Applicant:	Motion Computing, Inc. 9433 Bee Caves Road Building 1, Suite 250 Austin, TX 78733
Equipment Under Test: (E.U.T.)	M1400 (T003)
In Accordance With:	FCC Part 15, Subpart C, 15.247 Digital Transmission System Transceiver
Tested By:	Nemko Dallas Inc. 802 N. Kealy
Authorized By:	Jon Tidual Franting Crown Manager
	Tom Tidwell, Frontline Group Manager
Date:	3/3/04

4L0050RUS1

Nemko Test Report:

TEST REPORT NO.: 4L0050RUS1

Table of Contents

Section 1.	Summary of Test Results	3
Section 2.	Equipment Under Test (E.U.T.)	5
Section 3.	Powerline Conducted Emissions	7
Section 4.	Occupied Bandwidth	.10
Section 5.	Maximum Peak Output Power	.28
Section 6.	RF Exposure	.32
Section 7.	Spurious Emissions (radiated)	.33
Section 8.	Peak Power Spectral Density	.41
Section 9.	Test Equipment List	.43
ANNEX A -	TEST DETAILS	.44
ANNEX B -	TEST DIAGRAMS	.58

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Section 1. Summary of Test Results

Manufacturer: Motion Computing, Inc.

Model No.: M1400 (T003)

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Direct Sequence Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-1992. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

\boxtimes	New Submission	\boxtimes	Production Unit
	Class II Permissive Change		Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. NONE See "Summary of Test Data".

NVLAP LAB CODE: 100426-0

Nemko Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Page 3 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Summary Of Test Data

Powerline Conducted Emissions	15.207(a)	Complies
Minimum 6 dB Bandwidth	15.247(a)(2)	Complies
Channel Separation	15.247(a)(1)	Complies
Pseudorandom Hopping Algorithm	15.247(a)(1)	Complies
Time of Occupancy	15.247(a)(1)(ii)	Complies
20 dB Occupied Bandwidth	15.247(a)(1)	Complies
Maximum Peak Power Output	15.247(b)(1)	Complies
Spurious Emissions (Antenna Conducted)	15.247(c)	N/A
Spurious Emissions (Restricted Bands)	15.247(c)	Complies
Peak Power Spectral Density	15.247(d)	Complies

Footnotes:

The antennas are integral to the radio modules.

Page 4 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Section 2. Equipment Under Test (E.U.T.)

General Equipment Information

Frequency Band: 902 – 928 MHz

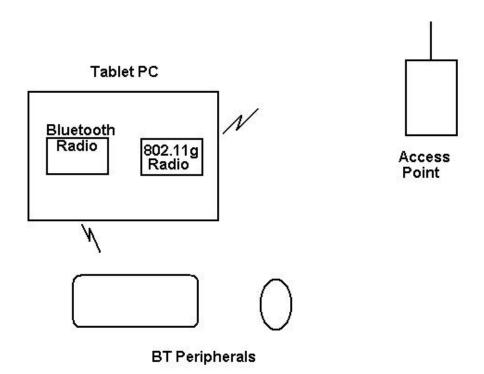
2400 – 2483.5 MHz 5725 – 5850 MHz

Channel Spacing: 500 kHz 802.11g

1 MHz Bluetooth

User Frequency Adjustment: Software controlled

This product contains both an 802.11 module and a Bluetooth module that may operate simultaneously.


Page 5 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Description of EUT

The M1400 (T003) is a portable computer platform based on ultra-portable notebook PC technology utilizing Microsoft's Tablet version of Windows XP. The system utilizes Intel's 855 GME chip set, including the Banias ULV 1.0 G processor and an Intel B, WLAN and a Gemtek A-B-G WLAN. M1400 (T003) will fully meet Microsoft's Windows XP tablet OS requirements including; fast resume, surprise undocking, and no external legacy peripheral ports.

System Diagram

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

TESTED BY: Brian Boyea DATE: 1/25/04

Test Results: Complies.

Measurement Data: See attached plots.

Measurement Uncertainty: +/- 1.7 dB

NOTE: The device was tested with both radio modules transmitting simultaneously.

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Test Data – Powerline Conducted Emissions

Dallas Headquarters: 802 N. Kealy

Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Conducted Emissions Powerline Voltage Measurement

 Complete
 X
 Job # : 4L0050E
 Test # : CEPV-01

 Preliminary
 Page 1
 of 1

Client Name: MOTION COMPUTING INC.

1193

EUT Name : M1400 TABLET PC

EUT Model #: M1400 - TRADE NAME IS T003

EUT Part #: M1400

EUT Serial #: 0

Limiter #:

EUT Config. : Transmit State

Specification: CFR47 Part 15, Subpart B, Class B

Transducer #: 545 Temp. (deg. C): HP Filter #: 704 Humidity (%): Cable 1#: 1038 EUT Voltage: 120 Vac Cable 2 #: 1988 **EUT Frequency:** 60 Hz 1283 Peak Bandwidth: 10kHz Detector 1 #: Detector 2 #: 966 QP Bandwidth 10kHz

QP Bandwidth 10kHz
Avg. Bandwidth 10kHz

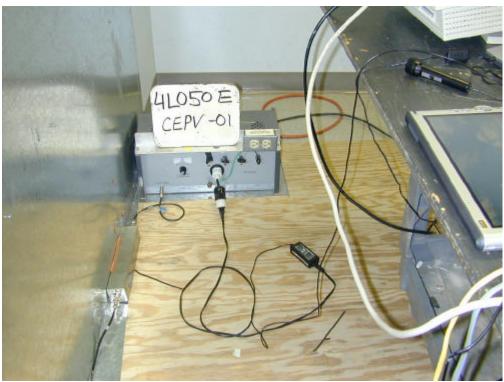
Reference:

Date : 01/25/04
Time : 9:30 A.M.
Staff : Brian Boyea
Location : Lab 5

Photo ID: 4L0050E CEPV-01

Meas.	EUT	Detector	Limit	Meter	Path	Transducer	Corrected	Spe	c.limit	CR/SL	Pass	
Freq.	Test	Туре	Type	Reading	Loss	Factor	Reading	(dE	BuV)	Diff.	Fail	
(MHz)	Point	(P,QP, A)	(QP, A)	(dBuV)	(dB)	(dB)	(dBuV)	Q.P.	Avg.	(dB)	Unc.	Comment
0.15	Neut	Р	Α	43.2	0	0	43.2	66	56	-12.8	Pass	
0.506	Neut	Р	Α	40.8	0	0	40.8	56	46	-5.2	Pass	
1.08	Neut	Р	Α	33.5	0	0	33.5	56	46	-12.5	Pass	
3.51	Neut	Р	Α	30.6	0	0	30.6	56	46	-15.4	Pass	
12.6	Neut	Р	Α	31.1	0	0	31.1	60	50	-18.9	Pass	
19.4	Neut	Р	Α	34.7	0	0	34.7	60	50	-15.3	Pass	
24.6	Neut	Р	Α	35.9	0	0	35.9	60	50	-14.1	Pass	
0.15	Line	Р	Α	43.5	0	0	43.5	66	56	-12.5	Pass	
0.431	Line	Р	Α	37.2	0	0	37.2	57.23	47.234	-10.0	Pass	
0.506	Line	Р	Α	35.8	0	0	35.8	56	46	-10.2	Pass	
1.86	Line	Р	Α	30.4	0	0	30.4	56	46	-15.6	Pass	
3.01	Line	Р	Α	31.5	0	0	31.5	56	46	-14.5	Pass	
12.69	Line	Р	Α	29.5	0	0	29.5	60	50	-20.5	Pass	
19.5	Line	Р	Α	32.6	0	0	32.6	60	50	-17.4	Pass	
22.66	Line	Р	Α	35.5	0	0	35.5	60	50	-14.5	Pass	

..\EMCShare\AUTOMATE\DATASHTS\CEP_Voltage Rev C.xl: Document Control #EMC DS EM COND VOLT


EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Photos – Powerline Conducted Emissions

Front

Side

Nemko Dallas FCC PART 15, SUBPART C

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Section 4. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

TESTED BY: David Light DATE: 1/29/04

Test Results: Complies.

