
GSM850 test report for RA-4

CONTENTS

1	LABORATORY INFORMATION	3
2	CUSTOMER INFORMATION	3
3	SUMMARY OF TEST RESULTS.....	4
4	EUT INFORMATION.....	5
4.1	EUT description	5
5	EUT TEST SETUPS	5
6	APPLICABLE STANDARDS.....	5
7	99% OCCUPIED BANDWIDTH.....	6
7.1	Test setup	6
7.2	EUT operation mode.....	6
7.3	Results	6
7.4	Screen shots.....	7
8	BANDEDGE COMPLIANCE.....	8
8.1	Test setup	8
8.2	EUT operation mode.....	8
8.3	Limit	8
8.4	Results	9
8.5	Screen shots.....	10
9	SPURIOUS RADIATED EMISSION	14
9.1	Test setup	14
9.2	Test method	14
9.3	EUT operation mode.....	15
9.4	Limit	15
9.5	Results	15
10	FREQUENCY STABILITY, TEMPERATURE VARIATION	17
10.1	Test setup	17
10.2	EUT operation mode.....	17
10.3	Limit	17
10.4	Test method	18
10.5	Results	18
11	FREQUENCY STABILITY, VOLTAGE VARIATION	19
11.1	Test setup	19
11.2	EUT operation mode.....	19
11.3	Limit	19
11.4	Test method	19
11.5	Results	19
12	TEST EQUIPMENT	20
12.1	Conducted measurements	20
12.2	Radiated measurements	20

Tampere

1 LABORATORY INFORMATION

Test laboratory:	TCC Tampere Sinitaival 5 FIN-33720 TAMPERE Tel. +358 7180 46800 Fax. +358 7180 46880
FCC registration number: IC file number:	94436 (June 14, 2002) IC 3608 (March 5, 2003)

2 CUSTOMER INFORMATION

Client:	Nokia Corporation Joensuunkatu 7 FIN-24100 SALO BOX 86 FIN-24101 SALO Tel. +358-71-8008000 Fax. +358-71-8044277
Contact person:	Timo Seppälä
Receipt of EUT:	26.1.2005
Date of testing:	26.1-1.2.2005
Date of report:	04.02.2005

The tests listed in this report have been done to demonstrate compliance with the applicable requirements in FCC rules Part 22 and IC standard RSS-132.

Contents approved:

Jari-Erik Lilja Senior Test Engineer

3 SUMMARY OF TEST RESULTS

Section in CFR 47	Section in RSS-132	Test	Result
§2.1046 (a), 22.913 (a)	6.4	Conducted RF output power	-
§22.913 (a)	6.4	Radiated RF output power	-
§2.1049 (h)	4.2	99% occupied bandwidth	PASS
§22.917 (a)	4.5	Bandedge compliance	PASS
§22.917 (a), §2.1051	4.5	Spurious emissions at antenna terminals	-
§22.917 (a), §2.1053	4.5	Spurious radiated emissions	PASS
§2.1055 (a)(1)(b)	6.3	Frequency stability, temperature variation	PASS
§2.1055 (d)(1)(2)	6.3	Frequency stability, voltage variation	PASS

4 EUT INFORMATION

The EUT and accessories used in the tests are listed below. Later in this report only EUT numbers are used as reference.

	Name	Type	S/N	HW	SW	EUT number
EUT	RA-4	Phone	004400571630423	5300	04.53	40164
	RA-4	Phone	004400571630258	5300	04.53	40166
	RA-4	Phone	004400571630274	5300	04.53	40167
Accessories	BP-6M	Battery	-	-	-	40169
	BP-6M	Battery	-	-	-	40170
	ACP-12E	Charger	-	5.0	-	40172
	SF-24DLIGHT	Dummy battery	-	-	-	40175

Notes: -

4.1 EUT description

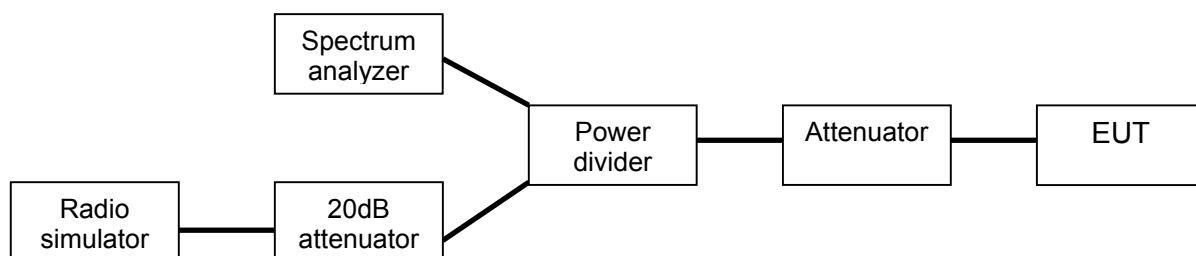
The EUT is a triple band (GSM 850/1800/1900 EGPRS) mobile phone.

The EUT was not modified during the tests.

5 EUT TEST SETUPS

For each test the EUT was exercised to find out the worst case of operation modes and device configuration.

6 APPLICABLE STANDARDS


The tests were performed in guidance of CFR 47 part 22, part 2, ANSI/TIA/EIA-603-A and RSS-132. Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method" for each test case.

