

TEST REPORT

Test of: PM-0460-BV

To: OET Bulletin 65 Supplement C: (2001-01) IEEE1528: 2003

FCC ID: PY7PM-0460

Test Report Serial No: UL-SAR-RP RP10014945JD13A V2.0

Version 2.0 superseded all previous report versions

This Test Report Is Issued Under The Authority of Richelieu Quoi, SAR Technology Consultant:

Checked By: Naseer Mirza

(APPROVED SIGNATORY)

Issue Date:

31 July 2013

Test Dates:

01 July 2013 to 15 July 2013

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of UL. The results in this report apply only to the sample(s) tested.

The Bluetooth® word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by UL. is under license. Other trademarks and trade names are those of their respective owners.

ersion 2.0 Issue Date: 31 July 2013

This page has been left intentionally blank.

Page: 2 of 491 UL

Issue Date: 31 July 2013

TABLE OF CONTENTS

1. Customer Information	4
2. Summary of Test Results	5
3. Test Specification, Methods and Procedures	17
4. Equipment Under Test (EUT)	18
5. Deviations from the Test Specification	28
6. Operation and Configuration of the EUT during Testing	29
7. Measurements, Examinations and Derived Results	35
8. Measurement Uncertainty	101
Appendix 1. Test Equipment Used	102
Appendix 2. Measurement Methods	105
Appendix 3. SAR Distribution Scans	117
Appendix 4. Photographs	
Appendix 5. System Check	
Appendix 6. Simulated Tissues	
Appendix 7. DASY4 System Details	
Appendix 8. 3G Test set-up	
Appendix 9. CAT24 Test set-up	
Annendix 10 Antenna Schematics	490

Issue Date: 31 July 2013

1. Customer Information						
Company Name:	Sony Mobile Communications AB					
Address:	Nya Vattentornet 22188 Lund Sweden					

Page: 4 of 491 UL

Issue Date: 31 July 2013

2. Summary of Test Results		
Test Name	Specification Reference	Result
Specific Absorption Rate - GSM 850	OET Bulletin 65 Supplement C: (2001-01)	Ø
Specific Absorption Rate - PCS 1900	OET Bulletin 65 Supplement C: (2001-01)	Ø
Specific Absorption Rate - UMTS FDD 2	OET Bulletin 65 Supplement C: (2001-01)	Ø
Specific Absorption Rate - UMTS FDD 4	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate - UMTS FDD 5	OET Bulletin 65 Supplement C: (2001-01)	Ø
Specific Absorption Rate - LTE Band 2	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate - LTE Band 4	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate - LTE Band 5	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate - LTE Band 7	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate - LTE Band 17	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate - Wi-Fi 802.11b/g/n 2.4 GHz	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate-Wi-Fi 802.11a/n/ac 5.0 GHz	OET Bulletin 65 Supplement C: (2001-01)	②
Key to Results	Complied	

Page: 5 of 491 UL

Issue Date: 31 July 2013

2.1. Highest Standalone Reported SAR									
Individual Transmitter Evaluation per Band:									
Exposure Configuration	Technology Band	Mode	Highest Reported 1g -SAR (W/kg)	Equipmen t Class	Max Rated Source base Avg Power + Max Tolerance [dBm]	Highest Reporte d 1g- SAR (W/kg)			
	GSM850	DTM	0.748		26.3				
	PCS1900	DTM	0.515		23.2				
	UMTS FDD 2	RMC	0.868		24.0				
	UMTS FDD 4	RMC	0.664		24.5				
	UMTS FDD 5	RMC	0.576	DOE	24.5	0.000			
HEAD	LTE Band 2	QPSK	0.718	PCE	23.7	0.868			
(Separation	LTE Band 4	QPSK	0.513		23.7				
Distance 0mm)	LTE Band 5	QPSK	0.402		23.2				
	LTE Band 7	QPSK	0.343		23.7				
	LTE Band 17	QPSK	0.288		23.7				
	WLAN 2.4 GHz	802.11b	0.107	DTS	17.0	0.107			
	WLAN 5.2/5.3/5.6 GHz	802.11a	0.012	NII	12.3	0.012			
	WLAN 5.8 GHz	802.11a	0.008	DTS	12.3	0.008			
Individual Tran	nsmitter Evaluation per	Band:							
Exposure Configuration	Technology Band	Mode	Highest Reported 1g -SAR (W/kg)	Equipment Class	Max Rated Source base Avg Power + Max Tolerance [dBm]	Highest Reporte d 1g- SAR (W/kg)			
	GSM850	GPRS	0.979		26.6				
	PCS1900	GPRS	0.802		23.5				
	UMTS FDD 2 [#]	RMC	1.018		23.5				
	UMTS FDD 4 [#]	RMC	1.064		23.5				
	UMTS FDD 5	RMC	0.626	PCE	24.5	1.366			
HOTSPOT	LTE Band 2	QPSK	1.095	PCE	23.7	1.300			
(Separation Distance	LTE Band 4	QPSK	1.366		23.7				
10mm)	LTE Band 5	QPSK	0.454		23.2				
- ···· ,	LTE Band 7	QPSK	0.507		23.7				
	LTE Band 17	QPSK	0.367		23.7				
	WLAN 2.4 GHz	802.11b	0.131	DTS	17.0	0.131			
	WLAN 5.2/5.3/5.6 GHz	802.11a	0.078	NII	13.6	0.078			
	WLAN 5.8 GHz	802.11a	0.032	DTS	12.3	0.032			
Note(s):									

Auto RF Power Back-off' mode facility is available on 'Hotspot Mode Configuration of UMTS FDD 2 and UMTS FDD 4 bands only. When Hotspot mode is activated, in all operating modes, the maximum output power level in UMTS Band 2 will not exceed 23.5 dBm, and UMTS Band 4 will not exceed 23.5 dBm.

Page: 6 of 491 UL

Version 2.0 Issue Date: 31 July 2013

Highest Standalone Reported SAR (Continued)								
Individual Transmitter Evaluation per Band:								
Exposure Configuration	Technology Band	Mode	Highest Reported 1g -SAR (W/kg)	Equipment Class	Max Rated Source base Avg Power + Max Tolerance [dBm]	Highest Reporte d 1g- SAR (W/kg)		
	GSM850	DTM	0.766		26.3			
	PCS1900	DTM	0.453	DOE	23.2	0.979		
	UMTS FDD 2	RMC	0.712		24.0			
	UMTS FDD 4	RMC	0.979		24.5			
	UMTS FDD 5	RMC	0.519		24.5			
BODY-WORN	LTE Band 2	QPSK	0.566	PCE	23.7			
(Separation	LTE Band 4	QPSK	0.786		23.7			
Distance 15mm)	LTE Band 5	QPSK	0.385		23.2			
	LTE Band 7	QPSK	0.239		23.7			
	LTE Band 17	QPSK	0.255		23.7			
	WLAN 2.4 GHz	802.11b	0.043	DTS	17.0	0.043		
	WLAN 5.2/5.3/5.6 GHz	802.11a	0.078	NII	13.6	0.078		
	WLAN 5.8 GHz	802.11a	0.032	DTS	12.3	0.032		
Note(s).								

Note(s):

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

 (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where
$$x = 7.5$$
 for 1-g SAR, and $x = 18.75$ for 10-g SAR.

For the estimated SAR level caluclation, the Maximum Target power + Upper tolerance for Bluetooth = 6.0 + 3.5 = 9.5 dBm (~ 8.91 mW) is considered.

• 10mm Bluetooth estimated SAR level:

Estimated *Bluetooth* SAR = $(8.91 \text{ mW}/10 \text{ mm})^*(\sqrt{2.4} / 7.5) = 0.184 \text{ W/kg}$

15mm Bluetooth estimated SAR level:

Estimated *Bluetooth* SAR = $(8.91 \text{mW}/15 \text{mm})^*(\sqrt{2.4} / 7.5) = 0.123 \text{ W/kg}$

Page: 7 of 491 UL

As per FCC KDB 447498 D01, Bluetooth maximum source based time average power was below the allowed therhold for both 10 and 15mm separation distances.

Issue Date: 31 July 2013

2.2. Highest Reported Simultaneous Transmission SAR:

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the <u>reported</u> standalone SAR of each applicable simultaneous transmitting antenna.

Simultaneous Transmitter Evaluation:									
Exposure Configuration	Technology Band	Highest Reported 1g SAR (W/kg)	Equipment Class	Max Rated Source base Avg Power + Max Tolerance [dBm]	Highest Reported Sum-SAR 1g-SAR (W/kg)	SPLSR Ratio			
	UMTS FDD 2	0.868	PCE	24.0	0.975	N/A			
	WLAN 2.4 GHz	0.107	DTS	17.0	0.975	IN/A			
HEAD	UMTS FDD 2	0.868	PCE	24.0	0.876	N/A			
(Separation Distance 0mm)	WLAN 5 GHz	0.008	DTS	12.3	0.676	IN/A			
,	UMTS FDD 2	0.868	PCE	24.0	0.000	NI/A			
	WLAN 5 GHz	0.012	NII	12.3	0.880	N/A			
	LTE Band 4	1.366	PCE	23.7	1.497	N/A			
HOTSPOT	WLAN 2.4 GHz	0.131	DTS	17.0	1.497	IN/A			
(Separation Distance 10mm)	LTE Band 4	1.366	PCE	23.7	1 550	N/A			
,	Bluetooth	0.184	DSS	9.5	1.550	IN/A			
	UMTS FDD 4	0.979	PCE	24.5	4.000	NI/A			
	WLAN 2.4GHz	0.043	DTS	17.0	1.022	N/A			
	UMTS FDD 4	0.979	PCE	24.5	4.400	NI/A			
BODY-WORN	Bluetooth	0.123	DSS	9.5	1.102	N/A			
(Separation Distance 15mm)	UMTS FDD 4	0.979	PCE	24.5	4.044	NI/A			
,	WLAN 5GHz	0.032	DTS	12.3	1.011	N/A			
	UMTS FDD 4	0.979	PCE	24.5	4.057	NI/A			
	WLAN 5GHz	0.078	NII	13.6	1.057	N/A			
Note(s):									

Note(s):

- 1. As per FCC KDB publication 447498 SAR peak location separation ratio (SPLSR) was not required as the sum of the combination of WWAN+WLAN and WWAN+WPAN <1.6 w/kg.
- 2. Bluetooth estimated SAR level calculation is shown in section 2.1 in this report
- 3. All the possible simultaneous Transmission possibilities are included in section 4.6 of this report.

Page: 8 of 491 UL

/ersion 2.0 Issue Date: 31 July 2013

2.3. SAR measurement variability and measurement uncertainty analysis:

Exposure Configuration	Technology Band	Measured 1g -SAR (W/Kg)	Equipment Class	Max Meas. Source base Avg Power [dBm]	Ratio of Largest to Smallest SAR Measured
	GSM850 (Original)	0.914		26.3	1.01
	GSM850 (Repeated)	0.902		20.3	1.01
	PCS1900 (Original)	0.802		23.5	1.00
	PCS1900 (Repeated) 0.800			20.0	1.00
	UMTS FDD 2 (Original)	UMTS FDD 2 (Original) 0.928		23.1	1.01
HOTSPOT	UMTS FDD 2 (Repeated)	0.920	PCE	20.1	1.01
(Separation Distance 10mm)	UMTS FDD 4 (Original)	0.970	PUE	23.1	1.03
	UMTS FDD 4 (Repeated)	0.944		23.1	1.03
	LTE Band 2 (Original)	0.850		22.6	1.04
	LTE Band 2 (Repeated)	0.821		22.0	1.04
	LTE Band 4 (Original)	1.060		22.6	1.05
	LTE Band 4 (Repeated)	1.010		22.0	1.05
NI=(=/=\-					

Note(s):

- 1. The following step below were followed as per KDB publication 865664 D01:
- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
 - 2) When the original **highest measured** SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

2.4. Location of Tests

All the measurements described in this report were performed at the premises of UL, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

Page: 9 of 491 UL

Issue Date: 31 July 2013

2.5. Nominal and Maximum Output power:

Note: The following source based average rated powers for GSM/GPRS/EDGE are without consideration of uplink time slot.

Bands	Power Back-off Not Supported (Speech (Voice Mode)				
	Target (dBm)	Tolerance ± (dB)			
GSM850	33.0	-1.0 ~ +0.6			
PCS1900	30.0	-0.6 ~ +0.6			

		Power Back-off Not Supported GPRS							
Danda	Tx Slot 1			Tx Slot 2 Tx		Slot 3	Tx Slot 4		
Bands	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	
GSM850	33.0	-1.0 ~ +0.6	31.0	-0.6 ~ +0.6	30.0	-0.6 ~ +0.6	29.0	-0.6 ~ +0.6	
PCS1900	30.0	-0.6 ~ +0.6	28.0	-0.5 ~ +0.5	27.0	-0.5 ~ +0.5	26.0	-0.5 ~ +0.5	

	Power Back-off Not Supported EDGE GMSK (MCS1-4)							
Bands	Tx Slot 1 T		T	Slot 2	Tx	Slot 3	T	Slot 4
	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)
GSM850	33.0	-1.0 ~ +0.6	31.0	-0.6 ~ +0.6	30.0	-0.6 ~ +0.6	29.0	-0.6 ~ +0.6
PCS1900	30.0	-0.6 ~ +0.6	28.0	-0.5 ~ +0.5	27.0	-0.5 ~ +0.5	26.0	-0.5 ~ +0.5

	Power Back-off Not Supported EDGE 8PSK (MCS5-9)							
Bands	Tx Slot 1		Tx Slot 2		Tx Slot 3		Tx Slot 4	
	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)
GSM850	27.0	-1.5 ~ +1.0	25.0	-1.0 ~ +1.0	24.0	-1.0 ~ +1.0	23.0	-1.0 ~ +1.0
PCS1900	26.0	-1.5 ~ +1.0	24.0	-1.0 ~ +1.0	23.0	-1.0 ~ +1.0	22.0	-1.0 ~ +1.0

	Power Back-off Not Supported								
Bands		cs	HS						
	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)					
UMTS FDD 5	24.0	-0.7 ~ +0.5	24.0	-0.7 ~ +0.5					
		Power Back-off Su	pported & Disabled						
UMTS FDD 2	23.5	-0.7 ~ +0.5	23.5	-0.7 ~ +0.5					
UMTS FDD 4	24.0	-0.7 ~ +0.5	24.0	-0.7 ~ +0.5					

	Power Back-off Supported & Enabled							
Bands		cs	HS					
	Target (dBm)	Target (dBm) Tolerance ± (dB)		Tolerance ± (dB)				
UMTS FDD 2	23.0	-0.7 ~ +0.5	23.0	-0.7 ~ +0.5				
UMTS FDD 4	23.0	-0.7 ~ +0.5	23.0	-0.7 ~ +0.5				

Page: 10 of 491 UL

Issue Date: 31 July 2013

Power Back-off Not Supported									
			Target (dBm)						
Bands	5 117			QPSK		16QAM			Toleranc ± (dB)
	BW	Edge	1RB	50% RB	100% RB	1RB	50% RB	100% RB	± (ub)
	1.4MHz	L M H	23.0	23.0	22.0	22.0	22.0	21.0	-0.7~ +0.
LTE Band 2 (Low, Mid)	3MHz, 5MHz, 10MHz, 15MHz, 20MHz	L M H	23.0	22.0	22.0	22.0	21.0	21.0	-0.7~ +0.
		L	21.5	21.5		20.5	20.5		-0.7~ +0.
	1.4MHz	М	21.5	21.5	20.5	20.5	20.5	19.5	-0.7~ +0.
		Н	21.5	21.5		20.5	20.5		-0.7~ +0.
		L	21.5	20.5		20.5	19.5		-0.7~ +0.
	3MHz	М	21.5	20.5	20.5	20.5	19.5	19.5	-0.7~ +0.
		Н	21.5	20.5		20.5	19.5		-0.7~ +0.
		L	23.0	22.0	22.0	22.0	21.0		-0.7~ +0.
	5MHz	М	21.5	20.5		20.5	19.5	21.0	-0.7~ +0.
LTE Band 2		Н	21.5	20.5		20.5	19.5		-0.7~ +0.
(High)		L	23.0	22.0		22.0	21.0		-0.7~ +0.
	10MHz,	М	23.0	22.0	22.0	22.0	21.0	21.0	-0.7~ +0.
		Н	21.5	22.0		20.5	21.0		-0.7~ +0.
		L	23.0	22.0		22.0	21.0		-0.7~ +0.
	15MHz,	М	23.0	22.0	22.0	22.0	21.0	21.0	-0.7~ +0.
		Н	21.5	22.0		20.5	21.0		-0.7~ +0.
		L	23.0	22.0		22.0	21.0		-0.7~ +0.
	20MHz	М	23.0	22.0	22.0	22.0	21.0	21.0	-0.7~ +0.
		Н	21.5	22.0		20.5	21.0		-0.7~ +0.
	1.4MHz	L M H	23.0	23.0	22.0	22.0	22.0	21.0	-0.7~ +0.
TE Band 4	3MHz, 5MHz, 10MHz, 15MHz, 20MHz	L M H	23.0	22.0	22.0	22.0	21.0	21.0	-0.7~ +0.