802.11g

Measurement Data: See 6 dB BW plot

Measured 6 dB bandwidth: 16 MHz Channel Separation: 500 kHz

802.11b

Measurement Data: See 6 dB BW plot

Measured 6 dB bandwidth: 10 MHz Channel Separation: 500 kHz

Bluetooth

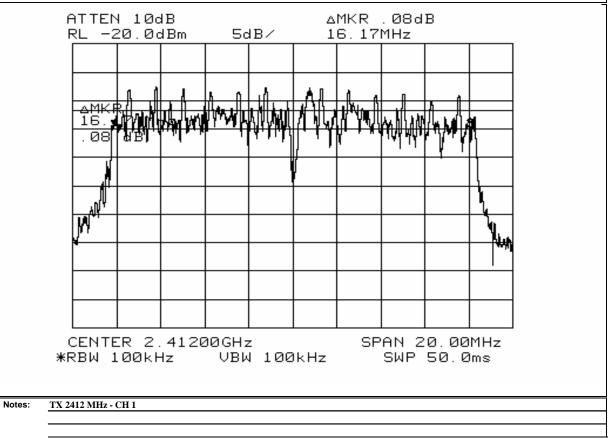
Measurement Data: See 20 dB BW plot

Measured 20 dB bandwidth: 1 MHz Channel Separation: 1 MHz EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

802.11g

Page 11 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1



Dallas Headquarters:

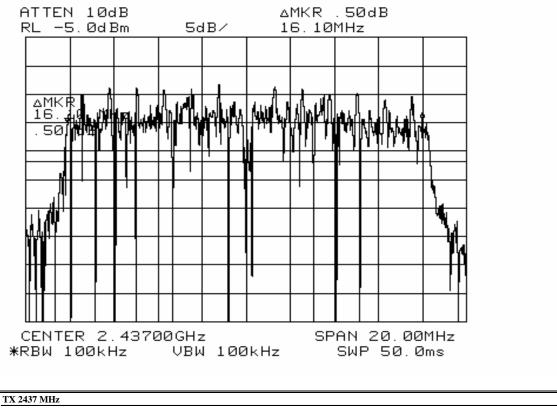
802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Nemko Dallas, Inc.

Data Plot		<u>Occu</u>	pied B	<u>andwidth</u>		
Page 1 of	f <u>3</u>				Complete X	
Job No.:	4L0050	Date:1	/28/2004		Preliminary:	<u></u>
Specification:	15.247 (a)(1)	Temperature(°C):	22			
Tested By:	David Light	Relative Humidity(%)	40			
E.U.T.:	TABLET PC					
Configuration:	TX - 802.11g					
Sample Number:	1					
Location:	Lab 2		RBW:	Refer to plots	Measurement	
Detector Type:	Peak		VBW:	Refer to plots	Distance: NA	m
Test Equipme	ent Used					
Antenna:	802	Directiona	d Coupler:			
Pre-Amp:			Cable #1:	1045		
Filter:			Cable #2:			
Receiver:	1464		Cable #3:			
Attenuator #1	-		Cable #4:			
Attenuator #2:			Mixer:			
Additional equip	ment used:					
Measurement Un	certainty: +	-/-1.7 dB				
1						

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

802.11g



Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

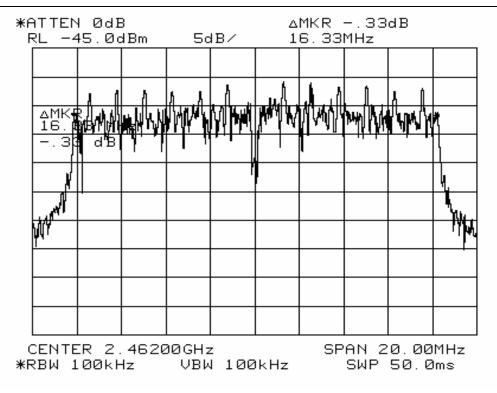
Nemko Dallas, Inc.

50 Date: 7 Temperature(°C):	1/28/2004
7	
	22
Temperature(°C):	22
remperature(c).	
d Light Relative Humidity(%)	40
LET PC	<u> </u>
802.11g	

Notes: TX 2437 MHz

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

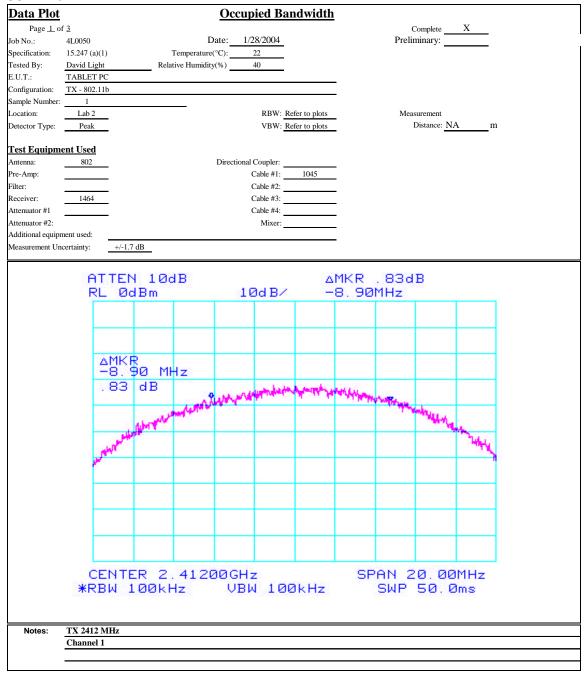
802.11g



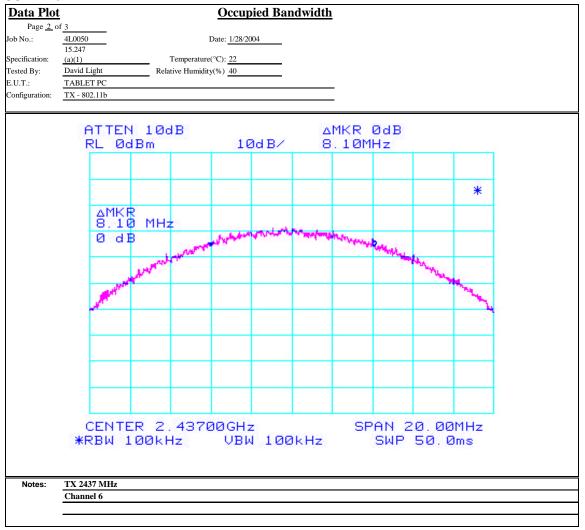
Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