7 99% OCCUPIED BANDWIDTH

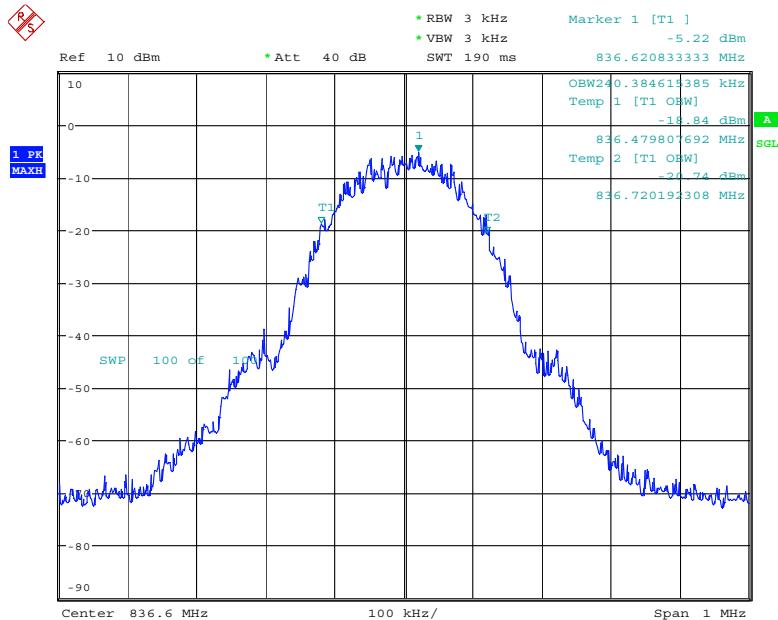
EUT	40166		
Accessories	40170		
Temp, Humidity, Air Pressure	23°C	43 RH%	1027 mbar
Date of measurement	26.1.2005		
FCC rule part	§2.1049 (h)		
RSS-132 section	4.2		
Measured by	Jari Jantunen		

7.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

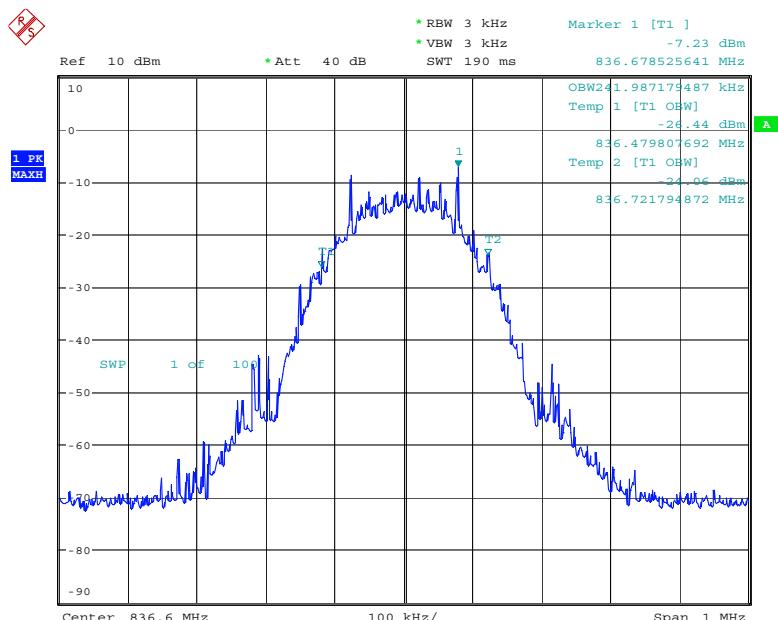
7.2 EUT operation mode

EUT operation mode	GSM, TX on, 1 time slot, PRBS 2E9-1 modulation data EGPRS, TX on, 1 time slot, PRBS 2E9-1 modulation data
EUT channel	190
EUT TX power level	Maximum


7.3 Results

The 99% occupied bandwidth was measured using the in-built function of the spectrum analyzer.

Table 1 99% occupied bandwidth


EUT Channel	EUT operation mode	99% occupied bandwidth [kHz]
190	GSM	240.385
190	EGPRS	241.987

