

EMC Test Report

Application for FCC Grant of Equipment Authorization Canada Certification

Innovation, Science and Economic Development Canada RSS-Gen Issue 5 / RSS-247 Issue 2 FCC Part 15, Subpart E

Model: APIN0555

IC CERTIFICATION #: 4675A-APIN0555

FCC ID: Q9DAPIN0555

APPLICANT: Aruba, a Hewlett Packard Enterprise company

3333 Scott Blvd

Santa Clara, CA 95054

TEST SITE(S): National Technical Systems

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3, 2845B-4, 2845B-5 and 2845B-7

PROJECT NUMBER: PR075848

REPORT DATE: March 14, 2019

RE-ISSUED DATE: May 3, 2019

FINAL TEST DATES: October 12, 15, 16, 17, 22, 25, 26, 29 and 31,

November 1 and 2, December 2, 3, 4, 5, 6 and 27, 2018, January 14 and 15, February 14, 15

and 19, 2019

TOTAL NUMBER OF PAGES: 150

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti

Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard

Quality Assurance Representative

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	March 14, 2019	First release	
1	April 8, 2019	Revised to correct 11ax20 bandwidth values, removed statement about use of 15.209 limits in lieu of 15.407 limits	dwb
2	April 18, 2019	Updated 6dB bandwidth results for 5.8 GHz band	dwb
3	May 3, 2019	Revised peak antenna gain values listed on page 12	dwb

TABLE OF CONTENTS

VALIDATING SIGNATORIES	
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
MEASUREMENT UNCERTAINTIES	/
EQUIPMENT UNDER TEST (EUT) DETAILS	12
GENERALOTHER EUT DETAILS	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	15
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	15
FILTERS/ATTENUATORS	16
ANTENNAS	16
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	17
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	17
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	21
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	22
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICES.	
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF DEPORT	150

SCOPE

An electromagnetic emissions test has been performed on the Aruba, a Hewlett Packard Enterprise company model APIN0555, pursuant to the following rules:

RSS-Gen Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15, Subpart E requirements for UNII Devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems test procedures:

ANSI C63.10-2013 FCC General UNII Test Procedures KDB789033

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

National Technical Systems is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested samples of Aruba, a Hewlett Packard Enterprise company model APIN0555 complied with the requirements of the following regulations:

RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Aruba, a Hewlett Packard Enterprise company model APIN0555 and therefore apply only to the tested samples. The samples were selected and prepared by Mark Hill of Aruba, a Hewlett Packard Enterprise company.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

OPERATION IN THE 5.15 – 5.25 GHZ BAND – ACCESS POINTS

OF ENVIRONMENT THE GITO GITE BYIND PROGEOUS GITTO					
FCC Rule Part		Description	Measured Value / Comments	Limit / Requirement	Result
15.407 (a) (1) (i) or (ii)		Output Power	a: 143.1 mW ax20: 139.4 mW ax40: 284.4 mW ax80: 127.3 mW (Max eirp: 0.955 W)	30 dBm EIRP <= 4W	Complies
15.407 (a) (1) (i), (ii) or (iii)		Power Spectral Density	a: 11.2 mW/MHz ax20: 13.0 mW/MHz ax40: 11.6 mW/MHz ax80: 2.4 mW/MHz	17 dBm/MHz	Complies
15.407(b) (1) / 15.209		Spurious Emissions above 1GHz	54.0 dBµV/m @ 5149.5 MHz (0.0 dB)	Refer to the limits section (p23) for restricted bands, all others -27 dBm/MHz EIRP	Complies

OPERATION IN THE 5.15 – 5.25 GHZ BAND

RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
RSS-247 6.2.1	Indoor operation only	Refer to user's manual	N/A	Complies
RSS-247 6.2.1 (1)	99% Bandwidth	a: 16.94 MHz ax20: 19.78 MHz ax40: 38.48 MHz ax80: 78.08 MHz	N/A – limits output power if < 20MHz	N/A
RSS-247 6.2.1 (1)	EIRP Output Power	a: 7.2 mW ax20: 7.4 mW ax40: 14.6 mW ax80: 27.8 mW (Max eirp: 0.093 W)	23 dBm (200 mW)	Complies
RSS-247 6.2.1 (1)	Power Spectral Density	a: 0.6 mW/MHz ax20: 0.6 mW/MHz ax40: 0.6 mW/MHz ax80: 0.6 mW/MHz	10 dBm/MHz	Complies
RSS-247 6.2.1 (2)	Spurious Emissions above 1GHz	54.0 dBµV/m @ 5149.5 MHz (0.0 dB)	Refer to the limits section (p23) for restricted bands, all others -27 dBm/MHz EIRP 26 dBc in 5.25-5.35 GHz band	Complies

OPERATION IN THE 5.725 - 5.85 GHZ BAND

OPERATION IN THE 5.725 - 5.65 GHZ BAND					
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(e)	RSS-247 6.2.4 (1)	6dB Bandwidth	a: 16.16 MHz ax20: 19.04 MHz ax40: 37.76 MHz ax80: 77.76 MHz	<= 500 kHz	Complies
15.407(a) (3)	RSS-210 A9.2(2)	Output Power (multipoint systems)	a: 619.1 mW ax20: 671.1 mW ax40: 631.7 mW ax80: 548.3 mW (Max eirp: 1.625 W)	30 dBm (1 W) EIRP <= 4W	Complies
15.407(a) (3)	RSS-247 6.2.3 (1)	Power Spectral Density	a: 48.1 mW/MHz ax20: 47 mW/MHz ax40: 21.3 mW/MHz ax80: 9.3 mW/MHz	30 dBm / 500 kHz	Complies
15.407(b) (4) / 15.209	RSS-247 6.2.4 (2)	Spurious Emissions above 1GHz	70.9 dBµV/m @ 5911.7 MHz (-0.9 dB)	Refer to the limits section (p23) for restricted bands, all others -17 dBm/MHz EIRP bandedge and -27 dBm/MHz EIRP	Complies

REQUIREMENTS FOR ALL U-NII/LELAN BANDS

REQUIREMENTS		LELAN BANDS		<u> </u>	Τ
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407	RSS-247 6.1	Modulation	System uses OFDM techniques	Digital modulation is required	Complies
15.407(b) (6) / 15.209	RSS-247 6.2.1 (2)	Spurious Emissions below 1GHz	36.8 dBµV/m @ 45.29 MHz (-3.2 dB)	Refer to page 24	Complies
15.31 (m)	RSS-247 6.4 (1) RSS-Gen 6.9	Channel Selection	Emissions tested at outermost and middle channels in each band	Device was tested on the top, bottom and center channels in each band	N/A
15.407 (c)	RSS-247 6.4 (2)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information (Operational Description page 8)	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)		Frequency Stability	Frequency stability is such that the emissions stay in band. (Operational description page 5)	Signal shall remain within the allocated band	Complies
15.407 (h1)	RSS-247 6.2.2 (1) 6.2.3 (1)	Transmit Power Control	TPC is not required as the device does not operate in either the 5470 – 5725 or 5250 – 5350 MHz bands	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	N/A
15.407 (h2)	RSS-247 6.3	Dynamic frequency Selection (device with radar detection)	Device does not operate in 5250 – 5350 MHz bands.		N/A
	RSS-247 6.4 c	User manual information	Refer to manual for details	Warning regarding Indoor use for 5150- 5250 MHz band	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Integral antenna	Unique or integral antenna required	Complies
15.407 (b) (6) RSS-Gen		AC Conducted Emissions (AC Power)	38.5 dBµV @ 0.46 MHz (-8.3 dB)	Pofor to page 22	Complies
15.407 (b) (6)	Table 4	AC Conducted Emissions (POE)	34.6 dBµV @ 0.45 MHz (-12.2 dB)	Refer to page 22	Compiles
15.247 (i) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSS-Gen 6.8	User Manual	Integral antenna	Statement for products with detachable antenna	N/A
-	RSS-Gen 8.4	User Manual	Refer to manual	Statement for all products	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Padiated emission (field etranath)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Radiated emission (field strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dΒμV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Aruba, a Hewlett Packard Enterprise company model APIN0555 is an enterprise grade Wi-Fi Access Point with two radios (one for 5 GHz bands and a second for 2.4 GHz bands). In addition, it incorporates a Bluetooth Low Energy (BLE) and ZigBee radio. Since the EUT could be placed in any position during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 56VDC, 0.6A.

The samples were received on October 12, 2018 and tested on October 12, 15, 16, 17, 22, 25, 26, 29 and 31, November 1 and 2, December 2, 3, 4, 5, 6 and 27, 2018, January 14 and 15, February 14, 15 and 19, 2019. The following samples were used:

Company	Model	Description	Serial Number	FCC ID
Aruba	APIN0555	Wi-Fi Access Point	CNGFK9Y02N	Q9DAPIN0555
Aruba	APIN0555	Wi-Fi Access Point	CNGFK9Y005	Q9DAPIN0555
Aruba	APIN0555	Wi-Fi Access Point	CNGXK9Y07P	Q9DAPIN0555

OTHER EUT DETAILS

The following EUT details should be noted:

Maximum antenna gains for internal antennas (details in test results):

2.4GHz: 4.3dBi max 5GHz: 5.8dBi max BLE/ZigBee: 4.5dBi

The Aruba APIN0555 802.11ax mode does not support partial RU configurations.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 26 cm wide by 26 cm deep by 5.5 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

Report Date: March 14, 2019, Re-issued: May 3, 2019

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
		AC Adapter		

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Dell	LatitudeE5440	Laptop	TS-0000342	-
Microsemi	PD-9001GR/AT/AC	POE adapter	None	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To		Cable(s)	
TOIL	Connected 10	Description	Shielded or Unshielded	Length(m)
AC Adapter	Mains	Two wire	Unshileded	1.3
POE adapter	Laptop	Cat 6	Unshileded	4
POE adapter	Mains	Three wire	Unshileded	1.3

EUT OPERATION

During emissions testing the EUT was set to transmit continuously in the 2.4 GHz and 5 GHz bands on the selected channel at the stated power level. Both Wi-Fi and BLE or ZigBee were transmitting.

Report Date: March 14, 2019, Re-issued: May 3, 2019

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Registration Numbers		Location
Sile	FCC	Canada	Location
Chamber 3		2845B-3	41020 Dayes Daye
Chamber 4	1100027	2845B-4	41039 Boyce Road
Chamber 5	Chamber 5 US0027		Fremont, CA 94538-2435
Chamber 7		2845B-7	CA 94556-2455

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for testing below 1 GHz and 1.5m for testing above 1 GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

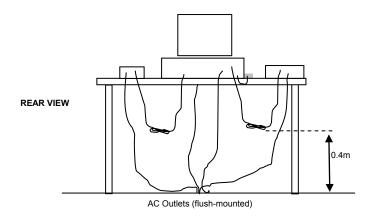
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

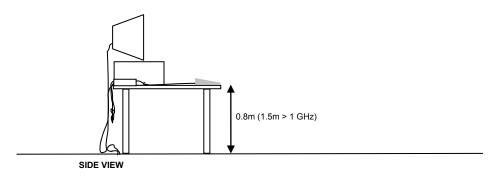
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

Figure 1 Typical Conducted Emissions Test Configuration

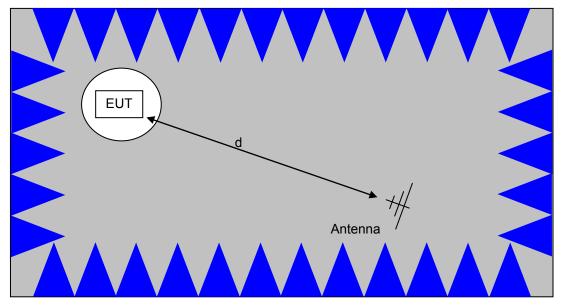
RADIATED EMISSIONS

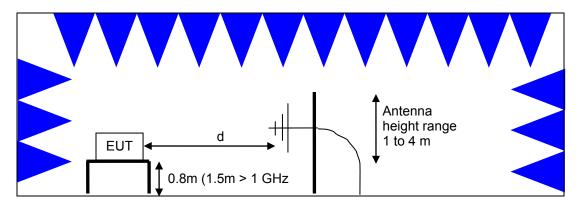

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

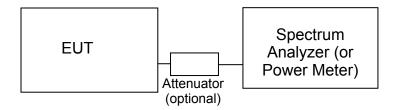
When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.




Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.



<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

Report Date: March 14, 2019, Re-issued: May 3, 2019

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

Report Date: March 14, 2019, Re-issued: May 3, 2019

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109 and RSS GEN Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of FCC Part 15.109 and receivers that are not stand-alone are exempt from the ISED Canada requirements per RSS-GEN and instead are subject to the requirements of ICES-003.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 7

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. For the 5250-5350 and 5470-5725 MHz bands, where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 – 5250	1Watt (30 dBm)	17 dBm/MHz
5250 - 5350 and 5470-5725	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watt (30 dBm)	30 dBm/500kHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

OUTPUT POWER LIMITS -LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 247. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral Density
(MHz)		
5150 – 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 – 5350 and 5470 - 5725	250 mW (24 dBm)2	11 dBm/MHz
5250 = 5550 and 5470 - 5725	1W (30dBm) eirp	I I UDIII/IVITIZ
5725 – 5825	1 Watt (30 dBm)	30 dBm/500kHz
3723 - 3623	4W eirp	30 dBill/300kH2

Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SPURIOUS EMISSIONS LIMITS – UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-Gen general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS-Gen general limits. All other signals have a limit of -27dBm/MHz, which is field strength of 68.3dBuV/m/MHz at a distance of 3m. For devices operating in the 5725-5850 MHz bands under the LELAN/UNII rules, the limit within 10MHz of the allocated band is increased to -17dBm/MHz.

² If EIRP exceeds 500mW the device must employ TPC

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter
d
where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer	Description	Model	Asset #	Calibrated	Cal Due
National Technical Systems	Emissions, 1000 - 6,500 MHz, 15 NTS EMI Software (rev 2.10)	N/A	0		N/A
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB 7	1538	2/10/2018	2/10/2019
EMCO	Antenna, Horn, 1-18 GHz	3115	2870	8/24/2017	8/24/2019
Radiated Emissions EMCO Rohde & Schwarz	- Band Edge, 16-Oct-18 Antenna, Horn, 1-18GHz EMI Test Receiver, 20 Hz-40 GHz	3115 ESI 40	868 2493	7/9/2018 3/22/2018	7/9/2020 3/22/2019
Radiated Emissions National Technical Systems	- Band Edge, 17-Oct-18 NTS EMI Software (rev 2.10)	N/A	0		N/A
National Technical Systems	NTS Capture Analyzer Software (rev 3.8)	N/A	0		N/A
EMCO Rohde & Schwarz	Antenna, Horn, 1-18GHz EMI Test Receiver, 20 Hz-40 GHz	3115 ESI 40	868 2493	7/9/2018 3/22/2018	7/9/2020 3/22/2019
Radiated Spurious E	: Emissions, 1000 - 18,000 MHz, 2	25-Oct-18			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	9/18/2018	9/18/2020
Hewlett Packard	Spectrum Analyzer (SA40) Blue 9 kHz - 40 GHz	8564E (84125C)	1393	12/8/2017	12/8/2018
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	4/18/2018	4/18/2019
Micro-Tronics	Band Reject Filter, 5150-5350 MHz 12GHz	BRC50703-02	1729	4/18/2018	4/18/2019
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB 7	1756	7/7/2018	7/7/2019
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	8/30/2018	8/30/2019
	Emissions, 1-18 GHz, 29-Oct-18 NTS EMI Software (rev 2.10)	N/A	0		N/A
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz-26.5 GHz	8593EM	1141	1/25/2018	1/25/2019
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	9/18/2018	9/18/2020
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	10/8/2018	10/8/2020
Hewlett Packard	Spectrum Analyzer (SA40) Blue 9 kHz - 40 GHz	8564E (84125C)	1393	12/8/2017	12/8/2018
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	4/18/2018	4/18/2019
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	6/20/2018	6/20/2019

Manufacturer Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz	Model 8449B	Asset # 1780	Calibrated 8/30/2018	<u>Cal Due</u> 8/30/2019
Micro-Tronics	Band Reject Filter, 2400-2500 MHz 18GHz	BRM50702-02	2238	5/1/2018	5/1/2019
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	2240	8/17/2018	8/17/2019
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-01	2738	8/18/2018	8/18/2019
Radiated Emissions National Technical Systems	, 1,000 - 12,000 MHz, 29-Oct-18 NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	10/8/2018	10/8/2020
Hewlett Packard	Spectrum Analyzer (SA40) Blue 9 kHz - 40 GHz	8564E (84125C)	1393	12/8/2017	12/8/2018
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	8/30/2018	8/30/2019
Micro-Tronics	Band Reject Filter, 2400-2500 MHz 18GHz	BRM50702-02	2238	5/1/2018	5/1/2019
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-01	2738	8/18/2018	8/18/2019
National Technical	Emissions, 1 - 40 GHz, 01-Nov-7 NTS EMI Software (rev 2.10)	18 N/A	0		N/A
Systems EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	9/18/2018	9/18/2020
Hewlett Packard	Spectrum Analyzer (SA40) Blue 9 kHz - 40 GHz	8564E (84125C)	1393	12/8/2017	12/8/2018
HP / Miteq	SA40 B Head HF preAmplifier, 18-40 GHz (w/1393)	TTA1840-45-5P- HG-S	1620	1/9/2018	1/9/2019
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	8/30/2018	8/30/2019
A. H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	9/5/2017	8/8/2020
Micro-Tronics	Band Reject Filter, 2400-2500 MHz 18GHz	BRM50702-02	2238	5/1/2018	5/1/2019
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	2240	8/17/2018	8/17/2019
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	8/17/2018	8/17/2019
Radiated Spurious F	Emissions, 1 - 18 GHz, 02-Nov-	18			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	9/18/2018	9/18/2020
Hewlett Packard	Spectrum Analyzer (SA40) Blue 9 kHz - 40 GHz	8564E (84125C)	1393	12/8/2017	12/8/2018
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	8/30/2018	8/30/2019
Micro-Tronics	Band Reject Filter, 2400-2500 MHz 18GHz	BRM50702-02	2238	5/1/2018	5/1/2019
EMCO	Antenna, Horn, 1-18GHz	3115	868	7/9/2018	7/9/2020

Manufacturer Description Model Asset # Calibrated Cal Due **Hewlett Packard** Microwave Preamplifier, 1-8449B 2199 8/30/2018 8/30/2019 26.5GHz **Hewlett Packard** Spectrum Analyzer (SA40) 8564E 2415 2/16/2018 2/16/2019 Purple 9 kHz - 40 GHz, (84125C) Rx Radiated spurious Emissions, 05-Nov-18 National Technical NTS EMI Software (rev 2.10) N/A 0 N/A Systems **EMCO** Antenna, Horn, 1-18GHz 3115 868 7/9/2018 7/9/2020 **Sunol Sciences** Biconilog, 30-3000 MHz JB3 1549 5/30/2017 5/30/2019 HP / Mitea SA40 P Head HF TTA1840-45-5P-1772 9/12/2018 N/A preAmplifier, 18-40 GHz HG-S (w/2415)A. H. Systems System Horn, 18-40GHz SAS-574, p/n: 2161 7/21/2017 7/21/2019 2581 **Hewlett Packard** Microwave Preamplifier, 1-8449B 2199 8/30/2018 8/30/2019 26.5GHz **Hewlett Packard** Spectrum Analyzer (SA40) 8564E 2415 2/16/2018 2/16/2019 Purple 9 kHz - 40 GHz, (84125C) **Hewlett Packard** 9KHz-1300MHz pre-amp 8447F 2777 12/27/2017 12/27/2018 Rohde & Schwarz EMI Test Receiver, 20 Hz-7 ESIB 7 9482 10/13/2018 10/13/2019 GHz Conducted Emissions - AC Power and Telecommunications Ports, 05-Nov-18 Rohde & Schwarz Pulse Limiter ESH3 Z2 1401 1/8/2018 1/8/2019 LISN, 25A, 150kHz to 30MHz, Fischer Custom FCC-LISN-50-2001 8/15/2018 8/15/2019 Comm 25 Amp. 25-2-09 Com-Power ISN, T8 unscreened 3260 ISN-T8 2/20/2018 2/20/2019 Rohde & Schwarz EMI Test Receiver, 20 Hz-7 ESIB 7 9482 10/13/2018 10/13/2019 GHz Radiated Spurious Emissions, 30 - 1,000 MHz, 06-Nov-18 National Technical 0 N/A NTS EMI Software (rev 2.10) N/A Systems **Sunol Sciences** Biconilog, 30-3000 MHz JB3 1549 5/30/2017 5/30/2019 Micro-Tronics Band Reject Filter, 2400-2500 BRM50702-02 2238 5/1/2018 5/1/2019 MHz 18GHz Micro-Tronics Band Reject Filter, 5150-5350 BRC50703-02 2251 8/17/2018 8/17/2019 MHz **Hewlett Packard** 9KHz-1300MHz pre-amp 8447F 2777 12/27/2017 12/27/2018 Rohde & Schwarz EMI Test Receiver, 20 Hz-7 ESIB 7 9482 10/13/2018 10/13/2019 GHz Radiated Emissions, Band-edge, 03-Dec-18 0 N/A National Technical NTS EMI Software (rev 2.10) N/A Systems **EMCO** Antenna, Horn, 1-18 GHz 3115 1386 10/8/2018 10/8/2020 (SA40-Blu) Rohde & Schwarz EMI Test Receiver, 20 Hz-40 **ESI 40** 2493 3/22/2018 3/22/2019 Radio Antenna Port (Power and Spurious Emissions), 03-Dec-18 Rohde & Schwarz Signal Analyzer 20 Hz - 26.5 FSQ26 2327 6/25/2018 6/25/2019 GHz

Test Report FR-075848.01-NARFWiFi Rev 3

Radio Antenna Port (Power and Spurious Emissions), 06-Dec-18

Manufacturer **Description** Model Asset # Calibrated Cal Due Rohde & Schwarz Signal Analyzer 20 Hz - 26.5 FSQ26 2327 6/25/2018 6/25/2019 GHz 3000 Rohde & Schwarz Open Switch and Control Unit OSP120 with 5/1/2018 5/1/2019 with integrated power meter OSP-B157 module Radiated Emissions, 27-Dec-18 **EMCO** Antenna, Horn, 1-18 GHz 3115 1242 4/11/2017 4/19/2019 **Hewlett Packard** High Pass filter, 8.2 GHz (Blu P/N 84300-1392 5/1/2018 5/1/2019 System) 80039 (84125C) **Hewlett Packard** Spectrum Analyzer (SA40) 8564E 1393 12/8/2018 12/8/2019 Blue 9 kHz - 40 GHz (84125C) Micro-Tronics Band Reject Filter, 5470-5725 BRC50704-02 1681 3/23/2018 3/23/2019 MHz 12GHz Microwave Preamplifier, 1-**Hewlett Packard** 8449B 1780 8/30/2018 8/30/2019 26.5GHz 5/1/2018 Micro-Tronics Band Reject Filter, 2400-2500 BRM50702-02 2238 5/1/2019 MHz 18GHz Micro-Tronics Band Reject Filter, 5150-5350 BRC50703-02 2239 8/17/2018 8/17/2019 MHz Rohde & Schwarz EMI Test Receiver, 20 Hz-7 ESIB 7 9482 10/13/2018 10/13/2019 GHz TTA1840-45-5P-HP / Miteq SA40 B Head HF 1620 1/9/2018 1/9/2019 preAmplifier, 18-40 GHz HG-S (w/1393)A. H. Systems Blue System Horn, 18-40GHz SAS-574, p/n: 2159 9/5/2017 8/8/2020 2581 Radiated Emissions, 1,000 - 12,000 MHz, 15-Jan-19 **Hewlett Packard** Microwave Preamplifier, 1-8449B 785 9/5/2018 9/5/2019 26.5GHz **Hewlett Packard** Spectrum Analyzer (SA40) 8564E (84125C) 1148 9/27/2018 9/27/2019 Red 30 Hz -40 GHz Antenna, Horn, 1-18 GHz **EMCO** 3115 1386 10/8/2018 10/8/2020 (SA40-Blu) Micro-Tronics Band Reject Filter, 2400-2500 BRM50702-02 1683 4/18/2018 4/18/2019 MHz Micro-Tronics Band Reject Filter, 5470-5725 BRC50704-02 1730 6/20/2018 6/20/2019 MHz Rohde & Schwarz EMI Test Receiver, 20 Hz-40 **ESI 40** 2493 3/22/2018 3/22/2019 GHz Radiated Emissions, 1,000 - 6,000 MHz, 14-Feb-19 **EMCO** Antenna, Horn, 1-18 GHz 3115 1142 9/18/2018 9/18/2020 (SA40-Red) Rohde & Schwarz EMI Test Receiver, 20 Hz-40 **ESI 40** 2493 3/22/2018 3/22/2019 GHz Radiated Emissions, 1,000 - 18,000 MHz, 19-Feb-19 0 National Technical NTS EMI Software (rev 2.10) N/A N/A Systems **Hewlett Packard** Microwave Preamplifier, 1-8449B 785 9/5/2018 9/5/2019 26.5GHz **Hewlett Packard** 8564E (84125C) 9/27/2018 9/27/2019 Spectrum Analyzer (SA40) 1148 Red 30 Hz -40 GHz

Manufacturer	<u>Description</u>	<u>Model</u>	Asset #	Calibrated	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	10/8/2018	10/8/2020
Hewlett Packard	High Pass filter, 8.2 GHz (Blu System)	P/N 84300- 80039 (84125C)	1392	5/1/2018	5/1/2019
Micro-Tronics	Band Reject Filter, 5150-5350 MHz 12GHz	BRC50703-02	1729	4/18/2018	4/18/2019
Micro-Tronics	Band Reject Filter, 2400-2500 MHz 18GHz	BRM50702-02	2238	5/1/2018	5/1/2019
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	2240	8/17/2018	8/17/2019
Radio Antenna Port	(6dB Bandwidth), 18-Apr-19				
Agilent	PSA Spectrum Analyzer	E4446A	2796	5/31/2018	5/31/2019

Appendix B Test Data

TL075848-RA-FCC Pages 33 – 149

	NTS
--	-----

EMC Test Data

Client: Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Product APIN0555	T-Log Number:	TL075848-RA-FCC
System Configuration: -	Project Manager:	Christine Krebill
Contact: Mark Hill	Project Engineer:	David Bare
Emissions Standard(s): FCC §15.247 & §15.407	Class:	
Immunity Standard(s): -	Environment:	Radio

EMC Test Data

For The

Aruba, a Hewlett Packard Enterprise company

Product

APIN0555

Date of Last Test: 2/27/2019

EMC Test Data

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMOREE	T-Log Number:	TL075848-RA-FCC
	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

RSS-247 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 22-24 °C

Rel. Humidity: 38-41 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: CNGFK9Y02N (BLE) & CNGFK9Y005 (Zigbee)

Driver: P4 V0.4.5

Antenna: Internal 8 antennas for 5 GHz radio and 4 antennas for 2.4 GHz radio (5GHz radio may also use 4 antennas but

with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously). Tests performed

with 8 antennas at the 4 antenna power levels. Tests performed with 4 antennas at the target power.