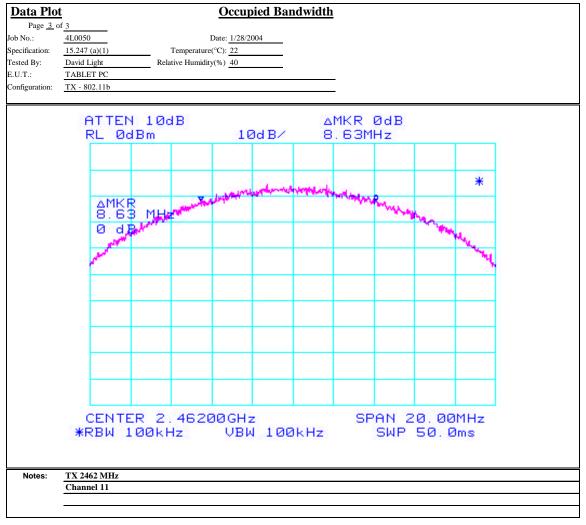
Nemko Dallas, Inc.


Data Plo		Occupied Bandwidth
Page 3	of <u>3</u>	
Job No.:	4L0050	Date: 1/28/2004
Specification:	15.247 (a)(1)	Temperature(°C): 22
Tested By:	David Light	Relative Humidity(%) 40
E.U.T.:	TABLET PC	
Configuration:	TX - 802.11g	

Notes: TX 2462 MHz


EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

802.11b


EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

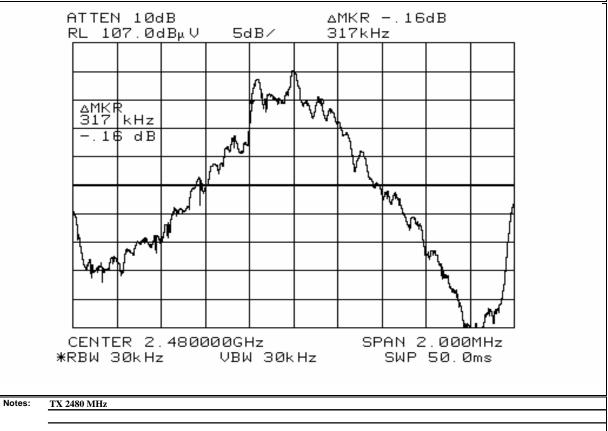
802.11b

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

802.11b

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Bluetooth



Nemko Dallas, Inc.

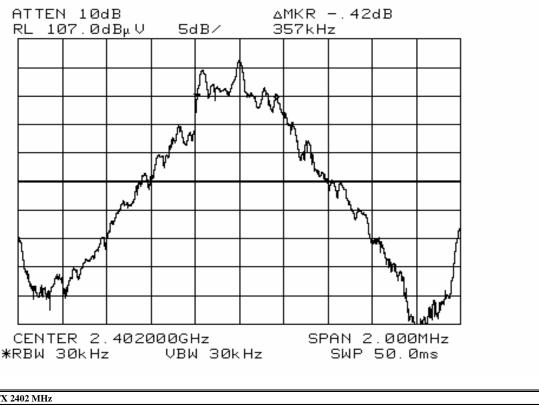
Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

<u>Data Plot</u>		<u>Occupied</u>	Bandwidth		
Page <u>1</u> o	f <u>3</u>	_		Complete X	
Job No.:	4L0050	Date:1/28/20	04	Preliminary:	
Specification:	15.247 (a)(1)	Temperature(°C): 22	_		
Tested By:	David Light	Relative Humidity(%) 40			
E.U.T.:	TABLET PC				
Configuration:	TX - Bluetooth				
Sample Number:	1				
Location:	Lab 2	RB	W: Refer to plots	Measurement	
Detector Type:	Peak	VB	W: Refer to plots	Distance: NA m	
Test Equipm	ent Used				
Antenna:	802	Directional Couple	er:		
Pre-Amp:		Cable #	#1: <u>1045</u>		
Filter:		Cable #	ł2:		
Receiver:	1464	Cable #	ł3:		
Attenuator #1		Cable #	ł4:		
Attenuator #2:		Mix	er:		
Additional equips	ment used:				
Measurement Un	certainty: +/-1.7	dB			
	-				

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Bluetooth



Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

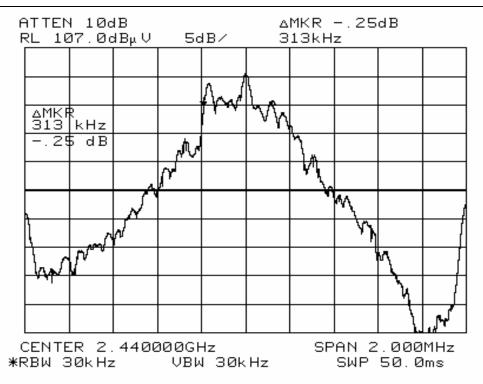
Nemko Dallas, Inc.

Data Plot Occupied Bandwidth Page <u>2</u> of 3 Job No.: 4L0050 Date: 1/28/2004 15.247 Specification: Temperature(°C): 22 Tested By: David Light Relative Humidity(%) 40 TABLET PC E.U.T.: Configuration: TX - Bluetooth

Notes: TX 2402 MHz

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Bluetooth



Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

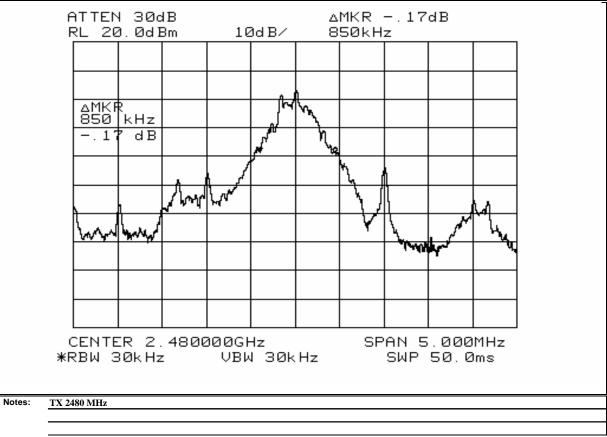
Nemko Dallas, Inc.

Data Plo	_	<u>O</u>	occupied Bandwidth
Job No.:	4L0050		1/28/2004
Specification:	15.247 (a)(1)	Temperature(°C):	22
Tested By:	David Light	Relative Humidity(%)	40
E.U.T.:	TABLET PC		
Configuration:	TX - Bluetooth		

Notes: TX 2440 MHz

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Bluetooth



Nemko Dallas, Inc.