Page: 11 of 491 UL

Issue Date: 31 July 2013

Nominal and Maximum Output power (Continued):									
	Power Back-off Not Supported								
Bands					Target	(dBm)			
Dallus	DW	F.J		QPSK			16QAM		Tolerance ± (dB)
	BW	Edge	1RB	50% RB	100% RB	1RB	50% RB	100% RB	± (ub)
LTE Band 5	1.4MHz	L M H	22.5	22.5	21.5	21.5	21.5	20.5	-0.7~ +0.7
ETE Band 3	3MHz, 5MHz, 10MHz	L M H	22.5	21.5	21.5	21.5	20.5	20.5	-0.7~ +0.7
LTE Band 7	5MHz, 10MHz, 15MHz, 20MHz	L M H	23.0	22.0	22.0	22.0	21.0	21.0	-0.7~ +0.7
LTE Band 17	5MHz, 10MHz	L M H	23.0	22.0	22.0	22.0	21.0	21.0	-0.7~ +0.7

Page: 12 of 491 UL

Version 2.0 Issue Date: 31 July 2013

Nominal and Maximum Output power (Continued):

Power Back-off Not Supported

WiFi802.11b/g				
Channel Number	Frequency (MHZ)	Target(dBm)	Tolerance(dB)	Note
1	2412.0	14.8	-6.08 ~ +0.7	
6	2437.0	16.3	-6.08 ~ +0.7	2.4GHz 802.11b (1Mbps)
11	2462.0	14.3	-6.08 ~ +0.7	
1	2412.0	14.8	-6.08 ~ +0.7	
6	2437.0	16.3	-6.08 ~ +0.7	2.4GHz 802.11b (11Mbps)
11	2462.0	14.3	-6.08 ~ +0.7	
1	2412.0	12.9	-6.08 ~ +0.7	
6	2437.0	14.4	-6.08 ~ +0.7	2.4GHz 802.11g (6Mbps)
11	2462.0	12.4	-6.08 ~ +0.7	
1	2412.0	11.3	-6.08 ~ +0.7	
6	2437.0	12.8	-6.08 ~ +0.7	2.4GHz 802.11g (54Mbps)
11	2462.0	10.8	-6.08 ~ +0.7	
WiFi802.11n				
Channel Number	Frequency (MHZ)	Target(dBm)	Tolerance(dB)	Note
1	2412.0	12.4	-6.08 ~ +0.7	0.4011.000.44
6	2437.0	13.9	-6.08 ~ +0.7	2.4GHz 802.11n (MCS0 6.5Mbps)
11	2462.0	11.9	-6.08 ~ +0.7	(IVICOU U.JIVIDPS)
1	2412.0	10.5	-6.08 ~ +0.7	2.4GHz 802.11n
6	2437.0	12.0	-6.08 ~ +0.7	(MCS7 65Mbps)
11	2462.0	10.0	-6.08 ~ +0.7	

Page: 13 of 491 UL

Version 2.0 Issue Date: 31 July 2013

Nominal and Maximum Output power (Continued):

Wi-Fi802.11a (5.0 GHz)

Power Back-off Not Supported

Channel Number	Frequency (MHZ)	Target (dBm) 6 Mbps	Target (dBm) 54 Mbps	Tolerance (dB)	Note
36	5180.0	11.7	9.1	-6.08 ~ +0.7	
40	5200.0	11.9	9.3	-6.08 ~ +0.7	5.2 GHz
44	5220.0	11.9	9.3	-6.08 ~ +0.7	5.2 GHZ
48	5240.0	11.9	9.3	-6.08 ~ +0.7	
52	5260.0	12.9	10.3	-6.08 ~ +0.7	
56	5280.0	11.7	9.1	-6.08 ~ +0.7	5.3 GHz
60	5300.0	11.7	9.1	-6.08 ~ +0.7	5.3 GHZ
64	5320.0	11.7	9.1	-6.08 ~ +0.7	
100	5500.0	11.6	9.0	-3.06 ~ +0.7	
104	5520.0	11.6	9.0	-3.06 ~ +0.7	
108	5540.0	11.6	9.0	-3.06 ~ +0.7	
112	5560.0	11.6	9.0	-3.06 ~ +0.7	5.6 GHz
116	5580.0	11.6	9.0	-3.06 ~ +0.7	5.6 GHZ
132	5660.0	11.6	9.0	-3.06 ~ +0.7	
136	5680.0	11.6	9.0	-3.06 ~ +0.7	
140	5700.0	10.9	8.3	-3.06 ~ +0.7	
149	5745.0	11.6	9.0	-6.08 ~ +0.7	
153	5765.0	11.6	9.0	-6.08 ~ +0.7	
157	5785.0	11.6	9.0	-6.08 ~ +0.7	5.8 GHz
161	5805.0	11.4	8.8	-6.08 ~ +0.7	
165	5825.0	11.4	8.8	-6.08 ~ +0.7	

Page: 14 of 491 UL

Issue Date: 31 July 2013

Wi-Fi802.11n (HT20) / 802.11 ac (VHT20) (5.0 GHz)

Power Back-off Not Supported

e (dB) Note		Target (dBm)	- ((ID)		
	Tolerance (dB)	65 Mbps	Target (dBm) 6.5 Mbps	Frequency (MHZ)	Channel Number
+0.7	-6.08 ~ +0.7	8.6	11.4	5180.0	36
+0.7 5.2 GHz	-6.08 ~ +0.7	8.6	11.4	5200.0	40
+0.7	-6.08 ~ +0.7	8.6	11.4	5220.0	44
+0.7	-6.08 ~ +0.7	8.6	11.4	5240.0	48
+0.7	-6.08 ~ +0.7	9.6	12.4	5260.0	52
+0.7 5.3 GHz	-6.08 ~ +0.7	8.4	11.2	5280.0	56
+0.7	-6.08 ~ +0.7	8.4	11.2	5300.0	60
+0.7	-6.08 ~ +0.7	8.4	11.2	5320.0	64
+0.7	-3.06 ~ +0.7	8.3	11.1	5500.0	100
+0.7	-3.06 ~ +0.7	8.3	11.1	5520.0	104
+0.7	-3.06 ~ +0.7	8.3	11.1	5540.0	108
+0.7 5.6 GHz	-3.06 ~ +0.7	8.3	11.1	5560.0	112
+0.7	-3.06 ~ +0.7	8.3	11.1	5580.0	116
+0.7	-3.06 ~ +0.7	8.3	11.1	5660.0	132
+0.7	-3.06 ~ +0.7	8.3	11.1	5680.0	136
+0.7	-3.06 ~ +0.7	8.3	11.1	5700.0	140
+0.7	-6.08 ~ +0.7	8.6	11.4	5745.0	149
+0.7	-6.08 ~ +0.7	8.6	11.4	5765.0	153
+0.7 5.8 GHz	-6.08 ~ +0.7	8.6	11.4	5785.0	157
+0.7	-6.08 ~ +0.7	8.6	11.4	5805.0	161
+0.7	-6.08 ~ +0.7	8.1	10.9	5825.0	165

Wi-Fi802.11n (HT40) / Wi-Fi802.11ac (5.0 GHz) (VHT40)

Power Back-off Not Supported

Channel Number	Frequency (MHZ)	Target (dBm) 13.5 Mbps	Target (dBm) 135 Mbps	Tolerance (dB)	Note
38	5190.0	10.3	9.4	-6.08 ~ +0.7	5.2 GHz
46	5230.0	10.3	9.4	-6.08 ~ +0.7	5.2 GHZ
54	5270.0	10.3	9.4	-6.08 ~ +0.7	5.3 GHz
62	5310.0	9.3	8.4	-6.08 ~ +0.7	5.3 GHZ
102	5510.0	10.1	9.2	-3.06 ~ +0.7	
110	5550.0	10.1	9.2	-3.06 ~ +0.7	5.6 GHz
134	5670.0	10.1	9.2	-3.06 ~ +0.7	
151	5755.0	10.1	9.2	-6.08 ~ +0.7	5.8 GHz
159	5795.0	10.1	9.2	-6.08 ~ +0.7	5.6 GHZ

Page: 15 of 491 UL

Issue Date: 31 July 2013

Wi-Fi802.11ac (5.0 GHz) (VHT80)

Band Bluetooth

Power Back-off Not Supported

Channel Number	Frequency (MHZ)	Target (dBm) 13.5 Mbps	Target (dBm) 135 Mbps	Tolerance (dB)	Note
42	5210	9.8	9.1	-6.08 ~ +0.7	5.2 GHz
58	5290	9.8	9.1	-6.08 ~ +0.7	5.3 GHz
106	5530	9.8	9.1	-3.06 ~ +0.7	5.6 GHz
155	5775	9.8	9.1	-6.08 ~ +0.7	5.8 GHz

Nominal and Maximum Output power (Continued):

Power Back-off Not Supported BR EDR BLE Tolerance (dB) 6.0 4.0 0.0 -3.5 ~ +3.5

Note:

- 1. As per KDB865664 D02 SAR Reporting v01, 2.1.4(a), the nominal and maximum average source based rated power, declared by manufacturer are shown in the above tables.
- 2. These are specified maximum allowed average power for all the wireless modes and frequency bands supported as indicated by manufacturer.

Page: 16 of 491 UL

Issue Date: 31 July 2013

3. Test Specification, Methods and Procedures					
3.1. Test Specifica	ation				
Reference:	OET Bulletin 65 Supplement C: (2001-01)				
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.				
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.				
population/uncontroll	er Test complied with the Specific Absorption Rate for general ed exposure limit of 1.6 W/kg as specified in FCC 47 CFR part 2 (2.1093) and d has been tested in accordance with the reference documents in section 3.2 of				

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

IEEE 1528: 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

FCC KDB Publication:

KDB 248227 D01 SAR meas for 802 11 a b g v01r02

KDB 447498 D01 General RF Exposure Guidance v05r01

KDB 648474 D04 Handset SAR v01r01

KDB 941225 D01 SAR test for 3G devices v02

KDB 941225 D02 HSPA and 1x Advanced v02r02

KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE vo1

KDB 941225 D04 SAR for GSM E GPRS Dual Xfer Mode v01

KDB 941225 D05 SAR for LTE Devices v02r02

KDB 941225 D06 Hotspot Mode SAR v01r01

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01

KDB 865664 D02 RF Exposure Reporting v01r01

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

Page: 17 of 491 UL

Version 2.0 Issue Date: 31 July 2013

4. Equipn	4. Equipment Under Test (EUT)									
4.1. Ident	ification o	f Equipr	nent Und	der Test	(EUT)					
Description :	Smartphone	Handset								
Brand Name:	Sony									
Type Number:	PM-0460-B\	/								
Serial Number:	CB5124U6 P5	CB5124U 6ER	CB5124U 6MZ	CB5124U 6JD	CB5124T WPT	CB5124U6 HX	CB5124U 6N3	CB5124U6F Q	CB5124U5 PB	
IMEI Number:	00440245- 126379-6	-196401196381196380195403195403-								
Hardware Version Number:	AP2.0									
Software Version Number:	14.1.G.1.241	1				s_atp_hona	mi_1_25_1			
FCC ID Number:	PY7PM-046	0								
IC Number:	4170B-PM04	4170B-PM0460								
Country of Manufactur e:	China									
Date of Receipt:	01 July 2013	3								
Note(s):										

- IMEI: 00440245-126379-6 used to perform GSM850 and PCS1900 SAR measurements only. 1.
- IMEI: 00440245-126401-8 used to perform UMTS FDD 2, 4 and 5 SAR measurements only.
- 3. IMEI: 00440245-126381-2 used to perform LTE Band 2, LTE Band 4, LTE Band 5, LTE Band 7 and LTE Band 17 Head SAR measurements only.
- 4. IMEI: 00440245-126380-4 used to perform LTE Band 17 Body SAR measurements only.
- 5. IMEI: 00440245-125493-6 used to perform WWAN conducted power measurements only.
- IMEI: 00440245-126402-6 used to perform WLAN 2.4GHz SAR measurements only. 6.
- 7. IMEI: 00440245-126416-6 used to perform WLAN 5GHz Hed SAR measurements only.
- IMEI: 00440245-126399-4 used to perform WLAN 5GHz Body SAR measurements only. 8.
- IMEI: 00440245-125486-0 used to perform WLAN conducted power measurements only.

Auto RF Power Back-off' mode facility is available on 'Hotspot Mode Configuration of UMTS FDD 2 and UMTS FDD 4 bands only. When Hotspot mode is activated, in all operating modes, the maximum output power level in UMTS Band 2 will not exceed 23.5 dBm, and UMTS Band 4 will not exceed 23.5 dBm.

Page: 18 of 491 UL

Issue Date: 31 July 2013

4.2. Description of EUT

The Equipment Under Test (EUT) is a model of GSM/UMTS/LTE mobile phone with integrated antenna and inbuilt Li-Polymer battery. The EUT supports GSM 850/900/1800/1900MHz bands, WCDMA FDD bands 1/2/4/5/8 and LTE FDD bands 1/2/4/5/7/8/17. It also supports GPRS service with multi-slots class 33 and EDGE service with multi-slots class 33. The EUT supports Dual Transfer Mode (DTM Class 11) on GSM voice and GPRS Data (or EDGE Data), HSPA with HSDPA (Categoray 24) and HSUPA (Category 6), LTE Release 9. It has MP3, camera, FM radio, USB memory, GPS receiver, NFC, Mobile High-Definition Link (MHL), Bluetooth (EDR and Bluetooth 4.0), WLAN (802.11 a/b/g/n/ac), Wi-Fi hotspot functions with 'Auto RF Power Back-Off' and RFID mode capabilities.

4.3. Modifications Incorporated in the EUT

There were no modification during the course of testing the device

4.4. Accessories

The following accessories were supplied with the EUT during testing:

	o o o o ppo a = o .	3	
Description:	Memory Card (2 GB)	Personal Hands-Free Kit (PHF)	Dummy Battery
Brand Name:	None Stated	Sony	None Stated
Model Name or Number:	None Stated	MH750	None Stated
Serial Number:	None Stated	12060C160061850	None Stated
Cable Length and Type:	Not Applicable	~1.2 m	~0.5m
Country of Manufacture:	China	None Stated	None Stated
Connected to Port	Micro SD Slot	3.5mm Audio jack and custom type	Unique to Manufacturer

Note(s):

This Dummy Battery was only used to perform conducted power measurements.

4.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Communication	Communication	Communication	Communication	Communication
	Test Set	Test Set	Test Set	Test Set	Test Set
Brand Name:	Agilent	Agilent	Agilent	Agilent	Anritsu
Model Name or Number:	8960 Series 10 (E5515C)	8960 Series 10 (E5515E)	8960 Series 10 (E5515E)	E6621A (PXT)	MT8820C
Serial Number:	GB46311280	GB46200666	MY52112050	KR50230109	6200938937
Cable Length and Type:	~4.0m Utiflex	~4.0m Utiflex	~4.0m Utiflex	~4.0m Utiflex	~4.0m Utiflex
	Cable	Cable	Cable	Cable	Cable
Connected to Port:	RF (Input / Output)	RF (Input / Output)	RF (Input / Output)	RF (Input / Output)	RF (Input / Output)
	Air Link	Air Link	Air Link	Air Link	Air Link

Page: 19 of 491 UL

Issue Date: 31 July 2013

4.6. Additional Information Related to Testing					
Equipment Category	2G GSM / PCS	TDMA 8	50 / 1900	Voice, DTM, GPRS, EDGE Data	
	3G UMTS Band	FDD 2/	4/5	RMC12.2 Kbps / HSDPA (Cat 24) / HSUPA (Cat 6)Data	
	4G LTE Band	FDD 2/	4 / 5 / 7/ 17 Data		
	Wi-Fi Band (2.4 / 5.0)) GHz	Data 802.11a/b/g/n/ac	
Type of Unit	Portable Transceiver	•			
Intended Operating Environment:	Within GSM, UMTS, Uncontrolled Exposu	,		h Coverage for General Population /	
Transmitter Maximum Output Power Characteristics:	GSM850		EUT to trans	tion Test Set was configured to allow the smit at a maximum power using Power el (PCL) setting of 5.	
	PCS1900		EUT to trans	tion Test Set was configured to allow the smit at a maximum power using Power el (PCL) setting of 0.	
	UMTS FDD 2			tion Test Set configured to allow to EUT to maximum power as per KDB 941225 D01.	
	UMTS FDD 4		Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.		
	UMTS FDD 5		Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.		
	LTE Band 2		Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D05.		
	LTE Band 4		Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D05.		
	LTE Band 5		Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D05.		
	LTE Band 7		Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D05.		
	LTE Band 17		Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D0		
	2.4 GHz Wi-Fi 802.11b/g/n		Test Software was used to configure the EUT to transmit at a maximum power of up to 15.9 dBm.		
	5.0 GHz Wi-Fi 802.11a		Test Software was used to configure the EUT to transmit at a maximum power of up to 12.7 dBm.		
	5.0 GHz Wi-Fi 802.11n (HT20 / HT40)		Test Software was used to configure the EUT to transmit at a maximum power of up to 12.5 dBm for HT20 and 10.8 dBm for HT40.		
	5.0 GHz Wi-Fi 802.11ac (VHT20 / VHT40 / VHT80)		Test Software was used to configure the EUT to transmit at a maximum power of up to 11.9 dBm for VHT20, 10.7 dBm for VHT40 and 10.5 dBm for VHT80		
	Bluetooth		:= 8.91 mW	or ~9.5 dBm	

Page: 20 of 491 UL

Issue Date: 31 July 2013

Additional Information Related to Testing (Continued): Transmitter Frequency Range: GSM850 824 to 849 MHz PCS1900 1850 to 1910 MHz UMTS FDD 2 1852 to 1908 MHz UMTS FDD 4 1712 to 1753 MHz UMTS FDD 5 826 to 847 MHz LTE Band 2 1850 to 1910 MHz LTE Band 4 1710 to 1755 MHz LTE Band 5 824 to 849 MHz LTE Band 7 2500 to 2570 MHz 704 to 716 MHz LTE Band 17 2.4 GHz Wi-Fi 802.11b/g/n 2412 to 2462 MHz 5.0 GHz Wi-Fi 802.11a/n 5180 to 5825 MHz (HT20 / HT40) 5.2 GHz Wi-Fi (20 MHz / 40 5170 to 5250 MHz MHz / 80 MHz) 5.3 GHz Wi-Fi (20 MHz / 40 5250 to 5330 MHz MHz / 80 MHz) 5.6 GHz Wi-Fi (20 MHz / 40 5490 to 5600 MHz MHz / 80 MHz) 5.6 GHz Wi-Fi (20 MHz / 40 5650 to 5710 MHz MHz) 5.8 GHz Wi-Fi (20 MHz / 40 5735 to 5835 MHz MHz / 80 MHz) Bluetooth 2402 to 2480 MHz Frequency **Transmitter Frequency Allocation of Channel Number** Channel **Bands EUT When Under Test:** Description (MHz) 128 824.2 Low GSM850 190 Middle 836.6 251 High 848.8 512 Low 1850.2 PCS1900 661 Middle 1880.0 High 810 1909.8 Low 9262 1852.4 UMTS FDD 2 9400 Middle 1880.0 9538 High 1907.6 1312 Low 1712.4 UMTS FDD 4 1412 Middle 1732.6 1513 High 1752.6 4132 Low 826.4 UMTS FDD 5 Middle 836.6 4183 4233 High 846.6 18700 Low 1860.0 LTE Band 2 18900 Middle 1880.0 19100 1900.0 High

Page: 21 of 491 UL

Issue Date: 31 July 2013

Additional Information Related to Testing (Continued) Transmitter Frequency Allocation of Channel Number Channel Frequency Bands **EUT When Under Test:** Description (MHz) 20050 Low 1720.0 LTE Band 4 20175 Middle 1732.5 (20 MHz BW) 20300 High 1745.0 829.0 20450 Low LTE Band 5 20525 Middle 836.5 (10 MHz BW) 20600 High 844.0 20850 Low 2510.0 LTE Band 7 Middle 21100 2535.0 (20 MHz BW) 21350 2560.0 High 23780 Low 709.0 LTE Band 17 23790 Middle 710.0 (10 MHz BW) 23800 High 711.0 **Transmitter Frequency Allocation of** Band: 2.4 / 5.0 GHz Wi-Fi 802.11a/n/AC (HT20 / HT40/HT80) **EUT When Under Test:** Frq. Frq. Frg. 20 MHz 40 MHz 80 MHz Rule BW Ch.# BW Ch.# (MHz) BW Ch.# (MHz) (MHz) 2412.0 1 15.247 2437.0 6 2462.0 11 38 5190.0 36 5180.0 42 5210.0 40 5200.0 5.2 U-NII 5230.0 44 5220.0 46 5240.0 48 54 5270.0 52 5260.0 56 5280.0 58 5290.0 5.3 U-NII 60 5300.0 62 5310.0 5320.0 64 5510.0 100 5500.0 102 104 5520.0 106 5530.0 5540.0 110 5550.0 108 5560.0 112 5.6 U-NII 5580.0 116 132 5660.0 134 5670.0 136 5680.0 140 5700.0 149 151 5755.0 5745.0 U-NII or 153 5765.0 155 5775.0 15.247 157 5785.0 159 5795.0 161 5805.0 15.247 165 5825.0

Page: 22 of 491 UL

Serial No: UL-SAR-RP RP10014945JD13A V2.0 Issue Date: 31 July 2013

Additional Information Related	to Testing (Continued)				
Modulation(s):	GMSK (GSM/ GPRS): QPSK(UMTS / HSDPA/HSPA): DBPSK, BPSK, CCK (Wi-Fi): QPSK, 16QAM (LTE):	217 Hz 0Hz 0 Hz 0 Hz			
Modulation Scheme (Crest Factor for technologies SAR tested):					
Antenna Type:	Internal integral				
Antenna Length:	Unknown				
Number of Antenna Positions:	WWAN ~ LTE / UMTS / GSM WWAN Diversity (Rx only) ~ LTE / UMTS / GPS WLAN/ BT NFC/Felica				
Power Supply Requirement:	4.2 V (Nominal)				
Battery Type(s):	In built Li-ion				

Add	Additional Information Related to LTE Test parameter					
#	Description	Parameter				
1	Identify the operating frequency range of each LTE transmission FCC band used by the device	Band 2: frequency range – 1850 MHz– 1910 MHz Band 4: frequency range – 1710 MHz– 1755 MHz Band 5: frequency range – 824 MHz– 849 MHz Band 7: frequency range – 2502 to 2568 MHz Band 17: frequency range – 706.5 to 713.5 MHz				
2	Identify the channel bandwidths used in each frequency band; e.g.: 1.4, 3, 5, 10, 15, 20 MHz etc.	Channel Bandwidths used are: B2 (1.4, 3, 5, 10, 15, 20) MHz B4 (1.4, 3, 5, 10, 15, 20) MHz B5 (1.4, 3, 5, 10) MHz B7 (5, 10, 15, 20) MHz B17 (5, 10) MHz				
3	Identify the high, middle and low (L, M, H) channel numbers and frequencies tested in each LTE frequency band	B2 -20 MHz (H,M,L)= (18700, 18900, 19100) (1860, 1880, 1900) MHz B4 -20 MHz (H,M,L)= (20050, 20175, 204300) (1720, 1732.5, 1745) MHz B5 -10MHz (H,M,L)= (20600, 20525, 20450) (844.0, 836.5, 829.0) MHz B7 -20MHz (H,M,L)= (20850, 21100, 21350) (2510, 2530, 2560) MHz B17 -10MHz (H,M,L)= (20780, 20790, 20800) (709, 710, 711) MHz				
4	Specify the UE category and uplink modulations used	The UE Category is 4 and the Uplink modulations used are QPSK, 16QAM.				