EMC Test Data

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Wodel. AFIN0333	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

Summary of Results

Summary of Result	.ა			
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	a: 143.1 mW 20: 139.4 mW 40: 284.4 mW 80: 127.3 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	a: 11.9 mW/MHz 20: 13.0 mW/MHz 40: 11.8 mW/MHz 80: 2.4 mW/MHz
1	99% Bandwidth	RSS-247 (Information only)	Pass	a: 16.94 MHz 20: 20.544 MHz 40: 38.48 MHz 80: 78.08 MHz

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033 D01

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
11a	6 MB/s	0.923	Yes	1.437	0.35	0.69	696	5 GHz only
11ax20	MCS0	0.962	Yes	5.448	0.17	0.34	184	
11n20	MCS0	0.962	Yes	5.432	0.17	0.34	184	
11ax40	MCS0	0.955	Yes	5.414	0.20	0.40	185	
11n40	MCS0	0.956	Yes	4.779	0.20	0.39	209	
ax80	MCS0	0.959	Yes	5.401	0.18	0.37	185	5 GHz only
ac80	MCS0	0.951	Yes	4.753	0.22	0.44	210	
11ax80+80	MCS0	0.950	Yes	5.401	0.22	0.45	185	5 GHz only
ac80+80	MCS0	0.953	Yes	4.766	0.21	0.42	210	

Client:	Aruba, a Hewlett Packard Enterprise company		Job Number:	PR075848
Madal	ADMOSES		T-Log Number:	TL075848-RA-FCC
Model:	APIN0555		Project Manager:	Christine Krebill
Contact:	Mark Hill		Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407		Class:	N/A
	ndwidth, Output Power and Power Spectral Density Date of Test: 12/3/2018 0:00		1 (Zigbee EUT setup)	
	st Engineer: Rafael Varelas	Config Change:		
	est Location: FT Lab #4a	EUT Voltage:		
• •	occ Education. The Education	Lot voltago.	102	
	Constant Duty Cycle < 98%. Output power measured	using a spectrum and	alyzer (see plots below).	RBW=1MHz, VB=3
	MHz, Span > OBW, # of points in sweep ≥ 2*span/RB	W, RMS detector, trace	ce average 100 traces (a	t least 100 traces,
Note 1:	increase the number to get true average), power aver	aging on and power ir	tegration over the OBW.	Tthe measurement
	were adjusted by adding the Pwr Cor Factor in dB. TI	his is based on 10log(1/x), where x is the duty	cycle. (method SA-2
	ANSI C63.10)	-	,	
Note 2:	Measured using the same analyzer settings used for o	output power.		
	For RSS-247 the limit for the 5150 - 5250 MHz band a	accounts for the anten	na gain as the maximum	eirp allowed is
Note 3:	10dBm/MHz. The limits are also corrected for instance			
NOLE 3.	PSD (calculated from the measured power divided by	the measured 99% ba	andwidth) by more than 3	3dB by the amount th
	the measured value exceeds the average by more that	an 3dB.		
Note 4:	99% Bandwidth measured in accordance with C63.10		of OBW and VB \geq 3*RB,	Span between 1.5 ai
Note 4:	99% Bandwidth measured in accordance with C63.10 times OBW.	- RB between 1-5 % o		•
Note 4:	99% Bandwidth measured in accordance with C63.10 times OBW. For MIMO systems the total output power and total P6	- RB between 1-5 % of SD are calculated from	the sum of the powers	of the individual chair
Note 4:	99% Bandwidth measured in accordance with C63.10 times OBW. For MIMO systems the total output power and total PS (in linear terms). The antenna gain used to determine	- RB between 1-5 % of SD are calculated from a the EIRP and limits for	n the sum of the powers or or PSD/Output power de	of the individual chair pends on the operati
	99% Bandwidth measured in accordance with C63.10 times OBW. For MIMO systems the total output power and total PS (in linear terms). The antenna gain used to determine mode of the MIMO device. If the signals on the non-c	- RB between 1-5 % of are calculated from the the EIRP and limits for the thereof the the street th	n the sum of the powers of or PSD/Output power de cransmit chains then the	of the individual chair pends on the operati gain used to determ
Note 4:	99% Bandwidth measured in accordance with C63.10 times OBW. For MIMO systems the total output power and total P5 (in linear terms). The antenna gain used to determine mode of the MIMO device. If the signals on the non-c the limits is the highest gain of the individual chains an	- RB between 1-5 % of are calculated from the EIRP and limits for soherent between the find the EIRP is the sun	n the sum of the powers or or PSD/Output power de transmit chains then the n of the products of gain	of the individual chair pends on the operati gain used to determi and power on each
	99% Bandwidth measured in accordance with C63.10 times OBW. For MIMO systems the total output power and total PS (in linear terms). The antenna gain used to determine mode of the MIMO device. If the signals on the non-c	- RB between 1-5 % of are calculated from the EIRP and limits for soherent between the find the EIRP is the suntenna gain is the sur	n the sum of the powers or or PSD/Output power de transmit chains then the n of the products of gain	of the individual chain pends on the operati gain used to determ and power on each

Client: Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model: APIN0555	T-Log Number:	TL075848-RA-FCC
Model. Arthoops	Project Manager:	Christine Krebill
Contact: Mark Hill	Project Coordinator:	David Bare
Standard: FCC §15.247 & §15.407	Class:	N/A

Antenna Gain Information

Freq		Antenna Gain (dBi) / Chain							Dir G	Dir G
rieq	1	2	3	4	5	6	7	8	(PWR)	(PSD)
5150-5250	5.5	3.7	5.3	2.9	4.3	4.5	5.8	3.9	5.3	11.3

8x8 mode uses 4 V and 4 H polarized antennas, directional gain used is the highest of the two.

4x4 mode uses 2 V and 2 H polarized antennas, directional gain used is the highest of the two.

Legacy modes operate on all chains

Power for BF mode is reduced by 3 dB so effective antenna gain does not change

CDD active for single stream modes

For devices that support CDD modes

Min # of spatial streams: 1
Max # of spatial streams: 8

Notes:	BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmissions, CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized or cross polarized.
Notes:	Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; GA (PSD) = total gain for PSD calculations based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the PSD value.
Notes:	Array gain for power/psd calculated per KDB 662911 D01.
Notes:	For systems with Beamforming and CDD, choose one the following options: Option 1: Delays are optimized for beamforming, rather than being selected from cyclic delay table of 802.11; Array gains calculated based on beamforming criteria. Option 2: Antennas are paired for beamforming, and the pairs are configured to use the cyclic delay diversity of 802.11; the array gain associated with beamforming with 2 antennas (3dB), and the array gain associated with CDD with two antennas (3dB for PSD and 0 dB for power)

FCC UNII-1	Limits	Pwr	PSD
	Outdoor AP	30	17
Χ	Indoor AP	30	17
	Station (e.g. Client)	24	11
	Outdoor AP (>30° Elv.)	21	-

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Onone, history a nome in a stand Enterprise company	T-Log Number: TL075848-RA-FCC
Model: APIN0555	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

MIMO Device - 5150-5250 MHz Band - FCC Mode: 11a

Mode:	.e - 3130-32. 11a	JU WILL Dall	u - 1 CC				Max	EIRP (mW):	480.5	
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total F			Max Power	Result
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
	1				11.3					
	2				12.7					
l .	3				11.3					
5180	4	14.0		92.3	12.6	138.7	21.4	30.0		Pass
	5	•		02.0	11.2			00.0		. 0.00
	6				12.7					
	7				11.4					
	8				12.7					
	2				12.6 12.3					
	3			•	11.9					
1	4				12.7					
5200	5	15.0		92.3	12.4	143.1	21.6	30.0	0.143	Pass
	6				11.8					
	7				11.6					
	8				12.0					
	1				12.7					
	2				12.3					
	3				12.8					
5240	4	15.0		92.3	11.8	132.7	21.2	30.0		Pass
0210	5	10.0		32.3	12.1	102.7	21.2	30.0		. 400
	6				11.0					
	7				10.3					
	8				11.2					

Client: Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model: APIN0555	T-Log Number:	TL075848-RA-FCC
Model. Arthusss	Project Manager:	Christine Krebill
Contact: Mark Hill	Project Coordinator:	David Bare
Standard: FCC §15.247 & §15.407	Class:	N/A

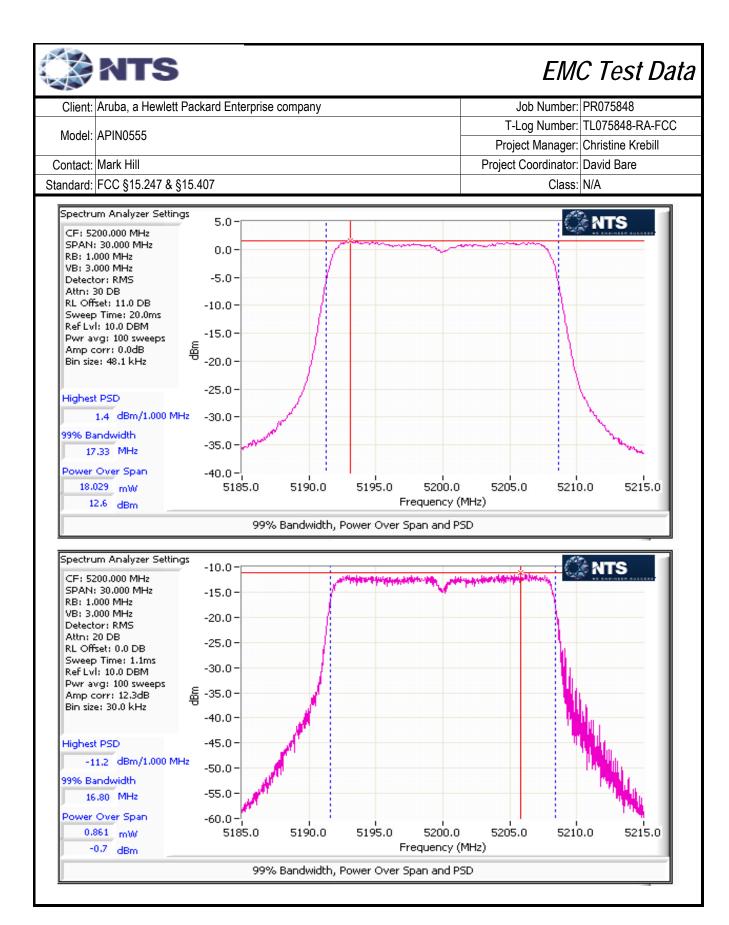
MIMO Device - 5150-5250 MHz Band - ISEDC Mode: 11a

Mode:	11a						Max	EIRP (mW):	24.2	
Frequency	Chain	Software	99% BW	Duty Cycle	Power ¹	Total I	Power	IC limit	Max Power	Result
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm (eirp)	dBm (eirp)	(W)	Nesuit
	0				-0.6					
	1				-0.6					
	2				0.1					
5180	3	0	16.99	92.3	-1.1	7.2	13.8	22.3		Pass
	4				-1.1					
	5				-1.2 -1.2					
	7				-0.9					
	0				-0.7					
	1			92.3	-1.2	6.2	13.2	22.3	0.007	
	2		0 16.94		-1.4					
5200	3	0			-1.5					Pass
5200	4	U			-1.0	0.2				Fa55
	5				-2.0					
	6				-2.1					
	7				-1.9					
	0				-0.4					
	2				-0.8 -0.6					
	3				-0.6 -1.9					Pass
5240	4	0	16.94	92.3	-0.9	6.6	13.5	3.5 22.3		
	5				-1.9					
	6				-2.1					
	7				-1.3					

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Wodel. AFIN0333	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

5150-5250 PSD - FCC

Mode:	11a								
Frequency	Chain	Software		Duty Cycle	PSD	Total	PSD ¹	FCC Limit	Result
(MHz)	Chain	Setting		%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz	Nesuit
	0				0.0				
	1				1.7				
	2				0.1				
5180	3	14.0		92.3	1.5	11.2	10.5	11.7	Pass
	4				0.5				
	5				2.1				
	6 7				0.5				
	0				2.0 1.4				
	1			92.3	1.3	11.9	10.8	11.7	
	2				0.7				Pass
	3				1.4				
5200	4	15.0			2.1				
•	5				1.7				
	6			0.8					
•	7				1.4				
	0				1.4				
	1				1.4				
	2				1.6				Pass
5240	3	15.0		92.3	0.6	10.8	10.3	11.7	
	4				1.5			111	
	5				0.7				
	6				-0.4				



Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

5150-5250 PSD - ISEDC

Mode:	11a
wou.	ı ı u

Frequency	Chain	Software		Duty Cycle	PSD	Total	PSD ¹	IC Limit	Result
(MHz)	Chain	Setting		%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz	Result
	0				-11.4				
	1				-11.2				
	2				-10.7				
5180	3	0		92.3	-11.8	0.6	-2.2	-1.3	Pass
3100	4	U		32.3	-11.2	0.0	-2.2	-1.5	1 055
	5				-11.2				
	6				-11.6				
	7				-11.0				
	0			92.3	-11.2	0.6	-2.2	-1.3	Pass
	1	0			-11.4				
	2				-11.9				
5200	3				-12.0				
0200	4				-10.6				
	5				-11.3				
	6				-12.3				
	7				-11.6				
	0				-11.4				
5240	1				-11.4				Pass
	2				-11.7				
	3	0		92.3	-12.8	0.6	-2.2	-1.3	
	4			02.0	-11.3				
	5				-12.1				
	6 7				-12.5				
	1				-11.5				

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Model. Arinosss	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

MIMO Device - 5150-5250 MHz Band - FCC

Mode:	11ax20						Max	EIRP (mW):	468.0	
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total F	Power	FCC Limit	Max Power	Result
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Nesuit
	1				12.2					
	2				11.8					
	3				11.4					
5180	4	12.0		96	11.7	123.8	20.9	30.0		Pass
0.00	5	12.0		"	12.0	120.0	20.0	00.0		. 400
	6				12.0					
	7				11.0					
	8				11.6					
	2				12.5 12.4					
	3		2.5	96	12.4	139.4	21.4	30.0	0.139	
	4				12.3					
5200	5	12.5			12.5					Pass
	6				12.3					
	7				11.7					
	8				12.0					
	1				12.6					
	2			Ī	12.3					
	3				11.8					
5240	4	12.5		96	11.8	127.3	21.0	30.0		Pass
	5			96	12.4	121.3				1 033
	6				11.8					
	7				10.4					
	8				11.3					

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Wodel. AFIN0333	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

MIMO Device - 5150-5250 MHz Band - ISEDC Mode: 11ax20

Mode:	11ax20						Max	EIRP (mW):	24.8	
Frequency	Chain	Software	99% BW	Duty Cycle	Power ¹	Total I	Power	IC limit	Max Power	Result
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm (eirp)	dBm (eirp)	(W)	Nesuit
	1				-0.2					
	2				-0.4					
	3				-1.2					
5180	4	0.5	19.78	96.2	-0.3	7.4	14.0	23.0		Pass
0.00	5	0.0	10.10	00.2	-0.1			20.0		. 400
	6				-0.4					
	7				-0.3					
	8				-1.1					
	1		19.78	96.2	-0.2	7.1	13.8	23.0	0.007	
	2				-0.7					
	4				-0.4 -0.8					
5200	5	0.5			-0.6					Pass
ŀ	6				-0.0					
•	7				-1.3					
	8				-0.7					
	1				-0.5					
	2				-0.8					
5240	3				-1.4					
	4	0.5	19.78	06.2	-1.1	6.3	13.3	23.0		Pass
	5			96.2	-0.6			23.0		F a 5 5
	6				-1.2					
	7				-2.6					
	8				-1.6					

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Wodel. AFIN0333	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

5150-5250 PSD - FCC

Mode:	11ax20

wode.	HAXZU								
Frequency	Chain	Software		Duty Cycle	PSD	Total	_	FCC Limit	Result
(MHz)	Onam	Setting		%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz	rtosuit
	1				1.5				
	2				1.3				
	3				0.9				
5180	4	12.0		96.2	1.1	11.7	10.7	11.7	Pass
0100	5	12.0		00.2	2.1	11.7	10.7	11	1 400
	6				2.3				
	7				0.8				
	8				1.7				
	1				1.6				
	2				1.6				
	3				1.5				
5200	4	12.5		96.2	1.5	12.4	10.9	11.7	Pass
	5				2.4				
	6				2.4				
	7				1.0				
	8				1.7 2.2				
	2				2.2				
5240	3				1.5				
	4				1.6				Pass
	5	12.5		96.2	2.7	13.0	11.1	11.7	
	6				2.6				
	7				0.8				
	8				1.6				
	V				1.0				

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Wodel. AFIN0333	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

5150-5250 PSD - ISEDC

Mode:	11ax20

woue.	HAXZU								
Frequency	Chain	Software		Duty Cycle	PSD	Total	PSD ¹	IC Limit	Result
(MHz)	Onam	Setting		%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz	1 (0001)
	1				-10.9				
	3				-11.0				
	4				-12.4				
5180	3	0.5		96.2	-11.1	0.6	-2.2	-1.3	Pass
3100	4	0.5		30.2	-11.7	0.0	-2.2	-1.0	1 433
	3				-11.9				
	4				-11.7				
	2				-12.7				
	1				-11.2			ļ	
	3				-11.7				
	4	0.5		96.2	-11.3	0.6	-2.2	-1.3	Pass
5200	3				-11.9				
	4				-10.6				
	3				-10.7				
	4				-12.1				
	2				-11.1				
	ı				-11.3				
5240	3				-11.2				Pass
	4				-12.1				
	3 4	0.5		96.2	-11.7 -10.6	0.6	-2.2	-1.3	
	3				-10.6				
	4		1 -	-10.7					
	2				-12.0				
	۷				-11. <i>1</i>				

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Wodel. AFIN0333	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

5150-5250 PSD - FCC

n20 mode tested to demonstrate PSD is almost the same as for ax20 mode

Mode: 11n20

Mode:	11n20							
Frequency	Chain	Software	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	Result
(MHz)	Chain	Setting	%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz	Nesuit
	1			1.5				
	2			1.7				
	3			0.9				
5180	4	12.0	96.2	1.2	11.6	10.6	11.7	Pass
3100	5	12.0	30.2	2.0	11.0	10.0	11.7	1 033
	6			2.4				
	7			1.5				
	8			0.1				
	1			2.3				
	2			1.5				
	3			1.9				
5200	4	12.5	96.2	1.3	12.8	11.1	11.7	Pass
	5			2.6				
	6			1.9				
	7			1.5				
	8			1.9				
	2			2.5				
	3			1.8 2.0				
	4			1.4				
5240	5	12.5	96.2	2.9	12.9	11.1	11.7	Pass
	6			1.8				
	7			1.0				
	8			1.6				
	~			1.10				

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Wodel. AFIN0333	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

5150-5250 PSD - ISEDC Mode: 11n20

111120								
Chain	Software		Duty Cycle	PSD	Total	PSD ¹	IC Limit	Result
Onam	Setting		%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz	Nesuit
1				-10.8				
	0.5		96.2		0.6	-22	-1.3	Pass
4	0.0		50. <u>2</u>		0.0	2.2	1.0	1 433
•								
	0.5		96.2		0.6	-2.2	-1.3	Pass
ı								
	0.5		96.2		0.6	-2.2	-1.3	Pass
2				-11.8				
	3 4 2 1 3 4 3 4 2 1 3 4 2 1 3 4 3 4 2	Chain Software Setting 1 3 4 3 4 3 4 2 1 3 4 3 4 3 4 2 1 3 4 2 1 3 4 3 5	Chain Software Setting 1 3 4 3 4 3 4 2 1 3 4 3 4 3 4 2 1 3 4 2 1 3 4 4 3 4 4 3 4 3 5	Chain Software Setting Duty Cycle % 1 3 4 3 4 3 4 2 1 3 4 3 4 3 4 2 1 3 4 2 1 3 4 3	Chain Software Setting Duty Cycle % PSD dBm/MHz 1 3 -10.8 -11.6 -11.0 -11.0 -11.7 -11.7 -10.5 -11.7 -10.5 -11.2 -10.7 -10.7 -10.7 -11.8 -11.2 -10.7 -11.8 -11.2 -11.9 -10.3 -11.9 -10.3 -11.3 -11.8 -11.2 -10.8 -11.6 -11.4 -11.6 -11.4 -12.1 -10.6 -11.7 -10.6 -11.7 -11.8 3 4 0.5 96.2 96.2 -12.1 -10.6 -11.7 4 3 0.5 96.2 -11.6 -11.4 -12.1 3 4 0.5 96.2 -11.6 -11.7 -11.8 4 3 0.5 -11.6 -11.7 -11.8 -11.7 -11.8 3 4 0.5 -11.7 -11.8 -11.7 -11.8	Chain Software Setting Duty Cycle % PSD dBm/MHz Total mW/MHz 1 3 -10.8 -11.6 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.2 -10.5 -11.2 -10.7 -11.8 -11.2 -11.8 -11.2 -11.8 -11.2 -11.3 -11.3 -11.8 -11.2 -11.8 -11.6 -11	Chain Software Setting Duty Cycle % PSD dBm/MHz Total PSD¹ mW/MHz dBm/MHz 1 3 -10.8 -11.6 -11.0 -11.0 -11.7 -10.5 -11.7 -10.5 -11.2 -11.2 -11.2 -11.2 -11.2 -11.8 -11.2 -11.8 -11.2 -11.3 -11.8 -11.2 -11.8 -11.2 -11.8 -11.2 -11.8 -11.2 -11.8 -11.6 -11.6 -11.4 -11.6 -11.4 -11.6 -11.4 -11.6 -11.4 -11.6 -11.4 -11.6 -11.7 -11.8 -11.6 -11.7 -11.8 -11.6 -11.7 -11.8 -11.6 -11.7 -11.8 -11.6 -11.7 -11.8 -11.6 -11.7 -11.8	Chain Software Setting Duty Cycle % PSD dBm/MHz Total PSD¹ mW/MHz IC Limit dBm/MHz 1 3 -10.8 -10.6 -10.6 -10.6 -10.6 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8 -10.8

	NT:	S						EM	C Test	Data
Client:	Aruba, a He	wlett Packard	d Enterprise	company				lob Number:	PR075848	
Madeli	APIN0555		· · · · · · · · · · · · · · · · · · ·	<u> </u>			T-L	.og Number:	TL075848-R	A-FCC
iviodėl:	APINUSSS						Proje	ct Manager:	Christine Kre	bill
Contact:	Mark Hill						Project	Coordinator:	David Bare	
Standard:	FCC §15.24	7 & §15.407						Class:	N/A	
	ce - 5150-525	50 MHz Ban	d - FCC				14.	FIDD (IA/)	054.0	
Mode:	ax40	Software		Duty Cyala	Dawar I	T-4-1 F		EIRP (mW):	954.9 Max Power	
Frequency (MHz)	Chain	Software		Duty Cycle %	Power dBm	Total F mW	ower dBm	dBm	(W)	Result
(IVII IZ)	1	Setting		%	12.6	TTIVV	abm	abm	(()	
	2				12.4					
	3				11.7					
5190	4	12.5		95.5	12.1	131.3	21.2	30.0		Pass
0100	5	12.0		55.5	12.0	101.0	£1.£	00.0		1 400
	6				11.9					
	7 8				11.9 10.8					
	1				16.0				0.284	
	2			•	15.7					
	3			•	15.2					
5230	4	16.5		95.5	15.0	284.4	24.5	30.0		Pass
3230	5	10.5		95.5	15.4	204.4	24.5	30.0		Fa55
	6				15.5					
	7				14.7					
MIMO Devid Mode:	8 ce - 5150-529 ax40	50 MHz Band	d - ISEDC		14.8		Max	EIRP (mW):	49.0	
Frequency	Chain	Software	99% BW	Duty Cycle	Power ¹	Total F	Power	IC limit	Max Power	Result
(MHz)		Setting	(MHz)	%	dBm	mW	dBm (eirp)	dBm (eirp)	(W)	เงองนเเ
	1				2.3					
	2				2.2					
	3				1.6					
5190	4 5	3.0	38.72	95.5	3.5 2.5	14.6	16.9	23.0		Pass
	6				2.5					
	7				0.3					
	8				3.7				0.045	
	1				2.2				0.015	
	2			[2.2					
	3				1.2					
5230	4	3.0	38.48	95.5	3.0	13.4	16.5	23.0		Pass
	5 6				2.2 1.7					
	7				0.4					
	8				2.9					
	·	<u> </u>	<u> </u>	<u>. </u>				<u> </u>	. <u>l</u>	