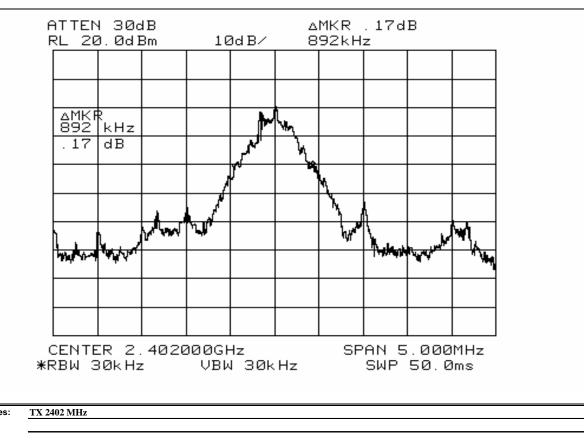
Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Data Plot		Occ	upied Ba	<u>ndwidth</u>			
Page 1 of	<u>3</u>				Complete	X	
Job No.:	4L0050	Date:	1/28/2004		Preliminary:		
Specification:	15.247 (a)(1)	Temperature(°C):	22				
Tested By:	David Light	Relative Humidity(%)	40				
E.U.T.:	TABLET PC						
Configuration:	TX - Bluetooth						
Sample Number:	1						
Location:	Lab 2		RBW: R	efer to plots	Measurement		
Detector Type:	Peak		VBW: R	efer to plots	Distance: N.	A n	1
Test Equipme	ent Used						
Antenna:	802	Direction	onal Coupler:				
Pre-Amp:			Cable #1:	1045			
Filter:			Cable #2:				
Receiver:	1464		Cable #3:				
Attenuator #1			Cable #4:				
Attenuator #2:			Mixer:				
Additional equipn	nent used:						
Measurement Und	certainty: +/-1	1.7 dB					

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Bluetooth



Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

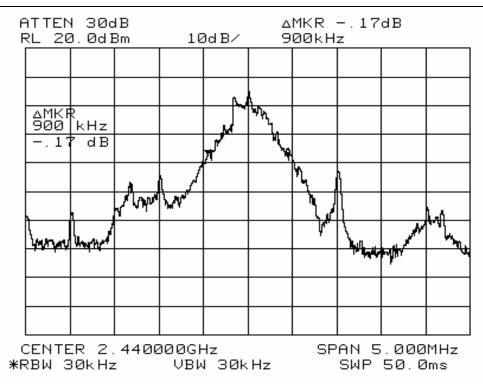
Nemko Dallas, Inc.

Data Plot Occupied Bandwidth Page <u>2</u> of 3 Date: 1/28/2004 Job No.: 4L0050 15.247 Specification: Temperature(°C): 22 (a)(1) Tested By: David Light Relative Humidity(%) 40 E.U.T.: TABLET PC Configuration: TX - Bluetooth

Notes:

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Bluetooth



Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

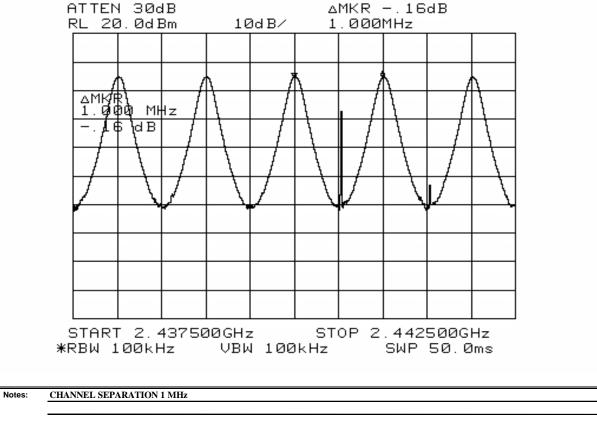
Nemko Dallas, Inc.

Data Plo	_	<u>O</u>	ccupied Bandwidth
Job No.:	4L0050	Date:	1/28/2004
Specification:	15.247 (a)(1)	Temperature(°C):	22
Tested By:	David Light	Relative Humidity(%)	40
E.U.T.:	TABLET PC		<u> </u>
Configuration:	TX - Bluetooth		

Notes: TX 2440 MHz

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Bluetooth - Channel Separation



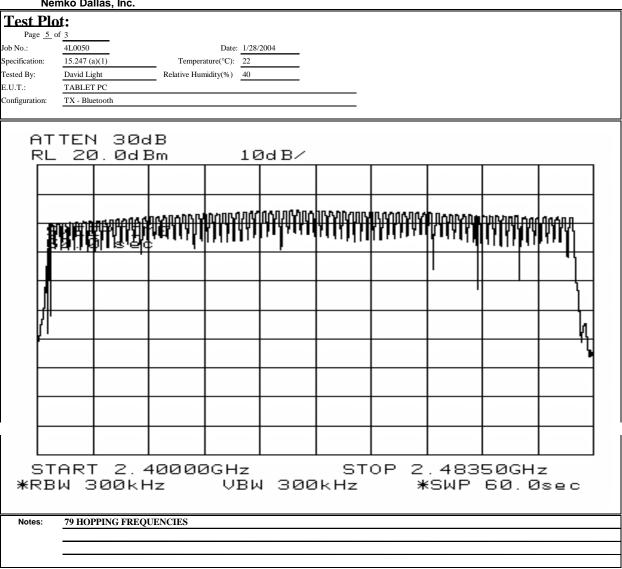
Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Nemko Dallas, Inc.

Test Plot: Page $\underline{4}$ of 3 Date: 1/28/2004 Job No.: 4L0050 Specification: 15.247 (a)(1) Temperature(°C): 22 Tested By: David Light Relative Humidity(%) 40 E.U.T.: TABLET PC TX - Bluetooth Configuration:

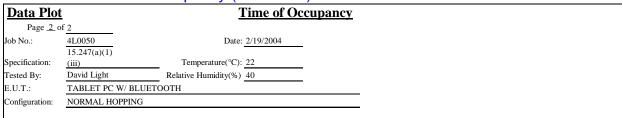
EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

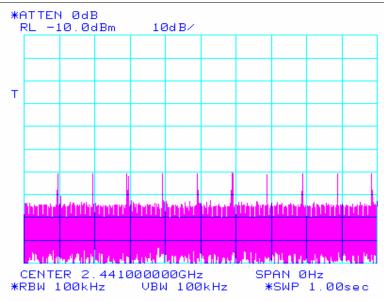

Bluetooth - Number of Hopping Channels

Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Nemko Dallas, Inc.




EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

<u>Data Plot</u>						<u>Ti</u>	me of	Occur	<u>oancy</u>					
Page <u>1</u> of lob No.: Specification: Tested By: E.U.T.:	b No.: 4L0050 secification: 15.247(a)(1)(iii) seted By: David Light U.T.: TABLET PC W. onfiguration: NORMAL HOPP umple Number: 1 cation: Lab 2		Date:			2/19/2004 22 40				Complete X Preliminary:				
Configuration: Sample Number: Location: Detector Type:							RBW: Refer to plots VBW: Refer to plots		- - -		Measurement Distance: NA m			
rest Equipment of the Amp: iter-Amp: iteriter: deceiver: attenuator #1 attenuator #2: additional equipment undeasurement Unification in the Amplitude of the Am	146	54	+/-1.7	dB_		Direct	ional Coup Cable Cable Cable Cable M	e #1: e #2: e #3:		- - - -				
-	Δ <u>Λ</u>	-10	ØdI Ø.Øα 7 μ: 84 α	dBm	16	∄d B∕		MKR 36.7		84dB		EACH PULSE = 436.7 uS		
	∩ n	"Ιγγγ"	myfin		who have	k-gr¶ų-√ķ-a	Year 1/4g/h	Majhan	with strike	_ብ ላ _ት አላላ	wileya/a/			
Notes:	CEN ∗RBµ				0000(VB)	ØØGHz N 1ØØ			AN Ø		ðms			

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Bluetooth – Time of Occupancy (continued)

10 PULSES IN 1 SEC.

Notes: 79 Channels multiplied by 0.4 = 31.6 Seconds (Limit = <0.4 seconds within 31.6 seconds)

436.7 uS per pulse multipled by 10 pulses per second = 4.367 mS within 1 second = 138 mS in 31.6 S

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Section 5. Maximum Peak Output Power

NAME OF TEST: Maximum Peak Output power PARA. NO.: 15.247(b)(1)

TESTED BY: David Light DATE: 1/29/04

Test Results: Complies.

