnetic emissions test has been performed on the Aruba Networks model Aruba 52 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators and RSS-210 Issue 5 for licence-exempt low power devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Aruba Networks model Aruba 52 and therefore apply only to the tested sample. The sample was selected and prepared by Loren Vorreiter of Aruba Networks

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules and RSS-210 Issue 5 for license-exempt low power devices for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

File: R51620 Page 4 of 18 Pages

SUMMARY OF RESULTS

FCC Part 15	RSS 210	Description	Measured Value	Comments	Result
Section 15.247(a)	Section 6.2.2(o)(b)	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	6.2.2(o)(b)	6dB Bandwidth (802.11B)	13.00 MHz	Minimum allowed is 500kHz	Complies
15.247 (a) (2)	6.2.2(o)(b)	6dB Bandwidth (802.11G)	12.97 MHz	Minimum allowed is 500kHz	Complies
	RSP 100	99% Bandwidth	16.17 MHz	For information only	Complies
15.247 (b) (3) 15.247 (b) (4) (i)	6.2.2(o)(b)	Output Power, 2400 - 2483.5 MHz	19.5 dBm (0.089 Watts) EIRP = 0.126 W	Point-to-point applications: Maximum permitted is 1Watt, reduced by 1dB for every .3dB that the antenna gain exceeds 6dBi	Complies
15.247(d)	6.2.2(o)(b)	Power Spectral Density (802.11b mode)	6.83 dBm / MHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(d)	6.2.2(o)(b)	Power Spectral Density (802.11g mode)	2.88 dBm / MHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	6.2.2(o)(e1)	Antenna Port Spurious Emissions – 30MHz – 25 GHz	All spurious emissions < - 20dBc	All spurious emissions < - 20dBc.	Complies
15.247(c) / 15.209		Radiated Spurious Emissions – 30MHz – 25 GHz	53.5 dBuV/m @ 2483.5 MHz (-0.5 dB)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.207		AC Conducted Emissions	41.5 dBuV @ 0.265 MHz (-9.8 dB)	-	Complies
	6.6	AC Conducted Emissions	41.5 dBuV @ 0.265 MHz (-6.5 dB)	-	Complies
15.247 (b) (5)		RF Exposure Requirements	MPE Calculation	-	
15.203		RF Connector	Connector is inside device. User will not have access to connectors	Unique antenna connection required for user-installed applications.	Complies

EIRP calculated using antenna gain of dBi (1.5) for the highest EIRP point-to-point system.

File: R51620 Page 5 of 18 Pages

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

File: R51620 Page 6 of 18 Pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Aruba Networks model Aruba 52 is an Accesspoint Radio, which is designed to operate in home or office network environments. Normally, the EUT would be tabletop during operation. The EUT was treated as tabletop equipment during testing to simulate the end user environment.

The sample was received on June 10, 2003 and tested on June 10 and June 11, 2003. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Aruba 52	Aruba 52	Accesspoint Radio	•	TBD

OTHER EUT DETAILS

List any items from the test log.

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 25 cm wide by 15.5 cm deep by 5 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Compal	ACY131	Laptop	NZB02084015T14043	DoC
Hawking	PNY09TP	Hub	15B4000276	N/A
Keytronics	H2002	Mouse	24284	DoC

No equipment was used as remote support equipment for emissions testing:

File: R51620 Page 7 of 18 Pages

Test Report
Report Date: June 20, 2003

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

		Cable(s)				
Port	Connected To	Description	Shielded or Unshielded	Length(m)		
RS-232	Laptop	Multiwire	Shielded	2		
Ethernet	Hub	Cat 5	Unshielded	1		

EUT OPERATION DURING TESTING

ANTENNA REQUIREMENTS

The antenna for the device is an integral antenna as the connectors are located inside the device and there is no users need to open device, which meets the requirements of 15.203.

File: R51620 Page 8 of 18 Pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on June 10 and June 11, 2003at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

File: R51620 Page 9 of 18 Pages

Test Report
Report Date: June 20, 2003

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R51620 Page 10 of 18 Pages

POWER METER

A power meter and peak power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R51620 Page 11 of 18 Pages

Test Report
Report Date: June 20, 2003

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

File: R51620 Page 12 of 18 Pages

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

File: R51620 Page 13 of 18 Pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

File: R51620 Page 14 of 18 Pages

FCC 15.407 (a) and RSS 210 (o) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watts (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watts (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watts (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

RSS 210 (o) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS

T limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands detailed in Part 15.205 and for all spurious emissions from the receiver are:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level.

File: R51620 Page 15 of 18 Pages

FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

File: R51620 Page 16 of 18 Pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

File: R51620 Page 17 of 18 Pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_{m} = Measurement Distance in meters

 D_S = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R51620 Page 18 of 18 Pages

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R51620 Exhibit Page 1 of 2

Conducted and Radiated Emissions, 30-Jun-03

Engineer: jmartinez

<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS	304	12	6/5/2003	6/5/2004
Elliott Laboratories	LISN 2 x (Solar 8028 LISN + 6512 Caps)	LISN-5,Support	379	12	8/20/2002	8/20/2003
EMCO	Biconical Antenna, 30-300 MHz	773	801	12	5/13/2003	3/18/2004
EMCO	Log Periodic Antenna, 0.2-1 GHz	1321	1294	12	4/12/2003	3/31/2004
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	812	12	1/10/2003	1/10/2004
Rohde & Schwarz	Test Receiver, 0.009-2000 MHz	ESN	1316	12	11/5/2002	11/5/2003
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	1222	12	7/11/2002	7/12/2003

Radiated Emissions, 1 - 25,000 GHz, 08-Jul-03

Engineer: jmartinez

<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 9kHz - 40GHz)	84125C	1149	12	3/12/2003	3/12/2004

Power Output Measurement, 08-Jul-03

Engineer: jmartinez

<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1534	12	3/20/2003	3/20/2004
Rohde & Schwarz	Power Sensor 100uW - 10 Watts	NRV-Z53	1236	12	8/15/2002	8/15/2003

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T51481_DTS 28 Pages T51481_Digital 12 Pages

File: R51620 Exhibit Page 2 of 2

Elliot	t	EM	C Test Data
Client:	Aruba Networks	Job Number:	J51385
Model:	Aruba 52	T-Log Number:	
		Proj Eng:	Christine Vu
Contact:	Loren Vorreiter		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	EN301 489-1	Environment:	-

EMC Test Data

For The

Aruba Networks

Model

Aruba 52

Elliot	t	EM	C Test Data
Client:	Aruba Networks	Job Number:	J51385
Model:	Aruba 52	T-Log Number:	T51481
		Proj Eng:	Christine Vu
Contact:	Loren Vorreiter		
	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	EN301 489-1	Environment:	-

EUT INFORMATION

General Description

The EUT is an Accesspoint Radio which is designed to operate in home or office network environments. The Accesspoint contains 802.11a and 802.11b transceivers. Normally, the EUT would be table-top during operation. The EUT was treated as table-top equipment during testing to simulate the end user environment.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Aruba Networks	Aruba 52	Accesspoint Radio	-	TBD
Phihong	PSA 18U-033A-1	switching AC adaptor	131300158A1	N/A

Antenna

The EUT uses an integral antenna with a gain of 4.5 dBi for the 5GHz and 1.5 dBi for the 2.4 GHz.

The antenna connector used is non-standard antenna Hiroshe and MMDX connections to meet the requirements of FCC Part 15.203 and RSS-210

EUT Enclosure

The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 25 cm wide by 15.5 cm deep by 5 cm high.

Modification History

Mod. #	Test	Date	Modification
1	-	-	None

EMC Test Data

Client:	Aruba Networks	Job Number:	J51385
Model:	Aruba 52	T-Log Number:	T51481
		Proj Eng:	Christine Vu
Contact:	Loren Vorreiter		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	EN301 489-1	Environment:	-

Test Configuration #1

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Compal	ACY131	Laptop	NZB02084015T14043	DoC
Hawking	PNY09TP	Hub	15B4000276	N/A
Keytronics	H2002	Mouse	24284	DoC

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None				

EUT Interface Cabling and Ports

		Cable(s)			
Port	Connected To	Description	Shielded or Unshielded	Length(m)	
RS-232	Laptop	Multiwire	Shielded	2	
Ethernet	Hub	Cat 5	Unshielded	1	

EUT Operation During Emissions Testing (Radio)

EUT was set to low, middle, and high channel at full power

EUT Operation During Immunity

EUT was set to transmit mode. Transmissions were received by a local support EUT in the Receive mode. A laptop computer connected to the serial port of the support EUT reported the number of transmitted packets, Receive packets, number of errors, number of packets dropped, number of collisions, and number of Receive bytes.

Criteria A

The EUT shall continue to operate as intended without user intervention.

Criteria B

The EUT shall continue to operate as intended after the the application of the event.

Criteria C

User intervention is permitted to restore the EUT to normal operation conditions.