45			<u> </u>							
	NT:	S						EMO	C Test	Data
Client:	Aruba, a He	wlett Packard	d Enterprise	company			J	lob Number:	PR075848	
Model:	APIN0555								TL075848-R	
								-	Christine Kre	ebill
	Mark Hill						Project (Coordinator:		
Standard:	FCC §15.24	7 & §15.407						Class:	N/A	
5150-5250 F Mode:	PSD - FCC ax40									
Frequency	Chain	Software		Duty Cycle	PSD	Total	_		Limit	Result
(MHz)		Setting		%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	
5190	1 2 3 4 5 6 7	12.5		95.5	-2.0 -1.9 -2.7 -2.4 -1.7 -1.9 -3.3	5.1	7.1	11	.7	Pass
5230	1 2 3 4 5 6 7	16.5		95.5	1.8 1.8 1.0 0.8 1.8 2.0 1.1	11.6	10.6	11	.7	Pass
5150-5250 F Mode:	PSD - ISEDO ax40									
Frequency	Chain	Software		Duty Cycle	PSD	Total			imit	Result
(MHz)	1	Setting		%	dBm/MHz -11.7	mW/MHz	dBm/MHz	dRW.	/MHz	
5190	2 3 4 5 6 7 8	3.0		95.5	-11.7 -11.5 -12.3 -10.4 -10.9 -10.8 -13.2 -9.5	0.6	-2.2	-1	.3	Pass
5230	1 2 3 4 5 6 7	3.0		95.5	-11.6 -11.3 -12.4 -10.8 -10.9 -11.4 -12.9	0.6	-2.2	-1	.3	Pass

	NT:	S						EMC Test	t Data
Client:	Aruba, a He	wlett Packar	d Enterprise	company			J	lob Number: PR075848	
Modol:	APIN0555						T-L	og Number: TL075848-F	RA-FCC
							-	ct Manager: Christine Kı	ebill
	Mark Hill						Project (Coordinator: David Bare	
Standard:	FCC §15.24	7 & §15.407						Class: N/A	
5150-5250 F Mode:	PSD - FCC n40		n40 mode te	ested to demo	onstrate PSD) is same as	for ax40 mod	de	
Frequency		Software		Duty Cycle	PSD	Total	PSD ¹	FCC Limit	D II
(MHz)	Chain	Setting		%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz	Result
	1 2 3				-1.4 -1.4 -2.3				
5190	4 5 6 7	12.5		95.6	-2.0 -1.3 -1.3 -1.3	5.6	7.5	11.7	Pass
	8 1 2 3				-3.2 1.9 1.9 1.0				
5230	4 5 6 7 8	16.5		95.6	1.0 1.8 2.2 1.2 0.8	11.8	10.7	11.7	Pass
5150-5250 I Mode:	PSD - ISEDC n40								
Frequency	Chain	Software		Duty Cycle	PSD	Total		IC Limit	Result
(MHz) 5190	1 2 3 4 5 6 7 8	Setting 3.0		% 95.6	dBm/MHz -11.4 -12.5 -11.6 -12.2 -10.9 -11.8 -13.1 -11.4	mW/MHz 0.6	dBm/MHz -2.2	dBm/MHz -1.3	Pass
5230	1 2 3 4 5 6 7	3.0		95.6	-11.6 -12.2 -12.3 -12.5 -11.3 -12.6 -12.1 -11.7	0.5	-3.0	-1.3	Pass

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFINOSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

MIMO Device - 5150-5250 MHz Band - FCC

Mode:	ax80					Max	EIRP (mW):	427.4	
Frequency	Chain	Software	Duty Cycle	Power	Total F	Power ¹	FCC Limit	Max Power	Result
(MHz)	Chain	Setting	%	dBm	mW	dBm	dBm	(W)	Nesuit
	1			12.1					
	2			12.0					
	3			11.7					
5210	4	12.0	95.9	12.1	127.3	21.0	30.0	0.127	Pass
3210	5	12.0	95.9	11.7	127.5	21.0	30.0	0.127	1 033
	6			12.2					
	7			11.5					
	8			11.3					

MIMO Device - 5150-5250 MHz Band - ISEDC

Mode:	ax80						Max	EIRP (mW):	93.3	
Frequency	Chain	Software	99% BW	Duty Cycle	Power ¹	Total I	Power	IC limit	Max Power	Result
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm (eirp)	dBm (eirp)	(W)	Nesuit
	1				5.6					
	2				5.2					
	3				5.9					
5210	4	6.0	78.08	95.9	5.9	27.8	19.7	23.0	0.028	Pass
3210	5	0.0	70.00	35.9	5.0	21.0	13.7	23.0	0.020	1 033
	6				4.5					
	7				4.5					
	8				5.0					

5150-5250 PSD - FCC

Mode:	ax80							
Frequency	Chain	Software	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	Result
(MHz)	Chain	Setting	%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz	Nesuit
	1			-5.7				
	2			-5.6				
	3			-6.0				
5210	4	12.0	95.9	-5.3	2.4	3.8	11.7	Pass
J	5		00.0	-5.6		0.0		. 0.00
	6			-4.5				
				-5.4				
	8			-6.1				

Client:	Aruba, a He	wlett Packar	d Enterprise o	company			J	ob Number:	PR075848	3
Model:	: APIN0555							og Number:		
							-	ct Manager:		
	Mark Hill						Project (Coordinator:		е
Standard:	FCC §15.24	7 & §15.407						Class:	N/A	
150-5250 Mode:	PSD - ISEDC ax80									
requency	Chain	Software		Duty Cycle	PSD	Total	PSD ¹	IC L	imit	Resu
(MHz)		Setting		%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	ivean
5210	1 2 3 4 5 6 7 8	6.0		95.9	-11.4 -11.3 -11.2 -11.3 -11.5 -11.5 -11.2	0.6	-2.2	-1	.3	Pass
Mode:		Software	ac80 mode t	ested to dem	nonstrate PS PSD	D is same as Total			Limit	Rasiii
	ac80 Chain	Software Setting	ac80 mode t		PSD dBm/MHz			FCC	Limit /MHz	Resu
Mode: Frequency	ac80		ac80 mode t	Duty Cycle	PSD	Total	PSD ¹	FCC dBm		
Mode: Frequency (MHz) 5210 5150-5250 Mode:	2 3 4 5 6 7 8 PSD - ISEDC ac80	Setting 12.0	ac80 mode t	Duty Cycle % 95.1	PSD dBm/MHz -5.7 -5.6 -6.0 -5.3 -5.6 -4.5 -5.4 -6.1	Total mW/MHz 2.4	PSD ¹ dBm/MHz	FCC dBm	/MHz	
Mode: Frequency (MHz) 5210	2 3 4 5 6 7 8 PSD - ISEDC ac80	Setting 12.0	ac80 mode t	Duty Cycle %	PSD dBm/MHz -5.7 -5.6 -6.0 -5.3 -5.6 -4.5	Total mW/MHz 2.4	PSD ¹ dBm/MHz	FCC dBm	/MHz	Pass

-11.2

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFIIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

RSS-247 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Summary of Results

Summary of Result				
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
				a: 619.1 mW
1	Power, 5725 - 5850MHz	15.407(a) (1), (2), (3)	Dana	20: 671.1 mW
ļ ļ		RSS-247 6.2	Pass	40: 631.7 mW
				80: 548.3 mW
				a: 48.1 mW/MHz
1	PSD, 5725 - 5850MHz	15.407(a) (1), (2), (3)	Pass	20: 47 mW/MHz
ļ l		RSS-247 6.2		40: 21.3 mW/MHz
				80: 9.3 mW/MHz
				a: 17.52 MHz
1	99% Bandwidth	RSS-GEN	NI/A	20: 19.68 MHz
ļ ļ	95 /0 Danuwiutii	(Information only)	N/A	40: 38.272 MHz
				80: 79.583 MHz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 21.7 °C

Rel. Humidity: 38.6 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFII100000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033 D01

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
11a	6 MB/s	0.923	Yes	1.437	0.3	0.7	696	5 GHz only
11ax20	MCS0	0.962	Yes	5.448	0.2	0.3	184	
11ax40	MCS0	0.955	Yes	5.414	0.2	0.4	185	
ax80	MCS0	0.959	Yes	5.401	0.2	0.4	185	5 GHz only
11ax80+80	MCS0	0.950	Yes	5.401	0.2	0.4	185	5 GHz only

Sample Notes

Sample S/N: CNGFK9Y02N (BLE) & CNGFK9Y005 (Zigbee)

Driver: P4 V0.4.5

Antenna: Internal 8 antennas for 5 GHz radio and 4 antennas for 2.4 GHz radio (5GHz radio may also use 4 antennas but

with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously). Tests performed $\frac{1}{2}$

with 8 antennas at the 4 antenna power levels. Tests performed with 4 antennas at the target power.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AF II NO 333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems

Date of Test: 12/6/2018 8:00 Config. Used: 1 (Zigbee EUT setup)

Test Engineer: Roy Zheng / R. Varelas Config Change: None Test Location: FT Lab #4a EUT Voltage: PoE

Constant Duty Cycle < 98%. Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, Span > OBW, # of points in sweep ≥ 2*span/RBW, RMS sample detector, trace average 100 traces (at least 100 Note 1: traces, increase the number to get true average), power averaging on and power integration over the OBW. Tthe measurements were adjusted by adding YY dB. This is based on 10log(1/x), where x is the duty cycle. (method SA-2 of ANSI C63.10)

Note 2: Measured using the same analyzer settings used for output power.

Note 3: 99% Bandwidth measured in accordance with C63.10 - RB between 1-5 % of OBW and VB ≥ 3*RB, Span between 1.5 and 5 times OBW.

For MIMO systems the total output power and total PSD are calculated from the sum of the powers of the individual chains (in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.

Antenna Gain Information

Note 4:

Freq	Antenna Gain (dBi) / Chain									Dir G
rieq	1	2	3	4	5	6	7	8	(PWR)	(PSD)
5725-5825	2.6	4.9	3.0	2.4	3.5	4.1	5.6	2.8	3.8	9.8

8x8 mode uses 4 V and 4 H polarized antennas, directional gain used is the highest of the two.

4x4 mode uses 2 V and 2 H polarized antennas, directional gain used is the highest of the two.

Legacy modes operate on all chains

Power for BF mode is reduced by 3 dB so effective antenna gain does not change

CDD active for single stream modes

For devices that support CDD modes

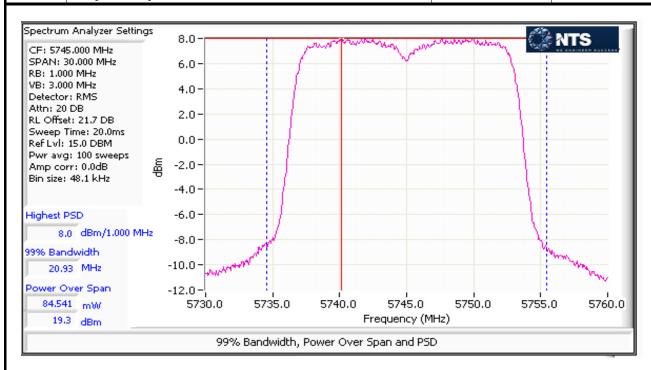
Min # of spatial streams: 1
Max # of spatial streams: 8

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
		T-Log Number: TL075848-RA-FCC
Model:	APIN0555	Project Manager: Christine Krebill
Contact:	Mark Hill	Project Coordinator: David Bare
tandard:	FCC §15.247 & §15.407	Class: N/A
otes:	CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) mod cross polarized.	02.11 legacy data rates supported for multichain transmission les supported, Sectorized / Xpol = antennas are sectorized or culations; GA (PSD) = total gain for PSD calculations based or
lotes:	, , , , , , , , , , , , , , , , , , , ,	e Array Gain value for power could be different from the PSD
Notes:	Array gain for power/psd calculated per KDB 662911 D01. For systems with Beamforming and CDD, choose one the fo	
Notes:	calculated based on beamforming criteria. Option 2: Antennas are paired for beamforming, and the paarray gain associated with beamforming with 2 antennas (3)	an being selected from cyclic delay table of 802.11; Array gair airs are configured to use the cyclic delay diversity of 802.11; dB), and the array gain associated with CDD with two antenn
	(0.4D for DOD and 0.4D for many)	,
	(3dB for PSD and 0 dB for power)	
	((3dB for PSD and 0 dB for power)	
	(30B for PSD and 0 dB for power)	
	((30B for PSD and 0 0B for power)	
	((3dB for PSD and 0 dB for power)	
	(30B for PSD and 0 dB for power)	
	((30B for PSD and 0 dB for power)	
	(Jab for PSD and 0 db for power)	

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Model. Arinosss	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

MIMO Device - 5725-5850 MHz Band - FCC/ISEDC

Mode:	11a						Max	EIRP (mW):	1498.9	
Frequency	Chain	Software	99% BW	Duty Cycle	Power	Total F	Power ¹	Limit	Max Power	Result
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
	0				19.0					
	1				19.2					
	2				18.9					
5745	3	20	47.50	00.0	17.5	640.4	27.0	20.0		Daga
5745	4	20	17.52	92.3	17.8	619.1	27.9	30.0		Pass
	5				19.3					
	6				18.8				0.619	
	7			•	17.3					
	0		17.36	92.3	18.5		27.5	30.0		
	1				18.6	565.1				Pass
	2				18.7					
5785	3	20			16.9					
3703	4	20			17.7					F a 5 5
	5				18.4					
	6				18.8					
	7				17.1					
	0				18.6					
	1				18.9					Pass
	2				19.2					
5825	3	20	17.36	92.3	17.2	605.9	27.8	30.0		
3023	4	20	17.30	92.3	17.8	005.9		50.0		
	5				19.0					
	6				18.9					
	7				17.5					


Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
	T-Log Number: TL075848-RA-FCC
Model: APIN0555	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

MIMO Device 5725-5850 PSD - FCC/ISEDC

Mode:	11a	J1 3D - 1 CC								
Frequency	Chain	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	IC Limit	Result
(MHz)	Onam	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm/5	00kHz	rtosuit
	0				8.0					
	1				7.9					
	2				7.6					
5745	3	20		92.3	6.3	48.0	16.8	26.2	26.2	Pass
0140	4	20		02.0	6.8	40.0	10.0	20.2	20.2	1 433
	5				8.0					
	6				8.3					
	7				6.0					
	0			92.3	7.4	43.9	16.4	26.2	26.2	
	1				7.5					Pass
	2				7.4					
5785	3	20			5.6					
	4				6.5					
	5				7.3					
	6	-			8.1					
	7				6.0					
	0				7.7					
	1				7.7					
	2				7.9					Pass
5825	3	20		92.3	6.1 6.7	48.1	16.8	26.2	26.2	
	5 6				8.2					
	7				8.3 6.4					
	ı				0.4					

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC
woder.	AFINOSSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Wodel. AFIN0333	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

MIMO Device - 5725-5850 MHz Band - FCC/ISEDC

Mode:	ax20			Max EIRP (mW): 1624.8							
Frequency	Chain	Software	99% BW	Duty Cycle	Power	Total F	ower ¹	FCC Limit	Max Power	Result	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result	
	0				19.5						
	1				19.1						
	2				19.3						
5745	3	20	19.52	96.2	17.6	671.1	28.3	30.0		Pass	
5745	4	20	19.52	90.2	19.3	0/1.1	20.3	30.0		Pass	
	5				20.0						
	6			19.6							
	7				17.5						
	0					18.8				1	
	1				18.8	587.3			0.671	Pass	
	2				19.1						
5785	3	20	19.68	96.2	17.1		27.7	30.0			
3703	4	20	13.00	30.2	18.7		27.1	30.0			
	5				19.0						
	6				18.8						
	7				17.1						
	0				19.0						
	1				19.0					Pass	
	2				19.4						
5825	3	20	19.44	96.2	17.3	627.4	28.0	30.0			
3023	4	20	10.11	00.2	18.7	02111	20.0	00.0		. 400	
	5				19.4						
	6				19.3						
	7				17.6						

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Model. Arinosss	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

MIMO Device 5725-5850 PSD - FCC/ISEDC Mode: ax20

Mode:	ax20												
Frequency	Chain	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	IC Limit	Result			
(MHz)	Chain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz		Result			
	0				7.8								
	1				7.5								
	2				7.7								
E74E	3	20		00.0	6.1	47.0	16.7	06.0	06.0	Daga			
5745	4	20		96.2	7.9	47.0	16.7	26.2	26.2	Pass			
	5				8.4								
	6				8.3								
	7				5.8								
	0							7.3					
	1				6.9	41.1		26.2	26.2	Pass			
	2				7.5								
5785	3	20		96.2	5.4		16.1						
3763	4	20			7.0		10.1						
	5				7.6								
	6				7.6								
	7				5.6								
	0				7.2								
	1				7.4								
	2				7.8								
5825	3	20		96.2	5.7	44.0	16.4	26.2	26.2	Pass			
3023	4	20		30.2	7.0			26.2	26.2				
	5				8.1								
	6				8.0								
	7				6.1								

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	VDIVIOREE	T-Log Number:	TL075848-RA-FCC
	AF III00000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

MIMO Device - 5725-5850 MHz Band - FCC/ISEDC

Mode:	ax40						Max	EIRP (mW):	1529.4	
Frequency	Chain	Software	99% BW	Duty Cycle	Power	Total F	Power ¹	FCC Limit	Max Power	Result
(MHz)	Onam	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Mosuit
	0				19.5					
	1				19.5					
	2				19.4					
5755	3	19	38.272	95.5	17.5	631.7	28.0	30.0		Pass
	4	13	30.Z1Z	90.0	17.8	031.7		30.0	- 0.632	1 433
	5				19.4					
	6				19.0					
	7				17.4					
	0				18.6		27.4	30.0		
	1				18.5					Pass
	2				19.1					
5795	3	20	38.4	95.5	16.9	554.7				
0100	4	20		30.0	17.7					
-	5				18.5					
	6				18.9					
	7				16.9					

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSSS	T-Log Number:	TL075848-RA-FCC
	AFII100000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

MIMO Device 5725-5850 PSD - FCC/ISEDC Mode: ax40

Mode:	ax40										
Frequency	Chain	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	IC Limit	Result	
(MHz)	Onam	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz		Nesult	
	0					4.7					
	1				4.3						
	2				4.6		13.3				
5755	3	19		95.5	2.7	21.3		26.2	26.2	Pass	
3733	4	13		33.3	3.2	21.0	10.0	20.2	20.2	1 033	
- -	5			_	4.7						
	6				4.9						
	7				2.6						
	0				3.8						
	1				3.7						
	2				4.3						
5795	3	20		95.5	2.2	19.1	12.8	26.2	26.2	Pass	
0100	4	20		93.3	2.9	13.1	12.0	20.2	20.2	Fa55	
	5				4.2						
	6				4.6						
	7				2.2						

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFINOSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

MIMO Device - 5725-5850 MHz Band - FCC/ISEDC

Mode:	ax80						Max	EIRP (mW):	1327.5	
Frequency	Chain	Software	99% BW	Duty Cycle	Power	Total F	Power ¹	FCC Limit	Max Power	Result
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Nesuit
	0				18.7					
	1				18.4	8.4				
	2				19.0					
5775	3	15.5	79.583	95.9	16.7	548.3	27.4	30.0	0.548	Pass
3113	4	10.0	13.303	35.9	17.7	340.3	21.4	30.0	0.546	1 033
	5				18.5					
	6				18.9					
	7				16.9					

MIMO Device 5725-5850 PSD - FCC/ISEDC

Mode: ax80

Frequency (MHz)	Chain	Software Setting	99% BW (MHz)	Duty Cycle %	PSD	Total	•	FCC Limit	IC Limit	Result
(1711 12)		Setting	(1011 12)	%	dBm/MHz	mW/MHz	dBm/MHz	UDIII/	IVITZ	
	0				0.9		9.7		26.2	
	1			95.9	0.5	9.3		26.2		Pass
	2				0.9					
5775	3	15.5			-1.1					
3113	4	15.5			-0.1					
	5				1.0					
	6				1.8					
	7				-0.9					

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

RSS-247 and FCC 15.407 Antenna Port Measurements 6 dB Bandwidth

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 4/18/2019 Config. Used: 1 Test Engineer: David Bare Config Change: None Test Location: Fremont EMC Lab #4B EUT Voltage: POE

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions:

Temperature: 20 °C Rel. Humidity: 41 %

Summary of Results

Run#	Pwr setting	Test Performed	Limit	Pass / Fail	Result / Margin
3	See below	Minimum 6dB Bandwidth	15.247(a)	Pass	> 500 kHz

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: CNGFK9Y005 Driver: P4 V0.4.5

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #3: Signal Bandwidth

Mode: 11a

Power	Frequency (MHz)	Bandwid	th (MHz)	RBW Setting (MHz)	
Setting	riequelicy (Williz)	6dB		6dB	
20	5785	16.16		0.2	

Mode: 11ax20

Power	Eroguenov (MHz)	Bandwid	th (MHz)	RBW Setting (MHz)	
Setting	Frequency (MHz)	6dB		6dB	
20	5785	19.04		0.2	

Mode: 11ax40

Power	Frequency (MHz)	Bandwid	th (MHz)	RBW Setting (MHz)	
Setting	riequelicy (Williz)	6dB	99%	6dB	99%
20	5795	37.76		0.51	

Mode: 11ax80

Powe	er	Eroguanay (MHz)	Bandwid	th (MHz)	RBW Setting (MHz)	
Settin	ıg	Frequency (MHz)	6dB	99%	6dB	99%
15.5	,	5775	77.76		1	

Note 1: 6dB BW: RBW=1-5% of 6dBBW, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time. Span 2-5 times OBW.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMOSES	T-Log Number:	TL075848-RA-FCC
	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

RSS-247 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:

24.8 °C

Rel. Humidity:

39 %

Summary of Results

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin		
20MHz Ban	20MHz Bandwith Modes								
1		36 5180 MHz	15.0	14.0	Restricted Band Edge at 5150 MHz	15.209	54.0 dBµV/m @ 5149.5 MHz (0.0 dB)		
4	a, BLE	149 - 5745MHz	20.0	20.0	Band Edge 5725 MHz	155	61.0 dBµV/m @ 5942.0 MHz (-7.3 dB)		
4		165 - 5825MHz	20.0	20.0	Band Edge 5850MHz	15E	62.0 dBµV/m @ 5928.8 MHz (-6.3 dB)		
	ac, ax20, BLE	ac20 36 - 5180MHz	20.0	14.5	Restricted Band Edge at 5150 MHz		51.6 dBµV/m @ 5149.6 MHz (-2.4 dB)		
5		ax20 36 - 5180MHz	20.0	14.5	Restricted Band Edge at 5150 MHz	15.209	53.2 dBµV/m @ 5150.0 MHz (-0.8 dB)		
		ax20 40 - 5200MHz	20.0	20.0	Restricted Band Edge at 5150 MHz		53.7 dBµV/m @ 5150.0 MHz (-0.3 dB)		
Q		149 - 5745MHz	20.0	20.0	Band Edge 5725 MHz	455	61.8 dBµV/m @ 5647.9 MHz (-6.5 dB)		
8		165 - 5825MHz	20.0	20.0	Band Edge 5850MHz	15E	59.3 dBµV/m @ 5948.5 MHz (-9.0 dB)		

		NTS
ľ	Client:	Aruba, a He
ĺ		

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AF 11100000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin		
40MHz Ban	0MHz Bandwith Modes								
9		38 - 5190MHz	20.0	15.0	Restricted Band Edge at 5150 MHz	15 200	52.7 dBµV/m @ 5149.9 MHz (-1.3 dB)		
y	ax40, BLE	46 - 5230MHz	20.0	18.0	Restricted Band Edge at 5150 MHz		50.6 dBµV/m @ 5147.3 MHz (-3.4 dB)		
12	— ax40, BLE	151 - 5755MHz	20.0	19.0	Band Edge 5725 MHz	- 15.E	68.0 dBµV/m @ 5654.9 MHz (-3.9 dB)		
12		159 - 5795MHz	20.0	20.0	Band Edge 5850MHz		70.9 dBµV/m @ 5911.7 MHz (-0.9 dB)		
80MHz Ban	dwith Modes								
13		42 - 5210MHz	20.0	14.0	Restricted Band Edge at 5150 MHz	15.209	53.4 dBµV/m @ 5134.2 MHz (-0.6 dB)		
16	ax80, BLE	155 - 5775MHz	20.0	15.5	Band Edge 5725 MHz	15.E	65.3 dBµV/m @ 5646.4 MHz (-3.0 dB)		
16		155 - 5775MHz	20.0	15.5	Band Edge 5850MHz	13.E	59.9 dBµV/m @ 5928.3 MHz (-8.4 dB)		

Modifications Made During Testing No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
iviouei.	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
BLE	1 Mb/s	0.65	Yes	0.424	1.9	3.8	2358	
ZigBee	-	0.43	Yes	0.858	3.7	7.4	1166	2 kHz
11a	6 MB/s	0.92	Yes	1.437	0.3	0.7	696	1 kHz
ac20	MCS0	0.95	Yes	5.474	0.2	0.5	183	200 Hz
ax20	MCS0	0.96	Yes	5.452	0.2	0.4	183	200 Hz
ax40	MCS0	0.96	Yes	5.297	0.2	0.4	189	200 Hz
ax80	MCS0	0.96	Yes	5.401	0.2	0.4	185	200 Hz
ax80+80	MCS0	0.95	Yes	5.401	0.2	0.4	185	200 Hz

Sample Notes

Sample S/N: CNGFK9Y02N (BLE)

Driver: P4 V0.4.5

Antenna: Internal 8 antennas for 5 GHz radio and 4 antennas for 2.4 GHz radio (5GHz radio may also use 4 antennas but

with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously). Tests performed

with 8 antennas at the 4 antenna power levels. Tests performed with 4 antennas at the target power.