Measurement Data: Refer to attached data

Note – This test was done as a radiated measurement since the antennas for both devices are integral and there is no possibility of direct connection to the test equipment.

The measurement was repeated at +/- 15% of nominal supply voltage with no variation noted in rf power output.

Maximum Peak Power: 64.57 mW 802.11g

87.1 mW 802.11b 1.86 mW Bluetooth

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

			<u>Peak</u>	<u>Power</u>				
f <u>2</u>						Complete	X	
4L0050		Date:	1/28/04					
15.247	-	Temperature(°C):	22					
David Light	: Rela	ative Humidity(%)	40					
TABLET PO	3							
TX - LYING	FLAT (WORST CA	SE)						
1								
AC 3			RBW:	10 MHz		Measurement		
Peak			VBW:	10 MHz		Distance:	3	m
nent Used								
1304		Dir	ectional Coupler:					
1016			Cable #1:	1484				
			Cable #2:	1485	_			
1464			Cable #3:		-			
			Cable #4:		-			
			Mixer:		-			
oment used:								
Incertainty:	+/-0.7 dB							
Meter	Correction	Pre-Amp	Substitution		EIRP	EIRP	Polarity	Comments
Reading	Factor	Gain	Antenna Gain					
(dBm)	(dB)	(dB)	(dBi)		(dBm)	(mW)		
								802.11 w/BT Tx ON
2.0	34.2	33	8.9		12.1	16.09	-	
4.3	37.0	33	8.9		17.2	52.48	Н	
1		1			1			
	15.247 David Light TABLET PO TX - LYING 1 AC 3 Peak ment Used 1304 1016 1464 pment used: Uncertainty: Meter Reading (dBm) 2.0	4L0050 15.247 David Light Relation Rel	## AL0050 Date: 15.247 Temperature(°C): David Light Relative Humidity(%) TABLET PC TX - LYING FLAT (WORST CASE) 1	### Standard	AL0050 Date: 1/28/04 15.247 Temperature(°C): 22 David Light Relative Humidity(%) 40 TABLET PC TX - LYING FLAT (WORST CASE) AC 3 RBW: 10 MHz AC 3 Peak VBW: 10 MHz Ment Used 1304 Directional Coupler: Cable #1: 1484 1016 Cable #2: 1485 1464 Cable #3: Cable #4: Mixer: Directional Coupler: Mixer: Directional Coupler: Cable #4: Mixer: Directional Coupler: Mixer: Directional Coupler: Cable #4: Mixer: Directional Cable #4: Mixer: Directiona	State	Complete	Complete

18.1

11.6

16.4

64.57

14.34

43.65

Н

٧

Н

Test Data - Peak Power Output - 802.11g

37.0

34.2

37.0

33

33

33

Notes: The device was tested on three axis'
The device was tested at +/- 15% supply voltage with no effect on power output

8.9

8.9

8.9

5.2

1.5

3.5

2437

2462

2462

Page 29 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Test Data - Peak Power - 802.11b

	<u> </u>			Peak	Power					
Page <u>1</u> o	f <u>2</u>						Complete	X		
Job No.:	4L0050		Date	1/28/04			Preliminary			
Specification:	15.247		Temperature(°C):	22						
Tested By:	David Light	<u> </u>	Relative Humidity(%)	40						
E.U.T.:	TABLET P	2				_				
Configuration:	TX - LYING	FLAT (WORS)	T CASE) 802.11b							
Sample No:	1					•				
Location:	AC 3			NA	_	Measurement				
Detector Type:	Peak			VBW:	NA	Distance: 3 m				
Test Equipr	nent Usec	ļ								
Antenna:	1304		Di	rectional Coupler:		-				
Pre-Amp:	1016			Cable #1:	1484					
Filter:				Cable #2:	1485	-				
Receiver:	1464			Cable #3:						
Attenuator #1				Cable #4:		-				
Attenuator #2:				Mixer:		•				
Additional equi	oment used:	1029-1030	Measurement was ma	ade with a peak po	wer meter					
Measurement l	Incertainty:	+/-0.7 dB								
F	Matan	Camaatian	Day Amon	Cubatitutian		FIRE	LEIDD	Delevitor	Comments	
Frequency	Meter	Correction	Pre-Amp	Substitution		EIRP	EIRP	Polarity	Comments	
			Gain	Antenna Gain						
	Reading	Factor	Gaill	Antenna Gam						

Frequency	Meter	Correction	Pre-Amp	Substitution	ubstitution		EIRP	Polarity	Comments
	Reading	Factor	Gain	Antenna Gain					
(MHz)	(dBm)	(dB)	(dB)	(dBi)		(dBm)	(mW)		
									802.11b w/BT Tx On
2412	5.0	34.2	33	8.9		15.1	32.11	V	
2412	6.5	37.0	33	8.9		19.4	87.10	Н	
2437	4.0	34.2	33	8.9		14.1	25.51	V	
2437	6.0	37.0	33	8.9		18.9	77.62	Η	
2462	4.5	34.2	33	8.9		14.6	28.62	V	
2462	5.9	37.0	33	8.9		18.8	75.86	Ι	

Notes: The device was tested on three axis'
The device was tested at +/- 15% supply voltage with no effect on power output

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Test Data - Peak Power - Bluetooth

Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

		EIRP Substitu	ıtion M	ethod
Page <u>1</u> o	f <u>2</u>			Complete X
Job No.:	4L0050	Date: 1/28/04		Preliminary
Specification:	15.247	Temperature(°C): 22		
Tested By:	David Light	Relative Humidity(%) 40		
E.U.T.:	TABLET PC			<u>_</u>
Configuration:	TX - LYING I	FLAT (WORST CASE)		
Sample No:	1			
Location:	AC 3	RBW:	1 MHz	Measurement
Detector Type:	Peak	VBW:_	1 MHz	Distance: 3 m
Test Equipr	ment Used			
Antenna:	1304	Directional Coupler: _		_
Pre-Amp:	1016	Cable #1:	1484	
Filter:		Cable #2:	1485	
Receiver:	1464	Cable #3:		
Attenuator #1		Cable #4: _		_
Attenuator #2:		Mixer:		<u>_</u>
Additional equip	pment used:			_
Measurement U	Jncertainty: _	+/-1.7 dB		

Frequency	Meter Reading	Correction Factor	Pre-Amp Gain	Substitution Antenna Gain	EIRP	EIRP	Polarity	Comments
(MHz)	(dBm)	(dB)	(dB)	(dBi)	(dBm)	(mW)		
								Bluetooth
2402	-15.0	34.2	33	8.9	-4.9	0.32	V	
2402	-14.5	37.0	33	8.9	-1.6	0.69	Н	
2441	-13.2	34.2	33	8.9	-3.1	0.49	V	
2441	-10.7	37.0	33	8.9	2.2	1.66	Н	
2480	-13.5	34.2	33	8.9	-3.4	0.45	V	
2480	-10.2	37.0	33	8.9	2.7	1.86	Н	
•								

Notes: The device was tested on three axis'
The device was tested at +/- 15% supply voltage with no effect on power output

Page 31 of 56

Nemko Dallas FCC PART 15, SUBPART C

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Section 6. RF Exposure

NAME OF TEST: RF Exposure PARA. NO.: 15.247(b)(4)

TESTED BY: DATE:

Test Results: Please refer to SAR report for body SAR results.