Elliott	EMC Test Date	a
Client: Aruba Networks	Job Number: J51385	
Model: Aruba 52	T-Log Number: T51481	
Would Aruba 32	Account Manager: Christine Vu	
Contact: Loren Vorreiter		
Spec: FCC Part 15 B and E, RSS-210	Class: N/A	

Radiated Emissions (802.11g mode)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/10/03 Config. Used: 1
Test Engineer: jmartinez/Chris Config Change: None
Test Location: SVOATS #4 Host Unit Voltage 120Vac, 60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 17 °C

Rel. Humidity: 56 %

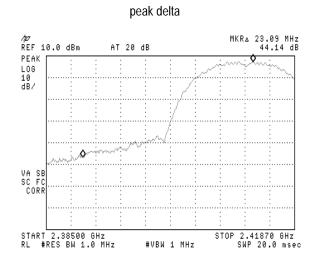
Summary of Results

Run #	Test Performed	Limit	Result	Margin
1a	RE, 30 - 25,000 MHz -	FCC Part 15.209 /	Pass	-4.4dB @ 2390 MHz
Id	Spurious Emissions	15.247(c)	Pass	-4.4UD @ 2390 NITZ
1b	RE, 30 - 25,000 MHz -	FCC Part 15.209 /	Pass	-14.9dB @ 4874.04
ID	Spurious Emissions	15.247(c)	Pass	MHz
1c	RE, 30 - 25,000 MHz -	FCC Part 15.209 /	Pass	-0.5dB @ 2483.5 MHz
IC	Spurious Emissions	15.247(c)	Pass	-0.50D @ 2405.5 MITZ
2	6dB Bandwidth	15.247(a)	Pass	12.97 MHz
3	Output Power	15.247(b)	Pass	19.5 dBm
4	Power Spectral Density (PSD)	15.247(d)	Pass	2.88 dBm
5	Out of Band	15.247(c)	Pass	Refer to plots

Elliott

EMC Test Data

Client:	Aruba Networks	Job Number:	J51385
Model:	Aruba E2	T-Log Number:	T51481
	Aluba 52	Account Manager:	Christine Vu
Contact:	Loren Vorreiter		
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A


Modifications Made During Testing:

No modifications were made to the EUT during testing

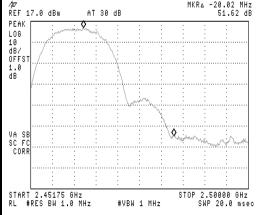
Deviations From The Standard

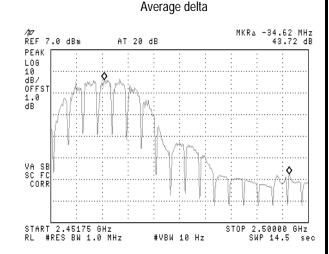
No deviations were made from the requirements of the standard.

Run #1a: Radiated Spurious Emissions, 30 - 25,000 MHz. Low Channel @ 2412 MHz

Client:	: Aruba Networks						Job Number: J51385	
Madal	: Aruba 52						T-Log Number: T51481	
wodei:	: Aruba 52						Accou	nt Manager: Christine Vu
Contact:	: Loren Vorreiter							
Spec:	Spec: FCC Part 15 B and E, RSS-210							Class: N/A
•						•		
_			15 200	/ 15 0 47	15	A : 11 [lo .
requency		Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz 2413.802	dBμV/m 99.9	v/h H	Limit	Margin	Pk/QP/Avg	degrees	meters	DDW VDW 1MHz (Fundamental)
2413.609		<u>п</u> Н	-	-	Pk Avg	-		RBW=VBW=1MHz (Fundamental) RBW:1MHz, VBW:10Hz (Fund.)
2413.717	109.1	V	-		Pk	_	-	RBW=VBW=1MHz (Fundamental)
2413.717		V	-		Avg	-		RBW:1MHz, VBW:10Hz (Fund.)
2390.000		V	74.0	-9.0	Pk	-		Bandedge (-44.14 dB)
2390.000		V	54.0	-4.4	Avg	-		Bandedge (-46.77 dB)
2390.000		H	74.0	-18.2	Pk	-	-	Bandedge (-44.14 dB)
2390.000			54.0	-13.5	Avg	-	_	Bandedge (-46.77 dB)
2634.000		V	89.1	-19.0	Pk	0	1.0	<u> </u>
4824.000		Н	74.0	-26.0	Pk	179	1.0	
4824.000	33.8	Н	54.0	-20.2	Avg	179	1.0	
7236.000	48.2	Н	74.0	-25.8	Pk	0	1.0	
7236.000	36.6	Н	54.0	-17.5	Avg	0	1.0	
4824.000	54.0	V	74.0	-20.0	Pk	69	1.6	
4824.000	40.8	V	54.0	-13.3	Avg	59	1.6	
7236.000	48.3	V	74.0	-25.7	Pk	0	1.0	
7236.000	36.3	V	54.0	-17.7	Avg	0	1.0	
	l= .							
lote 1:					t of 15.209 w	as used. For	all other ei	missions, the limit was set 20 dB
			the fundame		l la a a .a.! a .4la	-Ll	1- 00 dD -	f the a Bire it
Note 2: No other emission detected above the 3rd harmonic that were close to 20-dB of the limit.							10 20-aB 0	or the limit.
ote 2:								
ote 2:								
ote 2:								
ote 2:								
lote 2:								
ote 2:								
iote 2:								
ote 2:								
ote 2:								
ote 2:								
ote 2:								
lote 2:								
iote 2:								
iote 2:								
ote 2:								

Elliott EMC Test Data Job Number: J51385 Client: Aruba Networks T-Log Number: T51481 Model: Aruba 52 Account Manager: Christine Vu Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A Run #1b: Radiated Spurious Emissions, 30 - 25,000 MHz. Center Channel @ 2437 MHz 15.209 / 15.247 Pol Frequency Level Detector Azimuth Height Comments dBμV/m Limit Pk/QP/Avg MHzv/h Margin degrees meters 4874.000 52.0 Η 74.0 -22.0 Pk 218 1.4 4874.000 218 1.4 37.2 54.0 -16.8 Avg 7311.000 48.0 Н 74.0 -26.0 Pk 0 1.0 0 7311.000 36.3 Н 54.0 -17.7 Avg 1.0 -20.7 23 1.7 4874.000 53.3 ٧ 74.0 Pk 39.1 ٧ 54.0 -14.9 23 1.7 4874.000 Avg 7311.000 48.2 ٧ 74.0 -25.8 Pk 1.0 7311.000 36.3 ٧ 54.0 -17.7 0 1.0 Avg For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 1: the level of the fundamental. Note 2: No other emission detected above the 3rd harmonic that were close to 20-dB of the limit.


Elliott


EMC Test Data

Client:	Aruba Networks	Job Number:	J51385
Model	Aruba 52	T-Log Number:	T51481
wouei.	Aluba 52	Account Manager: Christine Vu	Christine Vu
Contact:	Loren Vorreiter		
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A

Run #1c: Radiated Spurious Emissions, 30 - 25,000 MHz. High Channel @ 2462 MHz peak delta

MKR4 -20.02 MHz 51.62 dB

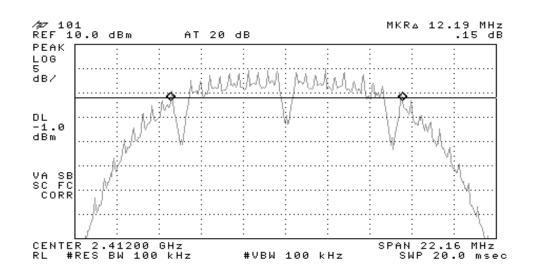
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2463.717	109.5	V	-	-	Pk	-	-	RBW=VBW=1MHz (Fundamental)
2463.666	97.2	V	-	-	Avg	-	-	RBW:1MHz, VBW:10Hz (Fund.)
2463.631	98.5	Н	-	-	Pk	-	•	RBW=VBW=1MHz (Fundamental)
2463.493	85.8	Н	-	-	Avg	-	•	RBW:1MHz, VBW:10Hz (Fund.)
2483.500	57.9	V	74.0	-16.1	Pk	-	•	Bandedge (-51.62 dB)
2483.500	53.5	V	54.0	-0.5	Avg	-	-	Bandedge (-43.72 dB)
2483.500	46.9	Н	74.0	-27.1	Pk	-	•	Bandedge (-51.62 dB)
2483.500	42.1	Н	54.0	-11.9	Avg	-	-	Bandedge (-43.72 dB)
4924.000	57.1	Н	74.0	-16.9	Pk	156	1.7	
4924.000	38.2	Н	54.0	-15.8	Avg	156	1.7	
7386.000	48.8	Н	74.0	-25.2	Pk	0	1.0	
7386.000	34.6	Н	54.0	-19.4	Avg	0	1.0	
4924.000	64.5	V	74.0	-9.5	Pk	306	1.5	
4924.000	42.1	V	54.0	-11.9	Avg	306	1.5	
7386.000	48.0	V	74.0	-26.0	Pk	0	1.0	
7386.000	35.3	V	54.0	-18.7	Avg	0	1.0	

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 1: the level of the fundamental

No other emission detected above the 3rd harmonic that were close to 20-dB of the limit. Note 2:

	11.
Y H	ll10ff
	ШОЦ
·	

EMC Test Data


	3 1000000000000000000000000000000000000					
Client:	Aruba Networks	Job Number:	J51385			
Model	Aruba 52	T-Log Number:	T51481			
iviouei.	Aluba 52	Account Manager:	Christine Vu			
Contact:	Loren Vorreiter					
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A			

Run #2: Signal Bandwidth

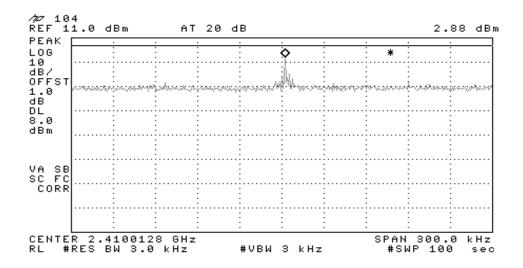
Channel	Frequency (MHz)	Resolution Bandwidth	6dB Signal Bandwidth	Graph reference #
Low	2412	100kHz	12.19	101
Mid	2437	100kHz	12.19	102
High	2462	100kHz	12.97	103

Note 1: Add note here

Note 2:

EMC Test Data Job Number: J51385 Client: Aruba Networks T-Log Number: T51481 Model: Aruba 52 Account Manager: Christine Vu Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A MKRA 12.19 MHz .74 dB ∕⊉7 102 REF 11.0 dBm AT 20 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL dB dBm VA SB SC FC CORR CENTER 2.43700 GHz RL #RES BW 100 kHz SPAN 22.16 MHz #VBW 100 kHz SWP 20.0 msec ATTEN 30dB RL 11.0dBm ΔMKR -.16dB 12.97MHz 10dB/ SPAN 20.00MHz SWP 50.0ms CENTER 2.46200GHz *RBW 100kHz VBW 100kHz

EMC Test Data


Client:	Aruba Networks	Job Number:	J51385			
Model: Aruba 52	Aruba E2	T-Log Number:	T51481			
wouei.	Aluba 52	T-Log Number: T51481 Account Manager: Christine Vu	Christine Vu			
Contact:	Loren Vorreiter					
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A			

Run #3: Peak Output Power Meter

Channel	Frequency (MHz)	Peak Output Power	Comments
Low	2412	14.34	-
Mid	2437	13.61	-
High	2462	19.5	-

Run #4: Power Spectral Density

			P.S.D. (averaged over 1	
Channel	Frequency (MHz)	Res BW	second in a 3kHz	Graph reference #
			bandwidth)	
Low	2412	3kHz	2.88dBm	104
Mid	2437	3kHz	-3.88dBm	105
High	2462	3kHz	-5.99dBm	106

EMC Test Data Job Number: J51385 Client: Aruba Networks T-Log Number: T51481 Model: Aruba 52 Account Manager: Christine Vu Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A ∕⊅ 105 REF 11.0 dBm MKR 2.4380153 GHz -3.88 dBm AT 20 dB PEAK LOG LUG 10 dB/ OFFST 1.0 dB DL 8.0 dBm ø VA SB SC FC CORR CENTER 2.4380175 GHz RL #RES BW 3.0 kHz SPAN 300.0 kHz #SWP 100 sec #VBW 3 kHz sec /#/ REF 17.0 dBm MKR 2.4610140 GHz -5.99 dBm AT 30 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL 8.0 dBm VA SB SC FC CORR CENTER 2.4610125 GHz RL #RES BW 3.0 kHz SPAN 300.0 kHz #SWP 100 sec #VBW 3 kHz

EMC Test Data Job Number: J51385 Client: Aruba Networks T-Log Number: T51481 Model: Aruba 52 Account Manager: Christine Vu Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A Run #5: Out of Band Low Channel Out of band MKR 2.415 GHz .74 dBm /27 REF 17.0 dBm AT 30 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL -dB.0 dBm VA SB SC FC CORR START 30 MHz RL #RES BW 100 kHz STOP 2.921 GHz SWP 867 msec #VBW 100 kHz MKR 24.83 GHz -30.79 dBm /307 REF 17.0 dBm AT 30 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL -dBm dBm VA SB SC FC CORR STOP 25.00 GHz SWP 6.62 se START 2.92 GHz RL #RES BW 100 kHz #VBW 100 kHz

EMC Test Data Job Number: J51385 Client: Aruba Networks T-Log Number: T51481 Model: Aruba 52 Account Manager: Christine Vu Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A Middle Channel Out of band MKR 2.437 GHz -.29 dBm *⁄p* REF 17.0 dBm AT 30 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL -20.3 dBm VA SB SC FC CORR START 30 MHz RL #RES BW 100 kHz STOP 2.921 GHz SWP 867 msec #VBW 100 kHz MKR 22.46 GHz -30.24 dBm */pc* REF 17.0 dBm AT 30 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL -20.3 dBm VA SB SC FC CORR START 2.92 GHz RL #RES BW 100 kHz STOP 25.00 GHz SWP 6.62 se #VBW 100 kHz sec

EMC Test Data Job Number: J51385 Client: Aruba Networks T-Log Number: T51481 Model: Aruba 52 Account Manager: Christine Vu Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A **High Channel Out of band** MKR 507 MHz -45.41 dBm *ጎታ* REF 17.0 dBm AT 30 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL -12.3 dBm VA SB SC FC CORR START 30 MHz RL #RES BW 100 kHz STOP 2.921 GHz SWP 867 msec #VBW 100 kHz MKR 24.83 GHz -30.93 dBm *⁄9* REF 17.0 dBm AT 30 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL -12.3 dBm VA SB SC FC CORR

START 2.92 GHz RL #RES BW 100 kHz

#VBW 100 kHz

STOP 25.00 GHz SWP 6.62 se

sec

	Elliott	EM	C Test Data
Client:	Aruba Networks	Job Number:	J51385
Model	Aruba 52	T-Log Number:	T51481
Model.		Account Manager:	Christine Vu
Contact:	Loren Vorreiter		
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A

Radiated Emissions (802.11B mode)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/10/03 Config. Used: 1
Test Engineer: jmartinez/Chris Config Change: None
Test Location: SVOATS #4 Host Unit Voltage 120Vac, 60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 17 °C

Rel. Humidity: 56 %

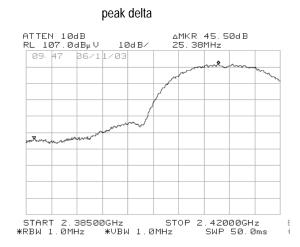
Summary of Results

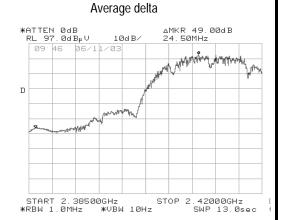
Run #	Test Performed	Limit	Result	Margin	
1a	RE, 30 - 25,000 MHz -	FCC Part 15.209 /	Pass	-2.5dB @ 2390 MHz	
Id	Spurious Emissions	15.247(c)	Pa55	-2.50D @ 2590 NITZ	
1b	RE, 30 - 25,000 MHz -	FCC Part 15.209 /	Pass	-4.5dB @ 4874 MHz	
ID	Spurious Emissions	15.247(c)	F 455	-4.Jub @ 4074 WILIZ	
1c	RE, 30 - 25,000 MHz -	FCC Part 15.209 /	Pass	-2.4dB @ 2483.5 MHz	
IC	Spurious Emissions	15.247(c)	Pa55	-2.4ub @ 2403.3 WII IZ	
2	6dB Bandwidth	15.247(a)	Pass	13 MHz	
3	Output Power	15.247(b)	Pass	16 dBm	
4	Power Spectral Density (PSD)	15.247(d)	Pass	6.83 dBm	
5	Out of Band	15.247(c)	Pass	Refer to plots	

Elliott

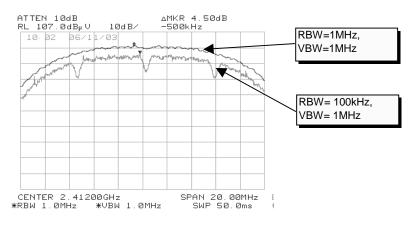
EMC Test Data

Client:	Aruba Networks	Job Number:	J51385
Model:	Aruba E2	T-Log Number:	T51481
	Aluba 52	Account Manager:	Christine Vu
Contact:	Loren Vorreiter		
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A


Modifications Made During Testing:


No modifications were made to the EUT during testing

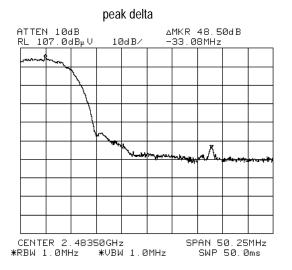
Deviations From The Standard

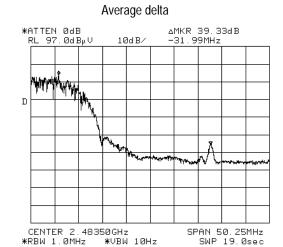

No deviations were made from the requirements of the standard.

Run #1a: Radiated Spurious Emissions, 30 - 25,000 MHz. Low Channel @ 2412 MHz

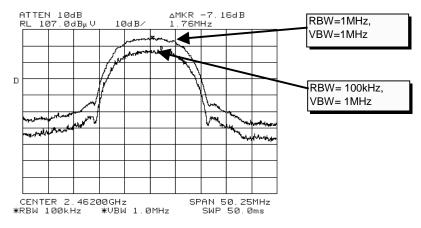
BW correction

Client:	Elli(Aruba Net						J	ob Number:	C Test Data
							T-L	og Number:	T51481
Model:	Aruba 52							ŭ	Christine Vu
Contact:	Loren Vori	reiter						J	
Spec: FCC Part 15 B and E, RSS-210 Cla							Class:	N/A	
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2411.333		V	-	-	Pk	-	-	RBW=VBW	/=1MHz (Fundamental)
2411.237	105.0	٧	-	-	Avg	-	-	RBW:1MHz	z, VBW:10Hz (Fund.)
2411.031	100.2	Н	-	-	Pk	-	-	RBW=VBW	/=1MHz (Fundamental)
2410.799	96.4	Н	-	-	Avg	-	-	RBW:1MHz	z, VBW:10Hz (Fund.)
2390.000	59.0	V	74.0	-15.0	Pk	-	-	Bandedge (-4!	5.5 dB), Bw Cor.(-4.5dB)
2390.000		V	54.0	-2.5	Avg	-	-	Bandedge (-49	9.0 dB), Bw Cor.(-4.5dB)
2390.000		Н	74.0	-23.8	Pk	-	-		5.5 dB), Bw Cor.(-4.5dB)
2390.000		Н	54.0	-11.1	Avg	-	-	<u> </u>	9.0 dB), Bw Cor.(-4.5dB)
2634.000		V	89.0	-20.7	Pk	180	1.0		
4824.000		h	74.0	-26.6	Pk	157	1.0		
4824.000		h	54.0	-20.6	Avg	157	1.0		
7236.000		h	74.0	-24.1	Pk	208	1.1		
7236.000		h	54.0	-17.7	Avg	208	1.1		
4824.000		V	74.0	-23.9	Pk	250	1.0		
4824.000		V	54.0	-18.0	Avg	250	1.0		
7236.000		V	74.0 54.0	-25.5 -19.7	Pk	45 45	1.0 1.0		
7236.000	34.3	V	54.0	-19.7	Avg	45	1.0	<u> </u>	
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB									
lote 1:			the fundame		10 10.207 W	as asca. To	an outer of	11113310113, 1111	o minit was set 20 ab
lote 2:					d harmonic th	at were close	to 20-dB o	f the limit.	
510 2.			40,00,04				10 20 42 0		