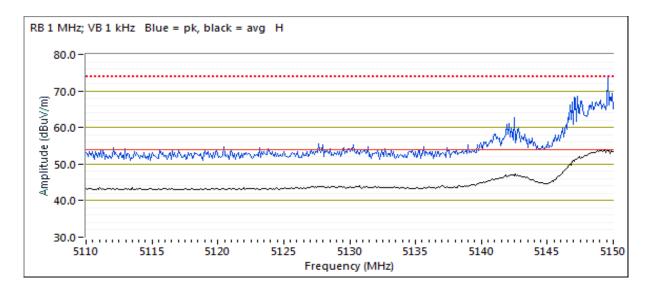
Measurement Specific Notes:

	I.
Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
	demonstrated by meeting the average and peak limits of 15.209, as an alternative.
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
	peak detector, linear averaging, auto sweep, max hold 50*1/DC traces (method VB of KDB 789033)
Note 4:	Emission has a duty cycle < 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto
	sweep, trace average 100*1/DC traces, measurement corrected by Pwr correction factor (method AD of KDB 789033)
Note 5:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
	measurements.

	Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMOSES	T-Log Number:	TL075848-RA-FCC	
	AFIN0333	Project Manager:	Christine Krebill	
	Contact:	Mark Hill	Project Coordinator:	David Bare
	Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #1: Radiated Bandedge Measurements, 5150-5250MHz

Date of Test: 10/15/2018 Config. Used: 1
Test Engineer: John Caizzi Config Change: none


Test Location: Fremont Chamber #3 EUT Voltage: PoE & 120V/60Hz

Channel: 36 - 5180 MHz at setting 15, BLE at 2440 MHz, 8 dBm, V primary antenna.

Tx Chain: 8 Mode: a

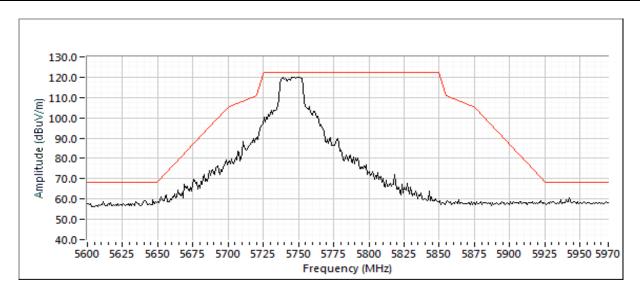
5150 MHz Band Edge Signal Radiated Field Strength

	Frequency	Level	Pol	FCC 15.209		Detector	Azimuth	Height	Comments
	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
	5149.520	54.0	Н	54.0	0.0	Avg	309	2.17	RB 1 MHz, VB 1 kHz, note 3
	5148.880	72.9	Н	74.0	-1.1	PK	309	2.17	POS; RB 1 MHz; VB: 3 MHz

	Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
	Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AFIN0333	Project Manager:	Christine Krebill	
	Contact:	Mark Hill	Project Coordinator:	David Bare
	Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #4: Radiated Bandedge Measurements, 5725-5850MHz

Date of Test: 10/16/2018 Config. Used: 1
Test Engineer: David W. Bare Config Change: none

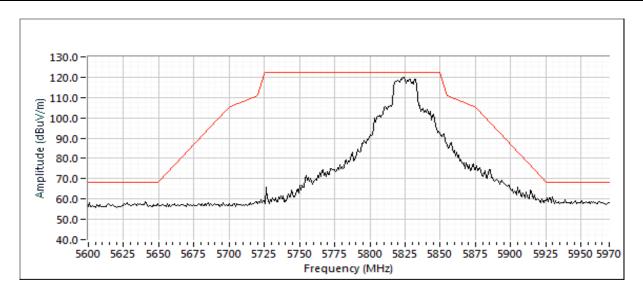

Test Location: Fremont Chamber #3 EUT Voltage: PoE & 120V/60Hz

Channel: 149 - 5745MHz at setting 20, BLE at 2440 MHz, 8 dBm, V primary antenna.

Tx Chain: 8 Mode: a

5725 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	15.E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5941.970	61.0	Н	68.3	-7.3	PK	36	1.5	POS; RB 1 MHz; VB: 3 MHz



Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

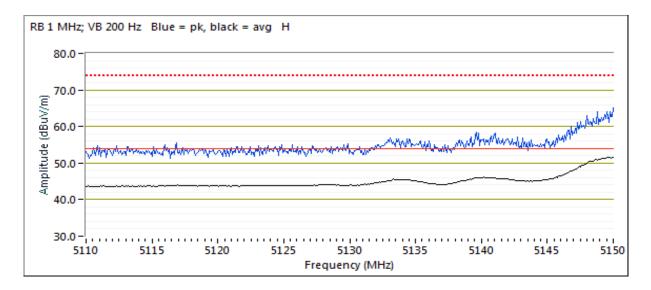
Channel: 165 - 5825MHz at setting 20, BLE at 2440 MHz, 8 dBm, V primary antenna.

Tx Chain: 8 Mode: a

occo mile Bana Eago orgina radiatea i rola ottorigiri									
Frequency	Level	Pol	15.E		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5928.810	62.0	Н	68.3	-6.3	PK	297	2.0	POS; RB 1 MHz; VB: 3 MHz	

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
wodei.	AFIN0333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #5: Radiated Bandedge Measurements, 5150-5250 MHz


Date of Test: 10/17/2018 Config. Used: 1
Test Engineer: John Caizzi Config Change: none

Test Location: Fremont Chamber #7 EUT Voltage: PoE & 120V/60Hz

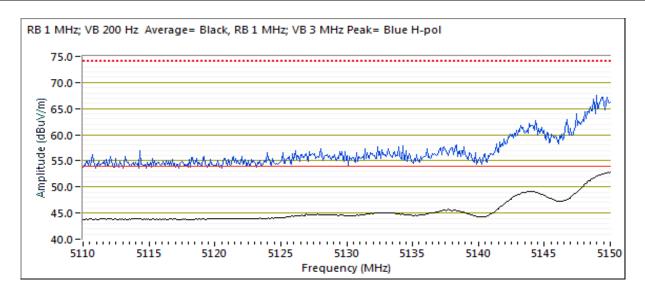
Channel: 36 - 5180 MHz Pwr setting 14.5

Tx Chain: 8x8
Mode: ac20, BLE

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5149.600	51.6	Н	54.0	-2.4	Avg	304	2.15	VB 200 Hz, note 3
5149.280	65.5	Н	74.0	-8.5	PK	304	2.15	

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Olicit.	Traba, a flowiott f donard Enterprise company		
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AF 11100000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Date of Test: 10/16/2018 Test Engineer: Deniz Demirci


Test Location: Fremont Chamber #7

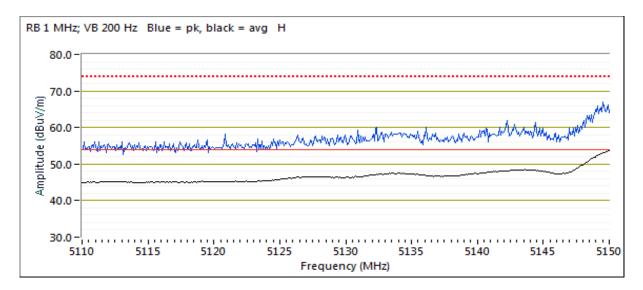
Config. Used: 1 Config Change: None

EUT Voltage: POE & 120 V, 60 Hz

36 - 5180 MHz Channel: Tx Chain: 8x8 Mode: ax20, BLE

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5150.000	53.2	Н	54.0	-0.8	Avg	278	1.0	Note 3; RB 1 MHz; VB: 200 Hz
5149.900	67.6	Н	74.0	-6.4	PK	278	1.0	POS; RB 1 MHz; VB: 3 MHz
5149.890	49.9	٧	54.0	-4.1	Avg	276	1.7	Note 3; RB 1 MHz; VB: 200 Hz
5149.990	63.9	V	74.0	-10.1	PK	276	1.7	POS; RB 1 MHz; VB: 3 MHz

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINIOSES	T-Log Number:	TL075848-RA-FCC
	AF III00000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A


Date of Test: 10/17/2018 Config. Used: 1
Test Engineer: John Caizzi Config Change: none

Test Location: Fremont Chamber #7 EUT Voltage: PoE & 120V/60Hz

Channel: 40 - 5200 MHz Pwr setting 20

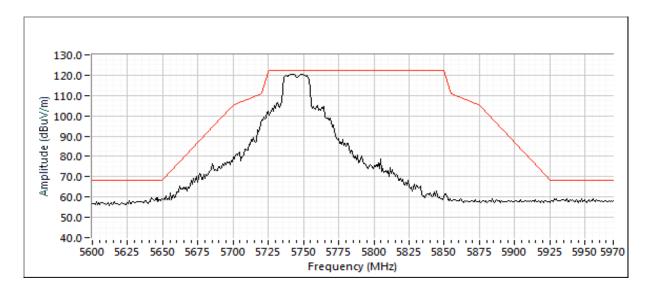
Tx Chain: 8x8 Mode: ax20, BLE

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5150.000	53.7	Н	54.0	-0.3	Avg	76	2.07	Note 3; RB 1 MHz; VB: 200 Hz
5149.750	71.1	Н	74.0	-2.9	PK	76	2.07	POS; RB 1 MHz; VB: 3 MHz

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #8: Radiated Bandedge Measurements, 5725-5850MHz

Date of Test: 10/16/2018 Config. Used: 1
Test Engineer: David W. Bare Config Change: none

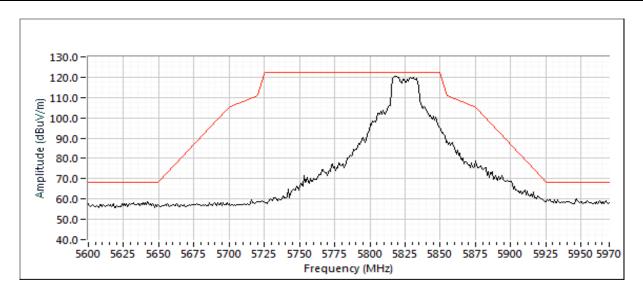

Test Location: Fremont Chamber #7 EUT Voltage: PoE & 120V/60Hz

Channel: 149 - 5745MHz at setting 20, BLE at 2440 MHz, 8 dBm, V primary antenna.

Tx Chain: 8

Mode: ax20, BLE

Frequency	Level	Pol	1 -	i.E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5647.890	61.8	Н	68.3	-6.5	PK	288	2.0	POS; RB 1 MHz; VB: 3 MHz


Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINIOSES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

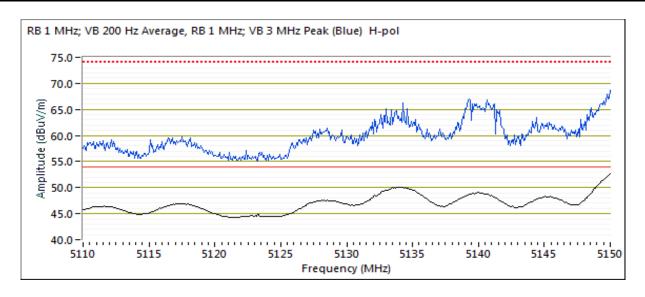
Channel: 165 - 5825MHz at setting 20, BLE at 2440 MHz, 8 dBm, V primary antenna.

Tx Chain: 8

Mode: ax20, BLE

	ana Lage e							
Frequency	Level	Pol	15.E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5948.490	59.3	Н	68.3	-9.0	PK	67	1.0	POS; RB 1 MHz; VB: 3 MHz

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A


Run #9: Radiated Bandedge Measurements, 5150-5250 MHz

Date of Test: 10/16/2018 Config. Used: 1
Test Engineer: Deniz Demirci Config Change: None

Test Location: Fremont Chamber #7 EUT Voltage: POE & 120 V, 60 Hz

Channel: 38 - 5190 MHz Tx Chain: 8x8 Mode: ax40, BLE

0.002	Too mile Dana Eago orgina raanatea i rona on ongui										
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5149.930	52.7	Н	54.0	-1.3	Avg	286	1.4	Note 3; RB 1 MHz; VB: 200 Hz			
5149.890	71.0	Н	74.0	-3.0	PK	286	1.4	POS; RB 1 MHz; VB: 3 MHz			
5149.020	52.1	V	54.0	-1.9	Avg	278	1.7	Note 3; RB 1 MHz; VB: 200 Hz			
5148.950	68.2	V	74.0	-5.8	PK	278	1.7	POS; RB 1 MHz; VB: 3 MHz			

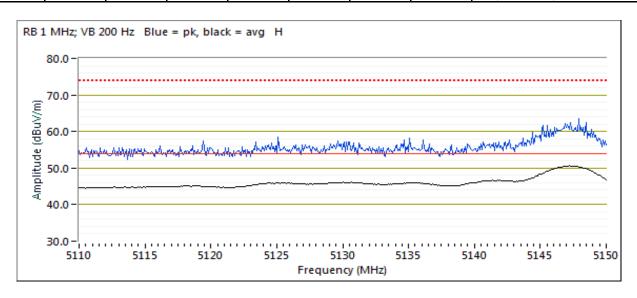
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Date of Test: 10/17/2018
Test Engineer: John Caizzi
Test Legation: Frament Chamber

Test Location: Fremont Chamber #7

Config. Used: 1 Config Change: none

EUT Voltage: PoE & 120V/60Hz


Channel: 46 - 5230 MHz

30 MHz Pwr setting

20

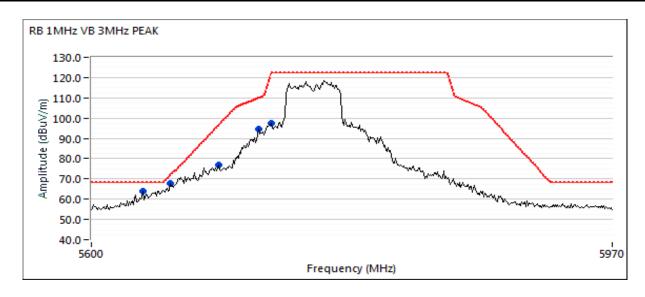
Tx Chain: 8x8 Mode: ax40, BLE

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5147.250	50.6	Н	54.0	-3.4	Avg	310	2.13	Note 3; RB 1 MHz; VB: 200 Hz
5146.960	64.7	Н	74.0	-9.3	PK	310	2.13	POS; RB 1 MHz; VB: 3 MHz

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #12: Radiated Bandedge Measurements, 5725-5850MHz

Date of Test: 10/12/2018 Config. Used: 1
Test Engineer: Roy Zheng Config Change: none

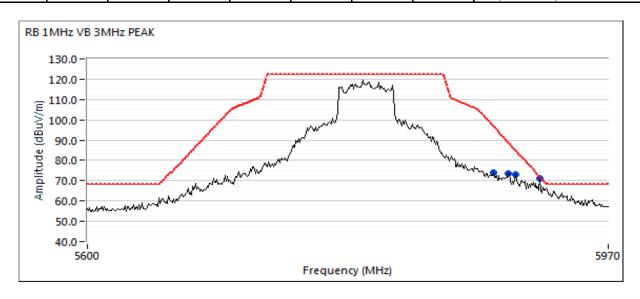

Test Location: Fremont Chamber #3 EUT Voltage: PoE & 120V/60Hz

Channel: 151 - 5755MHz at setting 19, BLE at 2440 MHz, 8 dBm, V primary antenna.

Tx Chain: 8

Mode: ax40

0.202	20 mm 2 Dana Bago digitar Kadiatea Frend di engin										
Frequency	Level	Pol	15	5.E	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5654.870	68.0	Н	71.9	-3.9	PK	284	1.5	POS; RB 1 MHz; VB: 3 MHz			
5635.590	63.9	Н	68.3	-4.4	PK	47	2.0	POS; RB 1 MHz; VB: 3 MHz			
5716.410	94.8	Н	109.9	-15.1	Peak	285	1.5	POS; RB 1 MHz; VB: 3 MHz			
5688.240	77.0	Н	96.6	-19.6	Peak	307	1.5	POS; RB 1 MHz; VB: 3 MHz			


Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Olicit.	Traba, a flowiott f donard Enterprise company		
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AF 11100000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

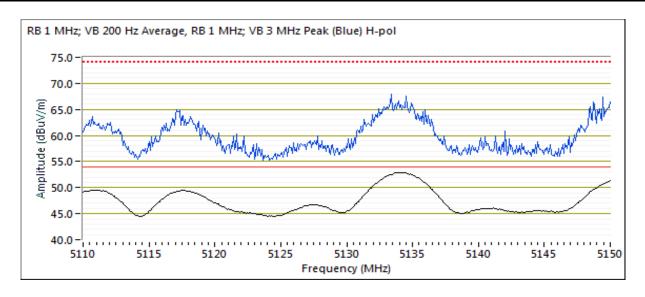
Channel: 159 - 5795MHz at setting 20

Tx Chain: 8

Mode: ax40

JUJU WII IZ L	3030 Miliz Balia Eage Signal Radiated Field Strength									
Frequency	Level	Pol	15	5.E	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5911.720	70.9	Н	71.8	-0.9	PK	310	2.0	POS; RB 1 MHz; VB: 3 MHz		
5886.210	74.0	Н	97.0	-23.0	Peak	308	2.0	POS; RB 1 MHz; VB: 3 MHz		
5897.330	73.5	Н	88.8	-15.3	Peak	65	2.0	POS; RB 1 MHz; VB: 3 MHz		
5902.520	73.0	Н	84.9	-11.9	Peak	311	1.0	POS; RB 1 MHz; VB: 3 MHz		
5910.650	66.5	Н	78.9	-12.4	PK	31	1.0	POS; RB 1 MHz; VB: 3 MHz		

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A


Run #13: Radiated Bandedge Measurements, 5150-5250 MHz

Date of Test: 10/16/2018 Config. Used: 1
Test Engineer: Deniz Demirci Config Change: None

Test Location: Fremont Chamber #7 EUT Voltage: POE & 120 V, 60 Hz

Channel: 42 - 5210 MHz Tx Chain: 8x8 Mode: ax80

0.002	Tree initia augustigitus taututeu tiiria etterigii.										
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5134.220	53.4	Н	54.0	-0.6	Avg	284	2.0	Note 3; RB 1 MHz; VB: 200 Hz			
5133.420	67.1	Н	74.0	-6.9	PK	284	2.0	POS; RB 1 MHz; VB: 3 MHz			
5137.930	52.0	V	54.0	-2.0	Avg	286	1.5	Note 3; RB 1 MHz; VB: 200 Hz			
5138.330	66.8	V	74.0	-7.2	PK	286	1.5	POS; RB 1 MHz; VB: 3 MHz			

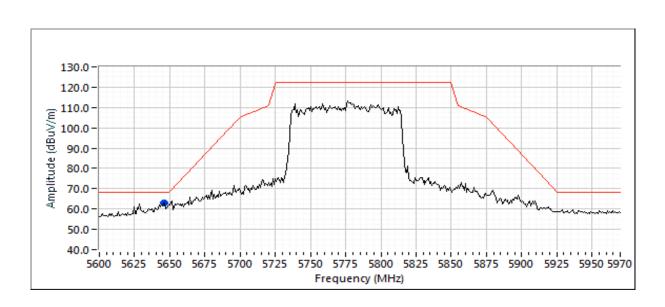
1			
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AF 11100000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #16: Radiated Bandedge Measurements, 5725-5850MHz

Date of Test: 10/16/2018 0:00 Config. Used: 1
Test Engineer: David W. Bare Config Change: None

Test Location: Fremont Chamber #7 EUT Voltage: 120V/60Hz & POE

Channel: 155 - 5775MHz


Tx Chain: 8

Mode: ax80

5725 MHz Band Edge Signal Radiated Field Strength

0.202	or to this barra bago orginal realiated riving of origin										
Frequency	Level	Pol	15	5.E	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5643.820	64.5	Н	68.3	-3.8	PK	280	2.5	POS; RB 1 MHz; VB: 3 MHz			
5646.410	65.3	Н	68.3	-3.0	PK	287	2.0	POS; RB 1 MHz; VB: 3 MHz			

3030 WHZ Band Edge Signal Radiated Field Strength										
	Frequency	Level	Pol	15	i.E	Detector	Azimuth	Height	Comments	
	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
	5928.270	59.9	Н	68.3	-8.4	PK	73	1.2	POS: RB 1 MHz: VB: 3 MHz	

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

RSS-247, FCC 15.247 and FCC 15.407 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:

20-24 °C

Rel. Humidity:

35-45 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

NTS EMC Test Data									
		wlett Packard	d Enterprise	company		Job Number:			
				T-Log Number: TL075848-RA-FCC					
Model:	APIN0555					Project Manager:			
Contact:	Mark Hill					Project Coordinator:	David Bare		
Standard:	FCC §15.24	7 & §15.407				Class:	N/A		
Summary	of Result	:S							
Run #	Mode	Channel	Target Powers	Power Settings	Test Performed	Limit	Result / Margin		
Scans on "c	enter" chann	el in all five (OFDM modes	to determin	e the worst case mode (8	8x8 in 5 GHz bands and 4			
	a / g	6 & 40	15 / 20	20 /20			45.9dBμV/m @ 20798.9MHz (-8.1dB) 43.9dBμV/m @		
1	ax20	6 & 40	20 / 20	20 /20	Radiated Emissions,	FCC 15.209/ 15.247 /	20798.2MHz (-10.1dB)		
,	ax40	6 & 38	20 / 20	20 / 20	1 - 40 GHz	15 E	39.1 dBµV/m @ 20758.5MHz (-14.9dB)		
	ax80 / b	6 & 42	20 / 20	20 / 20			48.0 dBµV/m @ 7216.2 MHz (-6.0 dB)		
Scans on wo	orst case mo	de above wit	h BLE or Zig	Bee also acti	ive.	L	(000 0-7		
2	a / b, ZigBee	6, 40 Wi-Fi 18 - ZB	15 / 20 / 8	15 / 20 / 8	Radiated Emissions,	FCC 15.209/ 15.247 /	44.8 dBµV/m @ 7311.6 MHz (-9.2 dB)		
2	a / b, BLE	6, 40 Wi-Fi 17 - BLE	15 / 20 / 8	15 / 20 / 8	1 - 40 GHz	15 E	50.9 dBµV/m @ 7205.2 MHz (-3.1 dB)		
Measureme	nts on low ar	nd high chanı	nels in worst-	case OFDM	mode.				
3	a / g	1 & 36	20 / 20	20 / 20	Radiated Emissions,	FCC 15.209/ 15.247 /	44.8 dBµV/m @ 20726.1 MHz (-9.2 dB)		
	a / g	11 & 48	20 / 20	20 / 20	1 - 12 GHz	15 E	47.4 dBµV/m @ 20957.2 MHz (-6.6 dB)		
Scans on "c	enter" chann	el in all four (OFDM mode	s to determin	e the worst case mode. (8x8 in 5 GHz bands and	4x4 in 2.4 GHz band).		
	a/g	6 & 157	20 / 20	20 / 20			42.5dBµV/m @ 11571.5MHz (-11.5dB)		
8	ax20	6 & 157	20 / 20	20 / 20	Radiated Emissions,	FCC 15.209/ 15.247 /	40.7dBµV/m @ 4738.8MHz (-13.3dB)		
0	ax40	6 & 159	20 / 20	20 / 20	1 - 40 GHz	15 E	51.1dBµV/m @ 23181.9MHz (-17.2dB)		
	ax80 / b	6 & 155	20 / 20	20 / 20			37.7dBµV/m @ 23101.2MHz (-16.3dB)		
0	0 / =	1 & 149	20 / 20	20 /20	Radiated Emissions,	FCC 15.209/ 15.247 /	43.6dBµV/m @ 22979.7MHz (-10.4dB)		
9	a/g	11 & 165	20 / 20	20 / 20	1 - 12 GHz	15 E	43.9dBµV/m @ 11649.9MHz (-10.1dB)		

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run#	Mode	Mode Channel Target Power Power Settings Test Performed		Limit	Result / Margin		
Measurements on low and high cha					mode		
MCasarcine	into on low ai	ia riigir criarii	ICIS III WOISE	Casc Of Divi	mode.		150 0 JD 1// 0 4000 0
		37					53.3 dBµV/m @ 4803.9
		31					MHz (-0.7 dB)
10	BLE	17		8		FCC 15.209/ 15.247	48.9 dBµV/m @ 7319.3
10		17			Radiated Emissions, 1 - 25 GHz		MHz (-5.1 dB)
		39	- 8				50.8 dBµV/m @ 7439.3
		39					MHz (-3.2 dB)
		11					36.2dBµV/m @
		11					11020.0MHz (-17.8dB)
11	ZiaPoo	18					53.6dBµV/m @
''	ZigBee	10					7321.5MHz (-20.4dB)
		26					54.5 dBµV/m @ 7438.3
		20					MHz (-19.5 dB)

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC
iviouei.	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
BLE	1 Mb/s	0.65	Yes	0.424	1.9	3.8	2358	3 kHz
ZigBee	-	0.43	Yes	0.858	3.7	7.4	1166	2 kHz
11b	1 Mb/s	0.78	Yes	0.667	1.1	2.2	1499	2 kHz
11g	6 Mb/s	0.92	Yes	1.437	0.4	0.7	696	1 kHz
11a	6 Mb/s	0.92	Yes	1.437	0.3	0.7	696	1 kHz
ax20	MCS0	0.96	Yes	5.485	0.2	0.3	182	200 Hz
ax40	MCS0	0.96	Yes	5.401	0.2	0.4	185	200 Hz
ax80	MCS0	0.96	Yes	5.401	0.2	0.4	185	200 Hz
ax80+80	MCS0	0.95	Yes	5.401	0.2	0.4	185	200 Hz

Sample Notes

Sample S/N: CNGFK9Y02N (BLE) & CNGFK9Y005 (Zigbee)

Driver: P4 V0.4.5

Antenna: Internal 8 antennas for 5 GHz radio and 4 antennas for 2.4 GHz radio (5GHz radio may also use 4 antennas but with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously). Tests performed

with 8 antennas at the 4 antenna power levels.