7.4 Screen shots

Date: 26.JAN.2005 12:19:10

Picture 1 99% occupied bandwidth, GSM 850, channel 190

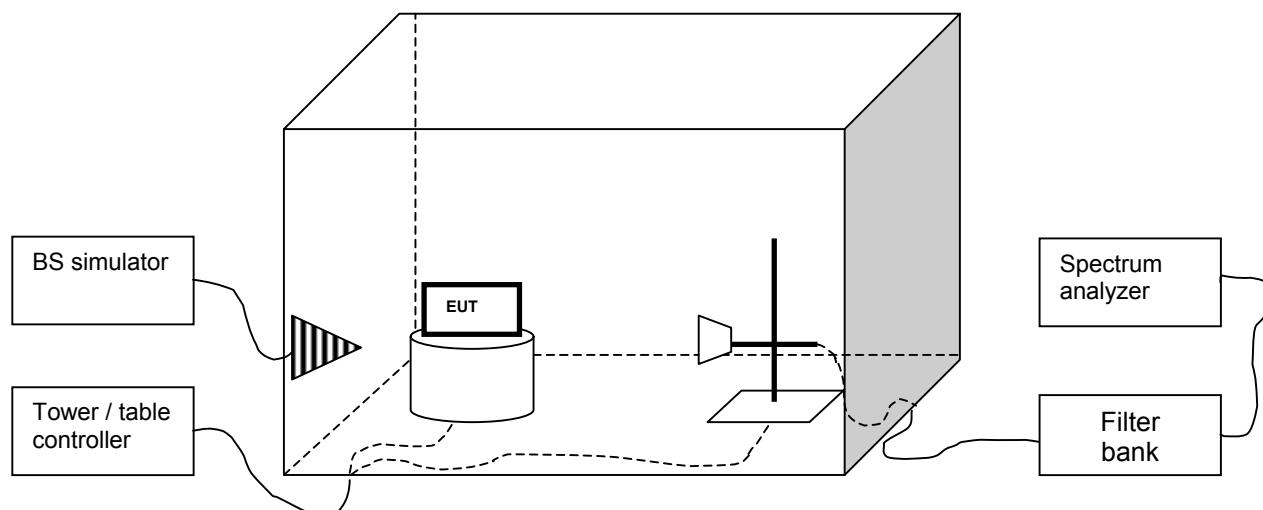
Date: 26.JAN.2005 12:21:24

Picture 2 99% occupied bandwidth, EGPRS 850, channel 190

The test results are valid for the tested unit(s) only. This report shall not be reproduced except in full, without the written permission of the testing laboratory.

TCC Tampere
Box 68
FIN-33721 TAMPERE
FINLAND

Tel. +358 7180 46800
Fax +358 7180 46880


FCC ID:PYARA-4
IC: 661V-BM4

8 BANDEDGE COMPLIANCE

EUT	40164		
Accessories	40169, 40172		
Temp, Humidity, Air Pressure	21°C	47 RH%	1019 mbar
Date of measurement	27.1.2005		
FCC rule part	§22.917 (a)		
RSS-132 section	4.5		
Measured by	Jari Jantunen		
Result	PASS		

8.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

8.2 EUT operation mode

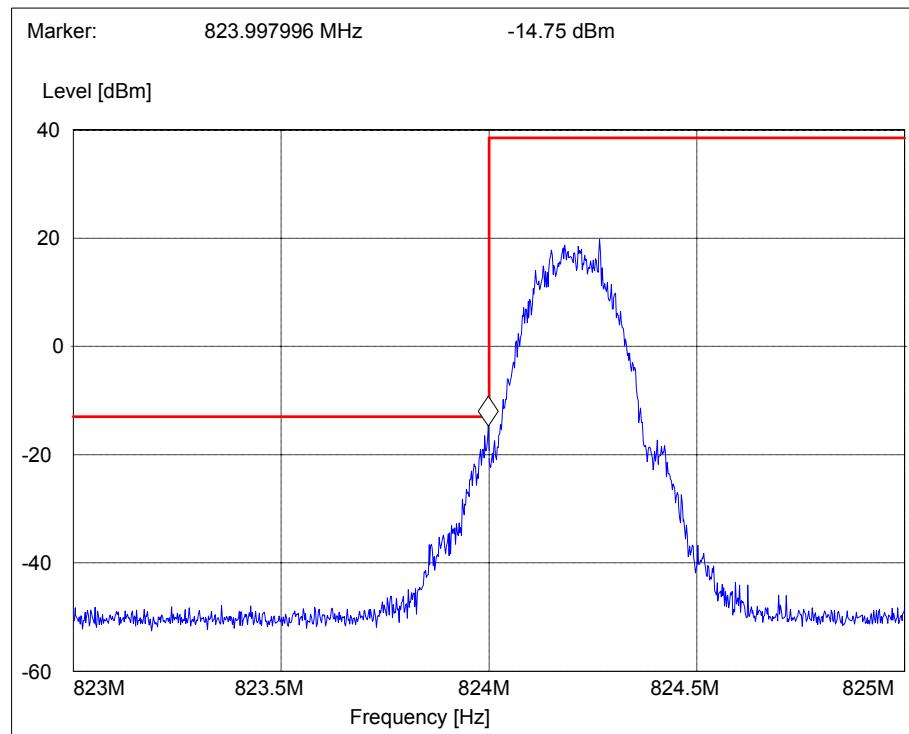
EUT operation mode	GSM, TX on, 1 time slot, PRBS 2E9-1 modulation data EGPRS, TX on, 1 time slot, PRBS 2E9-1 modulation data
EUT channel	See section 8.4
EUT TX power level	Maximum

8.3 Limit

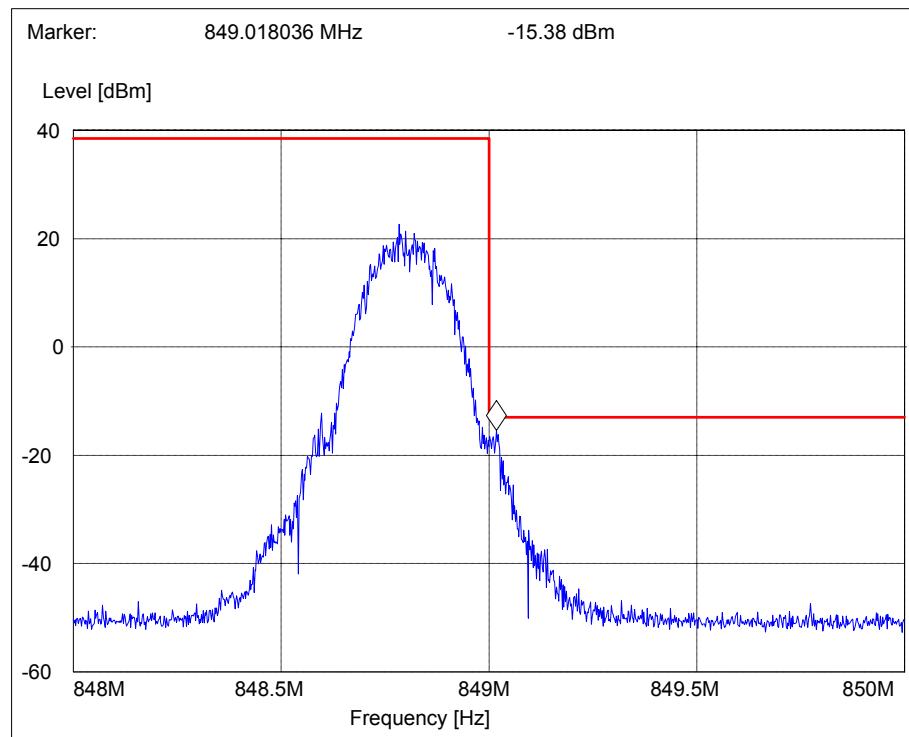
Frequency [MHz]	Level [dBm]
<824.0 or 849.0<	-13