Elliott EMC Test Data Job Number: J51385 Client: Aruba Networks T-Log Number: T51481 Model: Aruba 52 Account Manager: Christine Vu Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A Run #1b: Radiated Spurious Emissions, 30 - 25,000 MHz. Center Channel @ 2437 MHz 15.209 / 15.247 Pol Frequency Level Detector Azimuth Height Comments $dB\mu V/m$ Limit Pk/QP/Avg MHzv/h Margin degrees meters 4874.000 55.2 74.0 -18.8 Pk 180 1.0 ٧ 4874.000 180 1.0 48.7 54.0 -5.3 Avg -19.1 7311.000 54.9 74.0 Pk 240 1.0 ٧ 7311.000 47.0 ٧ 54.0 -7.0 Avg 240 1.0 -17.8 156 1.2 4874.000 56.2 74.0 Pk h -4.5 49.5 54.0 156 1.2 4874.000 h Avg 7311.000 52.6 74.0 -21.4 Pk 245 1.0 h -10.5 7311.000 43.5 54.0 Avg 245 1.0 h For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 1: the level of the fundamental. Note 2: No other emission detected above the 3rd harmonic that were close to 20-dB of the limit.


Elliott

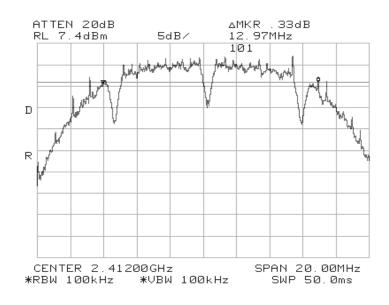
EMC Test Data


2	Visit and the second se		
Client:	Aruba Networks	Job Number:	J51385
Model:	Aruba E2	T-Log Number:	T51481
	Aluba 52	Account Manager:	Christine Vu
Contact:	Loren Vorreiter		
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A