Page: 23 of 491 UL

Issue Date: 31 July 2013

Description Parameter (Continued): # Description Parameter 5 Descriptions of the LTE transmitter and antenna implementation & identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware components and/or antenna(s) with other transmitters etc. Parameter This model (PM-0460-BV) has only one main antenna for LTE/UMTS/GSM bands (as pictured in appendix 10).

Page: 24 of 491 UL

Issue Date: 31 July 2013

Add	Additional Information Related to LTE Test parameter (Continued):				
#	Description	Parameter			
6	Identify the LTE Band Voice/data requirements in each operating mode and exposure condition with respect to head and body test configurations, antenna locations, handset flip-cover or slide positions, antenna diversity conditions, etc.	The following exposure condition with respect to head and body test are required for both voice and data modes due to EUT functionality and antenna locations. 1) Body-worn SAR is required at 15 mm separation distance 2) Mobile Hot Spot Mode will be tested by positioning the smart phone with 10 mm separation distance. - Wireless Personal Hotspot mode with consideration for the Front Display of EUT, Back of EUT, Left Hand side of EUT, Right Hand side of EUT, Top Edge of EUT and Bottom Edge of EUT with respect to the antenna location. The test separation distance between the EUT edge and phantom flat surface for this mode will be 10mm as the dimensions of the device is > 9cm x 5cm. 3) Head SAR is required in LTE mode as this model supports SVLTE operation. Top Right hand side			
7	Identify if Maximum Power Reduction (MPR) is optional or mandatory, i.e. built-in by design: a) only mandatory MPR may be considered during SAR testing, when the maximum output power is permanently limited by the MPR implemented within the UE; and only for the applicable RB (resource block) configurations specified in LTE standards b) A-MPR (additional MPR) must be Not Supported.	The EUT incorporates MPR as per 36.101 as shown in the section 7.2. MPR cannot be Not Supported after the phone is manufactured, MPR is mandatory. * Target MPR			
8	Include the maximum average conducted output power measured on the required test channels for each channel bandwidth and UL modulation used in each frequency band: a) using 1 RB allocated at the low edge, centered and high edge of a channel b) using 50% RB allocated at the low edge, centered and high edge of a channel c) using 100% RB allocation	This is included in the section 7.2 of this report.			

Page: 25 of 491 UL

Issue Date: 31 July 2013

Additional Information Related to LTE Test parameter (Continued):

Description # **Parameter** 9 Identify all other U.S. wireless The following bands are supported for the exposure conditions operating modes (3G, Wi-Fi, WiMax, 1) GSM (850/1900) and UMTS FDD (850, 1700, 1900) Bluetooth etc), device/exposure - Exposure conditions: Head/Body worn SAR required for GSM / configurations (head and body, UMTS FDD and wireless personal hotspot. DTM is supported. antenna and handset flip-cover or 2) Bluetooth 2.4GHz (Basic Rate & EDR) slide positions, antenna diversity - Exposure conditions: BT SAR is not required as maximum output conditions etc.) and frequency bands power < 19 mW threshold value for separation distance of 10mm used for these modes & antenna separation distance > 5cm. 3) WiFi 2.4GHz - Exposure conditions: Head/Body SAR required for wireless personal hotspot. No power reduction. 4) WiFi 5 GHz - Exposure conditions: Head/Body SAR required for wireless personal hotspot. No power reduction 10 Include the maximum average This is included in the section 7.2 of this report. conducted output power measured for the other wireless mode and frequency bands 11 Identify the simultaneous transmission conditions for the voice and data configurations supported by all

Simultanenous Transmission Combination:

	WWAN					WLAN		WPAN	
	LTE Voice/ Data	GSM Voice	GPRS/EDGE Data	UMTS Voice	UMTS Data	WiFi 2.4 GHz	WiFi 5.0 GHz	ВТ	
1	Х					X			
2			X			Χ			
3					Χ	Χ			
4		X				Χ			
5				Χ		Χ			
6		X					Χ		
7				Χ			X		
8	X							Χ	
9			X					Χ	
10					Χ			Χ	
11		X DTM	X DTM			X			
12		X						Χ	
13				X				Χ	

wireless modes, device configurations and frequency bands, for the head and body exposure conditions and

device operating configurations (handset flip or cover positions, antenna diversity conditions etc.)

X Simultaneous transmission supported

0 No simultaneous transmission supported

Bluetooth average power measurement is below the rated threshold therefore Individual SAR will not be tested. Sim_Tx consideration will be based on the estimated SAR level.

WiFi Hotspot Combination:

	WiFi Hotspot Combinations Only							
	WWAN WLAN							
	LTE Band Voice/Data GPRS/EDGE Data UMT		UMTS Data	WiFi 2.4GHz	WiFi 5GHz			
1	Χ			Χ	0			
2		Χ		Χ	0			
3			X	Х	0			

Page: 26 of 491 UL

Issue Date: 31 July 2013

#	Description	Parameter
12	When power reduction is applied to certain wireless modes to satisfy SAR compliance for simultaneous transmission conditions, other equipment certification or operating requirements, include the maximum average conducted output power measured in each power reduction mode applicable to the simultaneous voice/data transmission configurations for such wireless configurations and frequency bands; and also include details of the power reduction implementation and measurement setup	Not applicable.
13	Include descriptions of the test equipment, test software, built-in test firmware etc. required to support testing the device when power reduction is applied to one or more transmitters/antennas for simultaneous voice/data transmission	Anritsu MT8820C and Agilent PXT communication simulator Communication tester which support LTE modes (voice/data) were used for testing.
14	When appropriate, include a SAR test plan proposal with respect to the above.	Not Applicable
15	If applicable, include preliminary SAR test data and/or supporting information in laboratory testing inquiries to address specific issues and concerns or for requesting further test reduction considerations appropriate for the device; for example simultaneous transmission configurations.	Not Applicable

Page: 27 of 491 UL

this report.

Serial No: UL-SAR-RP RP10014945JD13A V2.0

Issue Date: 31 July 2013

5. Deviations from the Test Specification

Test was performed as per reference documents and FCC KDB publication procesdures listed in section 3.2 of

Prior to testing the FCC was contacted for SAR evaluation and testing was performed as per response on DC-HSDPA (Cat 24), WiFi 802.11ac and power back-OFF support for UMTS FDD 2 and FDD 4. The resulting quidance for each KDB inquiry was obtained as follows:

DC-HSDPA (Cat 24):

'Apply KDB 941225 Rel 6. HSPA procedures to determine SAR exclusion for HSPA+ and DC-HSDPA according to the measured power, if measured maximum output power for HSPA+ or DC-HSDPA is $\leq \frac{1}{4}$ dB higher than the WCDMA 12.2 kbps RMC maximum output and when maximum SAR for 12.2 kbps RMC is \leq 75% of SAR limit, SAR is not required'.

WiFi802.11ac:

'Apply usual 802.11 test exclusion considerations, but include 802.11ac SAR for highest 802.11a configuration in each 5 GHz band and each exposure condition.'

Power Back OFF:

'The power reduction scheme was accepted by FCC, a PBA is not required.'

The following settings were used for DC-HSDPA:

Apply FRC H-Set 12 (QPSK) in Table C.8.1.12 of TS 34.121-1 to measure DC-HSDPA uplink maximum output power using the 4 Rel. 5 HSDPA subtests in Table C.10.1.4 of TS 234.121-1

For informational purpose: GPRS clas33 / uplink setup of 1-uplink, 2-uplink, 3-uplink and 4-uplink & DTM setup were all evaluated to find the setting with the highest power reference point (unit v/m) as per the DASY4 system. 4-uplink was found to give the highest power reference point measurement on the DASY4 system (unit v/m) for GPRS850 and for GPRS1900 Hotspot mode measurements and DTM11 was found to give highest power reference measurement for head and Body-Worn measurements. All settings were performed with the device in a fixed position Back facing phantom at 0mm separation to ensure there were no positioning errors. The following values were measured relative to the uplink settings:

GPRS Mode	GPRS850 Power reference (v/m)	GPRS1900 Power reference (v/m)
1 uplink	11.97	5.67
2 uplink	13.59	6.38
3 uplink	15.15	6.89
4 uplink	15.37	7.07
DTM Mode	GSM850 Power reference (v/m)	PCS1900 Power reference (v/m)
DTM Mode DTM 5(2uplink, 2downlink)		
111	Power reference (v/m)	Power reference (v/m)

Page: 28 of 491 UL

Version 2.0 Issue Date: 31 July 2013

6. Operation and Configuration of the EUT during Testing

6.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- GSM850 DTM 11 (Voice + Data) allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 5.
- GPRS850 Data allocated mode with Communication Test Set configured to allow the EUT to transmit
 at a maximum power using Power Control Level (PCL) setting of 5. Tested using 4 Uplink time slots with
 CS1 for GPRS.
- PCS1900 DTM 11 (Voice + Data) allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0.
- GPRS1900 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0. Tested using 4 Uplink time slots with CS1 for GPRS.

GSM850:	16 7 40 4
Power Control Level PCL	Nominal Power (dBm)
0 2	39
3	37
4	35
5	33
6	31
7	29
8	27
9	25
10	23
11	21
12	19
13	17
14	15
15	13
16	11
17	9
18	7
19 31	5

PCS1900:	16.7.404
Power Control Level PCL	Nominal Power (dBm)
22 29	Reserved
30	33
31	32
0	30
1	28
2	26
3	24
4	22
5	20
6	18
7	16
8	14
9	12
10	10
11	8
12	6
13	4
14	2
15	0
16 21	Reserved

DTM Time slot settings per multislot class:

Mulitslot Class	Max. number of downlink slots	Max. number of uplink slots	Max. sum of uplink and downlink
5	2	2	4
6	3	2	4
9	3	2	5
10	4	2	5
11	4	3	5
31, 36	5	2	6
32, 37	5	3	6
34, 39	5	5	6
41	6	2	7
42	6	3	7
45	6	6	7

Page: 29 of 491 UL

Issue Date: 31 July 2013

Operating Modes (Continued)

- UMTS FDD 2, 4, 5 RMC 12.2kbps allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum as per KDB 941225 D01.
- UMTS FDD 2, 4, 5 RMC 12.2kbps + HSDPA with Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 with Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.
- UMTS FDD 2, 4, 5 RMC 12.2kbps + HSUPA with Test loop mode 1 and TPC bits configured to all "1's", Sub-test 5, AG Index set to 21 and E-TFCI set to 81 with Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.
- UMTS FDD 2, 4, 5 RMC 12.2kbps + DC HSDPA (Cat 24) with Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 with Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01. (See Appendix 9 for detailed description)
- LTE Band 2, 4, 7 data allocated mode at QPSK on the 20MHz BW channels, using a Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D05.
- LTE Band 5, 17 data allocated mode at QPSK on the 10MHz BW channels, using a Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D05.
- 2.4 GHz WiFi802.11b/g/n Data allocated mode using 'HyperTerminal' software to excise mode 'b', 'g' and 'n', with maximum power of up to 15.9 dBm for 'b' mode and 14.8 dBm for 'g' and 13.9 dBm for 'n' modes.
- 5.0 GHz WiFi802.11a/n/ac Data allocated mode using 'HyperTerminal' software to excise mode 'a' and 'n', with maximum power of up to 12.7dBm for 'a' mode, 12.5 dBm for 'n' mode and 11.9dBm for 'ac' mode
- As per 648474 D04 SAR Handsets Multi Xmiter and Ant v01, "When the reported SAR for a body-worn
 accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported
 SAR configuration for that wireless mode and frequency band should be repeated for that body-worn
 accessory with a headset attached to the handset". Hence, Body worn configurations were not
 evaluated with PHF attached.

Activating the 'Portable Wi-Fi hotspot mode'

- · Go to the home screen of the EUT
- Press the 'Applications' icon on the screen of the device and then tap "Settings".
- On the Settings screen, tap the "Wireless & networks" option, followed by "Portable Wi-Fi hotspot".
- Click the check mark beside it to turn on the hotspot and the EUT starts acting like a wireless access
 point. (It should also see a message in the notification bar when it's activated.).
- Once 'Portable Wi-Fi Hotspot' mode is activated, it is active until it is deactivated by the user.
- 'Auto RF Power Back-off' mode facility is available on 'Hotspot Mode Configuration of UMTS Band 2 and Band 4 only. There is no power back-off to the WLAN 2.4 GHz or WLAN 5.0 GHz.
- Once the 'Portable Wi-Fi hotspot' mode is activated, the 'Auto RF Power Reduction' mode is active. This
 enables 'Power Back-Off' and the RF power gets reduced on the specific band on which it is supported..
 Once 'Auto RF Power Back-off' mode is activated, power reduction applies until 'Portable Wi-Fi hotspot'
 is deactivated by the user.

Page: 30 of 491 UL

Issue Date: 31 July 2013

6.1. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- Standalone fully charged battery powered.
- Head, Hotspot Mode and Body-worn configurations were evaluated.
- The applied FCC body-worn Personal Hotspot orientations where the corresponding edge(s) closest to
 the user with the most conservative exposure condition were all evaluated at 10 mm from the body. For
 modes and configuration that did not overlap with Personal hotspot, SAR evaluation was performed at
 15mm separation.
- GPRS clas33 / uplink setup of 1-uplink, 2-uplink, 3-uplink and 4-uplink & DTM setup were all evaluated
 to find the setting with the highest power reference point (unit v/m) as per the DASY system. 4-uplink
 was found to give the highest power reference point measurement for GPRS850 and for GPRS1900
 Hotspot mode measurements and DTM11 was found to give highest power reference measurement for
 Head and Body-Worn measurements. All settings were performed with the device in a fixed position
 'Back facing phantom' at 0mm separation to ensure there were no positioning errors. These
 measurements were performed for information purpose only.
- DTM Class11, GPRS and EDGE Class 33 power measurement were all measured as per FCC pubs.
 941225 D03 and 941225 D04. Although power reduction was allowed SAR test was performed on GPRS using GMSK. Test reduction was applied to EDGE using GMSK and 8PSK modulation scheme.

Head Configuration

- a) The EUT was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the EUT was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the EUT was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the EUT was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater then 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Page: 31 of 491 UL

Issue Date: 31 July 2013

6.2. Configuration Consideration							
Technology Antenna	Configuration	Antenna-to- User Separation	Position	Antenna-to- Edge Separation	Evaluation Considered		
			Touch Left	<25mm	Yes		
	Head	0mm	Tilt Left	<25mm	Yes		
	пеац	OHIIII	Touch Right	<25mm	Yes		
			Tilt Right	<25mm	Yes		
			Front	<25mm	Yes		
WWAN			Back	<25mm	Yes		
VVVVAIN	Hotopot	10mm	Top Edge	>25mm	No		
	Hotspot	10mm	Bottom Edge	<25mm	Yes		
			Right Edge	<25mm	Yes		
			Left Edge	<25mm	Yes		
	Body	15mm	Front	<25mm	Yes		
			Back	<25mm	Yes		
	Head	0mm	Touch Left	<25mm	Yes		
			Tilt Left	<25mm	Yes		
			Touch Right	<25mm	Yes		
			Tilt Right	<25mm	Yes		
			Front	<25mm	Yes		
WLAN			Back	<25mm	Yes		
WLAIN	Hotspot	10mm	Top Edge	>25mm	No		
	Πυιδρυι	TOTTITI	Bottom Edge	<25mm	Yes		
			Right Edge	<25mm	Yes		
			Left Edge	>25mm	No		
	Б.,	15mm	Front	<25mm	Yes		
	Body	15111111	Back	<25mm	Yes		

1. Test distances are as per FCC KDB publication 447498 D01v05 for mobile handsets.

Page: 32 of 491 UL

Version 2.0 Issue Date: 31 July 2013

6.3. SAR Test Exclusion Consideration

	Configuration(s)							
Frequency Band	Head	Exclusion Thershold	Hotspot Mode	Exclusion Thershold	Body-worn	Exclusion Thershold		
GSM850	No	>3.0	No	>3.0	No	>3.0		
PCS1900	No	>3.0	No	>3.0	No	>3.0		
UMTS FDD 2	No	>3.0	No	>3.0	No	>3.0		
UMTS FDD 4	No	>3.0	No	>3.0	No	>3.0		
UMTS FDD 5	No	>3.0	No	>3.0	No	>3.0		
LTE Band 2	No	>3.0	No	>3.0	No	>3.0		
LTE Band 4	No	>3.0	No	>3.0	No	>3.0		
LTE Band 5	No	>3.0	No	>3.0	No	>3.0		
LTE Band 7	No	>3.0	No	>3.0	No	>3.0		
LTE Band 17	No	>3.0	No	>3.0	No	>3.0		
WLAN 2.4 GHz (802.11b)	No	>3.0	No	>3.0	No	>3.0		
WLAN 5.0 GHz (802.11a)	No	>3.0	No	>3.0	No	>3.0		
WLAN 5.0 GHz (802.11ac) ³	No	>3.0	Yes	<3.0	Yes	<3.0		
Bluetooth ¹	N/A	N/A	Yes	<3.0	Yes	<3.0		

Note:

1. As per KDB 447498 D01 General RF Exposure Guidance v05, The Frequency Bands with Rated Power including Upper tolerance, which qualify for **Standalone SAR Test Exclusion**, are as per the above table.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $\lceil \sqrt{f_{\text{GHz}}} \rceil \le 3.0 \text{ for } 1-g \text{ SAR and } \le 7.5 \text{ for } 10-g \text{ extremity SAR, where}$

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

For the SAR Test Exclusion consideration, the Maximum Target power + Upper tolerance for Bluetooth = 6.0 + 3.5 = 9.5 dBm ($\sim 8.91 \text{ mW}$) is considered.