Measurement Specific Notes:

Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 1.	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).
Note 2	Emission in non-restricted band, but limit of 15.209 used.
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 3.	peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)
	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 4:	peak detector, linear averaging, auto sweep, trace average 100 traces, measurement corrected by linear voltage correction
	factor
Note 5:	-20 dB correction factor was used for ZigBee as 10% operational duty cycle
Note 6:	Digital device emission, class A limit extrapolated to 3m applied, peak reading vs peak or average limit.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC
iviouei.	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

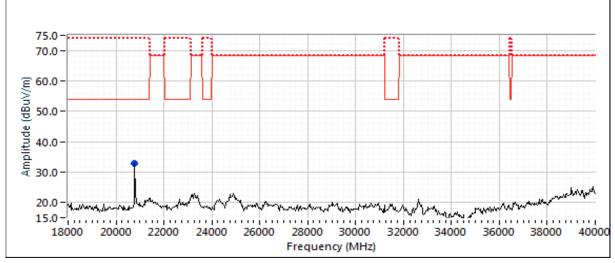
Run #1, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5150-5250 MHz Band

Date of Test: 10/25/2018 Config. Used: 1
Test Engineer: M. Birgani Config Change: None

Test Location: Fremont Chamber #4 EUT Voltage: POE & 120 V, 60 Hz

Run #1a: Center Channel


Channel, Mode, Chain, Level: 6, g, 4, 20 Channel, Mode, Chain, Level: 40, a, 8, 20

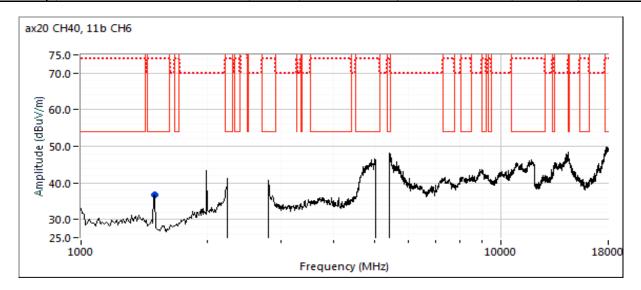

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
20798.900	45.9	V	54.0	-8.1	AVG	338	1.1	RB 1 MHz;VB 1 kHz, note 3
20798.550	57.8	V	74.0	-16.2	PK	338	1.1	RB 1 MHz;VB 3 MHz;Peak
20799.660	41.9	Н	54.0	-12.1	AVG	32	1.2	RB 1 MHz;VB 1 kHz, note 3
20800.320	54.5	Н	74.0	-19.5	PK	32	1.2	RB 1 MHz;VB 3 MHz;Peak
7644.350	36.8	V	54.0	-17.2	AVG	224	1.0	RB 1 MHz;VB 10 Hz;Peak
7644.850	49.5	V	74.0	-24.5	PK	224	1.0	RB 1 MHz;VB 3 MHz;Peak
1500.010	36.1	V	60.0	-23.9	AVG	180	1.0	RB 1 MHz;VB 10 Hz;Peak
1499.950	40.5	V	80.0	-39.5	PK	180	1.0	RB 1 MHz;VB 3 MHz;Peak

	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
note.	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
N - 4 - 0 -	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 2:	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFIIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madalı	APIN0555	T-Log Number: TL0758	
lviodei:	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #1b: Center Channel


Date of Test: 10/25/2018 Config. Used: 1
Test Engineer: M. Birgani Config Change: None

Test Location: Fremont Chamber #4 EUT Voltage: POE & 120 V, 60 Hz

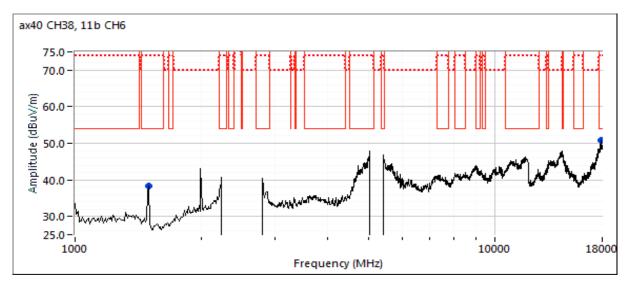
Channel, Mode, Chain, Level: 6, b, 4, 20 Channel, Mode, Chain, Level: 40, ax20, 8, 20

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
20798.180	43.9	V	54.0	-10.1	AVG	336	1.2	Note 3; RB 1 MHz;VB 300 Hz
20798.780	58.7	V	74.0	-15.3	PK	336	1.2	RB 1 MHz;VB 3 MHz;Peak
1500.010	40.4	V	54.0	-13.6	PK	206	1.0	RB 1 MHz;VB 3 MHz;Peak

INIOTO:	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 2:	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #1c: Center Channel

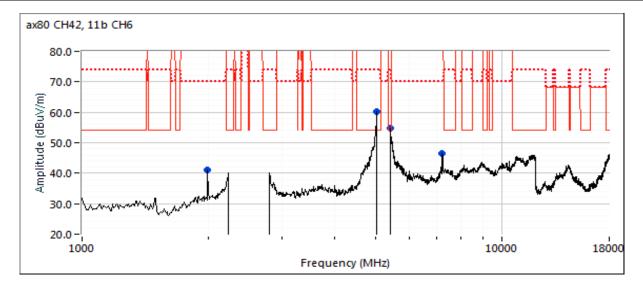

Date of Test: 10/25/2018 Config. Used: 1
Test Engineer: M. Birgani Config Change: None

Test Location: Fremont Chamber #4 EUT Voltage: POE & 120 V, 60 Hz

Channel, Mode, Chain, Level: 6, b, 4, 20 Channel, Mode, Chain, Level: 38, ax40, 8, 20

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
20758.480	39.1	V	54.0	-14.9	AVG	338	1.2	RB 1 MHz;VB 300 Hz; note 3
20759.830	53.6	V	74.0	-20.4	PK	338	1.2	RB 1 MHz;VB 3 MHz;Peak
1500.010	40.4	V	54.0	-13.6	PK	206	1.0	RB 1 MHz;VB 3 MHz;Peak

	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 2:	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).


Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #1d: Center Channel

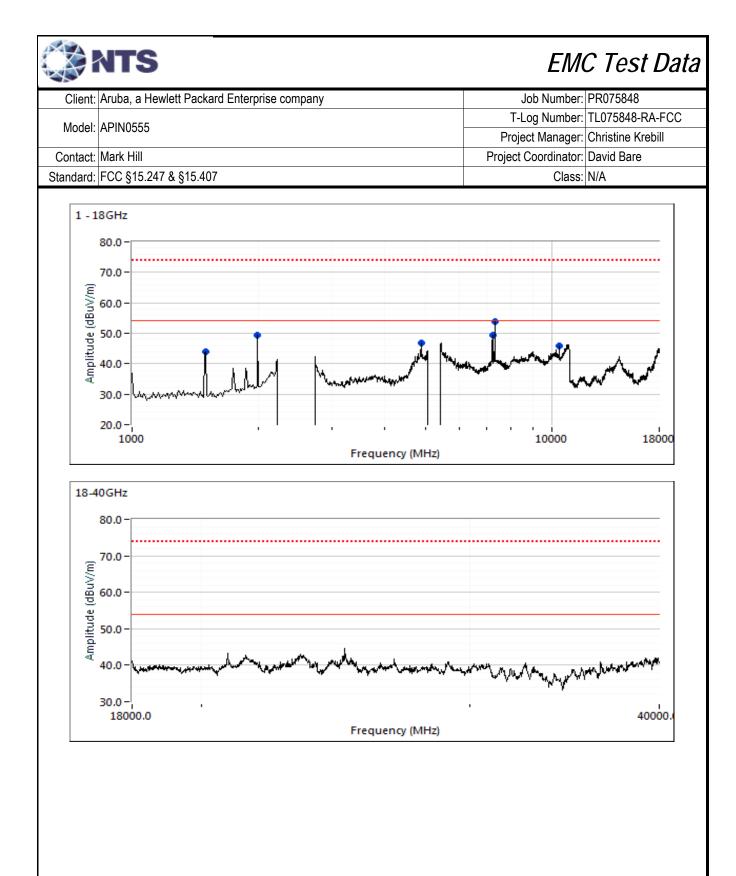
Channel, Mode, Chain, Level: 6, b, 4, 20 Channel, Mode, Chain, Level: 42, ax80, 8, 20

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7216.200	48.0	Н	54.0	-6.0	Avg	53	2.0	Note 2, 3; RB 1 MHz; VB 3 kHz
7216.550	53.0	Н	74.0	-21.0	PK	53	2.0	RB 1 MHz;VB 3 MHz;Peak
20839.770	38.4	V	54.0	-15.6	AVG	338	1.2	Note 3; RB 1 MHz;VB 300 Hz
20838.560	52.4	V	74.0	-21.6	PK	338	1.2	RB 1 MHz;VB 3 MHz;Peak
2000.000	41.2	V	60.0	-18.8	Peak	196	1.5	Note 6
5041.670	60.3	Н			Peak	300	2.0	See bandedge measurements.
5416.670	54.8	Н			Peak	46	1.5	See bandedge measurements.

Moto:	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINIOSES	T-Log Number:	TL075848-RA-FCC
	AF1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #2, Radiated Spurious Emissions, 1,000 - 40,000 MHz.


Date of Test: 12/27/2018 0:00 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: Ft Chamber #5 EUT Voltage: PoE

Run #2a: Center Channel

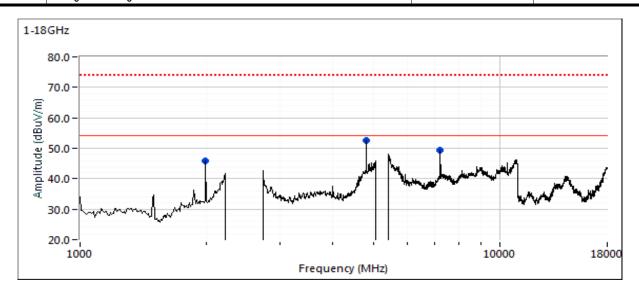
Channel: 6, 40 Wi-Fi, 18 - ZigBee Mode: a, b
Tx Chain: 8 (5GHz), 4 (2.4 GHz) Data Rate: 6Mbps, 1

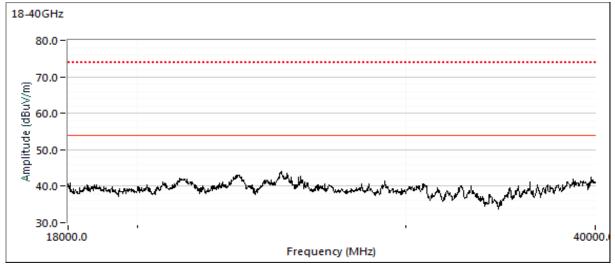
Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	
1500.000	43.9	Н	54.0	-10.1	Peak	133	1.0	
2000.000	49.4	Н	60.0	-10.6	Peak	139	2.5	Note 6
4874.520	41.7	Н	54.0	-12.3	Vavg	125	1.5	Note 3; RB 1 MHz;VB 300 Hz
4875.370	51.1	Н	74.0	-22.9	PK	125	1.5	RB 1 MHz;VB 3 MHz;Peak
7213.390	34.8	V	54.0	-19.2	Avg	206	1.1	Note 5
7213.390	54.8	V	74.0	-19.2	PK	206	1.1	RB 1 MHz;VB 3 MHz;Peak
7311.630	44.8	V	54.0	-9.2	Vavg	178	1.0	Note 3; RB 1 MHz; VB 2 kHz
7311.610	44.7	V	74.0	-29.3	PK	178	1.0	RB 1 MHz;VB 3 MHz;Peak
10375.250	51.7	V	68.3	-16.6	PK	186	2.5	RB 1 MHz;VB 3 MHz;Peak

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
INOte 7:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #2d: Center Channel Channel: 6, 40 Wi-Fi, 17 - BLE Tx Chain: 8 (5GHz), 4 (2.4 GHz)


Mode: a, b
Data Rate: 6Mbps, 1


Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2000.000	45.7	Н	60.0	-14.3	Peak	93	1.3	Note 6			
7205.190	50.9	٧	54.0	-3.1	Vavg	217	1.2	Note 3; RB 1 MHz; VB 3 kHz			
7206.740	55.2	٧	74.0	-18.8	PK	217	1.2	RB 1 MHz;VB 3 MHz;Peak			
4803.680	50.7	Н	54.0	-3.3	Vavg	233	1.1	Note 3; RB 1 MHz; VB 3 kHz			
4804.350	55.4	Н	74.0	-18.6	PK	233	1.1	RB 1 MHz;VB 3 MHz;Peak			

	Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
	INOte 7:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
		operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

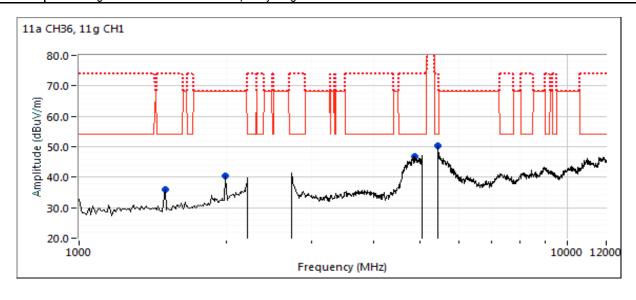
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFINOSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMOSES	T-Log Number:	TL075848-RA-FCC
	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #3: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: Worse case from Runs #1 and 2

Date of Test: 11/1/2018 0:00

Config. Used: 1 Test Engineer: John Caizzi Config Change: none


Test Location: Chamber 7 EUT Voltage: PoE & 120V / 60Hz

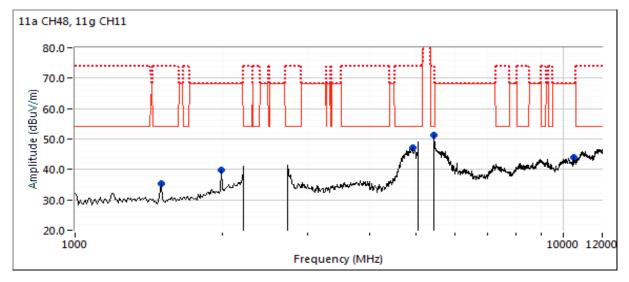
Run #3a: Low Channel

Channel: 1 & 36 Mode: a/g Tx Chain: Data Rate: 6Mbps

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1500.000	35.8	V	60.0	-18.2	Peak	221	1.0	Note 6
2000.000	40.4	V	60.0	-27.9	Peak	336	1.0	Note 6
4889.500	43.7	Н	54.0	-10.3	PK	298	1.7	Note 3; RB 1 MHz; VB 1 kHz
4886.650	55.3	Н	74.0	-18.7	PK	298	1.7	RB 1 MHz;VB 3 MHz;Peak
5425.000	50.3	Н			Peak	66	2.0	See bandedge measurements.
20726.100	44.8	V	54.0	-9.2	Avg	342	1.90	Note 3; RB 1 MHz; VB 1 kHz
20727.200	57.0	V	74.0	-17.0	PK	342	1.90	RB 1 MHz;VB 3 MHz;Peak

Scans made between 12 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there Note: were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINIOSES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A


Run #3b: High Channel

Channel: 11 & 48 Mode: a / g

Tx Chain: 8 Data Rate:

Fraguanay	امروا	Pol	15 200	9 / 15E	Dotostor	Azimuth	Unight	Comments
Frequency	Level	POI	13.20		Detector		Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1500.000	35.3	٧	60.0	-18.7	Peak	8	1.0	Note 6
2000.000	39.8	٧	60.0	-28.5	Peak	308	1.5	Note 6
4881.180	43.6	Н	54.0	-10.4	Avg	298	1.74	Note 3; RB 1 MHz; VB 1 kHz
4873.750	56.1	Н	74.0	-17.9	PK	298	1.74	RB 1 MHz;VB 3 MHz;Peak
5425.000	51.4	V			Peak	76	1.5	See bandedge measurements.
10480.000	51.1	٧	68.3	-17.2	PK	30	1.99	RB 1 MHz;VB 3 MHz;Peak
20957.200	47.4	V	54.0	-6.6	Avg	32	1.88	Note 3; RB 1 MHz; VB 1 kHz
20957.620	59.7	V	74.0	-14.3	PK	32	1.88	RB 1 MHz;VB 3 MHz;Peak

Note: Scans made between 12 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #8, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5725-5850 MHz Band

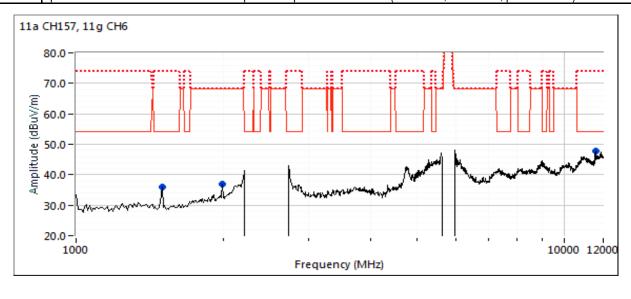
Date of Test: 10/29/2018 0:00 Config. Used: 1
Test Engineer: John Caizzi Config Change: none

Test Location: Chamber 7 EUT Voltage: PoE & 120V / 60Hz

Run #8a: Center Channel

Channel: 6 & 157 Wi-Fi Mode: a, g
Tx Chain: 8 (5GHz), 4 (2.4 GHz) Data Rate: 6 Mb/s / 1 Mb/s

Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1500.000	36.1	V	60.0	-23.9	Peak	123	1.0	Note 6
2000.000	36.9	Н	60.0	-23.1	Peak	83	2.0	Note 6
11571.470	42.5	V	54.0	-11.5	Avg	342	1.00	VB 300 Hz, note 3
11571.470	54.8	V	74.0	-19.2	PK	342	1.00	RB 1 MHz;VB 3 MHz;Peak
23143.470	54.6	V	68.3	-13.7	PK	356	1.00	RB 1 MHz;VB 3 MHz;Peak


Note:

Scans made between 12 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.

Note 1:

For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

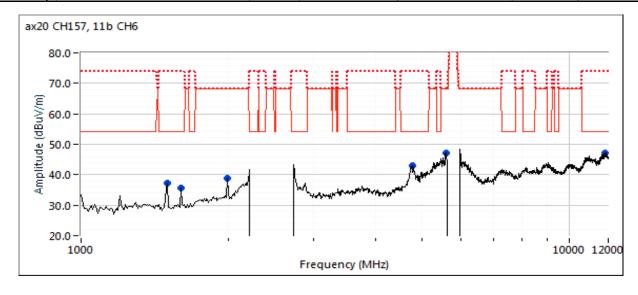
For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #8b: Center Channel

Channel: 6 & 157 Wi-Fi Mode: ax20 Tx Chain: 8 (5GHz), 4 (2.4 GHz) Data Rate: MCS0

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1500.000	37.1	Н	60.0	-22.9	Peak	52	2.5	Note 6
2000.000	38.9	V	60.0	-21.1	Peak	227	1.0	Note 6
4738.800	40.7	Н	54.0	-13.3	Avg	298	1.6	VB 3 kHz, note 3
4742.400	52.1	Н	74.0	-21.9	PK	298	1.6	RB 1 MHz;VB 3 MHz;Peak
5583.330	47.2	Н			Peak	67	1.0	See bandedge measurements.
11850.130	40.3	Н	54.0	-13.7	Avg	286	2.5	VB 300 Hz, note 3
11854.100	52.9	Н	74.0	-21.1	PK	286	2.5	RB 1 MHz;VB 3 MHz;Peak
23138.000	54.3	V	68.3	-14.0	PK	356	1.0	RB 1 MHz;VB 3 MHz;Peak


Note:

Scans made between 12 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.

Note 1:

For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

	Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
	Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
	wodei.	AFINU333	Project Manager:	Christine Krebill
	Contact:	Mark Hill	Project Coordinator:	David Bare
	Standard:	FCC §15.247 & §15.407	Class:	N/A

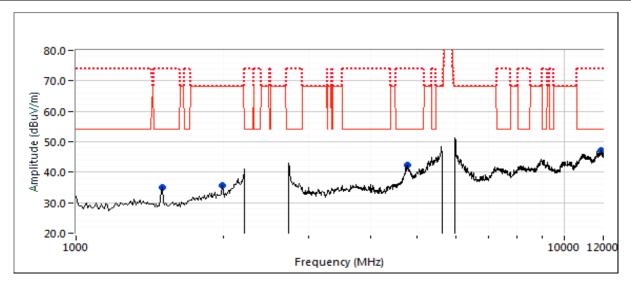
Date of Test: 10/29/2018 Config. Used: 1
Test Engineer: Deniz Demirci Config Change: none

Test Location: Chamber 7 EUT Voltage: PoE & 120V / 60Hz

Run #8c: Center Channel

Channel: 6 & 159 Wi-Fi Mode: 11ax40 Tx Chain: 8 (5GHz), 4 (2.4 GHz) Data Rate: MCS0

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1500.000	34.9	Н	60.0	-25.1	Peak	60	2.5	Note 6
2000.000	35.6	٧	60.0	-24.4	Peak	356	1.0	Note 6
4759.250	36.6	Н	54.0	-17.4	Avg	75	2.1	RB 1 MHz;VB 300 Hz; note 3
4731.750	50.0	Н	74.0	-24.0	PK	75	2.1	RB 1 MHz;VB 3 MHz;Peak
23181.930	51.1	٧	68.3	-17.2	PK	21	1.0	RB 1 MHz;VB 3 MHz;Peak


Note:

Scans made between 12 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.

Note 1:

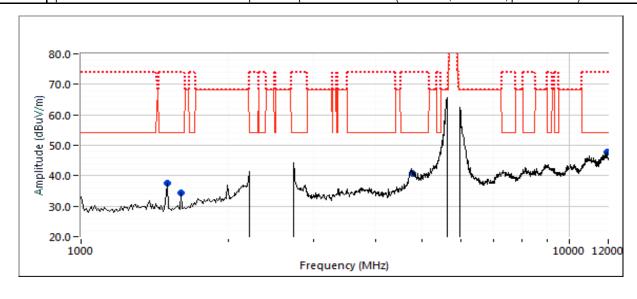
For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

1			
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Date of Test: 10/29/2018 Config. Used: 1
Test Engineer: Deniz Demirci Config Change: none

Test Location: Chamber 7 EUT Voltage: PoE & 120V / 60Hz


Run #8d: Center Channel

Channel: 6 & 155 Mode: ax80 / b

Tx Chain: 8 (5GHz), 4 (2.4 GHz) Data Rate: MCS0 / 1 Mb/s

Fraguenay	Lovel	Pol	15 200	15.209 / 15E		A =imu ıth	Unight	Comments
Frequency	Level	P0I	15.208	7 / IOE	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1500.000	37.6	Н	60.0	-22.4	Peak	79	1.5	Note 6
1600.000	34.5	Н	60.0	-25.5	Peak	29	2.5	Note 6
4759.540	36.8	Н	54.0	-17.2	Avg	288	1.9	RB 1 MHz;VB 300 Hz; note 3
4760.820	50.4	Н	74.0	-23.6	PK	288	1.9	RB 1 MHz;VB 3 MHz;Peak
23101.180	37.7	V	54.0	-16.3	Avg	21	1.0	RB 1 MHz;VB 300 Hz; note 3
23099.530	49.6	V	74.0	-24.4	PK	21	1.0	RB 1 MHz;VB 3 MHz;Peak

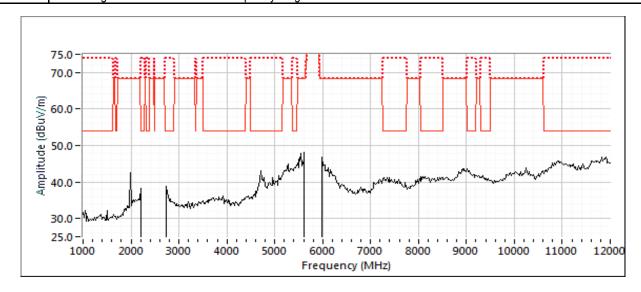
Note:	Scans made between 12 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
Note.	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 2.	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AF1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Config. Used: 1

Run #9: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: Worse case from Run #8

Date of Test: 11/01/18 Test Engineer: John Caizzi


Config Change: none EUT Voltage: PoE & 120V / 60Hz Test Location: Chamber 7

Run #9a: Low Channel

Channel/Mode/Rate/Chains/Power: 1/g/6Mbps/4/20 Channel/Mode/Rate/Chains/Power: 149/a/6Mbps/8/20

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
22979.670	43.6	V	54.0	-10.4	Avg	37	1.82	VB 1 kHz, note 3
22979.800	54.3	V	74.0	-19.7	PK	37	1.82	RB 1 MHz;VB 3 MHz;Peak

Scans made between 12 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there Note: were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.