8.4 Results

The line in the screen shots is the -13dBm limit line. The results were corrected with measurement path loss set as "offset" in the spectrum analyzer. RBW/VBW was 3kHz.

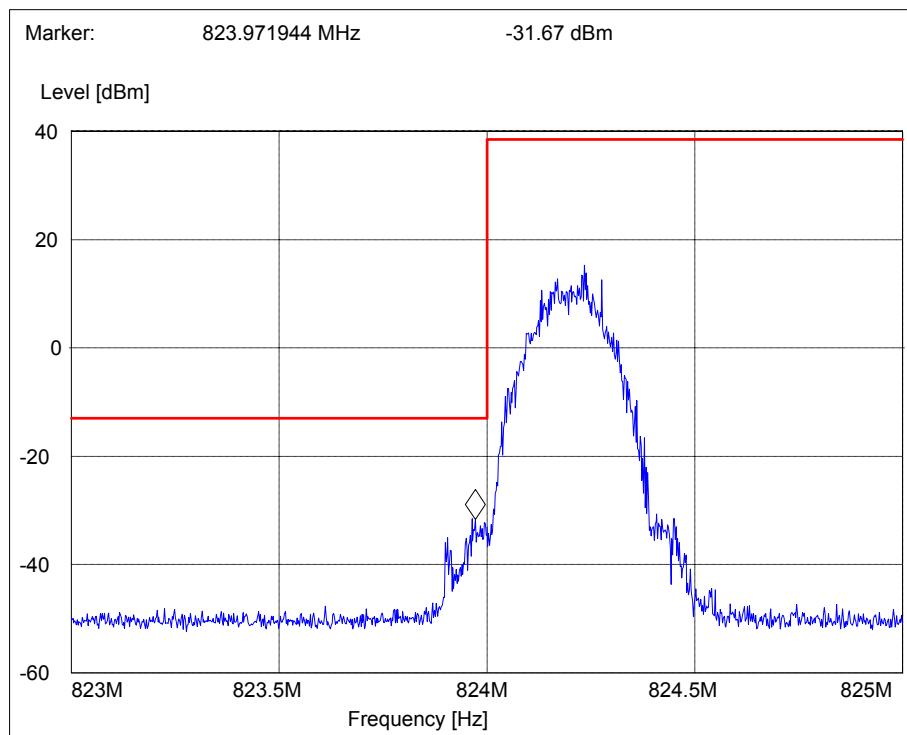
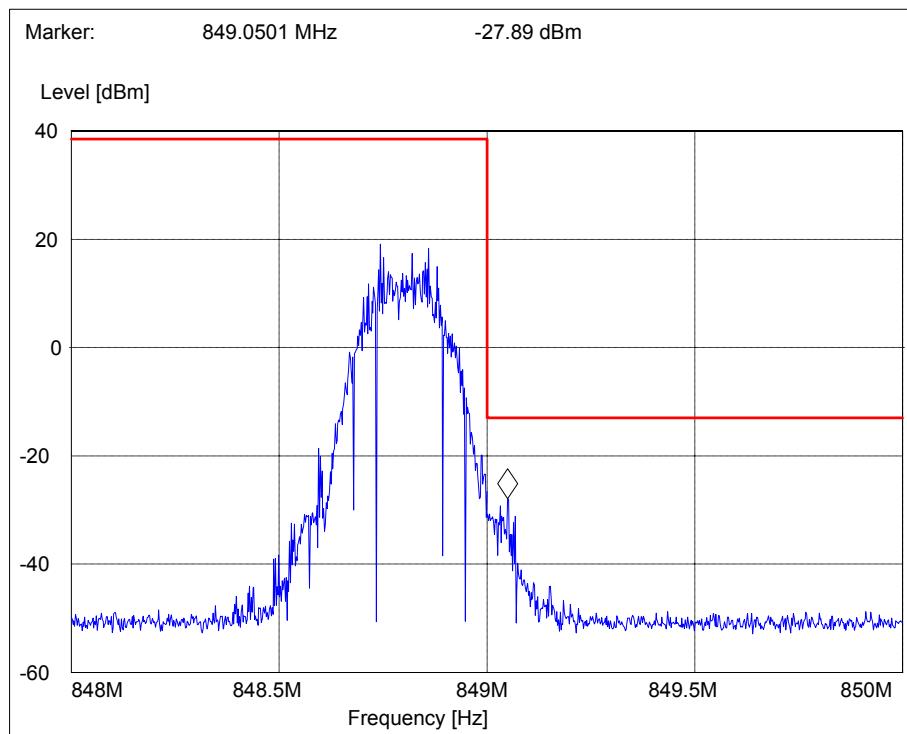

Table 2 Bandedge compliance, flip closed

EUT Channel	EUT operation mode	Level [dBm]
128	GSM	-14.75
251	GSM	-15.38
128	EGPRS	-31.67
251	EGPRS	-27.89