Run #1c: Radiated Spurious Emissions, 30 - 25,000 MHz. High Channel @ 2462 MHz

BW correction

2463.164 86.9 H - - Avg - - RBW:1MHz, VBW:10Hz (Fund. 2463.419) 110.6 V - - Pk - - RBW=VBW=1MHz (Fund. RBW:10Hz, VBW:10Hz (Fund. 2483.504) 97.9 V - - Avg - - RBW:1MHz, VBW:10Hz (Fund. RBW:10Hz, VBW:10Hz (Fund. 2483.500) 43.7 H 74.0 -30.3 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15d. 2483.500) 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15d. 2483.500) 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15d. 2483.500) 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15d. 2483.500) 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15d. 2483.500) 51.6 V 54.0 -18.2 Pk 168 1.7 168.1 1.7 4924.000 37.3 H 54.0 -16.7 Avg 168 </th <th> Account Manager: Christine Vu </th> <th>Client:</th> <th>Ellic Aruba Net</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>J</th> <th>ob Number: J51385</th>	Account Manager: Christine Vu	Client:	Ellic Aruba Net						J	ob Number: J51385	
Account Manager: Christine Vu	Account Manager: Christine Vu										
Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A	Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A	Model:	Aruba 52							S	
Spec: FCC Part 15 B and E, RSS-210 Class: N/A requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2463.324 99.4 H - - Pk - - RBW=VBW=1MHz (Fundamen 2463.164 86.9 H - - Pk - - RBW=VBW=1MHz (Fundamen 2463.419 110.6 V - - Pk - - RBW=VBW=1MHz (Fundamen 2463.546 97.9 V - - Avg - - RBW=VBW=1MHz (Fundamen 2483.500 43.7 H 74.0 -30.3 Pk - - RBw=1MHz, VBW:10Hz (Fundamen 2483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-39.33 dB), BW Cor. (-7.15cd) 2483.500 51.6 V 54.0 <td>Spec: FCC Part 15 B and E, RSS-210 Class: N/A equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2463.324 99.4 H - - Pk - - RBW:1MHz, VBW:10Hz (Fund.) 2463.419 110.6 V - - Pk - - RBW:1MHz, VBW:10Hz (Fund.) 2463.546 97.9 V - - Avg - - RBW:1MHz, VBW:10Hz (Fund.) 2483.500 43.7 H 74.0 -30.3 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB), BW Cor. (-7.15dB), 483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB), BW Cor. (-7.15dB), 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-48.5 dB), BW Cor. (-7.15dB), BW Cor. (-7.15dB), 443.500 51.6 V 54.0</td> <td>Contact:</td> <td>Loren Vor</td> <td>reiter</td> <td></td> <td></td> <td></td> <td></td> <td>710000</td> <td>in manageri erinemie va</td>	Spec: FCC Part 15 B and E, RSS-210 Class: N/A equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2463.324 99.4 H - - Pk - - RBW:1MHz, VBW:10Hz (Fund.) 2463.419 110.6 V - - Pk - - RBW:1MHz, VBW:10Hz (Fund.) 2463.546 97.9 V - - Avg - - RBW:1MHz, VBW:10Hz (Fund.) 2483.500 43.7 H 74.0 -30.3 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB), BW Cor. (-7.15dB), 483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB), BW Cor. (-7.15dB), 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-48.5 dB), BW Cor. (-7.15dB), BW Cor. (-7.15dB), 443.500 51.6 V 54.0	Contact:	Loren Vor	reiter					710000	in manageri erinemie va	
requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2463.324 99.4 H Pk RBW=VBW=1MHz (Fundamen 2463.164 86.9 H Avg RBW:1MHz, VBW:10Hz (Fund. 2463.419 110.6 V Pk RBW=VBW=1MHz (Fundamen 2463.546 97.9 V Avg RBW:1MHz, VBW:10Hz (Fund. 2483.500 43.7 H 74.0 -30.3 Pk - Bandedge (-48.5 dB), BW Cor. (-7.15d. 2483.500 40.6 H 54.0 -13.4 Avg - Bandedge (-39.33 dB), BW Cor. (-7.15d. 2483.500 54.9 V 74.0 -19.1 Pk - Bandedge (-48.5 dB), BW Cor. (-7.15d. 2483.500 51.6 V 54.0 -2.4 Avg - Bandedge (-39.33 dB), BW Cor. (-7.15d. 24924.000 55.8 H 74.0 -18.2 Pk 168 1.7 4924.000 37.3 H 54.0 -16.7 Avg 168 1.7 4924.000 34.2 H 54.0 -16.7 Avg 168 1.7 4924.000 47.9 H 74.0 -26.1 Pk 0 1.0 7386.000 47.9 H 74.0 -26.1 Pk 0 1.0 4924.000 63.6 V 74.0 -10.4 Pk 349 1.7 4924.000 63.6 V 74.0 -10.4 Pk 349 1.7 4924.000 41.8 V 54.0 -12.2 Avg 349 1.7 4924.000 41.8 V 54.0 -12.2	equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/OP/Avg degrees meters 2463.324 99.4 H - - Pk - - RBW:1MHz, VBW:10Hz (Fund.) 2463.419 110.6 V - - Pk - - RBW:1MHz, VBW:10Hz (Fund.) 2463.546 97.9 V - - Avg - - RBW:1MHz, VBW:10Hz (Fund.) 2483.500 43.7 H 74.0 -30.3 Pk - - Bandedge (48.5 dB), BW Cor. (7.15dB), BW Cor. (7.15dB), 483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (48.5 dB), BW Cor. (7.15dB), BW Cor. (7.15dB), 483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (48.5 dB), BW Cor. (7.15dB), BW				1 F RSS-21	0				Class: N/A	
MHz dBμV/m v/h Limit Margin Pk/OP/Avg degrees meters 2463.324 99.4 H - - Pk - - RBW=VBW=1MHz (Fundamen RBW-10Hz (Fundamen RBW-10Hz) 2463.164 86.9 H - - Pk - - RBW-1MHz (Fundamen RBW-10Hz) 2463.419 110.6 V - - Pk - - RBW-1MHz (Fundamen RBW-10Hz) 2463.546 97.9 V - - Avg - - RBW:1MHz (Fundamen RBW-10Hz) 2483.500 43.7 H 74.0 -30.3 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 2483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 2483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 4924.000 55.8 H 74.0 -18.2 Pk 168	MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters	Эрес.	1 00 T dit	15 D and	12,1133 21					Old33. IV//	
MHz dBμV/m v/h Limit Margin Pk/OP/Avg degrees meters 2463.324 99.4 H - - Pk - - RBW=VBW=1MHz (Fundamen RBW-10Hz (Fundamen RBW-10Hz) 2463.164 86.9 H - - Pk - - RBW-1MHz (Fundamen RBW-10Hz) 2463.419 110.6 V - - Pk - - RBW-1MHz (Fundamen RBW-10Hz) 2463.546 97.9 V - - Avg - - RBW:1MHz (Fundamen RBW-10Hz) 2483.500 43.7 H 74.0 -30.3 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 2483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 2483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 4924.000 55.8 H 74.0 -18.2 Pk 168	MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters		11	D.I	15 200	/15 247	D.L	A = ' 11.	11.2.64		
2463.324 99.4 H - - Pk - - RBW=VBW=1MHz (Fundamen 2463.164 86.9) H - - Avg - - RBW:1MHz, VBW:10Hz (Fundamen 2463.149 110.6) V - - Pk - - RBW=VBW=1MHz (Fundamen 2463.546 97.9) V - - Pk - - RBW:1MHz, VBW:10Hz (Fundamen 2463.546 97.9) V - - RBW:1MHz, VBW:10Hz (Fundamen 2463.546 97.9) - - Bandedge (-48.5 dB), BW Cor. (-7.15d 49.446 97.156 97.	2463.324 99.4 H - - Pk - - RBW=VBW=1MHz (Fundamental R463.164 86.9 H - - Avg - - RBW:1MHz, VBW:10Hz (Fund.) RBW:10Hz (Fund.) RB:10Hz (Fund.) RB:10Hz (Fund.) RB:10Hz (Fund.) RB:10Hz (Fund.) RB:10									Comments	
2463.164 86.9 H - - Avg - - RBW:1MHz, VBW:10Hz (Fund. Pkd:3.449) - - RBW=VBW=1MHz (Fund. Pkd:3.449) - - RBW=VBW=1MHz (Fund. Pkd:3.449) - - RBW:1MHz, VBW:10Hz (Fund. Pkd:3.449) - - Bandedge (-48.5 dB), BW Cor. (-7.15d. Pkd:3.449) - - Bandedge (-39.33 dB), BW Cor. (-7.15d. Pkd:3.449) - - Bandedge (-48.5 dB), BW Cor. (-7.15d. Pkd:3.449) - - Bandedge (-48.5 dB), BW Cor. (-7.15d. Pkd:3.449) - - Bandedge (-48.5 dB), BW Cor. (-7.15d. Pkd:3.449) - - Bandedge (-48.5 dB), BW Cor. (-7.15d. Pkd:3.449)	2463.164 86.9 H - - Avg - - RBW:1MHz, VBW:10Hz (Fund.) 2463.419 110.6 V - - Pk - - RBW=VBW=1MHz (Fund.) 2463.546 97.9 V - - Avg - - RBW:1MHz, VBW:10Hz (Fund.) 2483.500 43.7 H 74.0 -30.3 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 2483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 2483.500 51.6 V 54.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 2483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 2483.500 51.6 V 54.0 -19.1 Pk 1.0 2483.500 51.6 V 54.0 -18.2 Pk 168 1.7 248				LIMIL	wargin		degrees	meters	DDW VDW 1MHz (Fundamental)	
110.6	110.6				-			-	-	, , , , ,	
2463.546 97.9 V - - Avg - - RBW:1MHz, VBW:10Hz (Fund. 2483.500 43.7 H 74.0 -30.3 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15d. 2483.500 40.6 H 54.0 -13.4 Avg - - Bandedge (-48.5 dB), BW Cor. (-7.15d. 2483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15d. 2483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15d. 2483.500 51.6 V 54.0 -18.2 Pk 168 1.7 24.000 37.3 H 54.0 -16.7 Avg 168 1.7 24.000 37.3 H 54.0 -16.7 Avg 168 1.7 24.000 37.3 H 54.0 -19.8 Avg 0 1.0 24.000 34.2 H 54.0 -19.8 Avg 0 1.0 24.000 63.6 V 74.0 -10.4 Pk 349 1.7 24.000 41.8 V 54.0 -12.2 Avg 349 1.7 24.000 41.8 V 54.0 -12.2 Avg 349 1.7 24.000 34.7 V 54.0 -19.3 Avg 0 1.0	2463.546 97.9 V				-			-	-		
483.500 43.7 H 74.0 -30.3 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15d Pk) 483.500 40.6 H 54.0 -13.4 Avg - - Bandedge (-48.5 dB), BW Cor. (-7.15d Pk) 483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15d Pk) 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-48.5 dB), BW Cor. (-7.15d Pk) 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-48.5 dB), BW Cor. (-7.15d Pk) 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-48.5 dB), BW Cor. (-7.15d Pk) 483.500 51.6 V 54.0 -18.2 Pk 168 1.7 924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 386.000 48.4 V 74.0 -12.2 Avg <t< td=""><td>483.500 43.7 H 74.0 -30.3 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 483.500 40.6 H 54.0 -13.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15dB) 483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15dB) 924.000 55.8 H 74.0 -18.2 Pk 168 1.7 924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 47.9 H 74.0 -26.1 Pk 0 1.0 924.000 63.6 V 74.0 -19.8 Avg 0 1.0 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 924.000 48.4 V 74.0 <</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>, ,</td></t<>	483.500 43.7 H 74.0 -30.3 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 483.500 40.6 H 54.0 -13.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15dB) 483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15dB) 924.000 55.8 H 74.0 -18.2 Pk 168 1.7 924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 47.9 H 74.0 -26.1 Pk 0 1.0 924.000 63.6 V 74.0 -19.8 Avg 0 1.0 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 924.000 48.4 V 74.0 <							-	-	, ,	
483.500 40.6 H 54.0 -13.4 Avg - Bandedge (-39.33 dB), BW Cor.(-7.15d d83.500) 54.9 V 74.0 -19.1 Pk - Bandedge (-39.33 dB), BW Cor.(-7.15d d83.500) 51.6 V 54.0 -2.4 Avg - Bandedge (-39.33 dB), BW Cor.(-7.15d d83.500) Bandedge (-39.33 dB), BW Cor.(-7.15d d83.500) </td <td>483.500 40.6 H 54.0 -13.4 Avg - - Bandedge (-39.33 dB), BW Cor.(-7.15dB) 483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15dB) 924.000 55.8 H 74.0 -18.2 Pk 168 1.7 924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 47.9 H 74.0 -26.1 Pk 0 1.0 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0</td> <td></td> <td></td> <td></td> <td>74.0</td> <td>- 20.2</td> <td></td> <td>-</td> <td>-</td> <td></td>	483.500 40.6 H 54.0 -13.4 Avg - - Bandedge (-39.33 dB), BW Cor.(-7.15dB) 483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15dB) 924.000 55.8 H 74.0 -18.2 Pk 168 1.7 924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 47.9 H 74.0 -26.1 Pk 0 1.0 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0				74.0	- 20.2		-	-		
483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15d d83.500) 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15d d83.500) Bandedge (-39.33 dB), BW Cor. (-7.15d d83.500) - - Bandedge (-39.33 dB), BW Cor. (-7.15d d83.500) - - Bandedge (-39.33 dB), BW Cor. (-7.15d d83.500) - - Bandedge (-39.33 dB), BW Cor. (-7.15d d83.500) - - Bandedge (-39.33 dB), BW Cor. (-7.15d d83.500) - - - Bandedge (-39.33 dB), BW Cor. (-7.15d d83.500) - - - Bandedge (-39.33 dB), BW Cor. (-7.15d d83.500) - <td>483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15dB) 924.000 55.8 H 74.0 -18.2 Pk 168 1.7 924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 47.9 H 74.0 -26.1 Pk 0 1.0 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 For emissions</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>	483.500 54.9 V 74.0 -19.1 Pk - - Bandedge (-48.5 dB), BW Cor. (-7.15dB) 483.500 51.6 V 54.0 -2.4 Avg - - Bandedge (-39.33 dB), BW Cor. (-7.15dB) 924.000 55.8 H 74.0 -18.2 Pk 168 1.7 924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 47.9 H 74.0 -26.1 Pk 0 1.0 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 For emissions							-	-	-	
483.500 51.6 V 54.0 -2.4 Avg - Bandedge (-39.33 dB), BW Cor.(-7.15c) 924.000 55.8 H 74.0 -18.2 Pk 168 1.7 924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 47.9 H 74.0 -26.1 Pk 0 1.0 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB the level of the fundamental.	483.500 51.6 V 54.0 -2.4 Avg - Bandedge (-39.33 dB), BW Cor.(-7.15dB) 924.000 55.8 H 74.0 -18.2 Pk 168 1.7 924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 47.9 H 74.0 -26.1 Pk 0 1.0 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB better the level of the fundamental.							-	-	-	
924.000	924.000						+			-	
924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 47.9 H 74.0 -26.1 Pk 0 1.0 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB the level of the fundamental.	924.000 37.3 H 54.0 -16.7 Avg 168 1.7 386.000 47.9 H 74.0 -26.1 Pk 0 1.0 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB bette level of the fundamental.									Bandedge (-39.33 dB), BW Cor.(-7.15dB)	
386.000 47.9 H 74.0 -26.1 Pk 0 1.0 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB the level of the fundamental.	386.000 47.9 H 74.0 -26.1 Pk 0 1.0 386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB bette level of the fundamental.										
386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB the level of the fundamental.	386.000 34.2 H 54.0 -19.8 Avg 0 1.0 924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB by the level of the fundamental.										
924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 Te 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB the level of the fundamental.	924.000 63.6 V 74.0 -10.4 Pk 349 1.7 924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 Te 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB by the level of the fundamental.										
924.000 41.8 V 54.0 -12.2 Avg 349 1.7 386.000 48.4 V 74.0 -25.6 Pk 0 1.0 386.000 34.7 V 54.0 -19.3 Avg 0 1.0 The probability of the fundamental to the fundamental t	924.000										
386.000	386.000										
386.000 34.7 V 54.0 -19.3 Avg 0 1.0 The second of the fundamental in the level of the fundamental. The second of the fundamental in the level of the fundame	386.000 34.7 V 54.0 -19.3 Avg 0 1.0 The second of the fundamental. The second of the fundamental of the fundamental of the fundamental of the second							349			
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB the level of the fundamental.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB be the level of the fundamental.						1				
the level of the fundamental.	the level of the fundamental.	386.000	34.7	V	54.0	-19.3	Avg	0	1.0		
the level of the fundamental.	the level of the fundamental.		For omicci	one in re	actricted have	nds the lim	it of 15, 200 u	ocused For	all other o	missions the limit was set 20dP he	
			NOTE 1:								
ote 2: Indo other emission detected above the 3rd narmonic that were close to 20-db of the limit.	ote 2: INO other emission detected above the 3rd narmonic that were close to 20-db of the limit.	ote 1:									
						ove the 3rd	a narmonic th	iat were ciose	to 20-aB o	or the limit.	
				mission	uetecteu at						
				mission	detected at						
				mission	ueleuleu al						
				mission	ueleuleu al						
				mission	ueleuleu al						
				mission	delected at						
				mission	delected at						
				mission	uelecteu ai						
				mission	uelecteu ai						
				emission	uelecteu ai						
				emission	ueleuleu al						