Measurement Data:

Page 32 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Section 7. Spurious Emissions (radiated)

NAME OF TEST: Spurious Emissions (Radiated) PARA. NO.: 15.247 (c)

TESTED BY: David Light DATE: 1/29/04

Test Results: Complies.

Measurement Data: See attached table.

Testing in the restricted bands for using the 802.11x devices found that the g modulation was worst case. Only noise floor measurements were taken and the g modulation was worse at the upper band edge due to channel bandwidth.

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Radiated Emissions – 802.11g

Radiated Emissions

Page $\underline{1}$ of $\underline{2}$

 Job No.:
 4L0050
 Date: 1/29/2004

 Specification:
 15.247/15.205
 Temperature(°C): 20

 Tested By:
 David Light
 Relative Humidity(%)
 50

E.U.T.: TABLET PC

Configuration: TX - UPRIGHT ON LONGER EDGE (WORST CASE) 802.11 w/BT Tx ON

Sample Number: 1

 Location:
 AC 3
 RBW:
 1 MHz

 Detector Type:
 Peak
 VBW:
 1 MHz

Test Equipment Used

1304 Directional Coupler: Antenna: #N/A 1016 1484 Pre-Amp: Cable #1: Filter: 1482 Cable #2: 1485 Receiver: 1464 Cable #3: #N/A Attenuator #1 #N/A #N/A Cable #4: Attenuator #2: #N/A Mixer: #N/A

Measurement Uncertainty: +/- 3.6 dB

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Detector / Polarity
4.824	37.0	33.9	4.1	33.1	41.9	74	54	Peak - NF / Vertical
7.236	38.0	35.8	5.2	32.8	46.2	74	54	Peak - NF / Vertical
9.648	40.0	37.3	5.2	34.5	48.0	74	54	Peak - NF / Vertical
12.060	41.0	40.0	6.8	34.7	53.1	74	54	Peak - NF / Vertical
14.472	35.4	41.8	7.2	33.5	50.9	74	54	Peak - NF / Vertical
4.824	37.0	33.9	4.1	33.1	41.9	74	54	Peak - NF / Horizontal
7.236	38.0	35.8	5.2	32.8	46.2	74	54	Peak - NF / Horizontal
9.648	40.0	37.3	5.2	34.5	48.0	74	54	Peak - NF / Horizontal
12.060	41.0	40.0	6.8	34.7	53.1	74	54	Peak - NF / Horizontal
14.472	35.4	41.8	7.2	33.5	50.9	74	54	Peak - NF / Horizontal
4.874	39.2	33.9	4.1	33.1	44.1	74	54	Peak - NF / Vertical
7.311	38.3	35.8	5.2	32.8	46.5	74	54	Peak - NF / Vertical
9.748	43.7	37.3	5.2	34.5	51.7	74	54	Peak - NF / Vertical
12.185	38.7	40.0	6.8	34.7	50.8	74	54	Peak - NF / Vertical
14.622	38.2	41.8	7.2	33.5	53.7	74	54	Peak - NF / Vertical
4.874	39.2	33.9	4.1	33.1	44.1	74	54	Peak - NF / Horizontal
7.311	38.3	35.8	5.2	32.8	46.5	74	54	Peak - NF / Horizontal
9.748	43.7	37.3	5.2	34.5	51.7	74	54	Peak - NF / Horizontal
12.185	38.7	40.0	6.8	34.7	50.8	74	54	Peak - NF / Horizontal
14.622	38.2	41.8	7.2	33.5	53.7	74	54	Peak - NF / Horizontal

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Radiated Emissions – 802.11g (cont.)

Radiated Spurious Emissions

Page $\underline{2}$ of $\underline{2}$ Continuation Page

Date: 1/30/2004

Specification: 15.247/15.205 Temperature(°C): 22
Tested By: #N/A Relative Humidity(%) 40

E.U.T.: TABLET PC

Job No.:

Configuration: TX - UPRIGHT ON LONGER EDGE (WORST CASE) 802.11 w/BT Tx ON

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Detector / Polarity
2.4835	34.8	28.2	3.0	0.0	66.0	74	54	Peak / Horizontal
2.4835	17.0	28.2	3.0	0.0	48.2	74	54	Avg / Horizontal
4.924	40.0	33.9	4.1	33.1	44.9	74	54	Peak - NF / Horizontal
7.386	39.5	35.8	5.2	32.8	47.7	74	54	Peak - NF / Horizontal
9.848	39.8	37.3	5.2	34.5	47.8	74	54	Peak - NF / Horizontal
12.310	41	40.0	6.8	34.7	53.1	74	54	Peak - NF / Horizontal
14.772	37.6	41.8	7.2	33.5	53.1	74	54	Peak - NF / Horizontal
2.4835	33.0	28.2	3.0	0.0	64.2	74	54	Peak / Vertical
2.4835	17.4	28.2	3.0	0.0	48.6	74	54	Avg / Horizontal
4.924	40.0	33.9	4.1	33.1	44.9	74	54	Peak - NF / Vertical
7.386	39.5	35.8	5.2	32.8	47.7	74	54	Peak - NF / Vertical
9.848	39.8	37.3	5.2	34.5	47.8	74	54	Peak - NF / Vertical
12.31	41	40.0	6.8	34.7	53.1	74	54	Peak - NF / Vertical
14.772	37.6	41.8	7.2	33.5	53.1	74	54	Peak - NF / Vertical
Notes:	The spectru	ım was searc	ched to 25	GHz				
	The devive	was tested of	on three a	xis'				
	The device	was tested a	at 2.412, 2	2.437 and 2.	462 MHz			

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Radiated Emissions - Bluetooth

Radiated Emissions

Page $\underline{1}$ of $\underline{2}$

 Job No.:
 4L0050
 Date: 1/28/2004

 Specification:
 15.247/15.205
 Temperature(°C): 22

 Tested By:
 David Light
 Relative Humidity(%)
 40

E.U.T.: TABLET PC

Configuration: TX - LYING FLAT (WORST CASE) Bluetooth

Sample Number: 1

 Location:
 AC 3
 RBW:
 1 MHz

 Detector Type:
 Peak
 VBW:
 1 MHz

Test Equipment Used

Directional Coupler: 1304 Antenna: #N/A 1016 1484 Pre-Amp: Cable #1: Filter: 1482 Cable #2: 1485 Receiver: 1464 Cable #3: #N/A Attenuator #1 #N/A #N/A Cable #4: Attenuator #2: #N/A Mixer: #N/A