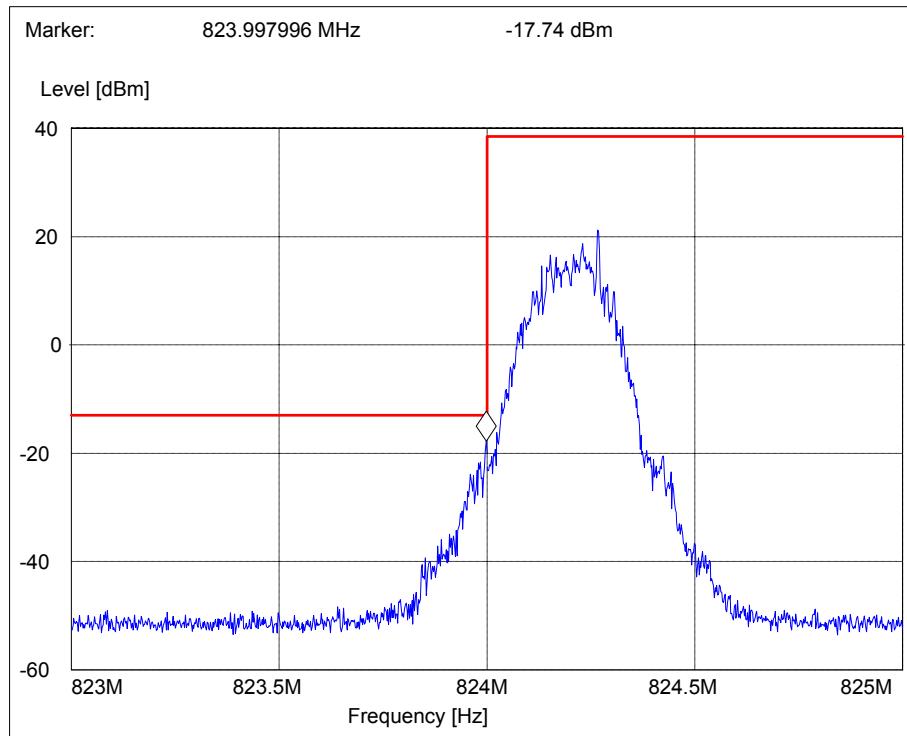
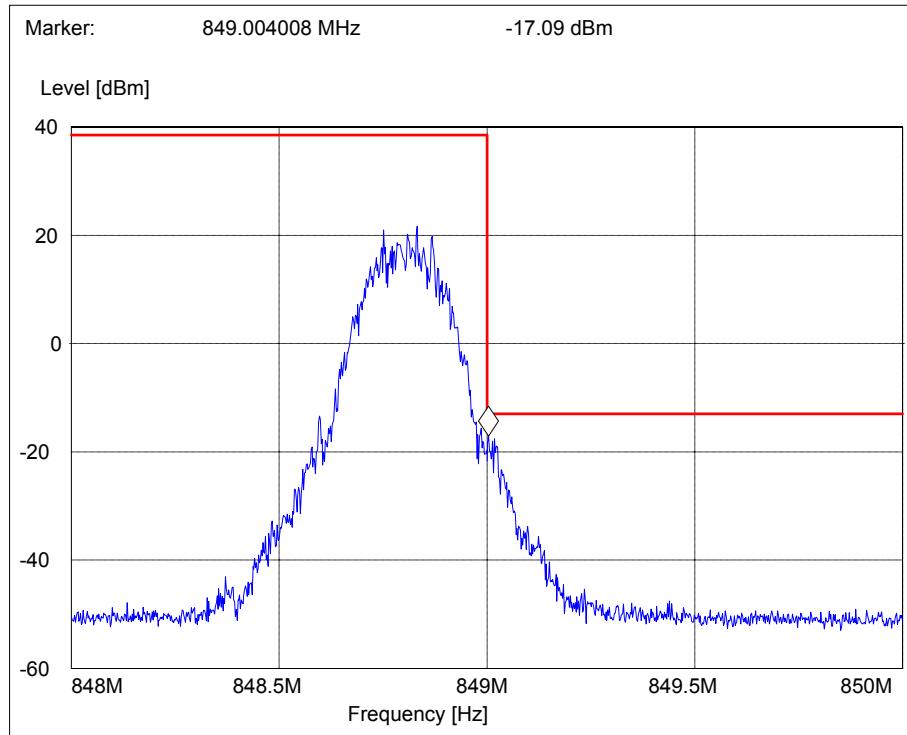

Table 3 Bandedge compliance, flip open

EUT Channel	EUT operation mode	Level [dBm]
128	GSM	-17.74
251	GSM	-17.09
128	EGPRS	-21.65
251	EGPRS	-20.75