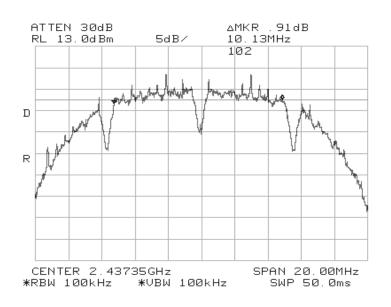

•			
Client:	Aruba Networks	Job Number:	J51385
Model:	Aruba E2	T-Log Number:	T51481
	Aluba 52	Account Manager:	Christine Vu
Contact:	Loren Vorreiter		
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A

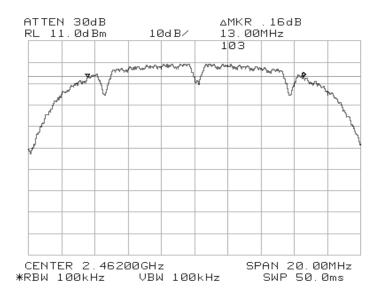
Run #2: Signal Bandwidth

Channel	Frequency (MHz)	Resolution Bandwidth	6dB Signal Bandwidth	Graph reference #
Low	2412	100kHz	12.97	101
Mid	2437	100kHz	10.13	102
High	2462	100kHz	13.00	103

Note 1: Add note here

Note 2:


Contact: Loren Vorreiter

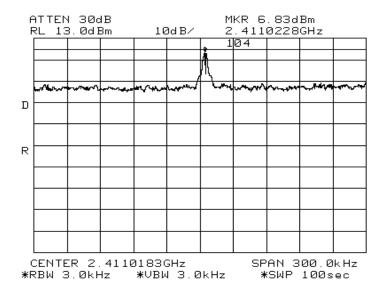

Spec: FCC Part 15 B and E, RSS-210

	o root bata
Job Number:	J51385
T-Log Number:	T51481
count Manager:	Christine Vu

Class: N/A

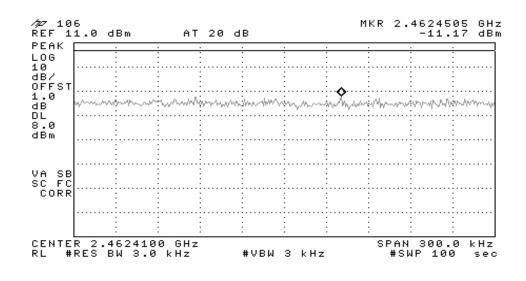
FMC Test Data

Client:	Aruba Networks	Job Number:	J51385
Model:	Aruba E2	T-Log Number:	T51481
	Aluba 52	Account Manager:	Christine Vu
Contact:	Loren Vorreiter		
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A


Run #3: Peak Output Power Meter

Channel	Frequency (MHz)	Peak Output Power	Comments
Low	2412	15.6	
Mid	2437	16.0	
High	2462	15.9	

Run #4: Power Spectral Density


Channel	Frequency (MHz)		P.S.D. (averaged over 1 second in a 3kHz bandwidth)	Graph reference #
Low	2412	3kHz	6.83dBm	104
Mid	2437	3kHz	6.83dBm	105
High	2462	3kHz	-11.17dBm	106

104

Client: Aruba Networks Client: Aruba Networks Model: Aruba 52 Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 EMC Test Data Job Number: J51385 T-Log Number: T51481 Account Manager: Christine Vu Class: N/A

EMC Test Data Job Number: J51385 Client: Aruba Networks T-Log Number: T51481 Model: Aruba 52 Account Manager: Christine Vu Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A Run #5: Out of Band Low Channel MKR 456 MHz -47.29 dBm *⁄⊉* REF 11.0 dBm AT 20 dB PEAK L06 10 dB/ ÕFFST 1.0 dB DL -19.3 dBm VA SB SC FC CORR STOP 2.921 GHz SWP 867 msec START 30 MHz RL #RES BW 100 kHz #VBW 100 kHz MKR 24.89 GHz -40.45 dBm *⁄a*⊄ REF 11.0 dBm AT 20 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL -19.3 dBm VA SB SC FC CORR START 2.92 GHz RL #RES BW 100 kHz STOP 25.00 GHz SWP 6.62 sec #VBW 100 kHz

EMC Test Data Job Number: J51385 Client: Aruba Networks T-Log Number: T51481 Model: Aruba 52 Account Manager: Christine Vu Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A Middle Channel MKR 1.223 GHz -54.16 dBm *ጎታ* REF 11.0 dBm AT 20 dB PEAK PEAK LOG 10 dB/ OFFST 1.0 dB DL -18.8 dBm VA SB SC FC CORR START 30 MHz RL #RES BW 100 kHz OP 2.921 GHz SWP 867 msec #VBW 100 kHz MKR 24.78 GHz -39.66 dBm *⁄⊉* REF 11.0 dBm AT 20 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL -18.8 dBm VA SB SC FC CORR START 2.92 GHz RL #RES BW 100 kHz STOP 25.00 GHz SWP 6.62 se #VBW 100 kHz sec

EMC Test Data Job Number: J51385 Client: Aruba Networks T-Log Number: T51481 Model: Aruba 52 Account Manager: Christine Vu Contact: Loren Vorreiter Spec: FCC Part 15 B and E, RSS-210 Class: N/A **High Channel** *⁄p* REF 11.0 dBm -59.71 dBm AT 20 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL -18.0 dBm VA SB SC FC CORR START 30 MHz RL #RES BW 100 kHz STOP 2.921 GHz SWP 867 msec #VBW 100 kHz MKR 24.94 GHz -40.59 dBm /pc REF 11.0 dBm AT 20 dB PEAK LOG 10 dB/ OFFST 1.0 dB DL -18.0 dBm VA SB SC FC CORR START 2.92 GHz RL #RES BW 100 kHz STOP 25.00 GHz SWP 6.62 se #VBW 100 kHz

Elliot	t	EM	C Test Data
Client:	Aruba Networks	Job Number:	J51385
Model:	Aruba 52	T-Log Number:	T51481
		Proj Eng:	Christine Vu
Contact:	Loren Vorreiter		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

For The

Aruba Networks

Model

Aruba 52

Client:	Aruba Networks	Job Number:	J51385
Model:	Aruba 52	T-Log Number:	T51481
		Proj Eng:	Christine Vu
Contact:	Loren Vorreiter		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT INFORMATION

General Description

The EUT is an Accesspoint Radio which is designed to operate in home or office network environments. Normally, the EUT would be table-top during operation. The EUT was treated as table-top equipment during testing to simulate the end user environment.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Aruba Networks	Aruba 52	Accesspoint Radio	-	TBD
Solar	PS-120	Power Supply	N/A	N/A

Antenna

The EUT uses an integral antenna with a gain of 4.5 dBi for the 5GHz and 1.5 dBi for the 2.4 GHz.

The antenna connector used is non-standard antenna Hiroshe and MMDX connections to meet the requirements of FCC Part 15.203 and RSS-210

EUT Enclosure

The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 25 cm wide by 15.5 cm deep by 5 cm high.

Modification History

Mod. #	Test	Date	Modification
1	-	-	None

Client:	Aruba Networks		Job Number: J	51385
	Aruba 52		T-Log Number: T!	
	711464 52		Proj Eng: C	
Contact:	Loren Vorreiter		, ,	
Emissions Spec:	FCC Part 15 B and E, RSS	S-210	Class:	В
Immunity Spec:			Environment:	-
		t Configuration		
Manufacturer	Model	Description	Serial Number	FCC ID
Hawking	PNY09TP	Hub	15B4000276	N/A
Manufacturer Compal	Model ACY131	Description Laptop	Serial Number NZB02084015T14043	FCC ID DoC
Compal	ACY131	Laptop	NZB02084015T14043	DoC
Keytronics	H2002	Mouse	24284	DoC
Keytronics				DoC
Keytronics		Mouse nterface Cabling a	nd Ports	DoC
	EUT In	nterface Cabling a	nd Ports Cable(s)	
Port	EUT In	nterface Cabling an	nd Ports Cable(s) Shielded or Unshielded	d Length(r
Port RS-232	EUT In Connected To Unterminated	nterface Cabling and Description Multiwire	nd Ports Cable(s) Shielded or Unshielded Shielded	d Length(r 2
Port RS-232 Ethernet	EUT In Connected To Unterminated Hub	nterface Cabling and Description Multiwire Cat 5	nd Ports Cable(s) Shielded or Unshielded Shielded Unshielded	d Length(r 2 1
Port RS-232	Connected To Unterminated Hub AC source	Description Multiwire Cat 5 2-wire	Cable(s) Cable(s) Shielded or Unshielded Unshielded Unshielded	d Length(r 2
Port RS-232 Ethernet	Connected To Unterminated Hub AC source	nterface Cabling and Description Multiwire Cat 5	Cable(s) Shielded or Unshielded Shielded Unshielded Unshielded Unshielded	d Length(r 2 1
Port RS-232 Ethernet DC input	Connected To Unterminated Hub AC source Support	Description Multiwire Cat 5 2-wire	Cable(s) Cable(s) Shielded or Unshielded Shielded Unshielded Unshielded Unshielded and Ports Cable(s)	d Length(r 2 1 1.3
Port RS-232 Ethernet	Connected To Unterminated Hub AC source	Description Multiwire Cat 5 2-wire	Cable(s) Shielded or Unshielded Shielded Unshielded Unshielded Unshielded	d Length(r 2 1 1.3

EUT Operation During Digital Emissions

EUT was set to the channel that produced full power.