Applying the above formula for Bluetooth Hotspot Mode we get:

For 2450MHz, $[(8.91)/10]*[\sqrt{2.45}] = 1.4 \le 3.0$

Applying the above formula for Bluetooth Body-worn we get:

For 2450MHz, $[(8.91)/15]*[\sqrt{2.45}] = 0.93 \le 3.0$

Hence, testing is not required on *Bluetooth* Hotspot Mode and Body-worn configurations.

- 2. The details for the *Maximum Rated Power* and tolerance(s) can be found in section 2.5.
- 3. The details of SAR Test Exclusion Consideration for WLAN 5.0 GHz 802.11ac is included in section 6.4

Page: 33 of 491 UL

Issue Date: 31 July 2013

requency (GHz)	Power (mW)	Separation Distance (mm)	Exclusion Threshold	Test Required (Y / N)	Exposurer Config		
WiFi802.11ac HT40							
5.19	12.59	5	5.74	Υ	Head		
5.19	12.59	10	2.87	N	Hotspot		
5.19	12.59	15	1.91	N	Body-worn		
5.23	12.59	5	5.76	Y	Head		
5.23	12.59	10	2.88	N	Hotspot		
5.23	12.59	15	1.92	N	Body-worn		
5.27	12.59	5	5.78	Υ	Head		
5.27	12.59	10	2.89	N	Hotspot		
5.27	12.59	15	1.93	N	Body-worn		
5.31	10.00	5	4.61	Y	Head		
5.31	10.00	10	2.30	N	Hotspot		
5.31	10.00	15	1.54	N	Body-worn		
5.51	12.02	5	5.64	Y	Head		
5.51	12.02	10	2.82	N			
5.51	12.02		1.88	N	Hotspot		
		15 5			Body-worn		
5.55	12.02		5.66	Y	Head		
5.55	12.02	10	2.83	N	Hotspot		
5.55	12.02	15	1.89	N	Body-worn		
5.67	12.02	5	5.73	Y	Head		
5.67	12.02	10	2.86	N	Hotspot		
5.67	12.02	15	1.91	N	Body-worn		
5.755	12.02	5	5.77	Y	Head		
5.755	12.02	10	2.88	N	Hotspot		
5.755	12.02	15	1.92	N	Body-worn		
5.795	12.02	5	5.79	Y	Head		
5.795	12.02	10	2.89	N	Hotspot		
5.795	12.02	15	1.93	N	Body-worn		
			1ac HT80				
5.21	11.22	5	5.12	Υ	Head		
5.21	11.22	10	2.56	N	Hotspot		
5.21	11.22	15	1.71	N	Body-worn		
5.29	11.22	5	5.16	Υ	Head		
5.29	11.22	10	2.58	N	Hotspot		
5.29	11.22	15	1.72	N	Body-worn		
5.53	11.22	5	5.28	Y	Head		
5.53	11.22	10	2.64	N	Hotspot		
5.53	11.22	15	1.76	N	Body-worn		
5.775	11.22	5	5.39	Υ	Head		
5.775	11.22	10	2.70	N	Hotspot		
5.775 ote:	11.22	15	1.80	N	Body-worn		

Note:

Page: 34 of 491 UL

Threshold: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] *[$\sqrt{f_{(GHz)}}$] \leq **3.0** for 1-g SAR 2. For the SAR Test Exclusion consideration, the Maximum Target power + Upper tolerance for is

considered.

Version 2.0 Issue Date: 31 July 2013

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Page: 35 of 491 UL

Issue Date: 31 July 2013

7.2. Conducted Power Measurements7.2.1.Conducted Average Power Measurement 2G: GSM850Power Back-off Not Supported

Band: GSM 850		Burst A	Burst Avg. Power (dBm)			Frame Average Power (dBm)		
Channel		128	190	251	128	190	251	
Frequency (MHz)		824.2	836.6	848.8	824.2	836.6	848.8	
GSM (GMSK, 1Tx Slot)		33.1	33.1	33.3	24.1	24.1	24.3	
GPRS (GMSK,	1 Tx Slot) - CS1	33.2	33.1	33.3	24.2	24.1	24.3	
GPRS (GMSK, 2 Tx Slot) - CS1		31.3	31.3	31.5	25.3	25.3	25.5	
GPRS (GMSK, 3 Tx Slot) - CS1		30.5	30.4	30.3	26.2	26.1	26.0	
GPRS (GMSK, 4 Tx Slot) - CS1		29.3	29.3	29.3	26.3	26.3	26.3	
EDGE (GMSK, 1 Tx Slot) - MCS1		33.2	33.1	33.3	24.2	24.1	24.3	
EDGE (GMSK, 2 Tx Slot) - MCS1		31.3	31.3	31.5	25.3	25.3	25.5	
EDGE (GMSK, 3 Tx Slot) - MCS1		30.5	30.4	30.3	26.2	26.1	26.0	
EDGE (GMSK, 4 Tx Slot) - MCS1		29.3	29.3	29.3	26.3	26.3	26.3	
EDGE (8PSK, 1 Tx Slot) - MCS9		27.4	27.3	27.3	18.4	18.3	18.3	
EDGE (8PSK, 2 Tx Slot) - MCS9		25.1	25.1	25.1	19.1	19.1	19.1	
EDGE (8PSK, 3 Tx Slot) - MCS9		24.2	24.1	24.2	19.9	19.8	19.9	
EDGE (8PSK, 4 Tx Slot) - MCS9		23.4	23.3	23.3	20.4	20.3	20.3	
DTM 5 (2Tx Slot)	GSM (GMSK, 1Tx Slot)	31.1	31.1	31.3	25.1	25.1	25.3	
	GPRS (GMSK, 1 Tx Slot) - CS1	31.2	31.1	31.3	25.2	25.1	25.3	
DTM 9 (2Tx Slot)	GSM (GMSK, 1Tx Slot)	31.2	31.2	31.3	25.2	25.2	25.3	
	GPRS (GMSK, 1 Tx Slot) - CS1	31.1	31.1	31.3	25.1	25.1	25.3	
DTM 11 (3Tx Slot)	GSM (GMSK, 1Tx Slot)	30.4	30.3	30.3	26.1	26.0	26.0	
	GPRS (GMSK, 2 Tx Slot) - CS1	30.5	30.4	30.3	26.2	26.1	26.0	
DTM 5 (2Tx Slot)	GSM (GMSK, 1Tx Slot)	31.1	31.1	31.3	25.1	25.1	25.3	
	EDGE (GMSK, 1 Tx Slot) - MCS1	31.1	31.1	31.3	25.1	25.1	25.3	
DTM 9 (2Tx Slot)	GSM (GMSK, 1Tx Slot)	31.1	31.1	31.3	25.1	25.1	25.3	
	EDGE (GMSK, 1 Tx Slot) - MCS1	31.2	31.1	31.2	25.2	25.1	25.2	
DTM 11 (3Tx Slot)	GSM (GMSK, 1Tx Slot)	30.3	30.3	30.2	26.0	26.0	25.9	
	EDGE (GMSK, 2 Tx Slot) - MCS1	30.4	30.4	30.3	26.1	26.1	26.0	
DTM 5 (2Tx Slot)	GSM (GMSK, 1Tx Slot)	31.2	31.2	31.2	25.2	25.2	25.2	
	EDGE (8PSK, 1 Tx Slot) - MCS9	24.9	24.8	24.9	18.9	18.8	18.9	
DTM 9 (2Tx Slot)	GSM (GMSK, 1Tx Slot)	31.2	31.2	31.4	25.2	25.2	25.4	
	EDGE (8PSK, 1 Tx Slot) - MCS9	24.8	24.8	24.8	18.8	18.8	18.8	
DTM 11 (3Tx Slot)	GSM (GMSK, 1Tx Slot)	30.5	30.5	30.4	26.2	26.2	26.1	
	EDGE (8PSK, 2 Tx Slot) - MCS9	23.9	23.9	23.9	19.6	19.6	19.6	
Note:								

Note:

Scale factor for uplink time slot to calculate frame average power:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*\log(8/1) = 9.03 \text{ dB}$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10*log(8/2) = 6.02 dB$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*log(8/3) = 4.26 dB$
- 4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*\log(8/4) = 3.01 \text{ dB}$

Page: 36 of 491 UL

Issue Date: 31 July 2013

Conclusions: Conducted Average Power Measurement 2G: GSM850 Power Back-off Not Supported

- 1. **Head SAR Testing**; GSM and DTM were the modes used in this configuration for evaluation. DTM Multi-slot class 11 measured highest of the two modes for the Frame Average Power, therefore the EUT was set in this mode for SAR testing.
- 2. **Hotspot Mode SAR Testing**; GPRS, EDGE and DTM were the modes used in this configuration for evaluation. GPRS 4 Tx slots measured highest of the three modes for the Frame Average Power, therefore the EUT was set in this mode for SAR testing.
- 3. **Body worn SAR Testing**; GSM and DTM were the modes used in this configuration for evaluation. DTM Multi-slot class 11 measured highest of the three modes for the Frame Average Power, therefore the EUT was set in this mode for SAR testing.

Page: 37 of 491 UL

Serial No: UL-SAR-RP RP10014945JD13A V2.0 Issue Date: 31 July 2013

7.2.2.Conducted Average Power Measurement 2G: PCS1900
Power Back-off Not Supported

	Band: PCS 1900	Burst A	vg. Powe	er (dBm)	Frame Av	erage Pov	ver (dBm)
	Channel	512	661	810	512	661	810
	Frequency (MHz)	1850.2	1880	1909.8	1850.2	1880	1909.8
GSM (GMSK,	1Tx Slot)	30.4	30.4	30.3	21.4	21.4	21.3
GPRS (GMS	C, 1 Tx Slot) - CS1	30.4	30.4	30.3	21.4	21.4	21.3
GPRS (GMS	K, 2 Tx Slot) - CS1	28.5	28.5	28.5	22.5	22.5	22.5
GPRS (GMS	K, 3 Tx Slot) - CS1	27.5	27.5	27.5	23.2	23.2	23.2
GPRS (GMS	K, 4 Tx Slot) - CS1	26.5	26.5	26.5	23.5	23.5	23.5
EDGE (GMSF	K, 1 Tx Slot) - MCS1	30.4	30.4	30.3	21.4	21.4	21.3
EDGE (GMSH	K, 2 Tx Slot) - MCS1	28.5	28.5	28.5	22.5	22.5	22.5
EDGE (GMSF	K, 3 Tx Slot) - MCS1	27.5	27.5	27.5	23.2	23.2	23.2
EDGE (GMSF	K, 4 Tx Slot) - MCS1	26.5	26.5	26.5	23.5	23.5	23.5
EDGE (8PSK	, 1 Tx Slot) - MCS9	26.4	26.4	26.4	17.4	17.4	17.4
EDGE (8PSK	, 2 Tx Slot) - MCS9	24.5	24.5	24.4	18.5	18.5	18.4
EDGE (8PSK	, 3 Tx Slot) - MCS9	23.6	23.6	23.6	19.3	19.3	19.3
EDGE (8PSK	, 4 Tx Slot) - MCS9	22.5	22.5	22.5	19.5	19.5	19.5
DTM 5 (2Tx	GSM (GMSK, 1Tx Slot)	28.5	28.5	28.5	22.5	22.5	22.5
Slot)	GPRS (GMSK, 1 Tx Slot) - CS1	28.5	28.5	28.5	22.5	22.5	22.5
DTM 9 (2Tx	GSM (GMSK, 1Tx Slot)	28.5	28.5	28.5	22.5	22.5	22.5
Slot)	GPRS (GMSK, 1 Tx Slot) - CS1	28.5	28.5	28.5	22.5	22.5	22.5
DTM 11	GSM (GMSK, 1Tx Slot)	27.5	27.5	27.5	23.2	23.2	23.2
(3Tx Slot)	GPRS (GMSK, 2 Tx Slot) - CS1	27.5	27.5	27.5	23.2	23.2	23.2
DTM 5 (2Tx	GSM (GMSK, 1Tx Slot)	28.5	28.5	28.5	22.5	22.5	22.5
Slot)	EDGE (GMSK, 1 Tx Slot) - MCS1	28.5	28.5	28.5	22.5	22.5	22.5
DTM 9 (2Tx	GSM (GMSK, 1Tx Slot)	28.5	28.5	28.5	22.5	22.5	22.5
Slot)	EDGE (GMSK, 1 Tx Slot) - MCS1	28.5	28.5	28.5	22.5	22.5	22.5
DTM 11	GSM (GMSK, 1Tx Slot)	27.5	27.5	27.5	23.2	23.2	23.2
(3Tx Slot)	EDGE (GMSK, 2 Tx Slot) - MCS1	27.5	27.5	27.5	23.2	23.2	23.2
DTM 5 (2Tx	GSM (GMSK, 1Tx Slot)	28.5	28.5	28.5	22.5	22.5	22.5
Slot)	EDGE (8PSK, 1 Tx Slot) - MCS9	24.4	24.4	24.4	18.4	18.4	18.4
DTM 9 (2Tx	GSM (GMSK, 1Tx Slot)	28.5	28.5	28.5	22.5	22.5	22.5
Slot)	EDGE (8PSK, 1 Tx Slot) - MCS9	24.4	24.4	24.4	18.4	18.4	18.4
DTM 11	GSM (GMSK, 1Tx Slot)	27.6	27.6	27.6	23.3	23.3	23.3
(3Tx Slot)	EDGE (8PSK, 2 Tx Slot) - MCS9	23.5	23.5	23.5	19.2	19.2	19.2
Note:							

Note:

Scale factor for uplink time slot to calculate frame average power:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*log(8/1) = 9.03 dB$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10*log(8/2) = 6.02 dB$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*log(8/3) = 4.26 dB$
- 4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*log(8/4) = 3.01 dB$

Page: 38 of 491 UL

Issue Date: 31 July 2013

Conclusions: Conducted Average Power Measurement 2G: PCS1900 Power Back-off Not Supported

 Head SAR Testing; PCS1900 and DTM were the modes used in this configuration for evaluation. DTM Multi-slot class 11 measured highest of the two modes for the Frame Average Power, therefore the EUT was set in this mode for SAR testing.

- Hotspot Mode SAR Testing; GPRS, EDGE and DTM were the modes used in this configuration for evaluation. GPRS 4 Tx slots measured highest of the three modes for the Frame Average Power, therefore the EUT was set in this mode for SAR testing.
- 3. **Body worn SAR Testing**; PCS and DTM were the modes used in this configuration for evaluation. DTM Multi-slot class 11 measured highest of the two modes for the Frame Average Power, therefore the EUT was set in this mode for SAR testing.

Page: 39 of 491 UL

Issue Date: 31 July 2013

7.2.3.Conducted Average Power Measurement 3G:

7.2.3.Con Power Bac					asuren	nent 30	G:				
Mod				OPA				HSUPA			WCDMA
Set	s	1	2	3	4	1	1 2 3 4 5				
Band	Channel					Power [dBm]		Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]
	UL: 9262 DL: 9662	23.3	23.2	22.8	22.8	23.1	20.8	22.3	21.3	23.0	23.4
1900 (Band 2)	UL: 9400 DL: 9800	23.3	23.3	22.8	22.8	22.7	21.0	22.1	21.1	22.8	23.4
,	UL: 9538 DL: 9938	23.3	23.2	22.8	22.8	22.9	21.1	22.1	21.1	22.8	23.4
4700	UL: 1312 DL: 1537	23.9	23.8	23.4	23.4	23.2	21.3	22.5	21.6	23.5	24.0
1700 (Band 4)	UL: 1412 DL: 1637	24.0	23.8	23.4	23.3	23.1	21.6	22.7	22.2	23.4	24.0
	UL: 1513 DL: 1738	23.9	23.8	23.4	23.3	23.1	21.5	22.5	22.2	23.3	23.9
Power Bac		Suppo	rted								
	UL: 4132 DL: 4357	23.9	23.7	23.3	23.3	23.6	21.1	22.3	21.6	23.5	23.9
850 (Band 5)	UL: 4183 DL: 4408	24.0	24.0	23.4	23.3	23.2	21.1	22.5	21.9	23.7	24.1
Í	UL: 4233 DL: 4458	23.9	23.8	23.4	23.4	22.8	21.2	22.2	21.9	23.6	24.0
ß	С	2	12	15	15	11	6	15	2	15	
ß	d	15	15	8	4	15	15	9	15	15	
∆ACK, ∆NA	ACK, ∆CQI	8	8	8	8	8	8	8	8	8	
AG	SV VS	-	-	-	-	20	12	15	17	21	

Mod	ies		DC HSDF	'A (Cat 24)		WCDMA
Sets	3	1	2	3	4	Voice / RMC 12.2kbps
Band	Channel	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]
	UL: 9262 DL: 9662	21.2	21.1	21.3	21.2	23.4
1900 (Band 2)	UL: 9400 DL: 9800	21.2	21.1	21.3	21.2	23.4
	UL: 9538 DL: 9938	21.3	21.2	21.1	21.2	23.4
	UL: 1312 DL: 1537	21.5	21.5	21.4	21.5	24.0
1700 (Band 4)	UL: 1412 DL: 1637	21.5	21.6	21.5	21.5	24.0
, ,	UL: 1513 DL: 1738	21.5	21.6	21.5	21.7	23.9
Power Back-off	Not Supported					
	UL: 4132 DL: 4357	21.5	21.6	21.5	21.7	23.9
850 (Band 5)	UL: 4183 DL: 4408	21.6	21.6	21.5	21.6	24.1

Power Back-off	Not Supported					
	UL: 4132 DL: 4357	21.5	21.6	21.5	21.7	23.9
850 (Band 5)	21.6	21.6	21.5	21.6	24.1	
	UL: 4233 DL: 4458	21.5	21.5	21.4	21.6	24.0
ße	С	2	12	15	15	
ße	d	15	15	8	4	
ΔACK, ΔΝΑ	ACK, ∆CQI	8	8	8	8	
AG	V	-	-	-	-	

Page: 40 of 491 UL

Issue Date: 31 July 2013

Conducted Average Power Measurement 3G: (Continued) Power Back-off Supported & Enabled

Mod	les		HSI	OPA				HSUPA			WCDMA
Sets	•	1	2	3	4	1	2	3	4	5	Voice / RMC 12.2kbps
Band	Channel	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]				
	UL: 9262 DL: 9662	23.1	23.1	22.6	22.5	22.6	20.6	22.1	21.0	22.6	23.1
1900 (Band 2)	UL: 9400 DL: 9800	23.1	23.1	22.6	22.6	22.7	20.8	22.1	20.9	22.7	23.1
	UL: 9538 DL: 9938	23.0	23.0	22.6	22.5	22.8	20.7	22.0	21.1	22.7	23.0
	UL: 1312 DL: 1537	23.0	22.9	22.5	22.4	22.4	20.6	21.5	21.3	22.7	23.0
1700 (Band 4)	UL: 1412 DL: 1637	23.0	22.9	22.5	22.5	22.5	20.6	21.7	21.1	22.5	23.0
	UL: 1513 DL: 1738	22.9	22.9	22.5	22.5	22.6	20.8	21.6	21.0	22.5	23.1
ßc	;	2	12	15	15	11	6	15	2	15	
ßc	ı	15	15	8	4	15	15	9	15	15	
∆ACK, ∆NA	CK, ∆CQI	8	8	8	8	8	8	8	8	8	
AG	V	-	-	-	-	20	12	15	17	21	

				_		
				2	4-40	Fnahled
-	OWEL	Baci	K-OTT :	SIIDDOC	TEN &	Enabled

Power Back-off	Supported & E	Hableu				
Mod	les		DC HSDF	PA (Cat 24)		WCDMA
Sets	5	1	2	3	4	Voice / RMC 12.2kbps
Band			Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]
	UL: 9262 DL: 9662	20.8	20.7	21.0	20.9	23.1
1900 (Band 2)	UL: 9400 DL: 9800	20.8	20.9	21.1	20.8	23.1
	UL: 9538 DL: 9938	20.7	20.7	20.9	20.8	23.0
	UL: 1312 DL: 1537	21.0	21.2	21.1	20.9	23.0
1700 (Band 4)	UL: 1412 DL: 1637	21.1	21.1	21.1	21.1	23.0
	UL: 1513 DL: 1738	21.0	21.0	21.1	20.9	23.1
ßc	:	2	12	15	15	
ßc	d	15	15	8	4	
∆ACK, ∆NA	ACK, ∆CQI	8	8	8	8	
AG	V	-	-	-	-	

Page: 41 of 491 UL

Version 2.0 Issue Date: 31 July 2013

The module power levels were measured in both HSPA and 3G RMC 12.2kbps modes and compared to ensure the correct mode of operation had been established.