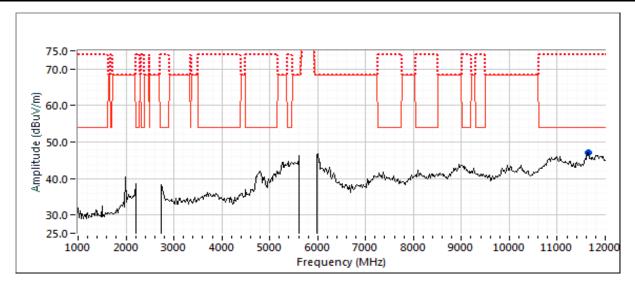
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848						
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC						
Model.	AFIIN0000	Project Manager:	Christine Krebill						
Contact:	Mark Hill	Project Coordinator:	David Bare						
Standard:	FCC §15.247 & §15.407	Class:	N/A						

Date of Test: 11/01/18
Test Engineer: M. Birgani

Test Location: Chamber 7

Config. Used: 1 Config Change: None

EUT Voltage: PoE & 120V / 60Hz


Run #9b: High Channel

Channel/Mode/Rate/Chains/Power: 11/g/6Mbps/4/20

Channel/Mode/Rate/Chains/Power: 165/a/6Mbps/8/20

Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11649.880	43.9	٧	54.0	-10.1	VAVG	342	1.03	RB 1 MHz;VB 1 kHz
23301.600	56.2	V	68.3	-12.1	PK	344	1.72	RB 1 MHz;VB 3 MHz;Peak
11649.790	54.7	V	74.0	-19.3	PK	342	1.03	RB 1 MHz;VB 3 MHz;Peak

Note: Scans made between 12 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

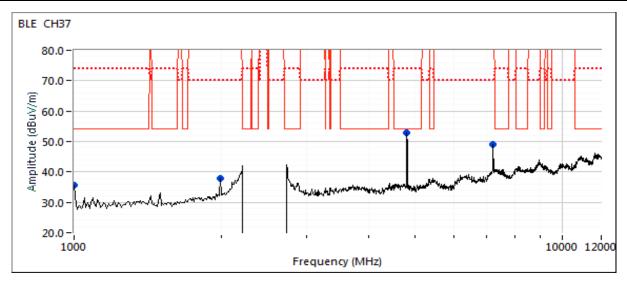
Run #10, Radiated Spurious Emissions, 1,000 - 25,000 MHz

Date of Test: 11/2/2018 0:00 Test Engineer: John Caizzi

Test Location: Chamber 7

Config. Used: 1 Config Change: none

EUT Voltage: PoE & 120V / 60Hz


Run #10a: Low Channel

Channel: 37 Mode: BLE Tx Chain: Primary

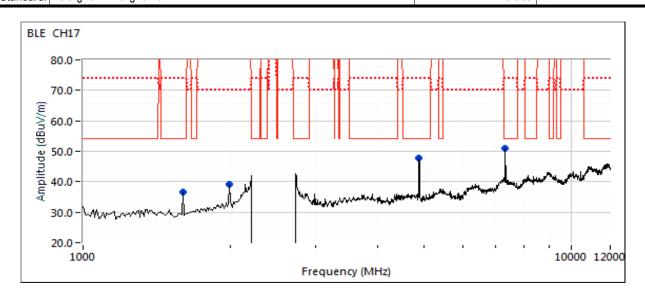
Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1000.000	35.5	V	60.0	-24.5	Peak	294	1.0	Note 6
2000.000	38.0	V	60.0	-22.0	Peak	291	1.5	Note 6
4803.890	53.3	Н	54.0	-0.7	Avg	296	1.87	RB 1 MHz; VB 3 kHz, Note 4
4803.490	56.2	Н	74.0	-17.8	PK	296	1.87	RB 1 MHz;VB 3 MHz;Peak
7205.430	47.4	V	54.0	-6.6	Avg	28	1.00	RB 1 MHz; VB 3 kHz, Notes 2 & 4
7206.880	53.1	V	74.0	-20.9	PK	28	1.00	RB 1 MHz;VB 3 MHz;Peak, Note 2

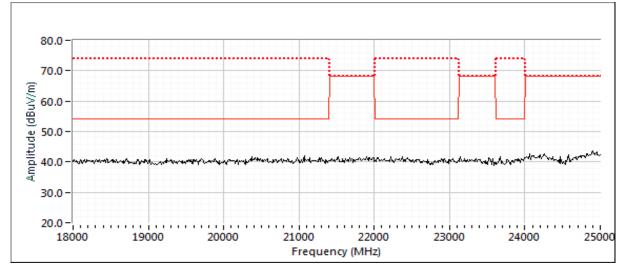
Note: Scans made between 12 - 25 GHz with the measurement antenna moved around the EUT 30cm from the device indicated there were no significant emissions in this frequency range.

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

1			
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #10b: Center Channel

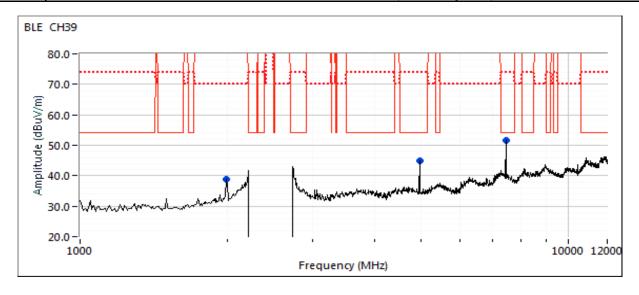

Channel: 17 Mode: BLE Tx Chain: Primary


Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1600.000	36.6	V	60.0	-23.4	Peak	325	2.0	Note 6
2000.000	39.2	V	60.0	-20.8	Peak	201	1.5	Note 6
4879.810	47.4	Н	54.0	-6.6	Avg	300	2.18	RB 1 MHz; VB 3 kHz, Note 4
4880.440	51.0	Н	74.0	-23.0	PK	300	2.18	RB 1 MHz;VB 3 MHz;Peak
7319.250	48.9	V	54.0	-5.1	Avg	318	1.00	RB 1 MHz; VB 3 kHz, Note 4
7320.700	53.9	V	74.0	-20.1	PK	318	1.00	RB 1 MHz;VB 3 MHz;Peak

	Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.					
	Motor	Scans made between 12 - 25 GHz with the measurement antenna moved around the EUT 30cm from the device indicated					
	Note.	there were no significant emissions in this frequency range.					

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848				
Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC				
Model.	AFINOSSS	Project Manager:	Christine Krebill				
Contact:	Mark Hill	Project Coordinator:	David Bare				
Standard:	FCC §15.247 & §15.407	Class:	N/A				

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
iviouei.	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A


Run #10c: High Channel

Channel: 39 Mode: BLE Tx Chain: Primary

Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2000.000	38.7	V	60.0	-21.3	Peak	74	1.5	Note 6
4959.910	45.5	V	54.0	-8.5	Avg	1	1.70	RB 1 MHz; VB 3 kHz, Note 4
4960.430	49.4	V	74.0	-24.6	PK	1	1.70	RB 1 MHz;VB 3 MHz;Peak
7439.330	50.8	V	54.0	-3.2	Avg	306	1.00	RB 1 MHz; VB 3 kHz, Note 4
7439.350	55.9	٧	74.0	-18.1	PK	306	1.00	RB 1 MHz;VB 3 MHz;Peak

Note: Scans made between 12 - 25 GHz with the measurement antenna moved around the EUT 30cm from the device indicated there were no significant emissions in this frequency range.

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #11, Radiated Spurious Emissions, 1,000 - 25,000 MHz. Operation in the 2400-2483.5 MHz Band

Date of Test: 11/01/18 Config. Used: 1
Test Engineer: M. Birgani Config Change: None

Test Location: Chamber 7 EUT Voltage: PoE & 120V / 60Hz


Run #11a: Low Channel

Channel: 11 Mode: Zigbee Tx Chain: Primary

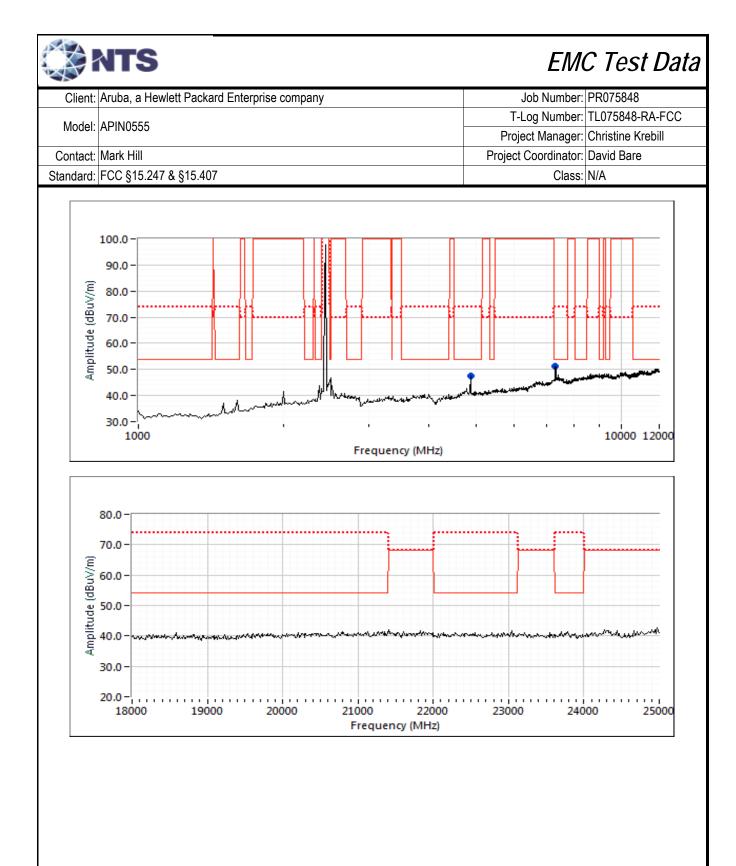
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11019.960	36.2	V	54.0	-17.8	VAVG	26	1.0	RB 1 MHz;VB 3 kHz, Note 4, 5
11019.990	54.8	V	74.0	-19.2	PK	26	1.0	RB 1 MHz;VB 3 MHz;Peak
4809.000	47.2	Н	74.0	-26.8	PK	294	2.3	RB 1 MHz;VB 3 MHz;Peak
4811.010	22.6	Н	54.0	-31.4	VAVG	294	2.3	RB 1 MHz;VB 3 kHz, Note 4, 5

Note: Scans made between 12 - 25 GHz with the measurement antenna moved around the EUT 30cm from the device indicated there were no significant emissions in this frequency range.

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFIIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Date of Test: 11/01/18 Config. Used: 1
Test Engineer: M. Birgani Config Change: None


Test Location: Chamber 7 EUT Voltage: PoE & 120V / 60Hz

Run #11b: Center Channel

Channel: 18 Mode: Zigbee Tx Chain: Primary

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7321.530	53.6	Н	74.0	-20.4	PK	290	2.0	RB 1 MHz;VB 3 MHz;Peak
7321.150	30.0	Н	54.0	-24.0	VAVG	290	2.0	RB 1 MHz;VB 3 kHz, Note 4, 5
4879.050	47.0	V	74.0	-27.0	PK	322	1.9	RB 1 MHz;VB 3 MHz;Peak
4880.910	22.7	٧	54.0	-31.3	VAVG	322	1.9	RB 1 MHz;VB 3 kHz, Note 4, 5

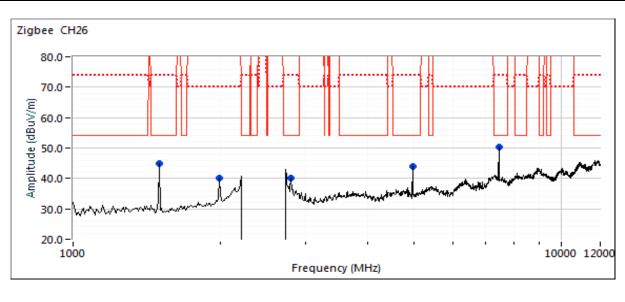
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note.	Scans made between 12 - 25 GHz with the measurement antenna moved around the EUT 30cm from the device indicated
	there were no significant emissions in this frequency range.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #11c: High Channel

Date of Test: 11/2/2018 0:00 Config. Used: 1
Test Engineer: John Caizzi Config Change: none

Test Location: Chamber 7 EUT Voltage: PoE & 120V / 60Hz


Channel: 26 Mode: ZigBee

Tx Chain: Primary Data Rate:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2800.110	24.8	V	54.0	-29.2	Avg	50	1.86	RB 1 MHz;VB 3 kHz, Note 4
2799.980	48.2	V	74.0	-25.8	PK	50	1.86	RB 1 MHz;VB 3 MHz;Peak
4961.180	25.0	V	54.0	-29.0	Avg	29	1.17	RB 1 MHz;VB 3 kHz, Note 4
4960.910	48.6	V	74.0	-25.4	PK	29	1.17	RB 1 MHz;VB 3 MHz;Peak
7441.220	31.2	Η	54.0	-22.8	Avg	69	2.50	RB 1 MHz;VB 3 kHz, Note 4
7438.300	54.5	Η	74.0	-19.5	PK	69	2.50	RB 1 MHz;VB 3 MHz;Peak
1500.000	45.0	Н	60.0	-15.0	Peak	246	1.5	Note 6
2000.000	40.2	V	60.0	-19.8	Peak	91	1.0	Note 6

Note: Scans made between 12 - 25 GHz with the measurement antenna moved around the EUT 30cm from the device indicated there were no significant emissions in this frequency range.

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMOREE	T-Log Number:	TL075848-RA-FCC
	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

RSS-247 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions: Temperature: 17-21 °C

Rel. Humidity: 38-45 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Aruba, a He	ewlett Packard	d Enterprise	company		Job Number:	PR075848
	,		· · · · · · · · · · · · · · · · · · ·			T-Log Number:	TL075848-RA-FCC
Model:	APIN0555					Project Manager:	
Contact:	Mark Hill					Project Coordinator:	
Standard:	FCC §15.24	7 & §15.407				Class:	
Summary	y of Result	ts					
Run#	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
20MHz Ban	dwith Modes			Ootan.g			
4	а	1, 36 & 149 Wi-Fi 37 - BLE	/8	20 / 14 / 20 / 8	Band Edge 5725 MHz	15E	58.0 dBμV/m @ 5937.0 MHz (-10.3 dB)
'	а	1, 48 & 165 Wi-Fi 37 - BLE	20 / 14 / 20 / 8	20 / 14 / 20 / 8	Band Edge 5850MHz	15E	57.4 dBμV/m @ 5933.1 MHz (-10.9 dB)
8	ax20	1, 36 & 149 Wi-Fi 37 - BLE	20 / 14.5 / 20 / 8	20 / 14.5 / 20 / 8	Band Edge 5725 MHz	15E	57.4 dBμV/m @ 5628.9 MHz (-10.9 dB)
	ax20	1, 48 & 165 Wi-Fi 37 - BLE	20 / 14 / 20 / 8	20 / 14 / 20 / 8	Band Edge 5850MHz	15E	58.1 dBµV/m @ 5933.1 MHz (-10.2 dB)
40MHz Ban	dwith Modes						
12	ax40	1, 38 & 151 Wi-Fi 37 - BLE	/8	20 / 15 / 19 / 8	Band Edge 5725 MHz	15E	64.0 dBµV/m @ 5636.7 MHz (-4.3 dB)
	ax40	1, 46 & 159 Wi-Fi 37 - BLE	20 / 15 / 20 / 8	20 / 15 / 20 / 8	Band Edge 5850MHz	15E	63.9 dBµV/m @ 5931.8 MHz (-4.4 dB)
80MHz Ban	dwith Modes						
16	ax80	1, 42, 155 Wi-Fi 37 - BLE	20 / 14 / 15.5 / 8	20 / 14 / 15.5 / 8	Band Edge 5725 MHz	15E	63.1 dBµV/m @ 5645.8 MHz (-5.2 dB)

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
iviouei.	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
BLE	1 Mb/s	0.65	Yes	0.424	1.9	3.8	2358	
11b	1 Mb/s	0.78	Yes	0.667	1.1	2.2	1499	2 kHz
11a	6 MB/s	0.92	Yes	1.437	0.3	0.7	696	1 kHz
ax20	MCS0	0.96	Yes	5.452	0.2	0.4	183	200 Hz
ax40	MCS0	0.96	Yes	5.297	0.2	0.4	189	200 Hz
ax80	MCS0	0.96	Yes	5.401	0.2	0.4	185	200 Hz

Sample Notes

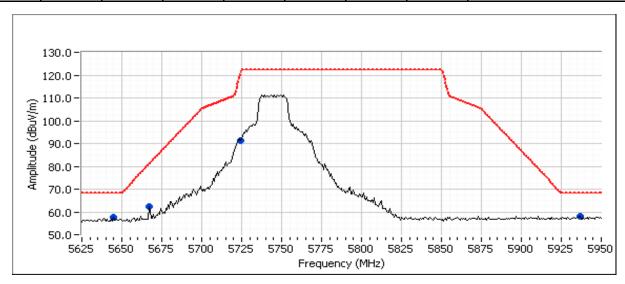
Sample S/N: CNGXK9Y07

Driver: P5 Antenna: Integral

Measurement Specific Notes:

	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 1:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
	demonstrated by meeting the average and peak limits of 15.209, as an alternative.
Note 2:	Emission has a duty cycle ≥ 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto
Note 2.	sweep, trace average 100 traces (method AD of KDB 789033)
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 5.	peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)
Note 4:	Emission has a duty cycle < 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto
Note 4.	sweep, trace average 100*1/DC traces, measurement corrected by Pwr correction factor (method AD of KDB 789033)
Note 5:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
Note 5.	measurements.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

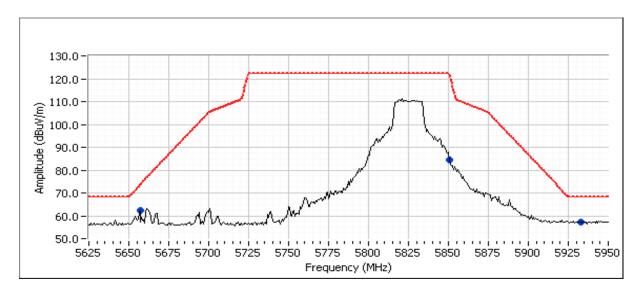

Run #4: Radiated Bandedge Measurements, 5725-5850MHz

Date of Test: 02/14/19 Config. Used: 1
Test Engineer: Deniz Demirci Config Change: None

Test Location: Frement Chamber #7 EUT Voltage: PoE & 120V/ 60Hz

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: a,36,4x4,6Mbps,14.0
Mode, Channel, Chains, Data Rate, Power: a,149,4x4,6Mbps,20.0
Mode, Channel, Chains, Data Rate, Power: BLE,37,1x1,1Mbps,8

Frequency	Level	Pol	15	i.E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5936.970	58.0	Н	68.3	-10.3	PK	316	1.5	POS; RB 1 MHz; VB: 3 MHz
5644.540	57.8	V	68.3	-10.5	PK	277	1.0	POS; RB 1 MHz; VB: 3 MHz
5667.330	62.3	Н	81.1	-18.8	PK	249	2.8	POS; RB 1 MHz; VB: 3 MHz
5724.650	91.4	V	121.5	-30.1	PK	285	1.0	POS; RB 1 MHz; VB: 3 MHz


	Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
	Model:	ADIMOSES	T-Log Number:	TL075848-RA-FCC
		AFIN0333	Project Manager:	Christine Krebill
	Contact:	Mark Hill	Project Coordinator:	David Bare
	Standard:	FCC §15.247 & §15.407	Class:	N/A

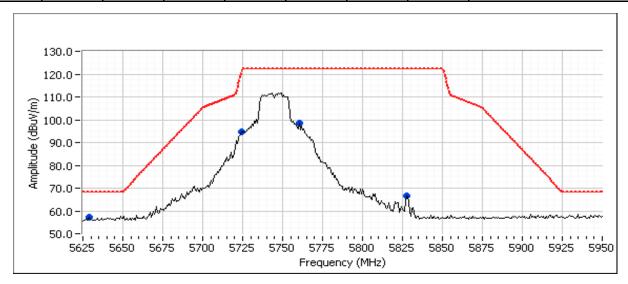
Date of Test: 02/14/19 Config. Used: 1
Test Engineer: Deniz Demirci Config Change: None

Test Location: Frement Chamber #7 EUT Voltage: PoE & 120V/ 60Hz

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: a,48,4x4,6Mbps,14.0
Mode, Channel, Chains, Data Rate, Power: a,165,4x4,6Mbps,20.0
Mode, Channel, Chains, Data Rate, Power: BLE,37,1x1,1Mbps,8

Frequency	Level	Pol	15	i.E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5933.070	57.4	Н	68.3	-10.9	PK	172	2.0	POS; RB 1 MHz; VB: 3 MHz
5656.910	62.5	V	73.4	-10.9	PK	79	2.3	POS; RB 1 MHz; VB: 3 MHz
5850.350	84.4	V	121.5	-37.1	PK	38	1.5	POS; RB 1 MHz; VB: 3 MHz

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

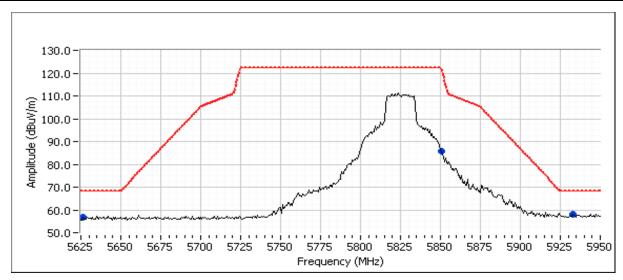

Run #8: Radiated Bandedge Measurements, 5725-5850MHz

Date of Test: 01/15/19 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: -

Test Location: Chamber #7 EUT Voltage: PoE and 120V/60Hz

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: ax20,36,4x4, MCS0,14.5
Mode, Channel, Chains, Data Rate, Power: ax20,149,4x4, MCS0,20
Mode, Channel, Chains, Data Rate, Power: BLE,37,1x1,1Mbps,8

Frequency	Level	Pol	15	i.E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5628.910	57.4	V	68.3	-10.9	Pk	254	1.0	RB 1 MHz; VB: 3 MHz
5760.470	98.6	V	122.3	-23.7	Pk	292	1.5	RB 1 MHz; VB: 3 MHz
5724.650	94.7	V	121.5	-26.8	Pk	275	2.5	RB 1 MHz; VB: 3 MHz
5827.560	66.6	V	122.3	-55.7	Pk	213	2.0	RB 1 MHz; VB: 3 MHz


	Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
	Model:	ADIMOSES	T-Log Number:	TL075848-RA-FCC
		AFIN0333	Project Manager:	Christine Krebill
	Contact:	Mark Hill	Project Coordinator:	David Bare
	Standard:	FCC §15.247 & §15.407	Class:	N/A

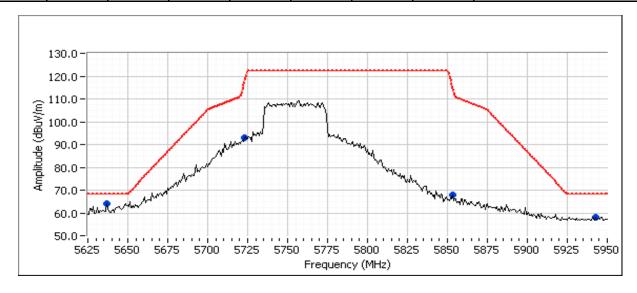
Date of Test: 01/15/19 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: -

Test Location: Chamber #7 EUT Voltage: PoE and 120V/60Hz

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: ax20,48,4x4, MCS0,14
Mode, Channel, Chains, Data Rate, Power: ax20,165,4x4, MCS0,20
Mode, Channel, Chains, Data Rate, Power: BLE, 37,1x1,1Mbps,8

Frequency	Level	Pol	15	5.E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5933.070	58.1	V	68.3	-10.2	Pk	263	1.0	RB 1 MHz; VB: 3 MHz
5626.300	57.0	Н	68.3	-11.3	Pk	273	3.0	RB 1 MHz; VB: 3 MHz
5850.350	85.8	V	121.5	-35.7	Pk	275	2.0	RB 1 MHz; VB: 3 MHz

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

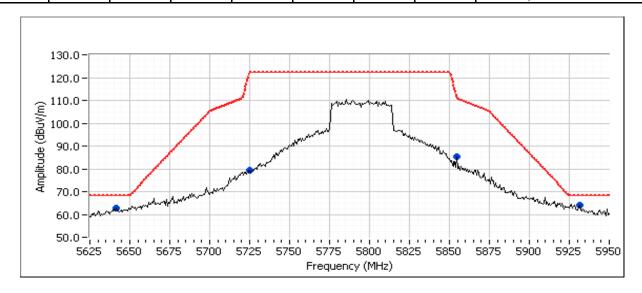

Run #12: Radiated Bandedge Measurements, 5725-5850MHz

Date of Test: 01/15/19 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: -

Test Location: Chamber #7 EUT Voltage: PoE and 120V/60Hz

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: ax40,38,4x4, MCS0,15
Mode, Channel, Chains, Data Rate, Power: ax40,151,4x4, MCS0,19
Mode, Channel, Chains, Data Rate, Power: BLE, 37,1x1,1Mbps,8