	Elliott	EM	IC Test Data
Client:	Aruba Networks	Job Number:	J51385
Model	Aruba 52	T-Log Number:	T51481
wodei.	Aluba 52	Account Manager:	Christine Vu
Contact:	Loren Vorreiter		
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A

Conducted Emissions - Power Ports

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/13/2003 Config. Used: 2
Test Engineer: jmartinez Config Change: None

Test Location: SVOATS #2 EUT Voltage: Refer to individual run

General Test Configuration

For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located approximately 30 meters from the test area. All I/O connections were routed overhead.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 45 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 230V/50Hz	EN55022 B	Pass	-6.7dB @ 0.268MHz
2	CE, AC Power,120V/60Hz	EN55022 B	Pass	-9.8dB @ 0.265MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

GI	Ellic	ott					EN	IC Test Data
	Aruba Ne						Job Number:	J51385
							T-Log Number:	T51481
Model:	Aruba 52				Account Manager:			
	Loren Vo							
Spec:	FCC Part	15 B and	E, RSS-2	10			Class:	N/A
Run #1: A0	Power F	Port Cond	lucted Emi	issions, 0.1	15 - 30MHz,	230V/50Hz		
Frequency	Level	AC	EN55	022 B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.268	44.4	Line 1	51.1	-6.7	AV			
0.401	38.3	Line 1	47.8	-9.5	AV			
0.401	37.0	Neutral	47.8	-10.8	AV			
1.472	42.6	Neutral	56.0	-13.4	QP			
0.401	44.3	Line 1	57.8	-13.5	QP			
1.472	42.5	Line 1	56.0	-13.5	QP			
1.590	42.3	Neutral	56.0	-13.7	QP			
0.268	47.1	Line 1	61.1	-14.0	QP			
0.401	43.1	Neutral	57.8	-14.7	QP			
1.334	41.1	Line 1	56.0	-14.9	QP			
2.339	38.5	Line 1	56.0	-17.5	QP			
1.590	25.9	Neutral	46.0	-20.1	AV			
1.472	25.7	Neutral	46.0	-20.3	AV			
1.334	25.2	Line 1	46.0	-20.8	AV			
1.472	24.5	Line 1	46.0	-21.5	AV			
2.339	13.7	Line 1	46.0	-32.3	AV			
				I		I.		
Note 1:								
Note 2:								

GI	Ellic	ott					EM	C Test Data
	Aruba Ne						Job Number:	J51385
							T-Log Number:	T51481
Model:	Aruba 52						Account Manager:	
Contact:	Loren Vo	rreiter						
Spec:	FCC Part	15 B and	E, RSS-2	10			Class:	N/A
Run #2: AC	Power F	Port Cond	ucted Em	issions, 0.1	5 - 30MHz,	120V/60Hz		
requency	Level	AC	EN55	022 B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.265	41.5	Line 1	51.3	-9.8	AV			
0.401	35.6	Neutral	47.8	-12.2	AV			
0.663	32.4	Line 1	46.0	-13.6	AV			
0.663	42.3	Line 1	56.0	-13.7	QP			
2.480	41.2	Line 1	56.0	-14.8	QP			
1.592	40.5	Neutral	56.0	-15.5	QP			
0.265	45.3	Line 1	61.3	-16.0	QP			
0.401	41.6	Neutral	57.8	-16.2	QP			
2.556	38.4	Neutral	56.0	-17.6	QP			
1.074	27.1	Line 1	46.0	-18.9	AV			
1.592	25.4	Neutral	46.0	-20.6	AV			
2.480	23.6	Line 1	46.0	-22.4	AV			
2.556	21.4	Neutral	46.0	-24.6	AV			
1.074	9.0	Line 1	56.0	-47.0	QP			
lote 1:								
lote 2:								

	Elliott	EM	IC Test Data
Client:	Aruba Networks	Job Number:	J51385
Model	Aruba 52	T-Log Number:	T51481
wodei.	Aluba 32	Account Manager:	Christine Vu
Contact:	Loren Vorreiter		
Spec:	FCC Part 15 B and E, RSS-210	Class:	N/A

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/13/2003 Config. Used: 2
Test Engineer: jmartinez Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing. Remote support equipment was located approximately 30 meters from the test area with all I/O connectionss routed overhead.

On the OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 MHz.

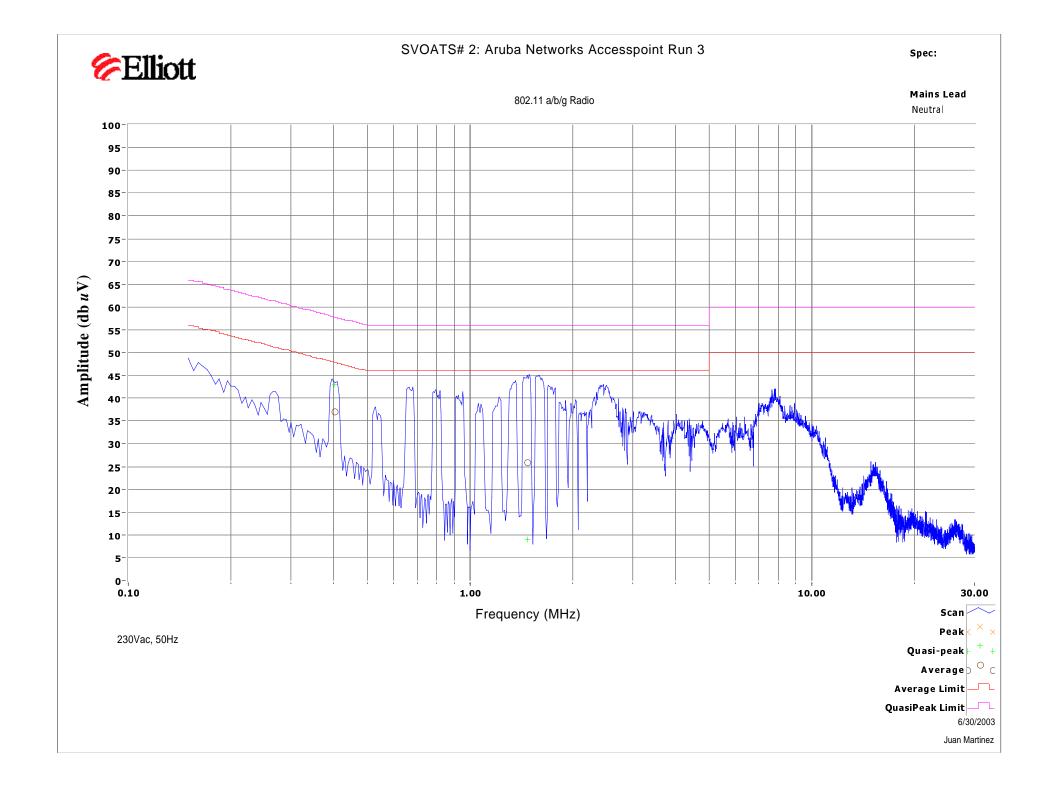
Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