The following tables taken from FCC 3G SAR procedures (KDB 941225 D01 SAR test for 3G devices v02) below were applied using an Agilent 8960 series 10 wireless communications test set which supports 3G / HSDPA release 5 / HSUPA release 6.

Sub-test Se	tup for Releas	e 5 HSDPA				
Sub-test	βς	β_d	B _d (SF)	$\beta_{c/}\beta_d$	${\beta_{hs}}^{(1)}$	SM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for $\beta_{c/}$ β_{d} = 12/15, B_{hs}/β_{c} = 24/15

Note 3: For subtest 2 the $\beta_{c'}$ β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Sub	-test Se	tup for	Rele	ase 6 H	ISUPA	\							
Sub -test	βς	eta_d	B _d (SF)	β _{c/} β _d	β _{hs} ⁽¹⁾	B _{oc}	B _{od}	B _{od} (SF)	B _{∞d} (codes)	CM ⁽² (dB)	MPR (dB)	AG ⁽ Ind ex	E- TFC I
1	11/15 ⁽³	15/15 ⁽³	64	11/15 ⁽³	22/1 5	209/22 5	1039/22 5	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/1 5	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/1 5	31/15	B _{al1} : 47/15 B _{al2} : 47/15	4	1	2.0	1.0	15	92
4	2/15	15/15	64	2/15	2/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴	15/15 ⁽⁴	64	15/15 ⁽⁴	24/1 5	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for $\beta_{c'}/\beta_d$ = 12/15, $B_{hs'}/\beta_c$ = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH AND E-DPCCH for the Power Back-off is based on the relative CM difference.

Note 3: For subtest 1 the $\beta_{c'}$ β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.

Note 4: For subtest 5 the $\beta_{c'}$ β_{d} ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_{c} = 14/15 and β_{d} = 15/15.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Tavle 5.1g.

Note 6: Bod can not be set directly; it is set by Absolute Grant Value.

Page: 42 of 491 UL

sion 2.0 Issue Date: 31 July 2013

7.2.4. Conducted Average Power Measurement For 4G Conducted Average Power Measurement: LTE Band 2 (1900 MHz) **Power Back-off Not Supported** Measured Avg Power (dBm). Actual Start RB MPR Ch. RB Max Frequency Frequency Frequency Modulations BW Confia (dB) Power Offset 1860.0 MHz 1880.0 MHz 1900.0 MHz (dBm) (Middle) (High)1 (Low) (0) Low 0 23.0 22.7 22.7 22.7 1 1 Mid 49 23.0 (0)22.6 22.7 22.7 23.0 22.7 22.7 21.1 1 High 99 (0)**QPSK** 0 50 low (1) 22.0 21.5 21.5 21.5 50 Mid 25 (1) 22.0 21.5 21.5 21.5 50 High 50 (1) 22.0 21.5 21.5 21.5 20 100 0 (1) 22.0 21.5 21.5 21.5 MHz 1 Low 0 21.7 21.7 (1) 22.0 21.7 1 Mid 49 22.0 21.6 21.7 21.7 (1) 1 High 99 (1) 22.0 21.7 21.7 20.2 16QAM 50 low 0 (2)21.0 20.5 20.5 20.5 50 Mid 25 (2) 21.0 20.5 20.5 20.5 50 50 (2) 21.0 20.5 20.5 20.5 High 0 20.5 100 (2)21.0 20.5 20.5 Measured Avg Power (dBm). Actual Start RB RB **MPR** Max Ch. Frequency Frequency Frequency Modulations BW Config (dB) Power Offset 1857.5 MHz 1880.0 MHz 1902.5 MHz (dBm) (Middle) (High)¹ (Low) 1 Low 0 (0)23.0 22.7 22.6 22.7 Mid 37 (0)23.0 22.7 22.6 22.6 1 1 High 74 (0)23.0 22.5 22.7 21.1 **QPSK** 36 0 22.0 21.5 21.5 21.5 low (1) 36 Mid 19 22.0 21.5 21.5 21.5 (1)36 High 39 (1)22.0 21.5 21.5 21.5 15 75 0 (1)22.0 21.5 21.4 21.5 MHz 21.7 1 0 21.6 21.6 Low (1) 22.0 1 Mid 37 22.0 21.7 21.6 21.6 (1)1 High 22.0 21.5 20.1 74 (1)21.7 16QAM 20.5 36 low 0 (2)21.0 20.7 20.6 36 Mid 19 (2)21.0 20.7 20.5 20.6 20.6 36 High 39 (2)21.0 20.4 20.6

1. For "transmission all RB bandwidth" confined within FULL_ high- 4MHz and FULL_high is specified in the 3GPP TS36.521-1 V11.0.1, the maximum output power requirement is relax by reducing the low tolerance by **1.5 dB**. This is conveyed in the power measurement in the above tables

(2)

21.0

20.6

20.5

0

75

Note:

20.6

Page: 43 of 491 UL

Issue Date: 31 July 2013

Conducted Average Power Measurement: LTE Band 2 (1900 MHz) **Power Back-off Not Supported (Continued)**

O.		D-0	Star	. DD	MPP	Actual	Measu	red Avg Power	(dBm).		
Ch. BW	Modulations	RB Config	Off		MPR (dB)	Max Power (dBm)	Frequency 1855.0 MHz (Low)	Frequency 1880.0 MHz (Middle)	Frequency 1905.0 MHz (High) ¹		
		1	Low	0	(0)	23.0	22.6	22.5	22.5		
		1	Mid	24	(0)	23.0	22.6	22.5	22.4		
		1	High	49	(0)	23.0	22.5	22.5	21.0		
	QPSK	25	Low	0	(1)	22.0	21.6	21.3	21.4		
		25	Mid	12	(1)	22.0	21.5	21.4	21.5		
		25	High	25	(1)	22.0	21.5	21.4	21.3		
10		50	-	0	(1)	22.0	21.4	21.3	21.3		
MHz		1	Low	0	(1)	22.0	21.5	21.5	21.5		
		1	mid	24	(1)	22.0	21.6	21.5	21.4		
		1	High	49	(1)	22.0	21.4	21.5	19.9		
	16QAM	25	Low	0	(2)	21.0	20.5	20.3	20.4		
		25	Mid	12	(2)	21.0	20.5	20.4	20.5		
		25	High	25	(2)	21.0	20.5	20.4	20.3		
		50	-	0	(2)	21.0	20.4	20.3	20.3		
							Measured Avg Power (dBm).				
0 1		dulations RB Config		. DD		Actual	Measu	red Avg Power	(dBm).		
Ch. BW	Modulations		Start Off		MPR (dB)	Actual Max Power (dBm)	Frequency 1852.5 MHz (Low)	Frequency 1880.0 MHz (Middle)	(dBm). Frequency 1907.5 MHz (High) ¹		
	Modulations					Max Power	Frequency 1852.5 MHz	Frequency 1880.0 MHz	Frequency 1907.5 MHz		
	Modulations	Config	Off	set	(dB)	Max Power (dBm)	Frequency 1852.5 MHz (Low)	Frequency 1880.0 MHz (Middle)	Frequency 1907.5 MHz (High) ¹		
	Modulations	Config 1	Off	set 0	(dB) (0)	Max Power (dBm)	Frequency 1852.5 MHz (Low) 22.4	Frequency 1880.0 MHz (Middle) 22.4	Frequency 1907.5 MHz (High) ¹ 22.3		
	Modulations QPSK	Config 1	Low Mid	0 12	(dB) (0) (0)	Max Power (dBm) 23.0 23.0	Frequency 1852.5 MHz (Low) 22.4 22.4	Frequency 1880.0 MHz (Middle) 22.4 22.4	Frequency 1907.5 MHz (High) ¹ 22.3 20.9		
		1 1 1	Low Mid High	0 12 24	(dB) (0) (0) (0)	Max Power (dBm) 23.0 23.0 23.0	Frequency 1852.5 MHz (Low) 22.4 22.4 22.4	Frequency 1880.0 MHz (Middle) 22.4 22.4 22.4	Frequency 1907.5 MHz (High) ¹ 22.3 20.9 20.8		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Low Mid High	0 12 24 0	(dB) (0) (0) (0) (1)	Max Power (dBm) 23.0 23.0 23.0 22.0	Frequency 1852.5 MHz (Low) 22.4 22.4 22.4 21.5	Frequency 1880.0 MHz (Middle) 22.4 22.4 22.4 21.3	Frequency 1907.5 MHz (High) ¹ 22.3 20.9 20.8 21.3		
BW		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Low Mid High Iow Mid	0 12 24 0 6	(dB) (0) (0) (0) (1) (1)	Max Power (dBm) 23.0 23.0 23.0 22.0 22.0	Frequency 1852.5 MHz (Low) 22.4 22.4 22.4 21.5 21.4	Frequency 1880.0 MHz (Middle) 22.4 22.4 22.4 21.3 21.4	Frequency 1907.5 MHz (High) ¹ 22.3 20.9 20.8 21.3 20.0		
		1 1 1 12 12 12 12	Low Mid High Iow Mid	0 12 24 0 6 13	(dB) (0) (0) (0) (1) (1) (1)	Max Power (dBm) 23.0 23.0 23.0 22.0 22.0	Frequency 1852.5 MHz (Low) 22.4 22.4 22.4 21.5 21.4 21.4	Frequency 1880.0 MHz (Middle) 22.4 22.4 22.4 21.3 21.4 21.4	Frequency 1907.5 MHz (High) ¹ 22.3 20.9 20.8 21.3 20.0 20.1		
BW		1 1 1 12 12 12 25	Low Mid High low Mid High	0 12 24 0 6 13	(dB) (0) (0) (0) (1) (1) (1) (1)	Max Power (dBm) 23.0 23.0 23.0 22.0 22.0 22.0 22.0	Frequency 1852.5 MHz (Low) 22.4 22.4 21.5 21.4 21.4 21.4	Frequency 1880.0 MHz (Middle) 22.4 22.4 21.3 21.4 21.4 21.4	Frequency 1907.5 MHz (High) ¹ 22.3 20.9 20.8 21.3 20.0 20.1 21.2		
BW		1 1 1 12 12 12 25 1	Low Mid High low Mid High - Low	0 12 24 0 6 13 0	(dB) (0) (0) (0) (1) (1) (1) (1) (1)	Max Power (dBm) 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	Frequency 1852.5 MHz (Low) 22.4 22.4 22.4 21.5 21.4 21.4 21.4	Frequency 1880.0 MHz (Middle) 22.4 22.4 21.3 21.4 21.4 21.4 21.4	Frequency 1907.5 MHz (High) ¹ 22.3 20.9 20.8 21.3 20.0 20.1 21.2 21.3		
BW		1 1 1 1 12 12 12 25 1 1	Low Mid High low Mid High Low Mid High	0 12 24 0 6 13 0	(dB) (0) (0) (0) (1) (1) (1) (1) (1) (1) (1)	Max Power (dBm) 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	Frequency 1852.5 MHz (Low) 22.4 22.4 21.5 21.4 21.4 21.4 21.4 21.4	Frequency 1880.0 MHz (Middle) 22.4 22.4 21.3 21.4 21.4 21.4 21.4 21.4	Frequency 1907.5 MHz (High) ¹ 22.3 20.9 20.8 21.3 20.0 20.1 21.2 21.3 19.9		
BW	QPSK	1 1 1 12 12 12 25 1 1 1	Low Mid High low Mid High - Low Mid High	0 12 24 0 6 13 0 0 12 24	(dB) (0) (0) (0) (1) (1) (1) (1) (1) (1) (1) (1)	Max Power (dBm) 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	Frequency 1852.5 MHz (Low) 22.4 22.4 22.4 21.5 21.4 21.4 21.4 21.4 21.4 21.4	Frequency 1880.0 MHz (Middle) 22.4 22.4 21.3 21.4 21.4 21.4 21.4 21.4 21.4	Frequency 1907.5 MHz (High) ¹ 22.3 20.9 20.8 21.3 20.0 20.1 21.2 21.3 19.9 19.8		
BW	QPSK	1 1 1 1 12 12 12 25 1 1 1 1 12	Low Mid High low Mid High - Low Mid High	0 12 24 0 6 13 0 0 12 24	(dB) (0) (0) (0) (1) (1) (1) (1) (1) (1) (1) (2)	Max Power (dBm) 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0 22.0 21.0	Frequency 1852.5 MHz (Low) 22.4 22.4 21.5 21.4 21.4 21.4 21.4 21.4 21.4 21.4 20.5	Frequency 1880.0 MHz (Middle) 22.4 22.4 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.4	Frequency 1907.5 MHz (High) ¹ 22.3 20.9 20.8 21.3 20.0 20.1 21.2 21.3 19.9 19.8 20.2		

Page: 44 of 491 UL

For "transmission all RB bandwidth" confined within FULL_ high- 4MHz and FULL _high is specified in the 3GPP TS36.521-1 V11.0.1, the maximum output power requirement is relax by reducing the low tolerance by 1.5 dB. This is conveyed in the power measurement in the above tables

Issue Date: 31 July 2013

Conducted Average Power Measurement: LTE Band 2 (1900 MHz)

			01			Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB Config	Star Off		MPR (dB)	Max Power (dBm)	Frequency 1851.5 MHz (Low)	Frequency 1880 MHz (Middle)	Frequency 1908.5 MH (High) ¹
		1	Low	0	(0)	23.0	22.4	22.4	20.9
		1	Mid	7	(0)	23.0	22.4	22.3	20.9
		1	High	14	(0)	23.0	22.4	22.4	20.9
	QPSK	8	Low	0	(1)	22.0	22.4	22.3	20.8
		8	Mid	4	(1)	22.0	22.4	22.4	20.9
		8	High	7	(1)	22.0	22.4	22.4	20.9
3 MHz		15	-	0	(1)	22.0	21.5	21.4	19.9
3 IVIHZ		1	Low	0	(1)	22.0	21.4	21.3	19.9
		1	Mid	7	(1)	22.0	21.4	21.3	19.9
		1	High	14	(1)	22.0	21.4	21.4	19.9
	16QAM	8	Low	0	(2)	21.0	21.4	21.3	19.8
		8	Mid	4	(2)	21.0	21.4	21.3	19.9
		8	High	7	(2)	21.0	21.4	21.3	19.9
		15	-	0	(2)	21.0	20.5	20.4	19.0
			Ctow	4 DD		Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB Config	Start RB Offset		MPR (dB)	Max Power (dBm)	Frequency 1850.7 MHz (Low)	Frequency 1880 MHz (Middle)	Frequence 1909.3 MI (High) ¹
		1	Low	0	(0)	23.0	22.7	22.7	21.2
		1	Mid	3	(0)	23.0	22.7	22.7	21.2
		1	High	5	(0)	23.0	22.7	22.7	21.2
	QPSK	3	Low	0	(0)	23.0	22.7	22.7	21.2
		3	Mid	1	(0)	23.0	22.7	22.7	21.2
		3	high	3	(0)	23.0	22.7	22.7	21.2
1.4		6	-	0	(1)	22.0	21.6	21.6	20.3
MHz		1	Low	0	(1)	22.0	21.7	21.7	20.2
		1	Mid	3	(1)	22.0	21.6	21.6	20.2
		1	High	5	(1)	22.0	21.7	21.7	20.2
	16QAM	3	Low	0	(1)	22.0	21.7	21.7	20.2
	16QAM		Mid		(1)	22.0	21.7	21.7	20.2
		3	iviid	1	(·)				
		3	high	3	(1)	22.0	21.7	21.7	20.2

Page: 45 of 491 UL

For "transmission all RB bandwidth" confined within FULL_ high- 4MHz and FULL _high is specified in the 3GPP TS36.521-1 V11.0.1, the maximum output power requirement is relax by reducing the low tolerance by 1.5 dB. This is conveyed in the power measurement in the above tables