Measurement Uncertainty: +/- 3.6 dB

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Detector / Polarity
4.804	38.1	33.9	4.1	33.1	43.0	74	54	Peak - NF / Vertical
7.206	38.7	35.8	5.2	32.8	46.9	74	54	Peak - NF / Vertical
9.608	40.7	37.3	5.2	34.5	48.7	74	54	Peak - NF / Vertical
12.010	41.5	40.0	6.8	34.7	53.6	74	54	Peak - NF / Vertical
14.412	38.1	41.8	7.2	33.5	53.6	74	54	Peak - NF / Vertical
4.804	38.1	33.9	4.1	33.1	43.0	74	54	Peak - NF / Horizontal
7.206	38.7	35.8	5.2	32.8	46.9	74	54	Peak - NF / Horizontal
9.608	40.7	37.3	5.2	34.5	48.7	74	54	Peak - NF / Horizontal
12.010	41.5	40.0	6.8	34.7	53.6	74	54	Peak - NF / Horizontal
14.412	38.1	41.8	7.2	33.5	53.6	74	54	Peak - NF / Horizontal
4.880	38.3	33.9	4.1	33.1	43.2	74	54	Peak - NF / Vertical
7.320	39.1	35.8	5.2	32.8	47.3	74	54	Peak - NF / Vertical
9.760	40.0	37.3	5.2	34.5	48.0	74	54	Peak - NF / Vertical
12.200	42.3	40.0	6.8	34.7	54.4	74	54	Peak - NF / Vertical
12.200	31.0	40.0	6.8	34.7	43.1	74	54	Avg - NF / Vertical
14.640	37.8	41.8	7.2	33.5	53.3	74	54	Peak - NF / Vertical
4.880	38.3	33.9	4.1	33.1	43.2	74	54	Peak - NF / Horizontal
7.320	39.1	35.8	5.2	32.8	47.3	74	54	Peak - NF / Horizontal
9.760	40.0	37.3	5.2	34.5	48.0	74	54	Peak - NF / Horizontal
12.200	42.3	40.0	6.8	34.7	54.4	74	54	Peak - NF / Horizontal
12.200	31.0	40.0	6.8	34.7	43.1	74	54	Avg - NF / Horizontal
14.640	37.8	41.8	7.2	33.5	53.3	74	54	Peak - NF / Horizontal

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Radiated Emissions - Bluetooth (cont.)

Radiated Spurious Emissions

Page $\underline{2}$ of $\underline{2}$ Continuation Page

Job No.: Date: 1/30/2004

Specification: 15.247/15.205 Temperature(°C): 22
Tested By: #N/A Relative Humidity(%) 40

E.U.T.: TABLET PC

Configuration: TX - LYING FLAT (WORST CASE) Bluetooth

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Detector / Polarity
2.4835	52.8	28.2	3.0	33.0	51.0	74	54	Peak / Horizontal
4.960	37.7	33.9	4.1	33.1	42.6	74	54	Peak - NF / Horizontal
7.440	41.1	35.8	5.2	32.8	49.3	74	54	Peak - NF / Horizontal
9.920	41.5	37.3	5.2	34.5	49.5	74	54	Peak - NF / Horizontal
12.400	39.3	40.0	6.8	34.7	51.4	74	54	Peak - NF / Horizontal
14.880	37.1	41.8	7.2	33.5	52.6	74	54	Peak - NF / Horizontal
2.4835	51.3	28.2	3.0	33.0	49.5	74	54	Peak / Vertical
4.960	37.7	33.9	4.1	33.1	42.6	74	54	Peak - NF / Vertical
7.44	41.1	35.8	5.2	32.8	49.3	74	54	Peak - NF / Vertical
9.920	41.5	37.3	5.2	34.5	49.5	74	54	Peak - NF / Vertical
12.4	39.3	40.0	6.8	34.7	51.4	74	54	Peak - NF / Vertical
14.880	37.1	41.8	7.2	33.5	52.6	74	54	Peak - NF / Vertical
Notes:	The spectrum was searched to 25 GHz							
	The devive was tested on three axis'							
	The device	The device was tested at 2.402, 2.440 and 2.480 MHz						

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Radiated Photographs

Radiated Photographs

Radiated Photographs

Nemko Dallas FCC PART 15, SUBPART C

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Section 8. Peak Power Spectral Density

NAME OF TEST: Peak Power Spectral Density PARA. NO.: 15.247(d)

TESTED BY: David Light DATE: 1/29/04

Test Results: Complies.

Measurement Data: See attached data. This measurement was made radiated.

Page 41 of 56

Peak Power Spectral Density

		Spectral Dens	sity
Page <u>1</u> o	f <u>2</u>		Complete X
Job No.:	4L0050	Date: 1/28/04	Preliminary
Specification:	<u>15.247</u>	Temperature(°C): 22	
Tested By:	David Light	Relative Humidity(%) 40	
E.U.T.:	TABLET PC		RBW 3 kHz
Configuration:	: TX - LYING FLAT (WORST CASE) 802.11		VBW 3 kHz
Sample No:	1		
Sample No:	1	<u>(WORST CASE)</u> 802.11	VBW 3 KHZ

Frequency	Meter Reading	Correction Factor		Pre-Amp Gain	Substitution Antenna Gain	EIRP	EIRP	Polarity	Comments
(MHz)	(dBm)	(dB)		(dB)	(dBi)	(dBm)	(mW)		
									SPECTRAL DENSITY
2412	-31.0	34.2		33	8.9	-20.9	0.01	V	
2412	-26.0	37.0		33	8.9	-13.1	0.048978	Н	
2437	-27.0	34.2		33	8.9	-16.9	0.020261	V	
2437	-23.0	37.0		33	8.9	-10.1	0.097724	Н	
2462	-19.0	34.2		33	8.9	-8.9	0.13	V	
2462	-25.0	37.0		33	8.9	-12.1	0.061660	Н	
Notes:	The device	ce was tested	on three	axis'					

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

Section 9. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	02/11/03	02/11/05
1484	Cable 2.0-18.0 Ghz	Storm PR90-010-072	N/A	07/24/03	07/23/04
1485	Cable 2.0-18.0 Ghz	Storm PR90-010-216	N/A	07/24/03	07/23/04
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	10/27/03	10/26/04
1304	HORN ANTENNA	ELECTRO METRICS RGA-60	6151	09/22/03	09/22/05
1482	Band Pass Filter	K & L 11SH10-4000/T12000-0/0	2	Cal B4 Use	N/A
545	LISN	Schwarz Beck 8120	8120350	08/01/03	07/31/04
704	FILTER, HIGH PASS, 5 KHz	SOLAR 7930-5.0	933126	02/05/04	02/04/05
1038	CABLE, .5m	KTL RG223	N/A	06/18/03	06/17/04
1988	CABLE, 6.8m	KTL RG223	N/A	07/02/03	07/01/04
1283	Spectrum analyzer display	Hewlett Packard 85662A	1811A00223	12/19/03	12/18/04
966	Receiver	Rohde & Schwartz ESH2	880370/029	09/17/03	09/16/04
1193	LIMITER	FISCHER FCC-450B-1.25N	956	02/24/03	02/24/04
760	Antenna biconical	Electro Metrics MFC-25	477	06/05/03	06/04/04
1034	ANTENNA,LP	A.H. SYSTEMS SAS-200/510	121	06/09/03	06/08/04
1522	Cable Assy, LAB 5 - D OATS	KTL Site D OATS	N/A	03/28/03	03/27/04
1289	AMPLIFIER, RF	ICC LN1-5	421	09/10/03	09/09/04
1283	Spectrum analyzer display	Hewlett Packard 85662A	1811A00223	12/19/03	12/18/04
991	Horn antenna	EMCO 3160-10	9704-1049	CNR	N/A
983	PRE-AMP, 18-40 GHz	KTL BB1	1	09/18/03	09/17/04