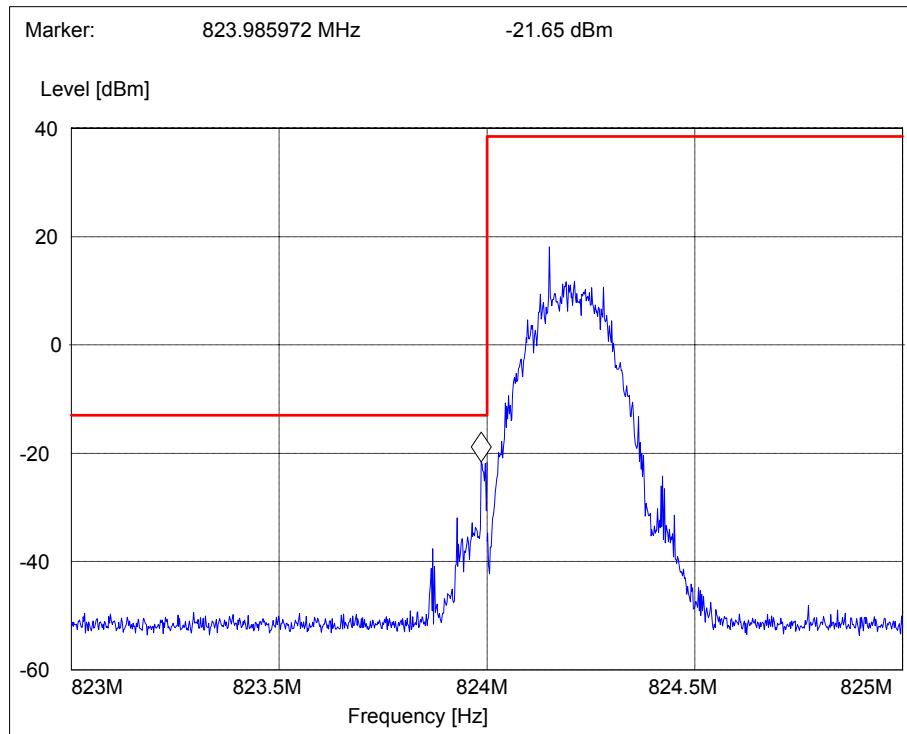
8.5 Screen shots

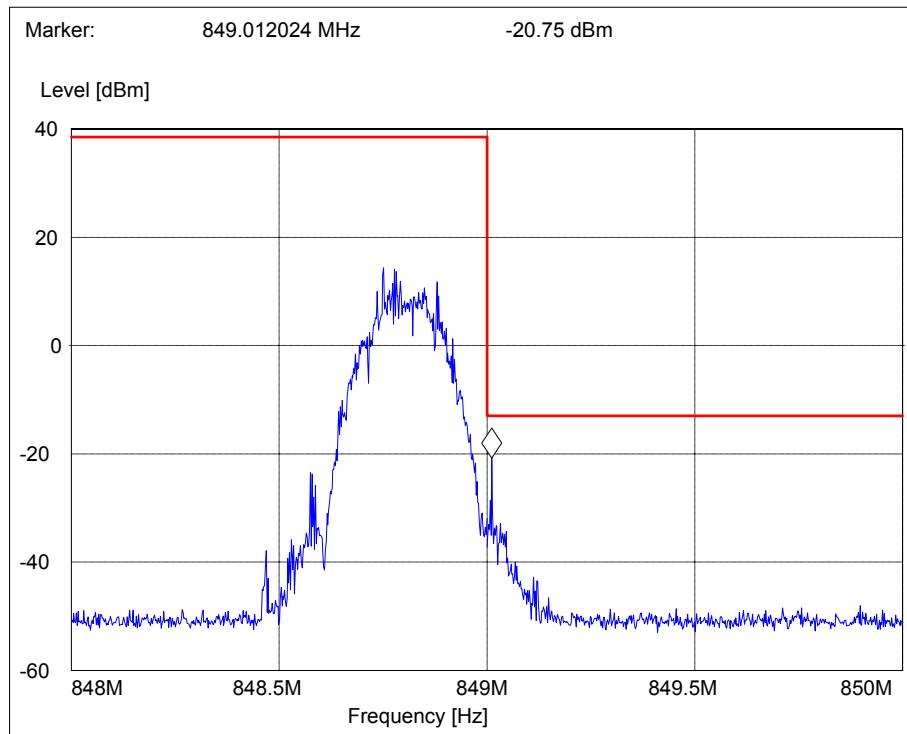
Picture 3 Lower bandedge, GSM 850 channel 128, flip closed

Picture 4 Upper bandedge, GSM 850 channel 251, flip closed


Tampere

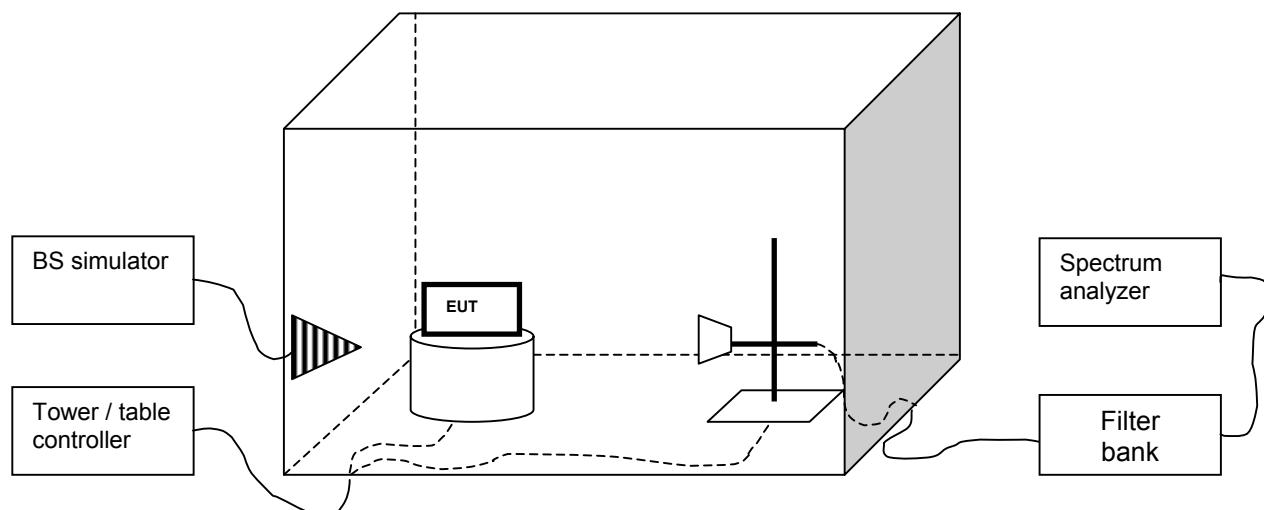
Picture 5 Lower bandedge, EGPRS 850 channel 128, flip closed**Picture 6 Upper bandedge, EGPRS 850 channel 251, flip closed**