Version 2.0 Issue Date: 31 July 2013

7.2.5. Conducted Average Power Measurement: LTE Band 4 (1700 MH	z)
Power Back-off Not Supported	

						Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB Config	Start Off		MPR (dB)	Max Power (dBm)	Frequency 1720.0 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1745.0 MHz (High)
		1	Low	0	(0)	23.0	22.6	22.6	22.6
		1	Mid	49	(0)	23.0	22.7	22.7	22.6
		1	High	99	(0)	23.0	22.6	22.7	22.5
	QPSK	50	low	0	(1)	22.0	21.5	21.4	21.4
		50	Mid	25	(1)	22.0	21.5	21.4	21.4
		50	High	50	(1)	22.0	21.4	21.4	21.3
20		100	-	0	(1)	22.0	21.5	21.5	21.4
MHz		1	Low	0	(1)	22.0	21.6	21.7	21.6
		1	Mid	49	(1)	22.0	21.7	21.7	21.6
		1	High	99	(1)	22.0	21.6	21.7	21.5
	16QAM	50	low	0	(2)	21.0	20.5	20.4	20.4
		50	Mid	25	(2)	21.0	20.5	20.5	20.4
		50	High	50	(2)	21.0	20.5	20.5	20.4
		100	-	0	(2)	21.0	20.5	20.4	20.4
			04			Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB	Star	I KB	MPR	Max	_	Г	-
	Modulations	Config	Off	set	(dB)	Power (dBm)	Frequency 1717.5.0 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1747.5 MHz (High)
	Modulations	Config 1	Off	set 0			1717.5.0	1732.5 MHz	1747.5 MHz
	Modulations	_			(0)	(dBm)	1717.5.0 MHz (Low)	1732.5 MHz (Middle)	1747.5 MHz (High)
	Modulations	1	Low	0	(0)	(dBm) 23.0	1717.5.0 MHz (Low) 22.6	1732.5 MHz (Middle) 22.6	1747.5 MHz (High) 22.6
	QPSK	1 1	Low Mid	0 37	(0) (0) (0)	(dBm) 23.0 23.0	1717.5.0 MHz (Low) 22.6 22.7	1732.5 MHz (Middle) 22.6 22.5	1747.5 MHz (High) 22.6 22.5
		1 1 1	Low Mid High	0 37 74	(0) (0) (0) (1)	(dBm) 23.0 23.0 23.0	1717.5.0 MHz (Low) 22.6 22.7 22.6	1732.5 MHz (Middle) 22.6 22.5 22.6	1747.5 MHz (High) 22.6 22.5 22.6
		1 1 1 36	Low Mid High Iow	0 37 74 0	(0) (0) (0)	(dBm) 23.0 23.0 23.0 22.0	1717.5.0 MHz (Low) 22.6 22.7 22.6 21.5	1732.5 MHz (Middle) 22.6 22.5 22.6 21.4	1747.5 MHz (High) 22.6 22.5 22.6 21.5
15		1 1 1 36 36	Low Mid High low Mid	0 37 74 0	(0) (0) (0) (1) (1)	23.0 23.0 23.0 23.0 22.0 22.0	1717.5.0 MHz (Low) 22.6 22.7 22.6 21.5 21.6	1732.5 MHz (Middle) 22.6 22.5 22.6 21.4 21.4	1747.5 MHz (High) 22.6 22.5 22.6 21.5 21.5
15 MHz		1 1 1 36 36 36	Low Mid High low Mid	0 37 74 0 19 39	(0) (0) (0) (1) (1) (1)	23.0 23.0 23.0 22.0 22.0 22.0	1717.5.0 MHz (Low) 22.6 22.7 22.6 21.5 21.6 21.6	1732.5 MHz (Middle) 22.6 22.5 22.6 21.4 21.4 21.5	1747.5 MHz (High) 22.6 22.5 22.6 21.5 21.5 21.3
		1 1 1 36 36 36 36 75	Low Mid High Iow Mid High	0 37 74 0 19 39	(0) (0) (0) (1) (1) (1) (1)	23.0 23.0 23.0 22.0 22.0 22.0 22.0	1717.5.0 MHz (Low) 22.6 22.7 22.6 21.5 21.6 21.6 21.5	1732.5 MHz (Middle) 22.6 22.5 22.6 21.4 21.4 21.5 21.4	1747.5 MHz (High) 22.6 22.5 22.6 21.5 21.5 21.3 21.4
		1 1 1 36 36 36 75	Low Mid High low Mid High - Low	0 37 74 0 19 39 0	(0) (0) (0) (1) (1) (1) (1)	(dBm) 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	1717.5.0 MHz (Low) 22.6 22.7 22.6 21.5 21.6 21.6 21.5 21.6	1732.5 MHz (Middle) 22.6 22.5 22.6 21.4 21.4 21.5 21.4 21.6	1747.5 MHz (High) 22.6 22.5 22.6 21.5 21.5 21.3 21.4 21.6
		1 1 1 36 36 36 36 75 1	Low Mid High low Mid High - Low Mid	0 37 74 0 19 39 0 0	(0) (0) (0) (1) (1) (1) (1) (1) (1)	(dBm) 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0 22.0	1717.5.0 MHz (Low) 22.6 22.7 22.6 21.5 21.6 21.5 21.6 21.5 21.6	1732.5 MHz (Middle) 22.6 22.5 22.6 21.4 21.4 21.5 21.4 21.6 21.5	1747.5 MHz (High) 22.6 22.5 22.6 21.5 21.5 21.3 21.4 21.6 21.5
	QPSK	1 1 1 36 36 36 75 1 1	Low Mid High low Mid High - Low Mid High	0 37 74 0 19 39 0 0 37 74	(0) (0) (0) (1) (1) (1) (1) (1) (1) (1) (2)	(dBm) 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	1717.5.0 MHz (Low) 22.6 22.7 22.6 21.5 21.6 21.5 21.6 21.5 21.6 21.6	1732.5 MHz (Middle) 22.6 22.5 22.6 21.4 21.4 21.5 21.4 21.6 21.5 21.6	1747.5 MHz (High) 22.6 22.5 22.6 21.5 21.5 21.3 21.4 21.6 21.5 21.5
	QPSK	1 1 1 36 36 36 75 1 1 1 36	Low Mid High low Mid High - Low Mid High low	0 37 74 0 19 39 0 0 37 74	(0) (0) (0) (1) (1) (1) (1) (1) (1)	(dBm) 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.	1717.5.0 MHz (Low) 22.6 22.7 22.6 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	1732.5 MHz (Middle) 22.6 22.5 22.6 21.4 21.5 21.4 21.5 21.6 21.5 21.6 20.4	1747.5 MHz (High) 22.6 22.5 22.6 21.5 21.5 21.3 21.4 21.6 21.5 21.5 21.5 20.5

Page: 46 of 491 UL

Issue Date: 31 July 2013

Conducted Average Power Measurement: LTE Band 4 (1700 MHz) Power Back-off Not Supported (Continued):

						Actual	Measured Avg Power (dBm).			
Ch. BW	Modulations	RB Config		t RB set	MPR (dB)	Max Power (dBm)	Frequency 1715.0 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1750 MHz (High)	
		1	Low	0	(0)	23.0	22.6	22.6	22.5	
		1	Mid	24	(0)	23.0	22.7	22.5	22.5	
		1	High	49	(0)	23.0	22.7	22.6	22.6	
	QPSK	25	Low	0	(1)	22.0	21.6	21.5	21.5	
		25	Mid	12	(1)	22.0	21.6	21.5	21.4	
		25	High	25	(1)	22.0	21.7	21.5	21.4	
10		50	-	0	(1)	22.0	21.5	21.3	21.3	
MHz		1	Low	0	(1)	22.0	21.6	21.6	21.5	
		1	mid	24	(1)	22.0	21.6	21.5	21.5	
		1	High	49	(1)	22.0	21.7	21.5	21.5	
	16QAM	25	Low	0	(2)	21.0	20.5	20.5	20.4	
		25	Mid	12	(2)	21.0	20.6	20.5	20.4	
		25	High	25	(2)	21.0	20.6	20.5	20.4	
		50		0	(2)	21.0	20.5	20.3	20.3	
				_	(-)					
Ch.	No dededes -	RB	Star	t RB	MPR	Actual Max		red Avg Power		
BW	Modulations	Config	Off	fset	(dB)	Power (dBm)	Frequency 1712.5 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1752.5 MHz (High)	
		1	Low	0	(0)	23.0	22.6	22.6	22.5	
		1	Mid	12	(0)	23.0	22.6	22.5	22.5	
		1	High	24	(0)	23.0	22.6	22.5	22.6	
	QPSK	1 12	High low	24 0	(0) (1)	23.0 22.0	22.6 21.6	22.5 21.5	22.6 21.5	
	QPSK		_			22.0 22.0				
	QPSK	12 12 12	low	0 6 13	(1) (1) (1)	22.0 22.0 22.0	21.6 21.6 21.6	21.5 21.5 21.5	21.5 21.5 21.5	
5 MHz	QPSK	12 12 12 25	low Mid High	0 6 13 0	(1) (1) (1) (1)	22.0 22.0 22.0 22.0	21.6 21.6 21.6 21.5	21.5 21.5 21.5 21.5	21.5 21.5 21.5 21.4	
5 MHz	QPSK	12 12 12 12 25	low Mid High - Low	0 6 13 0	(1) (1) (1) (1) (1)	22.0 22.0 22.0 22.0 22.0	21.6 21.6 21.6 21.5 21.6	21.5 21.5 21.5 21.5 21.6	21.5 21.5 21.5 21.4 21.5	
5 MHz	QPSK	12 12 12 25 1	low Mid High - Low Mid	0 6 13 0 0	(1) (1) (1) (1) (1) (1)	22.0 22.0 22.0 22.0 22.0 22.0	21.6 21.6 21.6 21.5 21.6 21.6	21.5 21.5 21.5 21.5 21.6 21.5	21.5 21.5 21.5 21.4 21.5 21.6	
5 MHz		12 12 12 25 1 1	low Mid High - Low Mid High	0 6 13 0 0 12 24	(1) (1) (1) (1) (1) (1) (1)	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	21.6 21.6 21.6 21.5 21.6 21.6 21.6	21.5 21.5 21.5 21.5 21.6 21.5 21.6	21.5 21.5 21.5 21.4 21.5 21.6 21.6	
5 MHz	QPSK 16QAM	12 12 12 25 1 1 1 1	low Mid High - Low Mid High low	0 6 13 0 0 12 24	(1) (1) (1) (1) (1) (1) (1) (1) (2)	22.0 22.0 22.0 22.0 22.0 22.0 22.0 21.0	21.6 21.6 21.5 21.6 21.6 21.6 21.6 20.6	21.5 21.5 21.5 21.5 21.6 21.5 21.6 20.5	21.5 21.5 21.5 21.4 21.5 21.6 21.6 20.5	
5 MHz		12 12 12 25 1 1	low Mid High - Low Mid High	0 6 13 0 0 12 24	(1) (1) (1) (1) (1) (1) (1)	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	21.6 21.6 21.6 21.5 21.6 21.6 21.6	21.5 21.5 21.5 21.5 21.6 21.5 21.6	21.5 21.5 21.5 21.4 21.5 21.6 21.6	

Page: 47 of 491 UL

Issue Date: 31 July 2013

Conducted Average Power Measurement: LTE Band 4 (1700 MHz)

Power			•						
			_			Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB Config	Start Offs		MPR (dB)	Max Power (dBm)	Frequency 1711.5 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1753.5 MHz (High)
		1	Low	0	(0)	23.0	22.6	22.5	22.5
		1	Mid	7	(0)	23.0	22.6	22.5	22.6
		1	High	14	(0)	23.0	22.6	22.5	22.6
	QPSK	8	Low	0	(1)	22.0	21.6	21.5	21.5
		8	Mid	4	(1)	22.0	21.6	21.5	21.5
		8	High	7	(1)	22.0	21.6	21.5	21.6
3 MHz		15	-	0	(1)	22.0	21.6	21.5	21.5
3 IVITIZ		1	Low	0	(1)	22.0	21.6	21.5	21.5
		1	Mid	7	(1)	22.0	21.6	21.6	21.5
		1	High	14	(1)	22.0	21.6	21.5	21.6
	16QAM	8	Low	0	(2)	21.0	20.5	20.5	20.5
		8	Mid	4	(2)	21.0	20.6	20.5	20.5
		8	High	7	(2)	21.0	20.6	20.5	20.6
		15	-	0	(2)	21.0	20.6	20.5	20.5
			Start RB Offset		MPR (dB)	Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB Config				Max Power	Frequency 1710.7 MHz	Frequency	Frequency
						(dBm)	(Low)	1732.5 MHz (Middle)	1754.3 MHz (High)
		1	Low	0	(0)	(dBm) 23.0			
		1	Low Mid	0	(0) (0)		(Low)	(Middle)	(High)
						23.0	(Low) 22.6	(Middle) 22.6	(High) 22.6
	QPSK	1	Mid	3	(0)	23.0	(Low) 22.6 22.6	(Middle) 22.6 22.6	(High) 22.6 22.6
	QPSK	1	Mid High	3 5	(0)	23.0 23.0 23.0	(Low) 22.6 22.6 22.6	(Middle) 22.6 22.6 22.5	(High) 22.6 22.6 22.7
	QPSK	1 1 3	Mid High Low	3 5 0	(0) (0) (0)	23.0 23.0 23.0 23.0	(Low) 22.6 22.6 22.6 22.6	(Middle) 22.6 22.6 22.5 22.5	(High) 22.6 22.6 22.7 22.6
1.4	QPSK	1 1 3 3	Mid High Low Mid	3 5 0	(0) (0) (0) (0)	23.0 23.0 23.0 23.0 23.0	(Low) 22.6 22.6 22.6 22.6 22.6 22.6	(Middle) 22.6 22.6 22.5 22.5 22.5	(High) 22.6 22.6 22.7 22.6 22.6
1.4 MHz	QPSK	1 1 3 3 3	Mid High Low Mid	3 5 0 1 3	(O) (O) (O) (O)	23.0 23.0 23.0 23.0 23.0 23.0	(Low) 22.6 22.6 22.6 22.6 22.6 22.6 22.6	(Middle) 22.6 22.6 22.5 22.5 22.5 22.5	(High) 22.6 22.6 22.7 22.6 22.6 22.6 22.6
	QPSK	1 1 3 3 3 3	Mid High Low Mid high	3 5 0 1 3	(0) (0) (0) (0) (0) (1)	23.0 23.0 23.0 23.0 23.0 23.0 22.0	(Low) 22.6 22.6 22.6 22.6 22.6 22.6 22.6 21.6	(Middle) 22.6 22.6 22.5 22.5 22.5 22.5 21.6	(High) 22.6 22.6 22.7 22.6 22.6 22.6 22.6 22.6
	QPSK	1 1 3 3 3 6 1	Mid High Low Mid high - Low	3 5 0 1 3 0	(0) (0) (0) (0) (0) (1) (1)	23.0 23.0 23.0 23.0 23.0 23.0 22.0 22.0	(Low) 22.6 22.6 22.6 22.6 22.6 22.6 21.6 21.6	(Middle) 22.6 22.6 22.5 22.5 22.5 22.5 21.6 21.6	(High) 22.6 22.6 22.7 22.6 22.6 22.6 21.6 21.6
	QPSK 16QAM	1 1 3 3 3 6 1	Mid High Low Mid high - Low Mid	3 5 0 1 3 0 0	(0) (0) (0) (0) (0) (1) (1) (1)	23.0 23.0 23.0 23.0 23.0 23.0 22.0 22.0	(Low) 22.6 22.6 22.6 22.6 22.6 22.6 21.6 21.6	(Middle) 22.6 22.6 22.5 22.5 22.5 22.5 21.6 21.6 21.6	(High) 22.6 22.7 22.6 22.6 22.6 22.6 21.6 21.6 21.6
		1 1 3 3 3 6 1 1	Mid High Low Mid high - Low Mid High	3 5 0 1 3 0 0 3 5	(0) (0) (0) (0) (0) (1) (1) (1) (1)	23.0 23.0 23.0 23.0 23.0 23.0 22.0 22.0	(Low) 22.6 22.6 22.6 22.6 22.6 22.6 21.6 21.6	(Middle) 22.6 22.6 22.5 22.5 22.5 21.6 21.6 21.6 21.5	(High) 22.6 22.6 22.7 22.6 22.6 22.6 21.6 21.6 21.6 21.6 21.6
		1 1 3 3 3 6 1 1 1 3	Mid High Low Mid high - Low Mid High Low	3 5 0 1 3 0 0 3 5	(0) (0) (0) (0) (0) (1) (1) (1) (1)	23.0 23.0 23.0 23.0 23.0 23.0 22.0 22.0	(Low) 22.6 22.6 22.6 22.6 22.6 22.6 21.6 21.6	(Middle) 22.6 22.5 22.5 22.5 22.5 21.6 21.6 21.6 21.6 21.6	(High) 22.6 22.6 22.7 22.6 22.6 22.6 21.6 21.6 21.6 21.6 21.6
		1 1 3 3 3 6 1 1 1 3 3	Mid High Low Mid high - Low Mid High Low Mid High Low Mid	3 5 0 1 3 0 0 3 5 0	(0) (0) (0) (0) (0) (1) (1) (1) (1) (1)	23.0 23.0 23.0 23.0 23.0 23.0 22.0 22.0	(Low) 22.6 22.6 22.6 22.6 22.6 22.6 21.6 21.6	(Middle) 22.6 22.5 22.5 22.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6	(High) 22.6 22.6 22.7 22.6 22.6 22.6 21.6 21.6 21.6 21.6 21.6

Page: 48 of 491 UL

Version 2.0 Issue Date: 31 July 2013

7.2.6.Conducted Average Power Measurement: LTE Band 5 (850 MHz) Power Back-off Not Supported

O.		D-0	Start	DD	MPP	Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB Config	Offs		MPR (dB)	Max Power (dBm)	Frequency 829.0 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 844.0 MHz (High)
		1	Low	0	(0)	22.5	22.5	22.6	22.5
		1	Mid	24	(0)	22.5	22.5	22.6	22.5
		1	High	49	(0)	22.5	22.4	22.5	22.6
	QPSK	25	Low	0	(1)	21.5	21.3	21.6	21.5
		25	Mid	12	(1)	21.5	21.4	21.6	21.4
		25	High	25	(1)	21.5	21.4	21.5	21.6
10		50	-	0	(1)	21.5	21.3	21.5	21.4
MHz		1	Low	0	(1)	21.5	21.5	21.6	21.5
		1	mid	24	(1)	21.5	21.5	21.6	21.5
		1	High	49	(1)	21.5	21.5	21.6	21.5
	16QAM	25	Low	0	(2)	20.5	21.4	20.6	21.5
		25	Mid	12	(2)	20.5	21.4	20.6	21.5
		25	High	25	(2)	20.5	21.4	20.6	21.5
		50	-	0	(2)	20.5	20.3	20.5	20.4
. .		RB	Ctort	DD		Actual	Measu	red Avg Power	(dBm).
Ch.		R K	Start RB Offset		MPR (dB)				
BW	Modulations	Config	Offs			Max Power (dBm)	Frequency 826.5 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 846.5 MHz (High)
BW	Modulations		Offs			Power	826.5 MHz	836.5 MHz	846.5 MHz
BW	Modulations	Config		set	(dB)	Power (dBm)	826.5 MHz (Low)	836.5 MHz (Middle)	846.5 MHz (High)
BW	Modulations	Config 1	Low	set 0	(dB) (0)	Power (dBm)	826.5 MHz (Low) 22.5	836.5 MHz (Middle) 22.5	846.5 MHz (High) 22.5
BW	Modulations QPSK	Config 1	Low Mid	0 12	(dB) (0) (0)	Power (dBm) 22.5 22.5	826.5 MHz (Low) 22.5 22.5	836.5 MHz (Middle) 22.5 22.3	846.5 MHz (High) 22.5 22.5
BW		1 1 1	Low Mid High	0 12 24	(dB) (0) (0) (0)	Power (dBm) 22.5 22.5 22.5	826.5 MHz (Low) 22.5 22.5 22.4	836.5 MHz (Middle) 22.5 22.3 22.5	846.5 MHz (High) 22.5 22.5 22.5
в		1 1 1 1 12	Low Mid High	0 12 24 0	(dB) (0) (0) (0) (1)	Power (dBm) 22.5 22.5 22.5 21.5	826.5 MHz (Low) 22.5 22.5 22.4 22.4	836.5 MHz (Middle) 22.5 22.3 22.5 22.4	846.5 MHz (High) 22.5 22.5 22.5 22.5
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Low Mid High Iow Mid	0 12 24 0 6	(dB) (0) (0) (0) (1) (1)	Power (dBm) 22.5 22.5 22.5 21.5 21.5	826.5 MHz (Low) 22.5 22.5 22.4 22.4 22.4	836.5 MHz (Middle) 22.5 22.3 22.5 22.4 22.3	846.5 MHz (High) 22.5 22.5 22.5 22.5 22.5 22.5
BW 5 MHz		1 1 1 12 12 12 12	Low Mid High Iow Mid	0 12 24 0 6 13	(dB) (0) (0) (0) (1) (1) (1)	Power (dBm) 22.5 22.5 22.5 21.5 21.5 21.5	826.5 MHz (Low) 22.5 22.5 22.4 22.4 22.4 22.3	836.5 MHz (Middle) 22.5 22.3 22.5 22.4 22.3 22.4	846.5 MHz (High) 22.5 22.5 22.5 22.5 22.5 22.5 22.5
		1 1 1 12 12 12 25	Low Mid High Iow Mid High	0 12 24 0 6 13	(dB) (0) (0) (0) (1) (1) (1) (1)	Power (dBm) 22.5 22.5 22.5 21.5 21.5 21.5 21.5	826.5 MHz (Low) 22.5 22.5 22.4 22.4 22.4 22.3 21.5	836.5 MHz (Middle) 22.5 22.3 22.5 22.4 22.3 22.4 21.3	846.5 MHz (High) 22.5 22.5 22.5 22.5 22.5 22.5 22.5 21.6
		1 1 1 1 12 12 12 12 25 1	Low Mid High low Mid High - Low	0 12 24 0 6 13 0	(dB) (0) (0) (0) (1) (1) (1) (1) (1)	Power (dBm) 22.5 22.5 22.5 21.5 21.5 21.5 21.5 21.5	826.5 MHz (Low) 22.5 22.5 22.4 22.4 22.4 22.3 21.5 21.5	836.5 MHz (Middle) 22.5 22.3 22.5 22.4 22.3 22.4 21.3 21.5	846.5 MHz (High) 22.5 22.5 22.5 22.5 22.5 22.5 21.6 21.5
		1 1 1 1 12 12 12 25 1 1	Low Mid High low Mid High Low Mid High	0 12 24 0 6 13 0	(dB) (0) (0) (0) (1) (1) (1) (1) (1) (1) (1)	Power (dBm) 22.5 22.5 22.5 21.5 21.5 21.5 21.5 21.5 21.5	826.5 MHz (Low) 22.5 22.5 22.4 22.4 22.4 22.3 21.5 21.5	836.5 MHz (Middle) 22.5 22.3 22.5 22.4 22.3 22.4 21.3 21.5 21.4	846.5 MHz (High) 22.5 22.5 22.5 22.5 22.5 22.5 21.6 21.5 21.5
	QPSK	1 1 1 12 12 12 25 1 1 1	Low Mid High low Mid High - Low Mid High	0 12 24 0 6 13 0 0 12 24	(dB) (0) (0) (0) (1) (1) (1) (1) (1) (1) (1) (1)	Power (dBm) 22.5 22.5 22.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	826.5 MHz (Low) 22.5 22.5 22.4 22.4 22.4 22.3 21.5 21.5 21.5	836.5 MHz (Middle) 22.5 22.3 22.5 22.4 22.3 22.4 21.3 21.5 21.4	846.5 MHz (High) 22.5 22.5 22.5 22.5 22.5 22.5 21.6 21.5 21.5 21.4
	QPSK	1 1 1 1 12 12 12 25 1 1 1 1 12	Low Mid High low Mid High - Low Mid High low	0 12 24 0 6 13 0 0 12 24	(dB) (0) (0) (0) (1) (1) (1) (1) (1) (1) (1) (2)	Power (dBm) 22.5 22.5 22.5 21.5 21.5 21.5 21.5 21.	826.5 MHz (Low) 22.5 22.5 22.4 22.4 22.3 21.5 21.5 21.5 21.5 21.5	836.5 MHz (Middle) 22.5 22.3 22.5 22.4 22.3 22.4 21.3 21.5 21.4 21.4	846.5 MHz (High) 22.5 22.5 22.5 22.5 22.5 22.5 21.6 21.5 21.5 21.4 21.5