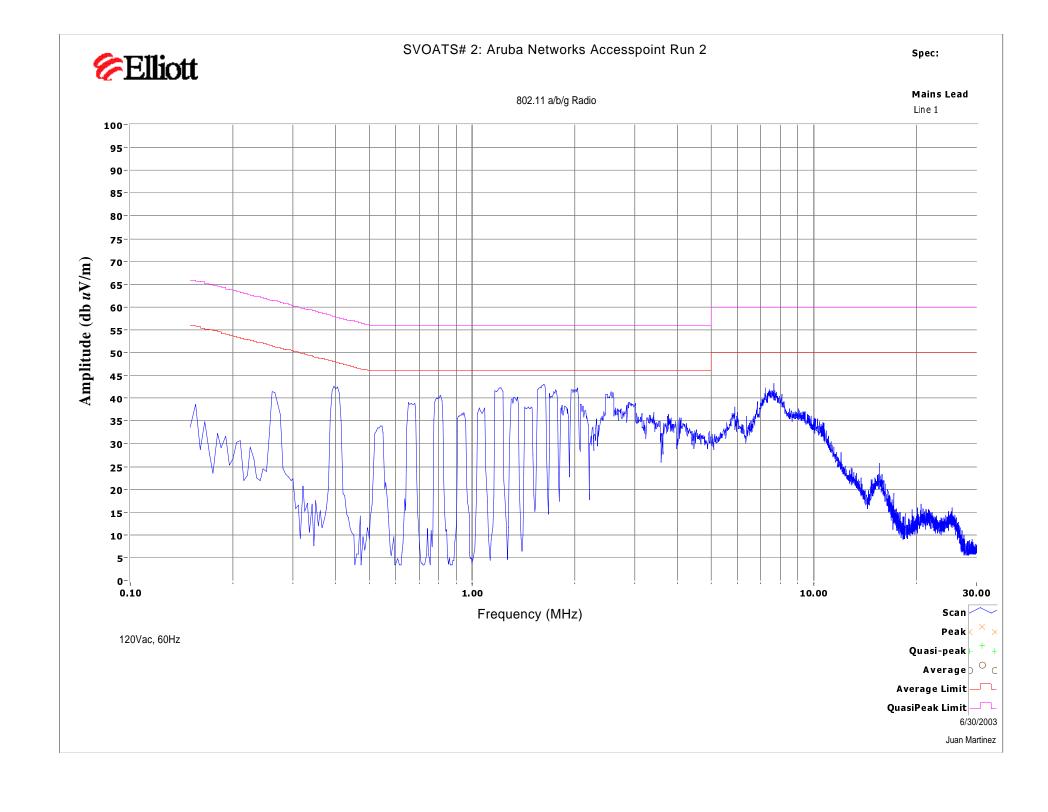
Ambient Conditions: Temperature: 18 °C

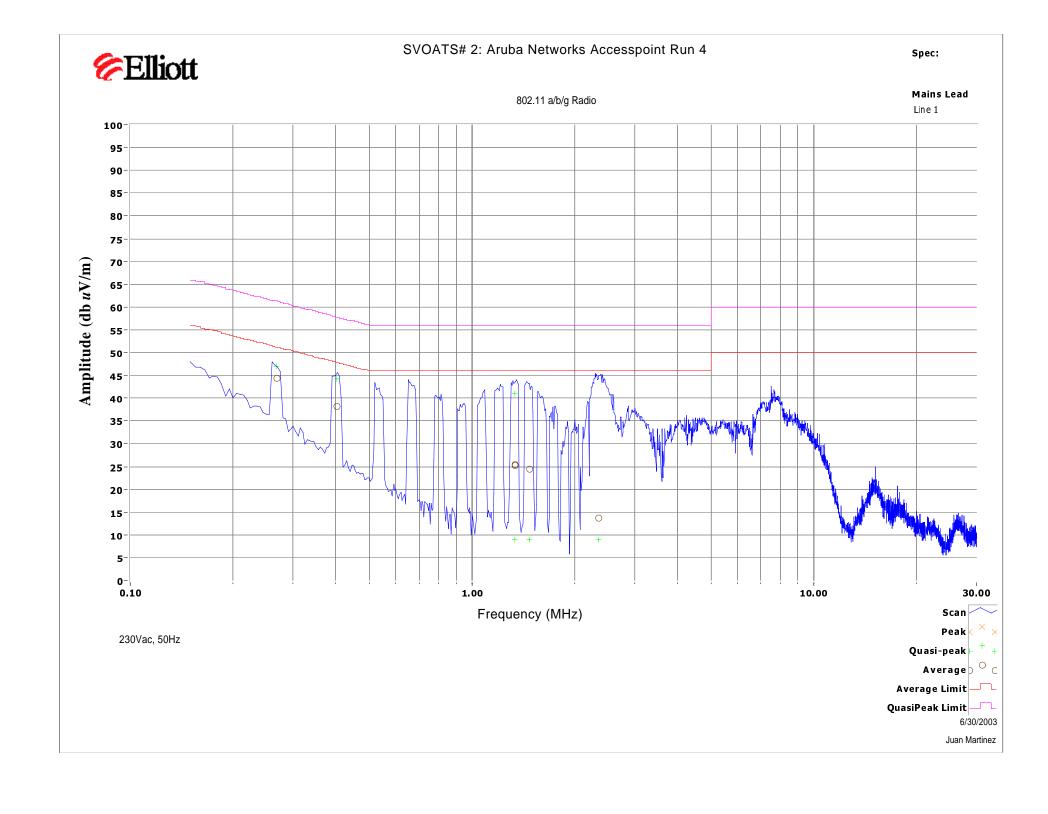
Rel. Humidity: 45 %

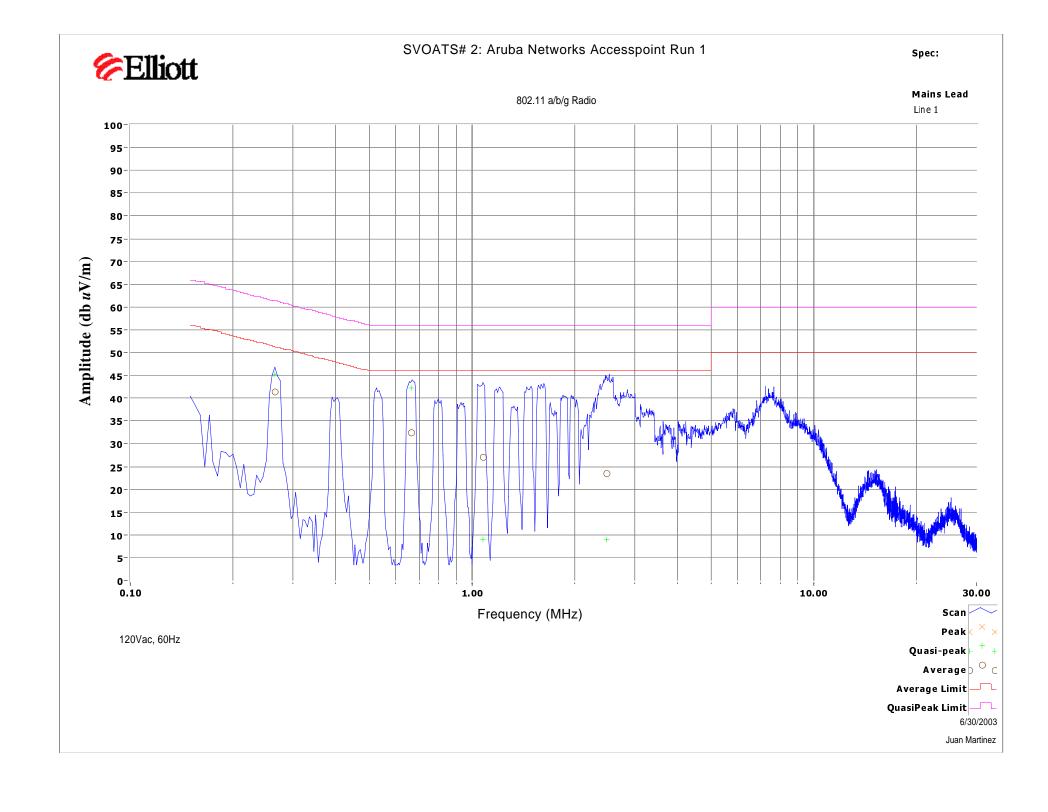
Summary of Results

Run #	Test Performed	Limit	Result	Margin
2	RE, 30 - 1000MHz, Maximized	EN55022 B	Pass	-5dB @ 165.337MHz
2	Emissions	EN00022 B	Pa55	-50D @ 105.557NITZ


Modifications Made During Testing:


No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

Client: Aruba Networks							J	ob Number:	J51385
							T-L	og Number:	T51481
Model:	Aruba 52						Accou	nt Manager:	Christine Vu
Contact:	Loren Vor	reiter							
Spec:	FCC Part	15 B and	d E, RSS-21	10				Class:	N/A
ıın #1· P	reliminary	, Radiate	ed Emissio	ns 30-100	n MHz				
requency	Level	Pol		022 B	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
165.337	25.0	V	30.0	-5.0	QP	242	1.0		
165.337	22.5	h	30.0	-7.5	QP	278	3.3		
75.112	22.1	٧	30.0	-7.9	QP	30	1.0		
65.102	20.2	٧	30.0	-9.8	QP	0	1.0		
192.227	20.1	V	30.0	-9.9	QP	168	1.0		
67.030	20.0	٧	30.0	-10.0	QP	360	1.0		
192.269	20.0	٧	30.0	-10.0	QP	6	1.0		
85.885	18.0	V	30.0	-12.0	QP	360	1.0		
513.240	25.0	h	37.0	-12.0	QP	0	2.0		
160.623	17.1	h	30.0	-12.9	QP	171	3.2		
448.000	23.8	h	37.0	-13.2	QP	212	1.9		
71.072	16.4	V	30.0	-13.6	QP	360	1.0		
68.379	16.0	V	30.0	-14.0	QP	0	1.0		
287.880	21.5	V	37.0	-15.5	QP	360	1.0		
35.990	14.0	V	30.0	-16.0	QP	361	1.0		
767.830	20.2	V	37.0	-16.8	QP	6	1.0		
352.369	19.5	V	37.0	-17.5	QP	255	1.0		
416.958	16.0	h	37.0	-21.0	QP	19	2.0		
446.679	15.9	V	37.0	-21.1	QP	361	1.0		
385.536	15.0	h	37.0	-22.0	QP	0	2.0	1	
385.536	14.1	V	37.0	-22.9	QP	120	1.0		
352.369		h	37.0	-23.9	QP	360	2.0		
			s From Ru				_	_	
requency		Pol		022 B	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
165.337	25.0	٧	30.0	-5.0	QP	242	1.0		
165.337	22.5	h	30.0	-7.5	QP	278	3.3		
75.112	22.1	٧	30.0	-7.9	QP	30	1.0		
65.102	20.2	٧	30.0	-9.8	QP	0	1.0		
192.227	20.1	V	30.0	-9.9	QP	168	1.0		
67.030	20.0	V	30.0	-10.0	QP	360	1.0		