Tampere

Picture 7 Lower bandedge, GSM 850 channel 128, flip open**Picture 8 Upper bandedge, GSM 850 channel 251, flip open**

Tampere

Picture 9 Lower bandedge, EGPRS 850 channel 128, flip open


Picture 10 Upper bandedge, EGPRS 850 channel 251, flip open

9 SPURIOUS RADIATED EMISSION

EUT	40164		
Accessories	40169, 40172		
Temp, Humidity, Air Pressure	21°C	48 RH%	1019 mbar
Date of measurement	27.1.2005		
FCC rule part	§22.917 (a), §2.1053		
RSS-132 section	4.5		
Measured by	Jari Jantunen		
Result	PASS		

9.1 Test setup

A set of LP/HP/BS filters was used to prevent overloading the spectrum analyzer. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns. The test was done using an automated test system, where the measurement devices were controlled by a computer.

9.2 Test method

- The emissions were searched and maximized by moving the turn table and measuring antenna and manipulating the EUT.
- All suspicious frequencies with emission levels were recorded.
- The EUT was replaced with a substituting antenna.
- For each frequency recorded, the substituting antenna was fed with the known power (from signal generator).

9.3 EUT operation mode

EUT operation mode	GSM, TX on, 1 time slot, PRBS 2E9-1 modulation data EGPRS, TX on, 1 time slot, PRBS 2E9-1 modulation data
EUT channel	190
EUT TX power level	Maximum

9.4 Limit

Frequency [MHz]	Level [dBm]
30 – 8500	-13

9.5 Results

The formula below was used to calculate the EIRP of the spurious emissions. If there were no emissions closer than 20dB below the limit line, then the emission levels were measured at the transmitter's harmonics.

$$\text{Correction Factor} = P_{\text{receiver}}[\text{dBm}] - P_{\text{SubstTX}}[\text{dBm}] - L_{\text{Cable}}[\text{dB}] + G_{\text{Antenna}}[\text{dBi}]$$

$$P_{\text{Emission}}[\text{dBm}] = P_{\text{Measured}}[\text{dBm}] - \text{Correction Factor}$$

where the variables are as follows:

P_{receiver} [dBm]	Measured emission level when substituting
Correction Factor	Calculated factor [dB]
$P_{\text{Subst_TX}}$ [dBm]	Signal generator power (from step d in 9.2) fed to the substituting antenna
L_{Cable} [dB]	Loss of the cable between antenna and signal generator (from step d in 9.2)
G_{Antenna} [dBd]	Gain of the substitutive antenna over dipole (dBi – 2.15dB)
P_{Emission} [dBm]	P_{Measured} [dBm] decreased with correction factor

Table 4 Emission levels, GSM 850 channel 190, flip closed

Frequency [MHz]	P_{Measured} [dBm]	Correction Factor [dB]	P_{Emission} [dBm]
1673.64	-38.00	4.30	-42.30
2509.80	-55.40	-1.40	-54.00
3346.40	-62.30	-4.40	-57.90
4182.87	-47.60	-7.80	-39.80
5019.60	-61.50	-9.60	-51.90
5856.20	-61.70	-9.60	-52.10
6692.80	-59.50	-10.80	-48.70
7529.40	-64.40	-12.60	-51.80
8366.00	-64.30	-13.60	-50.70

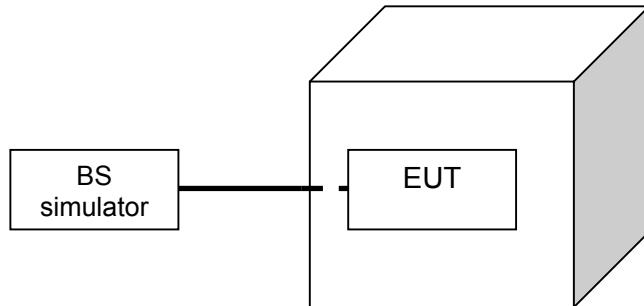
Table 5 Emission levels, EGPRS 850 channel 190, flip closed

Frequency [MHz]	P _{Measured} [dBm]	Correction Factor [dB]	P _{Emission} [dBm]
1673.20	-54.20	4.30	-58.50
2509.80	-56.20	-1.40	-54.80
3346.40	-62.20	-4.40	-57.80
4183.00	-62.70	-7.80	-54.90
5019.60	-61.40	-9.60	-51.80
5856.20	-60.60	-9.60	-51.00
6692.80	-59.60	-10.80	-48.80
7529.40	-64.70	-12.60	-52.10
8366.00	-64.10	-13.60	-50.50