Page 43 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

ANNEX A - TEST DETAILS

Page 44 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

Minimum Standard: §15.207 Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 mH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Conducted	Limit (dB	mV)
Emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

- (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:
- (1) For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- (2) For all other carrier current systems: 1000 mV within the frequency band 535-1705 kHz, as measured using a 50 mH/50 ohms LISN.
- (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as provided in §15.205 and §§15.209, 15.221, 15.223, 15.225 or 15.227, as appropriate.
- (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Page 46 of 56

Nemko Dallas FCC PART 15, SUBPART C

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

Minimum Standard: The minimum 6 dB bandwidth shall be at least 500 kHz

Page 47 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

NAME OF TEST: Maximum Peak Output Power PARA. NO.: 15.247(b)(1)

Minimum Standard: Th

The maximum peak output power shall not exceed 1 watt.

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Substitution Antenna Method for Integral Antennas:

The peak field strength of the carrier is measured in a worst-case configuration with a RBW > 5 times the occupied bandwidth of the transmitted waveform. For cases where the RBW of the test instrument is not sufficient, the power is measured using a peak power meter instead of the spectrum analyzer.

The RBW of the spectrum analyzer shall be set to a value greater than the measured 6 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

Minimum Standard: Frequency hopping systems shall have hopping

channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping

channel, whichever is greater.

NAME OF TEST: Pseudorandom Hopping Algorithm PARA. NO.: 15.247(a)(1)

Minimum Standard: The system shall hop to channel freq uencies that are selected from a

pseudo-randomly ordered list of hopping frequencies. Each frequency must be used equally on average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their transmitters and shall shift frequencies in synchronization with the transmitted signals.

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)(ii)

Minimum Standard:

Frequency	20 dB	No. of	Average Time of
Band	Bandwidth	Hopping	Occupancy
(MHz)		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20
			sec.
902 – 928	=>250	25	=<0.4 sec. in 10
	kHz		sec.
2400 –		75	=<0.4 sec. in 30
2483.5			sec.
5725 – 5850		75	=<0.4 sec. in 30
			sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz

LOG dB/div.: 10 dB

Sweep: Sufficient to see one hop time sequence.

Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table (10, 20, or 30 seconds).

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

Page 52 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

Minimum Standard:

Frequency	Maximum
Band	20 dB Bandwidth
(MHz)	
902 - 928	500 kHz
2400 – 2483.5	1 MHz
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div.

VBW: >RBW

Span: Sufficient to display 20 dB bandwidth

LOG dB/div.: 10 dB

Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

Nemko Dallas FCC PART 15, SUBPART C

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

NAME OF TEST: RF Exposure PARA. NO.: 15.247(b)(4)

Minimum Standard: Systems operating under the provisions of this section shall

be operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines stipulated in 1.1307(b)(1) of CFR

47.

Page 54 of 56

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

NAME OF TEST: Spurious Emissions(conducted) PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which

the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following

field strength limits:

Frequency (MHz)	Field Strength (mV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM IS SEARCHED TO THE 10th HARMONIC OF THE HIGHEST FREQUENCY GENERATED IN THE EUT.

Method Of Measurement:

30 MHz - 10th harmonic plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker $\Delta\colon$ Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which

the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the

following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency	Field Strength	Field Strength
(MHz)	(mV/m @ 3m)	(dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

NAME OF TEST: Transmitter Power Density PARA. NO.: 15.247(d)

Minimum Standard: The transmitted power density averaged over any 1 second

interval shall not be greater than +8 dBm in any 3 kHz

bandwidth.

Method Of Measurement: The spectrum analyzer is set as follows:

RBW: 3 kHz VBW: >3 kHz

Span: => measured 6 dB bandwidth

Sweep: Span(kHz)/3 (i.e. for a span of 1.5 MHz the sweep

rate is 1500/3 = 500 sec.

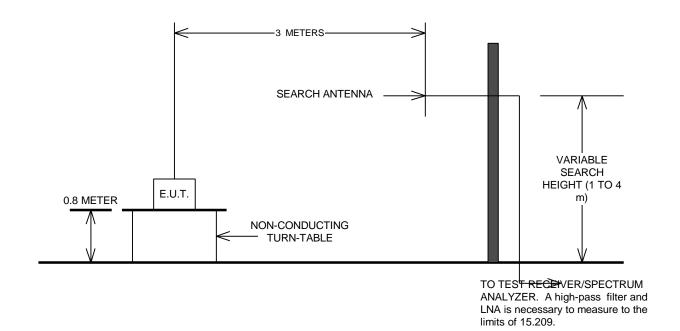
LOG dB/div.: 2 dB

Note: For devices with spectrum line spacing =< 3 kHz, the RBW of the

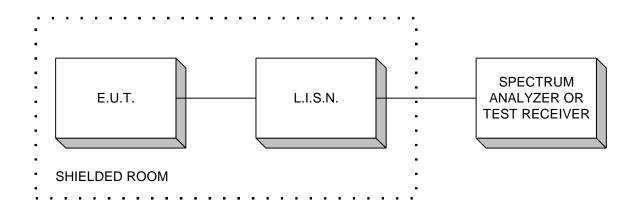
analyzer is reduced until the spectral lines are resolved. The measurement data is normalized to 3 kHz by summing the power of all the individual spectral lines within a 3 kHz band in linear

power units.

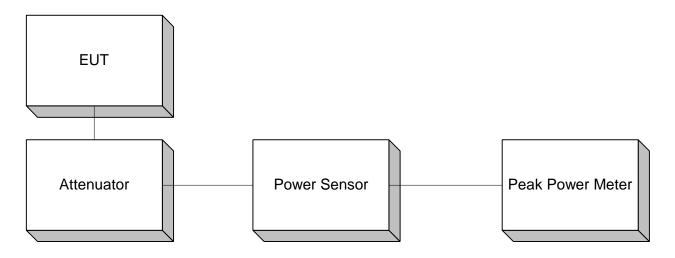
For Devices With Integral Antenna:

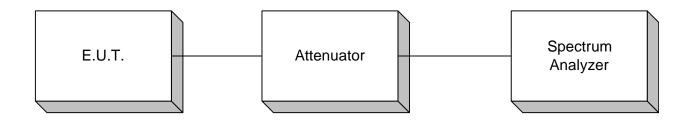

For devices with non-detachable antennas, the received field strength is peaked and the spectrum analyzer is set as above. The peak emission level is then measured and converted to a field strength by adding the appropriate antenna factor and cable loss. This field strength is then converted to an equivalent isotropic radiated power using the same method as described for Peak Power output.

Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom


EQUIPMENT: M1400 (T003) TEST REPORT NO.: 4L0050RUS1

ANNEX B - TEST DIAGRAMS


Test Site For Radiated Emissions


Conducted Emissions

Peak Power At Antenna Terminals

Minimum 6 dB Bandwidth Peak Power Spectral Density Spurious Emissions (conducted)