Frequency	Level	Pol	15	i.E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5636.720	64.0	V	68.3	-4.3	Pk	59	2.5	RB 1 MHz; VB: 3 MHz
5942.840	58.0	Н	68.3	-10.3	Pk	220	2.5	RB 1 MHz; VB: 3 MHz
5723.350	92.8	V	118.5	-25.7	Pk	284	2.5	RB 1 MHz; VB: 3 MHz
5853.610	68.0	V	114.1	-46.1	Pk	290	2.5	RB 1 MHz; VB: 3 MHz


Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madalı	ADIMOSES	T-Log Number:	TL075848-RA-FCC
Model:	APIN0555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Date of Test: 01/15/19 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: -

Test Location: Chamber #7 EUT Voltage: PoE and 120V/60Hz

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: ax40,46,4x4, MCS0,15
Mode, Channel, Chains, Data Rate, Power: ax40,159,4x4, MCS0,20
Mode, Channel, Chains, Data Rate, Power: BLE, 37,1x1,1Mbps,8

	<u> </u>	<u> </u>		<u> </u>				
Frequency	Level	Pol	15	i.E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5931.760	63.9	V	68.3	-4.4	Pk	276	1.8	RB 1 MHz; VB: 3 MHz
5641.280	62.7	V	68.3	-5.6	Pk	288	1.8	RB 1 MHz; VB: 3 MHz
5854.910	85.2	V	111.1	-25.9	Pk	280	2.5	RB 1 MHz; VB: 3 MHz
5725.300	79.5	V	122.3	-42.8	Pk	273	2.3	RB 1 MHz; VB: 3 MHz

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

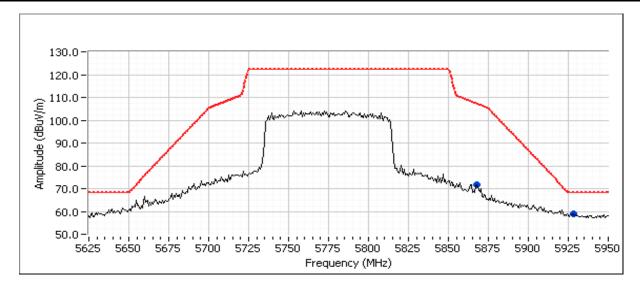

Run #16: Radiated Bandedge Measurements, 5725-5850MHz

Date of Test: 01/15/19 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: -

Test Location: Chamber #7 EUT Voltage: PoE and 120V/60Hz

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: ax80,42,4x4,MCS0,14.0
Mode, Channel, Chains, Data Rate, Power: ax80,155,4x4,MCS0,15.5
Mode, Channel, Chains, Data Rate, Power: BLE, 37,1x1,1Mbps,8

Frequency	Level	Pol	15	5.E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5645.840	63.1	V	68.3	-5.2	PK	293	1.8	RB 1 MHz; VB: 3 MHz
5940.230	58.5	Н	68.3	-9.8	PK	106	1.8	RB 1 MHz; VB: 3 MHz
5720.740	78.3	V	112.6	-34.3	PK	300	1.8	RB 1 MHz; VB: 3 MHz
5851.650	73.8	V	118.5	-44.7	PK	284	2.5	RB 1 MHz; VB: 3 MHz


Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	APIN0555	T-Log Number:	TL075848-RA-FCC
wodei.	AFIN0333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Date of Test: 01/15/19 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: -

Test Location: Chamber #7 EUT Voltage: PoE and 120V/60Hz

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: ax80,42,4x4,MCS0,14.5
Mode, Channel, Chains, Data Rate, Power: ax80,155,4x4,MCS0,15.5
Mode, Channel, Chains, Data Rate, Power: BLE, 37,1x1,1Mbps,8

Frequency	Level	Pol	15.E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5928.510	58.8	V	68.3	-9.5	PK	278	2.5	RB 1 MHz; VB: 3 MHz
5867.940	71.5	V	107.3	-35.8	PK	292	2.5	RB 1 MHz; VB: 3 MHz

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

RSS-247 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions: Temperature: 18-22 °C

Rel. Humidity: 38-43 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Summary of Results

Run #	Mode	Channel	Power Setting		Test Performed	Limit	Result / Margin
	Scans on closest 5 GHz channels in all four OFDM modes to determine the worst case mode (4x4 in lower 5 GHz bands, 4x4 in upportant pands and 4x4 in 2.4 GHz band)						
	b , a BLE	1, 48 & 149 Wi-Fi 37 - BLE	20, 20, 8		Radiated Emissions, 1 - 40 GHz	FCC 15.209/ 15.247 / 15 E	42.1 dBµV/m @ 4803.9 MHz (-11.9 dB)
2	b, ax20, BLE	1, 48 & 149 Wi-Fi 37 - BLE	20, 20, 8		Radiated Emissions, 1 - 40 GHz	FCC 15.209/ 15.247 / 15 E	38.9 dBµV/m @ 4804.0 MHz (-15.1 dB)
3	b, ax40, BLE	1, 46 & 151 Wi-Fi 37 - BLE	20, 20, 8		Radiated Emissions, 1 - 40 GHz	FCC 15.209/ 15.247 / 15 E	42.3 dBµV/m @ 4804.0 MHz (-11.7 dB)
	b, ax80, BLE	1, 42 & 155 Wi-Fi 37 - BLE	20, 20, 8		Radiated Emissions, 1 - 40 GHz	FCC 15.209/ 15.247 / 15 E	42.1 dBµV/m @ 4804.0 MHz (-11.9 dB)

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model	APIN0555	T-Log Number:	TL075848-RA-FCC
wodei.	AFIN0555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #	Mode	Channel	Power Setting	Test Performed	Limit	Result / Margin
40MHz - \	Worse case f	rom Run #3				
4	b, ax40, BLE	1, 38 & 159 Wi-Fi 37 - BLE	20, 20, 8	Radiated Emissions,	FCC 15.209 / 15 E	44.3 dBµV/m @ 7205.4 MHz (-9.7 dB)
4	b, ax40, BLE	1, 40 & 157 Wi-Fi 37 - BLE	20, 20, 8	1 - 40 GHz		42.6 dBµV/m @ 7205.7 MHz (-11.4 dB)

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
BLE	1 Mb/s	0.65	Yes	0.424	1.9	3.8	2358	
11b	1 Mb/s	0.78	Yes	0.667	1.1	2.2	1499	2 kHz
11a	6 MB/s	0.92	Yes	1.437	0.3	0.7	696	1 kHz
ax20	MCS0	0.96	Yes	5.452	0.2	0.4	183	200 Hz
ax40	MCS0	0.96	Yes	5.297	0.2	0.4	189	200 Hz
ax80	MCS0	0.96	Yes	5.401	0.2	0.4	185	200 Hz

Sample Notes

Sample S/N: CNGXK9Y07

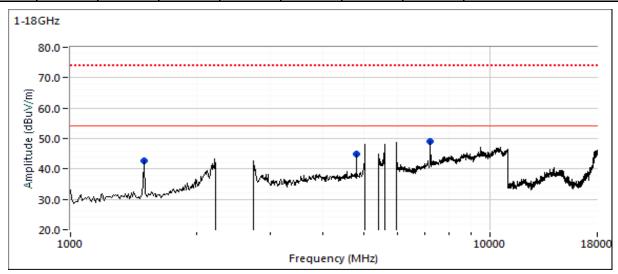
Driver: P5 Antenna: Integral

Measurement Specific Notes:

	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 1:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
	demonstrated by meeting the average and peak limits of 15.209, as an alternative.
Nata 2	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 3:	peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)
Note 5:	Digital device emission, class A limit extrapolated to 3m applied, peak reading vs peak or average limit.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #3, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5470-5850 MHz Bands


Date of Test: 2/19/2019 Config. Used: 1
Test Engineer: Deniz Demirci Config Change: None

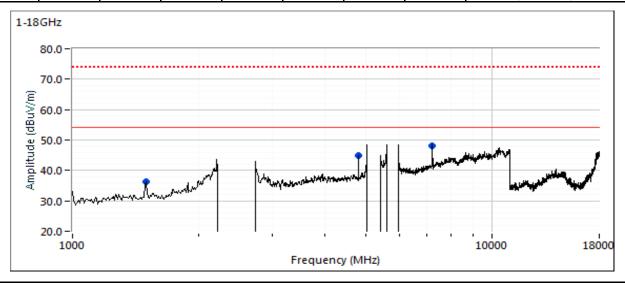
Test Location: Fremont Chamber #5 EUT Voltage: POE & 120 V, 60 Hz

Run #3a: Low and High Channels

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: a,48,4x4,6Mbps,20
Mode, Channel, Chains, Data Rate, Power: a,149,4x4,6Mbps,20
Mode, Channel, Chains, Data Rate, Power: BLE,37,1x1,1Mbps,8

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4803.880	42.1	Н	54.0	-11.9	AVG	224	1.0	RB 1 MHz;VB 1 kHz; Note 3
7206.470	41.1	Н	54.0	-12.9	AVG	224	1.0	RB 1 MHz;VB 1 kHz; Note 3
1500.000	42.7	V	60.0	-17.3	Peak	103	1.6	Note 6
7206.460	52.2	Н	74.0	-21.8	PK	224	1.0	RB 1 MHz;VB 3 MHz;Peak
4804.260	50.0	Н	74.0	-24.0	PK	224	1.0	RB 1 MHz;VB 3 MHz;Peak

NOTA:	Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from
	the device indicated there were no significant emissions in this frequency range
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 2.	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).



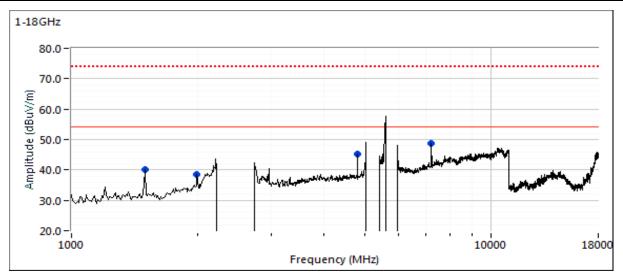
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINIOSES	T-Log Number:	TL075848-RA-FCC
	AF III00000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #3b: Low and High Channels

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: ax20,48,4x4, MCS0,20
Mode, Channel, Chains, Data Rate, Power: Mode, Channel, Chains, Data Rate, Power: BLE,37,1x1,1Mbps,8

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	
4803.970	38.9	Н	54.0	-15.1	AVG	230	1.0	RB 1 MHz;VB 1 kHz; Note 3
7206.320	38.8	V	54.0	-15.2	AVG	230	1.0	RB 1 MHz;VB 1 kHz; Note 3
7205.180	51.7	V	74.0	-22.3	PK	230	1.0	RB 1 MHz;VB 3 MHz;Peak
1500.000	36.2	V	60.0	-23.8	Peak	240	1.0	note 6
4804.310	49.4	Н	74.0	-24.6	PK	230	1.0	RB 1 MHz;VB 3 MHz;Peak

Noto	Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from
Note:	the device indicated there were no significant emissions in this frequency range
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Nata O.	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 2:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).



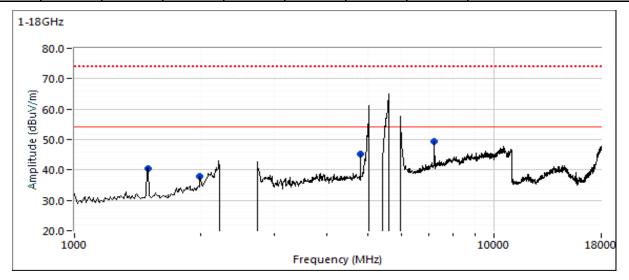
<u> </u>			
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFINOSSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #3c: Low and High Channels

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: ax40,46,4x4, MCS0,20
Mode, Channel, Chains, Data Rate, Power: bx1,4x4, MCS0,20
Mode, Channel, Chains, Data Rate, Power: BLE, 37,1x1,1Mbps,8

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4804.010	42.3	Н	54.0	-11.7	AVG	225	2.1	RB 1 MHz;VB 1 kHz; Note 3
7205.720	41.6	V	54.0	-12.4	AVG	153	2.1	RB 1 MHz;VB 1 kHz; Note 3
1500.000	40.2	V	60.0	-19.8	Peak	273	1.0	note 6
7205.430	53.9	V	74.0	-20.1	PK	153	2.1	RB 1 MHz;VB 3 MHz;Peak
2000.000	38.6	Н	60.0	-21.4	Peak	85	1.9	note 6
4803.550	51.7	Н	74.0	-22.3	PK	225	2.1	RB 1 MHz;VB 3 MHz;Peak

Nata.	Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from
Note:	the device indicated there were no significant emissions in this frequency range
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
N-4- 0.	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 2:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).



1			
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #3d: Low and High Channels

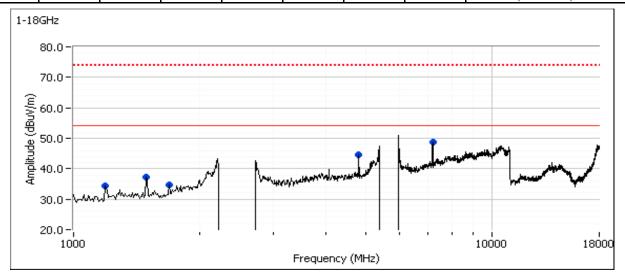
Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: ax80,42,4x4, MCS0,20
Mode, Channel, Chains, Data Rate, Power: ax80,155,4x4, MCS0,20
Mode, Channel, Chains, Data Rate, Power: BLE, 37,1x1,1Mbps,8

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4804.040	42.1	Н	54.0	-11.9	AVG	224	2.2	RB 1 MHz;VB 1 kHz; Note 3
7205.570	41.6	Н	54.0	-12.4	AVG	243	2.2	RB 1 MHz;VB 1 kHz; Note 3
1500.000	40.5	V	60.0	-19.5	Peak	273	1.0	note 6
7204.810	53.7	Н	74.0	-20.3	PK	243	2.2	RB 1 MHz;VB 3 MHz;Peak
2000.000	37.8	V	60.0	-22.2	Peak	15	1.9	note 6
4804.520	51.4	Н	74.0	-22.6	PK	224	2.2	RB 1 MHz;VB 3 MHz;Peak

I Νοτο·	Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from
	the device indicated there were no significant emissions in this frequency range
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Noto 7.	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: Worse case from Run #3

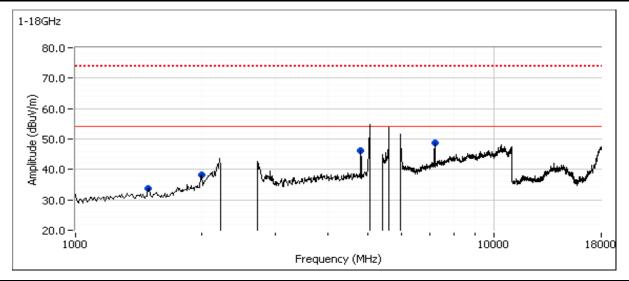

Date of Test: 2/19/2019 Config. Used: 1
Test Engineer: Deniz Demirci Config Change: None

Test Location: Fremont Chamber #5 EUT Voltage: POE & 120 V, 60 Hz

Run #4a: High and Low Channels

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20 ax40,38,4x4,MCS0,20 Mode, Channel, Chains, Data Rate, Power: ax40,38,4x4,MCS0,20 Mode, Channel, Chains, Data Rate, Power: BLE,37,1x1,1Mbps,8

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7205.440	44.3	V	54.0	-9.7	AVG	352	1.4	RB 1 MHz;VB 300 Hz; Note 3
4803.990	42.8	Н	54.0	-11.2	AVG	38	2.1	RB 1 MHz;VB 300 Hz; Note 3
7205.440	53.7	V	74.0	-20.3	PK	352	1.4	RB 1 MHz;VB 3 MHz;Peak
4804.640	50.4	Н	74.0	-23.6	PK	38	2.1	RB 1 MHz;VB 3 MHz;Peak
22851.920	32.6	Н	54.0	-21.4	AVG	47	1.7	RB 1 MHz;VB 300 Hz; Note 3
22852.310	44.6	Н	74.0	-29.4	PK	47	1.7	RB 1 MHz;VB 3 MHz;Peak



1			
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC
iviouei.	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #4b: Center Channels

Mode, Channel, Chains, Data Rate, Power: b,1,4x4,1Mbps,20
Mode, Channel, Chains, Data Rate, Power: ax20,40,4x4, MCS0,20
Mode, Channel, Chains, Data Rate, Power: ax20,157,4x4, MCS0,20
Mode, Channel, Chains, Data Rate, Power: BLE, 37,1x1,1Mbps,8

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7205.690	42.6	V	54.0	-11.4	AVG	343	2.0	RB 1 MHz;VB 300 Hz; Note 3
4803.890	42.0	Η	54.0	-12.0	AVG	38	2.0	RB 1 MHz;VB 300 Hz; Note 3
2000.000	38.2	V	54.0	-15.8	Peak	316	1.0	Note 6
22855.220	37.6	Η	54.0	-16.4	AVG	0	1.6	RB 1 MHz;VB 300 Hz;Peak
7205.260	53.4	V	74.0	-20.6	PK	343	2.0	RB 1 MHz;VB 3 MHz;Peak
4803.970	51.1	Н	74.0	-22.9	PK	38	2.0	RB 1 MHz;VB 3 MHz;Peak
22854.650	49.6	Н	74.0	-24.4	PK	0	1.6	RB 1 MHz;VB 3 MHz;Peak

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

Note 2: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

B			
Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

Radiated Emissions

(NTS Silicon Valley, Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 11/6/2018 Config. Used: 1
Test Engineer: John Caizzi Config Change: None

Test Location: Chamber #5 EUT Voltage: PoE & 120 V / 60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment were routed through metal conduit and passed through a ferrite clamp upon exiting the chamber.

Ambient Conditions: Temperature: 24 °C

Rel. Humidity: 40 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1a		15.247	Pass	36.8 dBµV/m @ 45.29 MHz
Id	Radiated Spurious Emissions	15.247 15E	F 455	(-3.2 dB)
1b	30 - 1000 MHz, WiFi	15.209	Pass	36.0 dBµV/m @ 43.61 MHz
10		13.203	1 055	(-4.0 dB)
2a			Pass	36.6 dBµV/m @ 45.26 MHz
Za	Radiated Spurious Emissions		F 455	(-3.4 dB)
2b	30 - 1000 MHz, BLE	15.247	Pass	36.3 dBµV/m @ 43.61 MHz
20			Fa55	(-3.7 dB)
3a		15.209	Pass	36.2 dBµV/m @ 43.79 MHz
Ja	Radiated Spurious Emissions		F d55	(-3.8 dB)
3b	30 - 1000 MHz, Zigbee		Door	36.2 dBµV/m @ 43.65 MHz
30			Pass	(-3.8 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

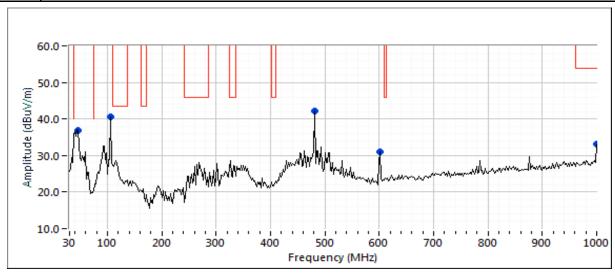
Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFIINUUUU	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

Sample Notes

Sample S/N: CNGFK9Y02N (BLE) & CNGFK9Y005 (Zigbee)

Run #1a, Radiated Spurious Emissions, 30 - 1000 MHz, Wi-Fi

Channel, Mode, Chain, Level: 6, g, 4, 20 Channel, Mode, Chain, Level: 40, a, 8, 20


Preliminary peak readings captured during pre-scan (peak readings vs. QP limit)

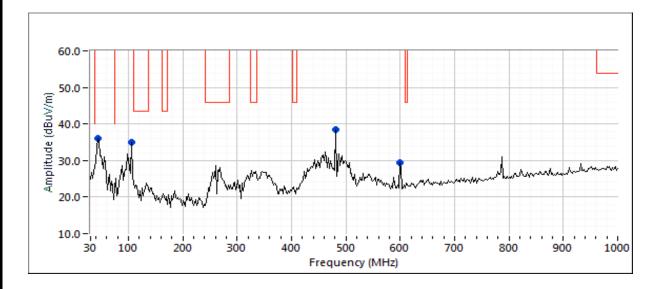
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
45.286	36.9	V	40.0	-3.1	Peak	320	1.0	Note 1
105.731	40.7	V	43.5	-2.8	Peak	0	1.5	Note 1
480.057	42.2	V	46.0	-3.8	Peak	324	1.0	Note 1
600.019	30.9	V	46.0	-15.1	Peak	200	1.0	Note 1
1000.000	33.1	Н	54.0	-20.9	Peak	72	4.0	

Final QP readings

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
45.286	36.8	V	40.0	-3.2	QP	325	1.00	Note 1
105.731	37.2	V	43.5	-6.3	QP	320	1.00	Note 1
480.057	37.5	V	46.0	-8.5	QP	301	1.16	Note 1
600.019	25.2	V	46.0	-20.8	QP	216	1.00	Note 1
	•	•	· · · · · · · · · · · · · · · · · · ·	•		•	•	

Note 1 Emission in non-restricted band, but limit of 15.209 used.

Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Model:	ADINIOSES	T-Log Number:	TL075848-RA-FCC
	AFIINUUUU	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet


Run #1b, Radiated Spurious Emissions, 30 - 1000 MHz, Wi-Fi

Channel, Mode, Chain, Level: 11, b, 4, 20 Channel, Mode, Chain, Level: 165, ax20, 8, 20

Preliminary peak readings captured during pre-scan (peak readings vs. QP limit)

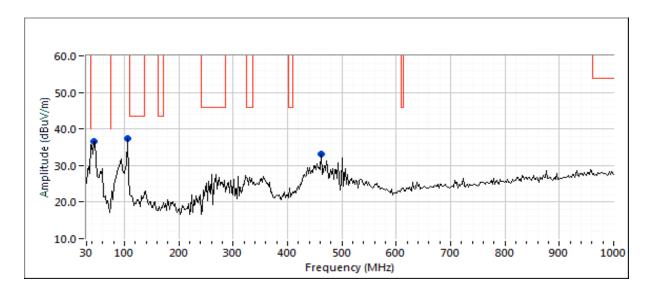
i i ciii iii iai y	pour rouan	cak readings captared during pre souri (peak readings vs. 21 mint)								
Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
43.607	36.0	V	40.0	-4.0	Peak	315	1.0	Note 1		
105.812	35.0	V	43.5	-8.5	Peak	107	1.0	Note 1		
480.982	38.5	Н	46.0	<i>-7.5</i>	Peak	66	1.5	Note 1		
599.559	29.5	Н	46.0	-16.5	Peak	<i>253</i>	1.5	Note 1		

Note 1	Emission in non-restricted band, but limit of 15.209 used.
	Emissions were the same as run 1a, though the channels and modes were different. Therefore, it is likely that none of
Note 2	these emissions are radio signals. Testing on other channels in other modes was not done, since the emissions would not
	Ichange.

Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Model:	ADINIOSES	T-Log Number:	TL075848-RA-FCC
	AFIINUUUU	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

Run #2a, Radiated Spurious Emissions, 30 - 1000 MHz, BLE

Channel, Chain, Level: 37, 1, 8


Preliminary peak readings captured during pre-scan (peak readings vs. QP limit)

i i Cili ililiai y	peak readii	ak readings captaired during pre sean (peak readings vs. &r innit)										
Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments				
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
45.263	36.7	V	40.0	-3.3	Peak	360	1.0	Note 1				
105.750	37.4	V	43.5	-6.1	Peak	269	1.0	Note 1				
460.832	33.1	V	46.0	-12.9	Peak	311	1.5	Note 1				

Final QP readings

	J										
Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
45.263	36.6	V	40.0	-3.4	QP	360	1.00	Note 1			
105.750	37.6	V	43.5	-5.9	QP	322	1.04	Note 1			
460.832	32.6	V	46.0	-13.4	QP	319	1.23	Note 1			

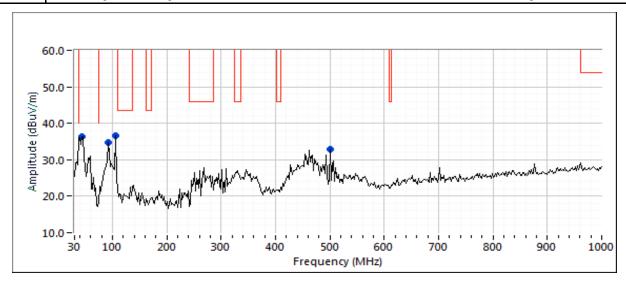
Note 1 Emission in non-restricted band, but limit of 15.209 used.

Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Model:	ADIMOSES	T-Log Number:	TL075848-RA-FCC
	AFIN0333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

Run #2b, Radiated Spurious Emissions, 30 - 1000 MHz, BLE

Channel, Chain, Level: 39, 1, 8

Preliminary peak readings captured during pre-scan (peak readings vs. QP limit)


i i Cili ililiai y	peak readii	ak readings captured during pre sean (peak readings vs. 21 min)										
Frequency	Level	Pol	15.209	15.209 / 15E		Azimuth	Height	Comments				
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
43.607	36.3	V	40.0	-3.7	Peak	274	1.0	Note 1				
92.357	34.8	V	43.5	-8.7	Peak	118	1.0	Note 1				
105.812	36.7	V	43.5	-6.8	Peak	291	1.0	Note 1				
499.196	33.0	V	46.0	-13.0	Peak	235	1.0	Note 1				

Final QP readings

Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
92.357	32.7	V	43.5	-10.8	QP	106	1.10	Note 1
499.196	33.6	V	46.0	-12.4	QP	227	1.00	Note 1

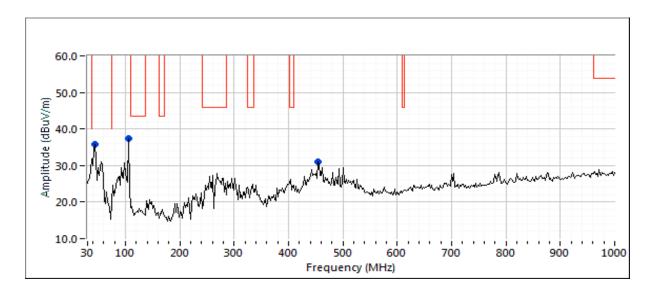
Note 1 Emission in non-restricted band, but limit of 15.209 used.

Note 2 Emissions were the same as run 2a, though the channel was different. Therefore, it is likely that none of these emissions are radio signals. Testing on the middle channel was not done, since the emissions would not change.

Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Model:	ADINOFFE	T-Log Number:	TL075848-RA-FCC
	AFIINUUUU	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

Run #3a, Radiated Spurious Emissions, 30 - 1000 MHz, Zigbee

Channel, Chain, Level: 11, 1, 8


Preliminary peak readings captured during pre-scan (peak readings vs. QP limit)

i i cililililiai y	pour roudii	ak reddings captared daring pre scarr (peak reddings vs. 21 mint)										
Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments				
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
43.791	35.8	V	40.0	-4.2	Peak	312	1.0	Note 1				
105.724	37.5	V	43.5	-6.0	Peak	124	1.0	Note 1				
454.415	30.9	V	46.0	-15.1	Peak	321	1.5	Note 1				

Final QP readings

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
43.791	36.2	V	40.0	-3.8	QP	4	1.01	Note 1
105.724	37.5	V	43.5	-6.0	QP	79	1.01	Note 1
454.415	28.7	V	46.0	-17.3	QP	321	1.50	Note 1

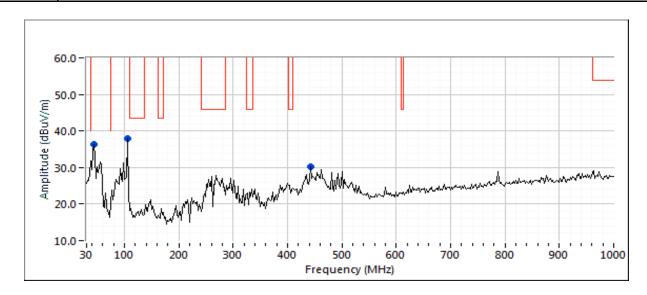
Note 1 Emission in non-restricted band, but limit of 15.209 used.

Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Model:	ADIMOSES	T-Log Number:	TL075848-RA-FCC
	AFIN0333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

Run #3b, Radiated Spurious Emissions, 30 - 1000 MHz, Zigbee

Channel, Chain, Level: 26, 1, 8

Preliminary peak readings captured during pre-scan (peak readings vs. QP limit)


i i ciii iii iai y	pour rouan	ak readings captured during pre sean (peak readings vs. er mint)										
Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments				
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
43.607	36.4	V	40.0	-3.6	Peak	329	1.0					
105.812	38.0	V	43.5	-5.5	Peak	89	1.0					
442.104	30.3	V	46.0	-15.7	Peak	305	1.0					

Final QP readings

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
43.649	36.2	V	40.0	-3.8	QP	4	1.01	Note 1

Note 1 Emission in non-restricted band, but limit of 15.209 used.

Note 2 Emissions were the same as run 3a, though the channel was different. Therefore, it is likely that none of these emissions are radio signals. Testing on the middle channel was not done, since the emissions would not change.

Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Madalı	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFINOSOS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

Conducted Emissions

(NTS Silicon Valley, Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 11/5/2018 Config. Used: 1
Test Engineer: John Caizzi Config Change: none

Test Location: Chamber 5 EUT Voltage: PoE & 110V / 60Hz, 220V / 60Hz, 230V / 50Hz

General Test Configuration

For tabletop equipment, the EUT and POE adapter were located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment were routed through metal conduit and passed through a ferrite clamp upon exiting the chamber.

Ambient Conditions: Temperature: 23-24 °C

Rel. Humidity: 35-38 %

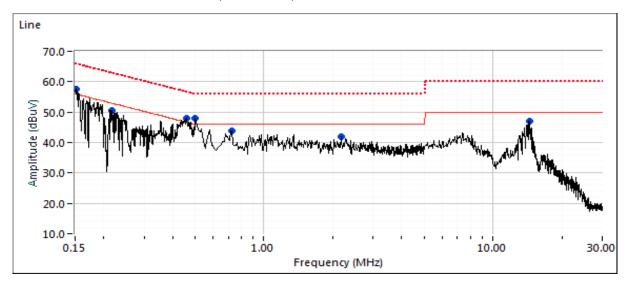
Summary of Results

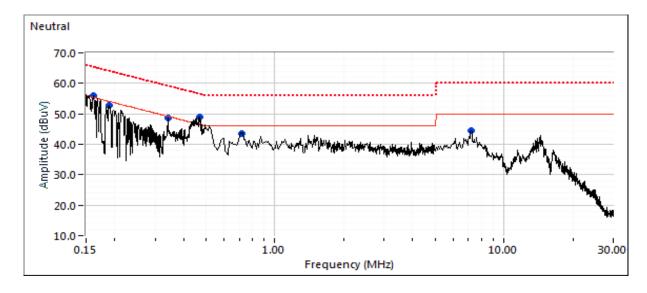
,				
Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 110V/60Hz	EN 55032 Class B	Pass	38.5 dBµV @ 0.46 MHz (-8.3 dB)
2	CE, AC Power, 230V/50Hz	EN 55032 Class B	Pass	42.2 dBµV @ 0.50 MHz (-3.8 dB)
3	CE, AC Power, 220V/60Hz	EN 55032 Class B	Pass	41.5 dBµV @ 0.50 MHz (-4.5 dB)
4	CE, AC Power, PoE, 220V/60Hz	EN 55032 Class B	Pass	34.6 dBµV @ 0.45 MHz (-12.2 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

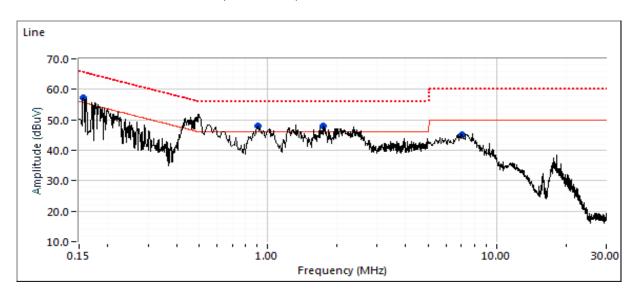
Deviations From The Standard

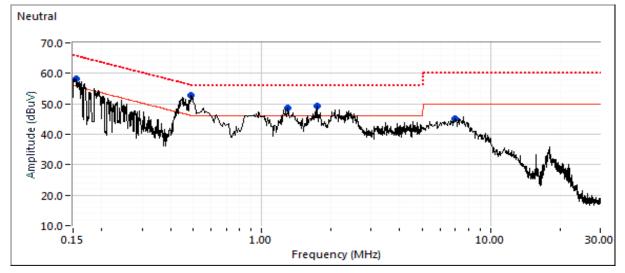

No deviations were made from the requirements of the standard.


Note: The unit was transmitting at 2412MHz in 802.11b mode and 5180MHz in 802.11a mode.

Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei.	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

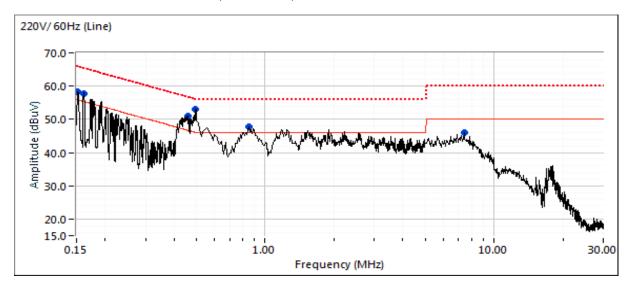
Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 110V/60Hz

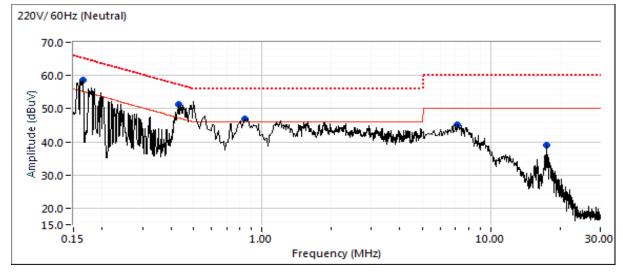

	NTS						EMC Test Data
Client:	Aruba, a He	wlett Packar	d Enterprise		PR Number: PR075848		
Madal	ADIMOTET				T-Log Number: TL075848-RA-FCC		
Model:	APIN0555						Project Manager: Christine Krebill
Contact:	Mark Hill						Project Engineer: David Bare
Standard:	FCC §15.24	7 & §15.407					Class: Enter on cover sheet
Preliminary	, peak readii	ngs capture	d during pre	-scan (peak	readings v	s. average lim	it)
Frequency	Level	AC	Clas	ss B	Detector	Comments	
MHz	dΒμV	Line	Limit	Margin	QP/Ave		
0.154	57.4	Line	55.9	1.5	Peak		
0.214	50.4	Line	52.9	-2.5	Peak		
0.455	47.9	Line	46.7	1.2	Peak		
0.499	48.0	Line	46.0	2.0	Peak		
0.721	43.7	Line	46.0	-2.3	Peak		
2.121	42.0	Line	46.0	-4.0	Peak		
14.502	46.9	Line	50.0	-3.1	Peak		
0.155	55.9	Neutral	55.4	0.5	Peak		
0.186	52.8	Neutral	54.1	-1.3	Peak		
0.348	48.6	Neutral	49.2	-0.6	Peak		
0.463	49.0	Neutral	46.5	2.5	Peak		
0.722	43.5	Neutral	46.0	-2.5	Peak		
7.115	44.5	Neutral	50.0	-5.5	Peak		


Client:	Aruba, a He	wlett Packard	d Enterprise		PR Number:	PR075848		
					T-Log Number:	TL075848-RA-FC0		
Model:	APIN0555				Project Manager:			
Contact:	Mark Hill				Project Engineer:			
		7 & §15.407			<u> </u>	Enter on cover she		
Otaridara.	1 00 310.2	17 4 3 10.101					01000.	Enter on cover one
inal guasi	-peak and a	verage readi	nas					
requency	Level	AC		ss B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.455	38.5	Line	46.8	-8.3	AVG			
0.154	33.5	Line	55.8	-22.3	AVG			
0.154	49.7	Line	65.8	-16.1	QP			
0.214	20.8	Line	53.1	-32.3	AVG			
0.214	43.2	Line	63.1	-19.9	QP			
0.455	38.5	Line	46.8	-8.3	AVG			
0.455	45.4	Line	56.8	-11.4	QP			
0.499	35.6	Line	46.0	-10.4	AVG			
0.499	43.2	Line	56.0	-12.8	QP			
0.721 0.721	34.6 41.2	Line	46.0 56.0	-11.4 -14.8	AVG QP			
2.121	29.9	Line Line	46.0	-14.6	AVG			
2.121	36.2	Line	56.0	-10.1	QP			
14.502	31.5	Line	50.0	-18.5	AVG			
14.502	39.3	Line	60.0	-20.7	QP			
0.155	32.8	Neutral	55.7	-22.9	AVG			
0.155	49.5	Neutral	65.7	-16.2	QP			
0.186	27.0	Neutral	54.2	-27.2	AVG			
0.186	46.0	Neutral	64.2	-18.2	QP			
0.348	34.4	Neutral	49.0	-14.6	AVG			
0.348	41.7	Neutral	59.0	-17.3	QP			
0.463	37.4	Neutral	46.6	-9.2	AVG			
0.463	44.8	Neutral	56.6	-11.8	QP			
0.722	35.6	Neutral	46.0	-10.4	AVG			
0.722	41.7	Neutral	56.0	-14.3	QP			
7.115	31.4	Neutral	50.0	-18.6	AVG			
7.115	37.1	Neutral	60.0	-22.9	QP			
	ı							
lote 1:								

Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Madal	ADINOSES	T-Log Number:	TL075848-RA-FCC
Model.	APIN0555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

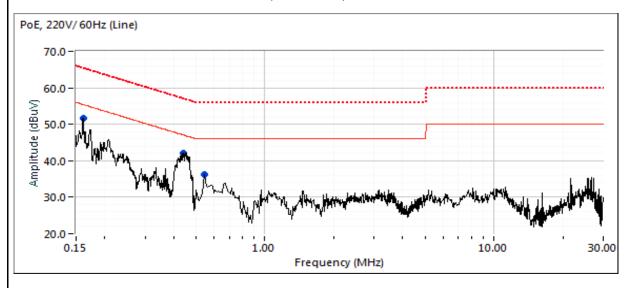
Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz

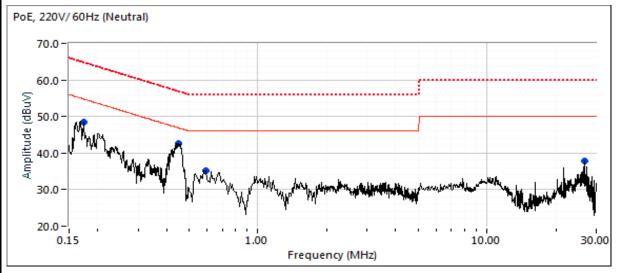



Cilent.	Aruba, a He	wlett Packar		PR Number:				
Model: APIN0555							T-Log Number:	TL075848-RA-FCC
Wodel.	AI IIVOSSS			Project Manager:	Christine Krebill			
Contact:	Mark Hill						Project Engineer:	David Bare
Standard:	FCC §15.24	7 & §15.407					Class:	Enter on cover shee
Preliminary Frequency	peak readii Level	ngs capture AC		e-scan (peak ss B	readings v	s. average limit) Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave	Comments		
0.150	57.3	Line	55.6	1.7	Peak			
0.497	51.9	Line	46.0	5.9	Peak			
0.497	48.0	Line	46.0	2.0	Peak			
1.680	47.9	Line	46.0	1.9	Peak			
7.310	45.0	Line	50.0	-5.0	Peak			
0.152	58.1	Neutral	55.8	2.3	Peak			
0.492	52.7	Neutral	46.2	6.5	Peak			
1.359	48.7	Neutral	46.0	2.7	Peak			
1.747	49.1	Neutral	46.0	3.1	Peak			
7.071	45.2	Neutral	50.0	-4.8	Peak			
		verage readi						
	Level	AC		ss B	Detector	Comments		
Frequency MHz	dΒμV	Line	Limit	Margin	QP/Ave	Comments		
MHz 0.150	dΒμV 36.9	Line Line	Limit 56.0	Margin -19.1	QP/Ave AVG	Comments		
MHz 0.150 0.150	dBμV 36.9 51.4	Line Line Line	Limit 56.0 66.0	Margin -19.1 -14.6	QP/Ave AVG QP	Comments		
MHz 0.150 0.150 0.497	dBμV 36.9 51.4 42.2	Line Line Line Line	Limit 56.0 66.0 46.0	Margin -19.1 -14.6 -3.8	QP/Ave AVG QP AVG	Comments		
MHz 0.150 0.150 0.497 0.497	dBμV 36.9 51.4 42.2 49.5	Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0	Margin -19.1 -14.6 -3.8 -6.5	QP/Ave AVG QP AVG QP	Comments		
MHz 0.150 0.150 0.497 0.497 0.904	dBμV 36.9 51.4 42.2 49.5 37.0	Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0	Margin -19.1 -14.6 -3.8 -6.5 -9.0	QP/Ave AVG QP AVG QP AVG AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904	dBμV 36.9 51.4 42.2 49.5 37.0 43.6	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4	QP/Ave AVG QP AVG QP AVG QP AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5	QP/Ave AVG QP AVG QP AVG QP AVG AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 1.680	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0	QP/Ave AVG QP AVG QP AVG QP AVG QP AVG QP	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 7.310	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0 34.8	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0 56.0	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0 -15.2	QP/Ave AVG QP AVG QP AVG QP AVG QP AVG AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 1.680 7.310 7.310	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0 34.8 40.9	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0 60.0	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0 -15.2 -19.1	QP/Ave AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 7.310 7.310 0.152	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0 34.8 40.9 35.4	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0 60.0 55.9	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0 -15.2 -19.1 -20.5	QP/Ave AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 1.680 7.310 0.152 0.152	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0 34.8 40.9 35.4 51.0	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0 60.0 55.9 65.9	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0 -15.2 -19.1 -20.5 -14.9	QP/Ave AVG QP AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 7.310 7.310 0.152	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0 34.8 40.9 35.4	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0 60.0 55.9	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0 -15.2 -19.1 -20.5 -14.9 -3.8	QP/Ave AVG QP AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 7.310 7.310 0.152 0.152 0.492	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0 34.8 40.9 35.4 51.0 42.3	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0 60.0 55.9 65.9 46.1	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0 -15.2 -19.1 -20.5 -14.9	QP/Ave AVG QP AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 1.680 7.310 7.310 0.152 0.492 0.492	dBµV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0 34.8 40.9 35.4 51.0 42.3 50.0	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0 60.0 55.9 65.9 46.1 56.1	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0 -15.2 -19.1 -20.5 -14.9 -3.8 -6.1	QP/Ave AVG QP AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 7.310 7.310 0.152 0.152 0.492 0.492 1.359	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0 34.8 40.9 35.4 51.0 42.3 50.0 38.0	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0 60.0 50.0 60.0 55.9 65.9 46.1 56.1	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0 -15.2 -19.1 -20.5 -14.9 -3.8 -6.1 -8.0	QP/Ave AVG QP AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 7.310 0.152 0.152 0.492 0.492 1.359 1.359	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0 34.8 40.9 35.4 51.0 42.3 50.0 38.0 43.8	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0 60.0 55.9 65.9 46.1 56.1 46.0 56.0	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0 -15.2 -19.1 -20.5 -14.9 -3.8 -6.1 -8.0 -12.2	QP/Ave AVG QP AVG	Comments		
MHz 0.150 0.150 0.497 0.497 0.904 0.904 1.680 7.310 7.310 0.152 0.152 0.492 0.492 1.359 1.747	dBμV 36.9 51.4 42.2 49.5 37.0 43.6 37.5 44.0 34.8 40.9 35.4 51.0 42.3 50.0 38.0 43.8 37.7	Line Line Line Line Line Line Line Line	Limit 56.0 66.0 46.0 56.0 46.0 56.0 46.0 56.0 56.0 50.0 60.0 55.9 65.9 46.1 56.1 46.0 56.0 46.0	Margin -19.1 -14.6 -3.8 -6.5 -9.0 -12.4 -8.5 -12.0 -15.2 -19.1 -20.5 -14.9 -3.8 -6.1 -8.0 -12.2 -8.3	QP/Ave AVG QP AVG	Comments		

Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFIINOSSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

Run #3: AC Power Port Conducted Emissions, 0.15 - 30MHz, 220V/60Hz




	NTS						EMC Test Data
Client:	Aruba, a He	wlett Packard	d Enterprise		PR Number: PR075848		
	4 DIVIOSES			T-Log Number: TL075848-RA-FCC			
Model:	APIN0555			-	Project Manager: Christine Krebill		
Contact:	Mark Hill						Project Engineer: David Bare
		7 9 815 107					Class: Enter on cover sheet
Standard:	FUU § 15.24	7 & §15.407					Class. Enter on cover sheet
Dup #2: AC	Dowor Dor	Conducted	Emissions	0 15 20ML	J- 220///40L	حا.	
						s vs. average	limit)
Frequency	Level	AC AC		ss B	Detector	Comments	minty
MHz	dΒμV	Line	Limit	Margin	QP/Ave	Comments	
0.498	53.1	Line	46.0	7.1	Peak		
0.500	51.6	Neutral	46.0	5.6	Peak		
0.457	51.0	Line	46.7	4.3	Peak		
0.432	51.4	Neutral	47.2	4.2	Peak		
0.500	49.5	Line	46.0	3.5	Peak		
0.163	58.5	Neutral	55.2	3.3	Peak		
0.152	58.4	Line	55.9	2.5	Peak		
0.160	57.8	Line	55.4	2.4	Peak		
0.866	46.8	Neutral	46.0	0.8	Peak		
7.400	45.9	Line	50.0	-4.1	Peak		
7.245	45.2	Neutral	50.0	-4.8	Peak		
17.510	39.1	Neutral	50.0	-10.9	Peak		
Final qua	ısi-neak and	average rea	ndinas			-	
Frequency	Level	AC		ss B	Detector	Comments	
MHz	dΒμV	Line	Limit	Margin	QP/Ave		
0.498	41.5	Line	46.0	-4.5	AVG	AVG (0.10s)	
0.500	41.5	Line	46.0	-4.5	AVG	AVG (0.10s)	
0.500	41.4	Neutral	46.0	-4.6	AVG	AVG (0.10s)	
0.498	50.1	Line	56.0	-5.9	QP	QP (1.00s)	
0.500	49.8	Neutral	56.0	-6.2	QP	QP (1.00s)	
0.500	49.6	Line	56.0	-6.4	QP	QP (1.00s)	
0.432	40.7	Neutral	47.2	-6.5	AVG	AVG (0.10s)	
0.457	39.7	Line	46.8	-7.1	AVG	AVG (0.10s)	
0.866	37.2	Neutral	46.0	-8.8	AVG	AVG (0.10s)	
0.457	47.7	Line	56.8	-9.1	QP	QP (1.00s)	
0.432	48.1	Neutral	57.2	-9.1	QP	QP (1.00s)	
0.866	44.3	Neutral	56.0	-11.7	QP	QP (1.00s)	
0.152	52.6	Line	65.9	-13.3	QP	QP (1.00s)	
0.160	51.5	Line	65.4	-13.9	QP	QP (1.00s)	
0.163	51.2	Neutral	65.3	-14.1	QP	QP (1.00s)	
7.245	34.0	Neutral	50.0	-16.0	AVG	AVG (0.10s)	
7.245	40.5	Neutral	60.0	-19.5	QP	QP (1.00s)	
0.152	35.0	Line	55.9	-20.9	AVG	AVG (0.10s)	
0.160	30.6	Line	55.4	-24.8	AVG	AVG (0.10s)	
0.163	30.4	Neutral	55.3	-24.9	AVG	AVG (0.10s)	

Client:	Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
Model.	AFIINOSSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Engineer:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	Enter on cover sheet

Run #4: PoE AC Power Port Conducted Emissions, 0.15 - 30MHz, 220V/60Hz

	NTS						EMC Test Data
Client:	Aruba, a He	wlett Packard	d Enterprise	company			PR Number: PR075848
Model	APIN0555						T-Log Number: TL075848-RA-FCC
Model.	AFINUSSS						Project Manager: Christine Krebill
Contact:	Mark Hill						Project Engineer: David Bare
Standard:	FCC §15.24	7 & §15.407					Class: Enter on cover sheet
	ry peak rea Level	Conducted dings captur AC Line	red during p		•	vs. average I	imit)
0.160	dBμV 51.6	Line	55.4	-3.8	Peak		
0.100	42.7	Neutral	46.8	-4.1	Peak		
0.444	42.1	Line	47.0	-4.9	Peak		
0.174	48.5	Neutral	54.8	-6.3	Peak		
0.549	36.3	Line	46.0	-9.7	Peak		
0.583	35.2	Neutral	46.0	-10.8	Peak		
26.611	37.7	Neutral	50.0	-12.3	Peak		
		average rea			<u> </u>	Ia .	
Frequency	Level	AC		ss B	Detector	Comments	
MHz 0.453	dΒμV 34.6	Line Neutral	Limit 46.8	Margin -12.2	QP/Ave AVG	AVG (0.10s)	
0.453	34.6	Line	47.0	-12.2 -12.4	AVG	AVG (0.10s) AVG (0.10s)	
0.453	41.2	Neutral	56.8	-15.6	QP	QP (1.00s)	
0.444	41.4	Line	57.0	-15.6	QP	QP (1.00s)	
26.611	31.0	Neutral	50.0	-19.0	AVG	AVG (0.10s)	
0.160	36.4	Line	55.5	-19.1	AVG	AVG (0.10s)	
0.160	45.3	Line	65.5	-20.2	QP	QP (1.00s)	
0.174	34.0	Neutral	54.8	-20.8	AVG	AVG (0.10s)	
0.500	05.0	KI. ()	40.0	04.0	41/0	AV (O (O (O)	

0.583

0.549

0.174

0.583

0.549

26.611

25.0

33.9

41.4

32.6

20.9

34.9

46.0

56.0

64.8

56.0

46.0

60.0

Neutral

Line

Neutral

Neutral

Line

Neutral

-21.0

-22.1

-23.4

-23.4

-25.1

-25.1

AVG

QΡ

QΡ

QΡ

AVG

QΡ

AVG (0.10s)

QP (1.00s) QP (1.00s)

QP (1.00s)

AVG (0.10s)

QP (1.00s)

End of Report

This page is intentionally blank and marks the last page of this test report.