Table 6 Emission levels, GSM 850 channel 190, flip open

Frequency [MHz]	P _{Measured} [dBm]	Correction Factor [dB]	P _{Emission} [dBm]
1673.14	-38.70	4.30	-43.00
2509.80	-54.80	-1.40	-53.40
3346.40	-62.00	-4.40	-57.60
4182.86	-48.00	-7.80	-40.20
5019.60	-61.50	-9.60	-51.90
5856.20	-61.60	-9.60	-52.00
6692.80	-58.90	-10.80	-48.10
7529.40	-63.60	-12.60	-51.00
8366.00	-64.50	-13.60	-50.90

Table 7 Emission levels, EGPRS 850 channel 190, flip open


Frequency [MHz]	P _{Measured} [dBm]	Correction Factor [dB]	P _{Emission} [dBm]
1673.20	-54.80	4.30	-59.10
2509.80	-56.70	-1.40	-55.30
3346.40	-62.90	-4.40	-58.50
4183.00	-63.30	-7.80	-55.50
5019.60	-61.40	-9.60	-51.80
5856.20	-62.10	-9.60	-52.50
6692.80	-59.90	-10.80	-49.10
7529.40	-63.20	-12.60	-50.60
8366.00	-65.00	-13.60	-51.40

10 FREQUENCY STABILITY, TEMPERATURE VARIATION

EUT	40166		
Accessories			
Temp, Humidity, Air Pressure	23°C	41RH%	992-1002 mbar
Date of measurement	31.1-1.2.2005		
FCC rule part	§24.235, §2.1055 (a)(1)(b)		
RSS-132 section	7		
Measured by	Jan-Erik Lilja		
Result	PASS		

10.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

10.2 EUT operation mode

EUT operation mode	GSM, TX on, 1 time slot, PRBS 2E9-1 modulation data
EUT channel	190
EUT TX power level	Maximum

10.3 Limit

Frequency deviation [ppm]
± 2.5

10.4 Test method

- a) The climate chamber temperature was set to the minimum value and the temperature was allowed to stabilize.
- b) The EUT was placed in the chamber
- c) The EUT was set in idle mode for 45 minutes.
- d) The EUT was set to transmit.
- e) The transmit frequency error was measured immediately
- f) The steps c - e were repeated for each temperature

10.5 Results**Table 8 Frequency deviation, temperature variation**

Temperature [°C]	Deviation [Hz]	Deviation [ppm]
-30	-26	-0.0311
-20	-25	-0.0299
-10	-26	-0.0311
0	-22	-0.0263
10	-20	-0.0239
20	-22	-0.0263
30	-22	-0.0263
40	-24	-0.0287
50	-25	-0.0299

11 FREQUENCY STABILITY, VOLTAGE VARIATION

EUT	40167		
Accessories	40175		
Temp, Humidity, Air Pressure	19°C	52 RH%	1019 mbar
Date of measurement	28.1.2005		
FCC rule part	§2.1055 (d)(1)(2)		
RSS-132 section	6.3		
Measured by	Jari Jantunen		
Result	PASS		

11.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

11.2 EUT operation mode

EUT operation mode	GSM, TX on, 1 time slot, PRBS 2E9-1 modulation data
EUT channel	190
EUT TX power level	Maximum

11.3 Limit

Frequency deviation [ppm]
± 2.5

11.4 Test method

The EUT battery was replaced with an adjustable power supply. The frequency stability was measured at nominal voltage and at the battery cut-off point.

11.5 Results

Table 9 Frequency deviation, voltage variation

Level	Voltage [V]	Deviation [Hz]	Deviation [ppm]
Nominal	3.70	-22	-0.0263
Battery cut-off point	3.45	-23	-0.0275

12 TEST EQUIPMENT

Each test equipment is calibrated once a year.

12.1 Conducted measurements

Equipment	Manufacturer	Model
Spectrum analyzer	Rohde & Schwarz	FSU
Radio communication tester	Rohde & Schwarz	CMU-200
Attenuator 10 dB	Huber+Suhner AG	6251.17.A
Step attenuator 110dB	Hewlett-Packard	8496A
Power splitter	Hewlett-Packard	11667A
High pass filter	Trilithic	WHK2010-10SS
Low pass filter	Trilithic	WLK1750-10SS
Tunable notch filter	Wainwright	WRCD1850/1910-0.2/40
Temperature chamber	Vötsch	VT4002
DC power supply	HP	6632A
Multimeter	Fluke	87

12.2 Radiated measurements

Equipment	Manufacturer	Model
3m semi-anechoic chamber	TDK	
EMI receiver	Rohde & Schwarz	ESI 40
Preamplifier	MITEQ	AMF-5D-020180-26-10P
Preamplifier	MITEQ	AMF-4D-10M-3G-25-20P
Dipole antenna	EMCO	3125-870
Dipole antenna	EMCO	3125-1880
Biconilog antenna	Rohde & Schwarz	HL562
Double ridged waveguide antenna	EMCO	3115
Horn antenna	EMCO	3116
Reference dipole set	Schwarzbeck	UHAP/VHAP
Communication antenna	EMC Automation	LPA-8020
Radio communication tester	Rohde & Schwarz	CMU-200
Signal generator	Hewlett-Packard	83640L
Step attenuator 110dB	Hewlett-Packard	8496A
Power splitter	Hewlett-Packard	11667A
High pass filter	Trilithic	WHK2010-10SS
Low pass filter	Trilithic	WLK1750-10SS
Tunable notch filter	Wainwright	WRCD1850/1910-0.2/40
Turntable controller	Deisel	HD-100
Turntable	Deisel	DS412
Antenna mast controller	EMCO	2090
Antenna mast	EMCO	2075
Temperature chamber	Vötsch	VT4002
DC power supply	Hewlett-Packard	6632A
Multimeter	Fluke	87