Page: 49 of 491 UL

Version 2.0 Issue Date: 31 July 2013

rowe	r Back-off No	t Suppor	ted (C	ontin	ued)				
			01			Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB Config	Star Off		MPR (dB)	Max Power (dBm)	Frequency 825.5 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 847.5 MHz (High)
		1	Low	0	(0)	22.5	22.5	22.4	22.5
		1	Mid	7	(0)	22.5	22.4	22.5	22.6
		1	High	14	(0)	22.5	22.4	22.5	22.5
	QPSK	8	Low	0	(1)	21.5	21.5	21.5	21.6
		8	Mid	4	(1)	21.5	21.4	21.5	21.6
	ИНz	8	High	7	(1)	21.5	21.4	21.5	21.6
0 MI I-		15	-	0	(1)	21.5	21.4	21.4	21.6
3 MHz		1	Low	0	(1)	21.5	21.4	21.4	21.5
		1	Mid	7	(1)	21.5	21.4	21.4	21.6
		1	High	14	(1)	21.5	21.4	21.5	21.6
	16QAM	8	Low	0	(2)	20.5	20.5	20.5	20.6
		8	Mid	4	(2)	20.5	20.4	20.5	20.5
		8	High	7	(2)	20.5	20.5	20.5	20.6
		15	-	0	(2)	20.5	20.4	20.5	20.6
			Stor	. DD		Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB Config	Start RB Offset		MPR (dB)	Max Power (dBm)	Frequency 824.7 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 848.3 MHz (High)
		1	Low	0	(0)	22.5	22.5	22.5	22.5
		1	Mid	3	(0)	22.5	22.5	22.5	22.5
		1	High	5	(0)	22.5	22.4	22.5	22.5
	QPSK	3	Low	0	(0)	22.5	22.5	22.4	22.6
		3	Mid	1	(0)	22.5	22.5	22.5	22.5
		3	high	3	(0)	22.5	22.4	22.4	22.5
1.4		6	-	0	(1)	21.5	21.5	21.5	21.6
MHz		1	Low	0	(1)	21.5	21.5	21.5	21.5
		1	Mid	3	(1)	21.5	21.5	21.4	21.5
		1	High	5	(1)	21.5	21.5	21.5	21.5
	16QAM	3	Low	0	(1)	21.5	21.4	21.5	21.6
		3	Mid	1	(1)	21.5	21.4	21.4	21.6
		3	high	3	(1)	21.5	21.4	21.4	21.5
				0					

Page: 50 of 491 UL

Version 2.0 Issue Date: 31 July 2013

7.2.7.Conducted Average Power Measurement: LTE Band 7 (2600 MHz) Power Back-off Not Supported (Continued)

Ch. Modulations		D.	Star	. DB	MDD	Actual	Measu	red Avg Power	(dBm).	
Ch. BW	Modulations	RB Config	Off		MPR (dB)	Max Power (dBm)	Frequency 2510.0 MHz (Low)	Frequency 2535.0 MHz (Middle)	Frequency 2560.0 MHz (High)	
		1	Low	0	(0)	23.0	22.9	23.1	23.1	
		1	Mid	49	(0)	23.0	23.0	23.2	23.1	
		1	High	99	(0)	23.0	23.0	23.1	23.1	
	QPSK	50	low	0	(1)	22.0	21.9	22.0	22.0	
		50	Mid	25	(1)	22.0	21.9	22.0	22.0	
		50	High	50	(1)	22.0	21.9	22.0	22.0	
20		100	-	0	(1)	22.0	21.9	22.0	22.0	
MHz		1	Low	0	(1)	22.0	21.9	22.0	22.0	
		1	Mid	49	(1)	22.0	21.9	22.0	22.0	
		1	High	99	(1)	22.0	22.0	22.0	22.0	
	16QAM	50	low	0	(2)	21.0	21.8	21.9	21.9	
		50	Mid	25	(2)	21.0	21.8	21.9	21.9	
		50	High	50	(2)	21.0	21.8	21.9	21.9	
		100	-	0	(2)	21.0	21.8	21.8	21.9	
			Start RB Offset		MPR (dB)	Actual	Measured Avg Power (dBm).			
Ch. BW	Ch. BW Modulations	RB Config				Max Power	Frequency 2507.5 MHz	Frequency 2535.0 MHz	Frequency 2562.5 MHz	
						(dBm)	(Low)	(Middle)	(High)	
		1	Low	0	(0)	23.0	(Low) 22.9	(Middle) 23.0	23.0	
		1	Low Mid	0 37	(0)	,	` '			
						23.0	22.9	23.0	23.0	
	QPSK	1	Mid	37	(0)	23.0	22.9 23.0	23.0 23.1	23.0 23.0	
	QPSK	1	Mid High	37 74	(0) (0)	23.0 23.0 23.0	22.9 23.0 23.0	23.0 23.1 23.0	23.0 23.0 23.0	
	QPSK	1 1 36	Mid High low	37 74 0	(0) (0) (1)	23.0 23.0 23.0 22.0	22.9 23.0 23.0 21.9	23.0 23.1 23.0 22.0	23.0 23.0 23.0 22.0	
15	QPSK	1 1 36 36	Mid High low Mid	37 74 0 19	(0) (0) (1) (1)	23.0 23.0 23.0 22.0 22.0	22.9 23.0 23.0 21.9 21.9	23.0 23.1 23.0 22.0 22.0	23.0 23.0 23.0 22.0 22.0	
15 MHz	QPSK	1 1 36 36 36	Mid High low Mid	37 74 0 19 39	(0) (0) (1) (1) (1)	23.0 23.0 23.0 22.0 22.0 22.0	22.9 23.0 23.0 21.9 21.9 21.9	23.0 23.1 23.0 22.0 22.0 22.0	23.0 23.0 23.0 22.0 22.0 22.0	
	QPSK	1 1 36 36 36 36 75	Mid High low Mid High	37 74 0 19 39	(0) (0) (1) (1) (1) (1)	23.0 23.0 23.0 22.0 22.0 22.0 22.0	22.9 23.0 23.0 21.9 21.9 21.9 21.9	23.0 23.1 23.0 22.0 22.0 22.0 22.0	23.0 23.0 23.0 22.0 22.0 22.0 22.0	
	QPSK	1 1 36 36 36 36 75	Mid High low Mid High - Low	37 74 0 19 39 0	(0) (0) (1) (1) (1) (1) (1)	23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	22.9 23.0 23.0 21.9 21.9 21.9 21.9 21.9	23.0 23.1 23.0 22.0 22.0 22.0 22.0 21.9	23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	
	QPSK 16QAM	1 1 36 36 36 36 75 1	Mid High low Mid High - Low Mid	37 74 0 19 39 0 0 37	(0) (0) (1) (1) (1) (1) (1) (1)	23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	22.9 23.0 23.0 21.9 21.9 21.9 21.9 21.9 21.9	23.0 23.1 23.0 22.0 22.0 22.0 22.0 21.9 22.0	23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	
		1 1 36 36 36 36 75 1 1	Mid High low Mid High - Low Mid High	37 74 0 19 39 0 0 37 74	(0) (0) (1) (1) (1) (1) (1) (1) (1)	23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	22.9 23.0 23.0 21.9 21.9 21.9 21.9 21.9 21.9	23.0 23.1 23.0 22.0 22.0 22.0 21.9 22.0 22.0	23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	
		1 1 36 36 36 75 1 1 1 36	Mid High low Mid High - Low Mid High	37 74 0 19 39 0 0 37 74 0	(0) (0) (1) (1) (1) (1) (1) (1) (1) (2)	23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	22.9 23.0 23.0 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9	23.0 23.1 23.0 22.0 22.0 22.0 21.9 22.0 21.9	23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	

Page: 51 of 491 UL

rsion 2.0 Issue Date: 31 July 2013

	ucted Averager Back-off Not					Band 7	(2600 MHz)		
			Star	4 DD		Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB Config	Off		MPR (dB)	Max Power (dBm)	Frequency 2505.0 MHz (Low)	Frequency 2535.0 MHz (Middle)	Frequency 2565.0 MHz (High)
		1	Low	0	(0)	23.0	23.0	23.1	22.9
		1	Mid	24	(0)	23.0	22.9	23.0	22.8
		1	High	49	(0)	23.0	23.0	23.2	22.9
	QPSK	25	Low	0	(1)	22.0	21.9	22.0	21.8
		25	Mid	12	(1)	22.0	21.9	22.0	21.9
		25	High	25	(1)	22.0	21.9	22.0	21.9
10		50	-	0	(1)	22.0	21.9	21.9	21.9
MHz		1	Low	0	(1)	22.0	22.0	22.1	21.9
		1	mid	24	(1)	22.0	21.9	22.0	21.8
		1	High	49	(1)	22.0	21.9	22.1	21.9
	16QAM	25	Low	0	(2)	21.0	21.9	21.9	20.9
		25	Mid	12	(2)	21.0	21.9	21.9	20.9
		25	High	25	(2)	21.0	21.9	21.9	20.9
		50	-	0	(2)	21.0	20.8	20.8	20.8
O.L.		55	Star	• DD	MDD	Actual	Measu	red Avg Power	(dBm).
Ch. BW	Modulations	RB Config	Off		MPR (dB)	Max Power (dBm)	Frequency 2510.0 MHz (Low)	Frequency 2535.0 MHz (Middle)	Frequency 2567.5 MHz (High)
		1	Low	0	(0)	23.0	23.0	23.0	22.9
		1	Mid	12	(0)	23.0	22.9	23.0	22.9
		1	High	24	(0)	23.0	22.9	23.0	22.9
	QPSK	12	low	0	(1)	22.0	21.9	22.0	21.8
		12	Mid	6	(1)	22.0	21.9	22.0	21.9
		40	High	13	(1)	22.0	21.9	22.0	21.9
		12	nign	10	(' ' /		21.0	22.0	21.0
5 MHz		12 25	-	0	(1)	22.0	21.9	21.9	21.9

1

1

12

12

12

25

16QAM

Mid

High

low

Mid

High

12

24

0

6

13

0

(1)

(1)

(2)

(2)

(2)

(2)

22.0

22.0

21.0

21.0

21.0

21.0

21.8

21.8

21.8

21.8

21.8

20.8

22.0

22.0

21.9

21.9

21.9

20.8

21.9

21.9

20.8

20.8

20.9

20.8

Page: 52 of 491 UL

Issue Date: 31 July 2013

7.2.8.Conducted Average Power Measurement: LTE Band 17 (750 MHz)

Power Back-off Not Supported

	n).			
Ch. BW Modulations Config Offset (dB) Power (dBm) Frequency 709.0 MHz (Low) (Middle) 1 Low 0 (0) 22.5 23.0 22.9				
	Frequency 711.0 MHz (High)			
1 Mid 24 (0) 22.5 23.0 23.0	22.8			
20.0	23.0			
1 High 49 (0) 22.5 23.0 23.1	23.1			
QPSK 25 Low 0 (1) 21.5 21.9 21.9	21.9			
25 Mid 12 (1) 21.5 22.0 21.9	21.9			
25 High 25 (1) 21.5 22.0 22.0	21.9			
10 MHz 50 - 0 (1) 21.5 21.8 21.8	21.9			
1 Low 0 (1) 21.5 22.0 22.0	21.9			
1 mid 24 (1) 21.5 22.0 22.0	22.1			
1 High 49 (1) 21.5 22.0 22.1	22.1			
16QAM 25 Low 0 (2) 20.5 20.9 20.9	20.9			
25 Mid 12 (2) 20.5 21.0 20.9	20.9			
25 High 25 (2) 20.5 21.0 20.9	20.9			
50 - 0 (2) 20.5 20.9 20.9	20.9			
Actual Measured Avg Power (dBm	Measured Avg Power (dBm).			
	_			
Ch. BW Modulations RB Start RB MPR Max Frequency Frequency F	Frequency 713.5 MHz (High)			
Ch. BW Modulations RB Start RB MPR (dB) Frequency 706.5 MHz 710.0 MHz 7	713.5 MHz			
Ch. BW Modulations RB Config Offset Offset (dB) MPR (dB) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle)	713.5 MHz (High)			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) 7 1 Low 0 (0) 22.5 22.8 23.0	713.5 MHz (High) 23.0			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) 7 1 Low 0 (0) 22.5 22.8 23.0 1 Mid 12 (0) 22.5 22.8 23.1	713.5 MHz (High) 23.0 23.1			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) 7 1 Low 0 (0) 22.5 22.8 23.0 1 Mid 12 (0) 22.5 22.8 23.1 1 High 24 (0) 22.5 23.0 23.1	713.5 MHz (High) 23.0 23.1 23.1			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) Frequency 710.0 MHz (Middle) 7 1 Low 0 (0) 22.5 22.8 23.0 1 Mid 12 (0) 22.5 22.8 23.1 1 High 24 (0) 22.5 23.0 23.1 QPSK 12 low 0 (1) 21.5 22.0 22.0	713.5 MHz (High) 23.0 23.1 23.1 22.0			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) Frequency 710.	713.5 MHz (High) 23.0 23.1 23.1 22.0 22.0			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) 7 1 Low 0 (0) 22.5 22.8 23.0 23.1 1 High 24 (0) 22.5 22.8 23.1 1 High 24 (0) 22.5 23.0 23.1 QPSK 12 low 0 (1) 21.5 22.0 22.0 12 Mid 6 (1) 21.5 22.0 22.0 12 High 13 (1) 21.5 22.1 22.0	713.5 MHz (High) 23.0 23.1 23.1 22.0 22.0			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) 7 1 Low 0 (0) 22.5 22.8 23.0 1 Mid 12 (0) 22.5 22.8 23.1 1 High 24 (0) 22.5 23.0 23.1 1 I bow 0 (1) 21.5 22.0 22.0 12 Mid 6 (1) 21.5 22.0 22.0 12 High 13 (1) 21.5 22.1 22.0 5 MHz 25 - 0 (1) 21.5 22.0 22.1	713.5 MHz (High) 23.0 23.1 23.1 22.0 22.0 22.0 22.1			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) Frequency 710.	713.5 MHz (High) 23.0 23.1 23.1 22.0 22.0 22.0 22.1 22.0			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) Frequency 710.	713.5 MHz (High) 23.0 23.1 23.1 22.0 22.0 22.0 22.1 22.0 22.1			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) Frequency 710.0 Middle Frequency	713.5 MHz (High) 23.0 23.1 23.1 22.0 22.0 22.1 22.0 22.1 22.2			
Ch. BW Modulations RB Config Start RB Offset MPR (dB) Max Power (dBm) Frequency 706.5 MHz (Low) Frequency 710.0 MHz (Middle) Frequency 710	713.5 MHz (High) 23.0 23.1 23.1 22.0 22.0 22.1 22.0 22.1 22.2 21.1			

Page: 53 of 491 UL

Issue Date: 31 July 2013

7.2.9.Conducted Power Measurements Wi-Fi802.11b/g/n 802.11b/g **Power Back-off Not Supported** Tx Power (dBm) Tx Power (dBm) **Channel Number** Frequency (MHZ) Note 802.11b (11Mbps) 802.11b (1Mbps) 1 2412.0 14.9 14.4 6 2437.0 15.9 2.4 GHz 15.9 14.2 11 2462.0 14.7 TX Power (dBm) Tx Power (dBm) **Channel Number** Note Frequency (MHZ) 802.11g **(54Mbps** 802.11g (6Mbps) 2412.0 13.4 11.9 2.4 GHz 6 2437.0 14.8 13.3 11 2462.0 10.8 12.6 802.11n Tx Power (dBm) Tx Power (dBm) **Channel Number** Frequency (MHZ) Note 802.11n 802.11n (MCS0 6.5Mbps) (MCS7 65Mbps) 2412.0 1 12.9 11.0 2.4 GHz 6 2437.0 13.9 12.5 11 2462.0 12.0 10.1

Page: 54 of 491 UL

Issue Date: 31 July 2013

7.2.10.Conducted Power Measurements Wi-Fi802.11a/n (5.0 GHz) 802.11a (5.0 GHz)

Power Back-off Not Supported

Channel Number	Frequency (MHZ)	TX Power (dBm) 6 Mbps	TX Power (dBm) 54 Mbps	Note
36*	5180.0	11.7	9.2	
40	5200.0	11.6	9.3	5.2 GHz
44	5220.0	11.5	9.4	3.2 GHZ
48*	5240.0	11.6	9.0	
52*	5260.0	12.7	10.2	
56	5280.0	11.0	9.2	5.3 GHz
60	5300.0	11.1	9.3	3.3 GHZ
64*	5320.0	11.2	8.4	
100	5500.0	11.1	8.7	
104*	5520.0	11.1	8.1	
108	5540.0	11.2	8.2	
112	5560.0	11.4	8.3	5.6 GHz
116*	5580.0	11.7	9.2	3.0 GHZ
132	5660.0	11.6	9.4	
136*	5680.0	11.7	9.2	
140	5700.0	10.8	8.2	
149*	5745.0	11.8	9.3	
153	5765.0	11.5	9.2	
157*	5785.0	11.4	8.9	5.8 GHz
161	5805.0	11.7	8.8	
165*	5825.0	11.8	8.7	

^{*} Default test Channels

Page: 55 of 491 UL

Issue Date: 31 July 2013

802.11n (5.0 GHz) (HT20) Power Back-off Not Supported

Channel Number	Frequency (MHZ)	TX Power (dBm) 6.5 Mbps	TX Power (dBm) 65 Mbps	Note
36*	5180.0	10.9	8.3	
40	5200.0	10.8	8.2	E 2 CU-
44	5220.0	10.7	8.5	5.2 GHz
48*	5240.0	10.8	8.8	
52*	5260.0	12.5	9.7	
56	5280.0	11.4	8.6	5.3 GHz
60	5300.0	11.3	8.5	3.3 GHZ
64*	5320.0	11.3	8.5	
100	5500.0	10.4	7.9	
104*	5520.0	10.2	7.8	
108	5540.0	10.5	8.8	
112	5560.0	10.6	8.9	5.6 GHz
116*	5580.0	11.0	8.7	3.0 GHZ
132	5660.0	11.4	9.0	
136*	5680.0	11.8	9.0	
140	5700.0	11.8	9.0	
149*	5745.0	11.9	9.2	
153	5765.0	11.7	9.1	
157*	5785.0	12.0	9.0	5.8 GHz
161	5805.0	11.9	9.1	
165*	5825.0	11.0	8.1	

^{*} Default test Channels

Page: 56 of 491 UL

Issue Date: 31 July 2013

802.11n (5.0 GHz) (HT40) Power Back-off Not Supported

Channel Number	Frequency (MHZ)	TX Power (dBm) 13.5 Mbps	TX Power (dBm) 135 Mbps	Note
38	5190.0	9.6	9.3	5.2 GHz
46	5230.0	9.7	9.2	5.2 GHZ
54	5270.0	10.2	9.1	5.3 GHz
62	5310.0	9.5	8.5	5.3 GHZ
102	5510.0	9.8	9.0	
110	5550.0	9.7	8.9	5.6 GHz
134	5670.0	10.8	9.7	
151	5755.0	10.1	9.0	5.8 GHz
159	5795.0	9.9	9.1	3.6 GHZ

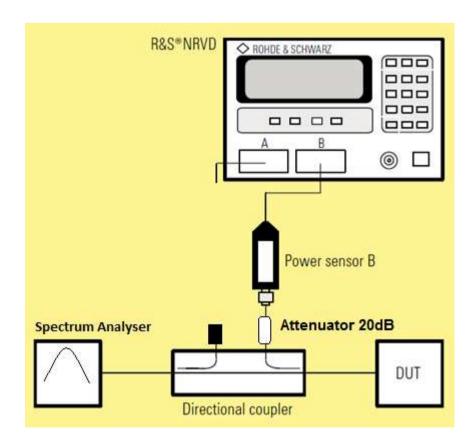
802.11 ac (5.0 GHz) (20 MHz) Power Back-off Not Supported

Power Back-of	f Not Supported			
Channel Number	Frequency (MHZ)	TX Power (dBm) 6.5 Mbps	TX Power (dBm) 65 Mbps	Note
36*	5180.0	11.7	8.7	
40	5200.0	11.5	9.0	5.2 GHz
44	5220.0	11.4	9.0	3.2 0112
48*	5240.0	11.5	9.1	
52*	5260.0	11.9	8.9	
56	5280.0	10.7	7.9	5.3 GHz
60	5300.0	10.8	7.9	3.3 6112
64*	5320.0	10.8	7.8	
100	5500.0	11.2	8.5	
104*	5520.0	11.1	8.6	
108	5540.0	11.3	8.6	
112	5560.0	11.2	8.4	5.6 GHz
116*	5580.0	11.3	8.8	3.0 0112
132	5660.0	11.7	8.9	
136*	5680.0	11.8	9.0	
140	5700.0	11.8	8.9	
149*	5745.0	11.9	9.2	
153	5765.0	11.2	9.1	
157*	5785.0	11.3	9.3	5.8 GHz
161	5805.0	11.4	9.1	
165*	5825.0	11.3	8.3	

^{*} Default test Channels

Page: 57 of 491 UL

Issue Date: 31 July 2013


802.11ac (5.0 GHz) (40 MHz) Power Back-off Not Supported

Channel Number	Frequency (MHZ)	TX Power (dBm) 13.5 Mbps	TX Power (dBm) 135 Mbps	Note
38	5190.0	10.7	9.7	5.2 GHz
46	5230.0	10.5	9.5	3.2 GHZ
54	5270.0	10.1	9.1	5.3 GHz
62	5310.0	9.0	8.0	5.3 GHZ
102	5510.0	10.7	9.4	
110	5550.0	10.5	9.3	5.6 GHz
134	5670.0	10.7	9.9	
151	5755.0	10.4	9.4	5.8 GHz
159	5795.0	10.5	9.5	3.0 GHZ

802.11ac (5.0 GHz) (80 MHz) Power Back-off Not Supported

Channel Number	Frequency (MHZ)	TX Power (dBm) 13.5 Mbps	TX Power (dBm) 135 Mbps	Note
42	5210	10.2	9.2	5.2 GHz
58	5290	9.3	8.8	5.3 GHz
106	5530	9.9	8.9	5.6 GHz
155	5775	10.5	9.5	5.8 GHz

Test setup for power measurements

Page: 58 of 491 UL

Issue Date: 31 July 2013

7.3. Test Results

For All SAR measurement in this report the SAR limit tested to is 1.6 W/Kg

0.748

7.3.1. Specific Absorption Rate - GSM 850 Head Configuration 1g

Power Back-off Not Supported

Test Summary:

Tissue Volume:1gMaximum Measured Level (W/kg):0.698

Environmental Conditions:

Maximum Reported Level (W/kg):

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.2 to 22.2

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
1	Touch Left	190	26.1	26.3	0.465	0.487	1	GMSK
2	Tilt Left	190	26.1	26.3	0.400	0.419	1	GMSK
3	Touch Right	190	26.1	26.3	0.672	0.704	1	GMSK
4	Tilt Right	190	26.1	26.3	0.401	0.420	1	GMSK
5	Touch Right	128	26.2	26.3	0.686	0.702	1	GMSK
6	Touch Right	251	26.0	26.3	0.698	0.748	1	GMSK

Note(s):

Page: 59 of 491 UL

^{1.} DTM Multi-slot Class 11 - Tested using 3 Uplink time slots (with 2 time slots set as CS1 for GPRS and 1 time slot set for voice).

Issue Date: 31 July 2013

7.3.2. Specific Absorption Rate - GPRS 850 Hotspot Mode Configuration 1g **Power Back-off Not Supported**

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.914

Maximum Reported Level (W/kg): 0.979

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.5 to 22.5

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
7	Front	190	26.3	26.6	0.754	0.808	1, 2	GMSK
8	Front	128	26.3	26.6	0.862	0.924	1, 2	GMSK
9	Front	251	26.3	26.6	0.709	0.760	1, 2	GMSK
10	Back	190	26.3	26.6	0.836	0.896	1, 2	GMSK
11	Back	128	26.3	26.6	0.914	0.979	1, 2, 3	GMSK
12	Back	251	26.3	26.6	0.693	0.743	1, 2	GMSK
13	Left Hand Side	190	26.3	26.6	0.320	0.343	1, 2	GMSK
14	Right Hand Side	190	26.3	26.6	0.209	0.224	1, 2	GMSK
15	Bottom	190	26.3	26.6	0.021	0.023	1, 2	GMSK
NI COLON								

Note(s):

- 1. Data SAR measurements were performed using 4 uplink timeslots
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under SAR Measurement Variability and Measurement Uncertainty Analysis Results Table.

*KDB 941225 D03 - SAR is not required for EDGE and DTM technology when the maximum average output power is lower than that measured on the corresponding GPRS channels.

UL Page: 60 of 491

Issue Date: 31 July 2013

7.3.3.Specific Absorption Rate - GSM 850 Body-Worn Configuration 1g Power Back-off Not Supported Test Summary:

Tissue Volume:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.749

Maximum Reported Level (W/kg): 0.766

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.5 to 22.5

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
16	Front	128	26.2	26.3	0.749	0.766	1, 2, 3	GMSK
17	Back	128	26.2	26.3	0.720	0.737	1, 2, 3	GMSK

Note(s):

- 1. DTM Multi-slot Class 11 Tested using 3 Uplink time slots (with 2 time slots set as CS1 for GPRS and 1 time slot set for voice).
- 2. Worst case channel from hotspot mode configuration is used for body-worn configuration.
- 3. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

Page: 61 of 491 UL

Issue Date: 31 July 2013

7.3.4.Specific Absorption Rate - PCS 1900 Head Configuration 1g Power Back-off Not Supported

0.515

Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.515

Environmental Conditions:

Maximum Reported Level (W/kg):

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 21.5 to 21.5

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
18	Touch Left	661	23.2	23.2	0.449	0.449	1	GMSK
19	Tilt Left	661	23.2	23.2	0.125	0.125	1	GMSK
20	Touch Right	661	23.2	23.2	0.259	0.259	1	GMSK
21	Tilt Right	661	23.2	23.2	0.163	0.163	1	GMSK
22	Touch Left	512	23.2	23.2	0.401	0.401	1	GMSK
23	Touch Left	810	23.2	23.2	0.515	0.515	1	GMSK
NI (/ /)								

Note(s):

Page: 62 of 491 UL

^{1.} DTM Multi-slot Class 11 - Tested using 3 Uplink time slots (with 2 time slots set as CS1 for GPRS and 1 time slot set for voice).

Issue Date: 31 July 2013

7.3.5.Specific Absorption Rate – GPRS 1900 Hotspot Mode Configuration 1g Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.802

Maximum Reported Level (W/kg): 0.802

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
24	Front	661	23.5	23.5	0.598	0.598	1, 2	GMSK
25	Back	661	23.5	23.5	0.762	0.762	1, 2	GMSK
26	Left Hand Side	661	23.5	23.5	0.158	0.158	1, 2	GMSK
27	Right Hand Side	661	23.5	23.5	0.076	0.076	1, 2	GMSK
28	Bottom	661	23.5	23.5	0.135	0.135	1, 2	GMSK
29	Back	512	23.5	23.5	0.802	0.802	1, 2, 3	GMSK
30	Back	810	23.5	23.5	0.675	0.675	1, 2	GMSK

Note(s):

- 1. Data SAR measurements were performed using 4 uplink timeslots
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under **SAR Measurement Variability and Measurement Uncertainty Analysis Results** Table.

*KDB 941225 D03 - SAR is not required for EDGE and DTM technology when the maximum average output power is lower than that measured on the corresponding GPRS channels.

Page: 63 of 491 UL

Issue Date: 31 July 2013

7.3.6. Specific Absorption Rate - PCS 1900 Body-Worn Configurat	ion 1g
Power Back-off Not Supported	
Test Summary:	

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.453

Maximum Reported Level (W/kg): 0.453

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C):

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
31	Front	661	23.2	23.2	0.385	0.385	1, 2, 3	GMSK
32	Back	512	23.2	23.2	0.453	0.453	1, 2, 3	GMSK

22.1 to 22.1

Note(s):

- 1. DTM Multi-slot Class 11 Tested using 3 Uplink time slots (with 2 time slots set as CS1 for GPRS and 1 time slot set for voice).
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Worst case channel from hotspot mode configuration is used for body-worn configuration.

Page: 64 of 491 UL

Issue Date: 31 July 2013

7.3.7. Specific Absorption Rate - UMTS-FDD 2 Head Configuration 1g **Power Back-off Supported & Disabled**

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.756 Maximum Reported Level (W/kg): 0.868

Environmental Conditions:

Temperature Variation in Lab (°C): 23.8 to 23.8

Temperature Variation in Liquid (°C): 22.7 to 22.7

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
33	Touch Left	9400	23.4	24.0	0.663	0.761	1	QPSK
34	Tilt Left	9400	23.4	24.0	0.185	0.212	1	QPSK
35	Touch Right	9400	23.4	24.0	0.490	0.563	1	QPSK
36	Tilt Right	9400	23.4	24.0	0.263	0.302	1	QPSK
37	Touch Left	9262	23.4	24.0	0.683	0.784	1	QPSK
38	Touch Left	9538	23.4	24.0	0.756	0.868	1	QPSK
M-1-/-V-								

Page: 65 of 491 UL

^{1.} Circuit Switch (CS) - RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"

Issue Date: 31 July 2013

7.3.8. Specific Absorption Rate - UMTS-FDD 2 Hotspot Mode Configuration 1g Power Back-off Supported & Enabled Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.928

Maximum Reported Level (W/kg): 1.018

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.5 to 23.5

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
39	Front	9400	23.1	23.5	0.826	0.906	1, 2	QPSK
40	Front	9262	23.1	23.5	0.870	0.954	1, 2	QPSK
41	Front	9538	23.0	23.5	0.728	0.817	1, 2	QPSK
42	Back	9400	23.1	23.5	0.894	0.980	1, 2	QPSK
43	Back	9262	23.1	23.5	0.928	1.018	1, 2, 3	QPSK
44	Back	9538	23.0	23.5	0.801	0.899	1, 2	QPSK
45	Left Hand Side	9400	23.1	23.5	0.190	0.208	1, 2	QPSK
46	Right Hand Side	9400	23.1	23.5	0.099	0.109	1, 2	QPSK
47	Bottom	9400	23.1	23.5	0.206	0.226	1, 2	QPSK
NI COLON								

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under *SAR Measurement Variability and Measurement Uncertainty Analysis Results* Table.

*KDB 941225 D02 - SAR is not required for RMC+HSPA or RMC+DC-HSDPA (HSDPA/HSUPA/DC-HSDPA) channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding RMC channels and 1g SAR level <u>reported</u> in 'RMC 12.2kbps' is <75% SAR limit.

Page: 66 of 491 UL

Issue Date: 31 July 2013

7.3.9. Specific Absorption Rate - UMTS-FDD 2 Body-Worn Configuration 1g Power Back-off Supported & Disabled Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.620

Maximum Reported Level (W/kg): 0.712

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.5 to 23.5

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
48	Front	9262	23.4	24.0	0.572	0.657	1, 2, 3	QPSK
49	Back	9262	23.4	24.0	0.620	0.712	1, 2, 3	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Worst case channel from hotspot mode configuration is used for body-worn configuration.

*KDB 941225 D02 - SAR is not required for RMC+HSPA or RMC+DC-HSDPA (HSDPA/HSUPA/DC-HSDPA) channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding RMC channels and 1g SAR level <u>reported</u> in 'RMC 12.2kbps' is <75% SAR limit.

Page: 67 of 491 UL

Issue Date: 31 July 2013

7.3.10. Specific Absorption Rate - UMTS-FDD 4 Head Configuration 1g **Power Back-off Supported& Disabled Test Summary:**

Tissue Volume: 1g Maximum Measured Level (W/kg): 0.578

Maximum Reported Level (W/kg): 0.664

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.6 to 22.6

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
50	Touch Left	1412	24.0	24.5	0.515	0.578	1	QPSK
51	Tilt Left	1412	24.0	24.5	0.196	0.220	1	QPSK
52	Touch Right	1412	24.0	24.5	0.430	0.482	1	QPSK
53	Tilt Right	1412	24.0	24.5	0.264	0.296	1	QPSK
54	Touch Left	1312	24.0	24.5	0.484	0.543	1	QPSK
55	Touch Left	1513	23.9	24.5	0.578	0.664	1	QPSK
NI (/ /)								

Note(s):

Page: 68 of 491 UL

^{1.} Circuit Switch (CS) - RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"

Issue Date: 31 July 2013

7.3.11. Specific Absorption Rate - UMTS-FDD 4 Hotspot Mode Configuration 1g **Power Back-off Supported & Enabled**

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.970

Maximum Reported Level (W/kg): 1.064

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.7 to 23.7

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
56	Front	1412	23.0	23.5	0.608	0.682	1, 2	QPSK
57	Back	1412	23.0	23.5	0.918	1.030	1, 2	QPSK
58	Back	1312	23.0	23.5	0.892	1.001	1, 2	QPSK
59	Back	1513	23.1	23.5	0.970	1.064	1, 2, 3	QPSK
60	Left Hand Side	1412	23.0	23.5	0.178	0.200	1, 2	QPSK
61	Right Hand Side	1412	23.0	23.5	0.146	0.164	1, 2	QPSK
62	Bottom	1412	23.0	23.5	0.268	0.301	1, 2	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under SAR Measurement Variability and Measurement Uncertainty Analysis Results Table.

*KDB 941225 D02 - SAR is not required for RMC+HSPA or RMC+DC-HSDPA (HSDPA/HSUPA/DC-HSDPA) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding RMC channels and 1g SAR level reported in 'RMC 12.2kbps' is <75% SAR limit.

Page: 69 of 491 UL

Issue Date: 31 July 2013

7.3.12.Specific Absorption Rate - UMTS-FDD 4 Body-Worn Configuration 1g
Power Back-off Supported & Disabled
Test Supported

Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.853

Maximum Reported Level (W/kg): 0.979

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.7 to 23.7

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
63	Front	1513	23.9	24.5	0.757	0.869	1, 2, 3	QPSK
64	Back	1513	23.9	24.5	0.853	0.979	1, 2, 3	QPSK
NI (/)								

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Worst case channel from hotspot mode configuration is used for body-worn configuration.

*KDB 941225 D02 - SAR is not required for RMC+HSPA or RMC+DC-HSDPA (HSDPA/HSUPA/DC-HSDPA) channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding RMC channels and 1g SAR level <u>reported</u> in 'RMC 12.2kbps' is <75% SAR limit.

Page: 70 of 491 UL

Issue Date: 31 July 2013

7.3.13.Specific Absorption Rate - UMTS-FDD 5 Head Configuration 1g Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.502

Maximum Reported Level (W/kg): 0.576

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.2 to 22.2

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
65	Touch Left	4408	24.1	24.5	0.374	0.410	1	QPSK
66	Tilt Left	4408	24.1	24.5	0.294	0.322	1	QPSK
67	Touch Right	4408	24.1	24.5	0.482	0.529	1	QPSK
68	Tilt Right	4408	24.1	24.5	0.308	0.338	1	QPSK
69	Touch Right	4357	23.9	24.5	0.502	0.576	1	QPSK
70	Touch Right	4458	24.0	24.5	0.478	0.536	1	QPSK
Noto(c):								

Note(s):

Page: 71 of 491 UL

^{1.} Circuit Switch (CS) - RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"

on 2.0 Issue Date: 31 July 2013

7.3.14.Specific Absorption Rate - UMTS-FDD 5 Hotspot Mode Configuration 1g Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.545

Maximum Reported Level (W/kg): 0.626

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.9 to 22.9

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
71	Front	4183	24.1	24.5	0.519	0.569	1, 2	QPSK
72	Back	4183	24.1	24.5	0.502	0.550	1, 2	QPSK
73	Left Hand Side	4183	24.1	24.5	0.211	0.231	1, 2	QPSK
74	Right Hand Side	4183	24.1	24.5	0.156	0.171	1, 2	QPSK
75	Bottom	4183	24.1	24.5	0.017	0.019	1, 2	QPSK
76	Front	4132	23.9	24.5	0.545	0.626	1, 2	QPSK
77	Front	4233	24.0	24.5	0.535	0.600	1, 2	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

*KDB 941225 D02 - SAR is not required for RMC+HSPA or RMC+DC-HSDPA (HSDPA/HSUPA/DC-HSDPA) channels when the maximum average output power is less than ½ dB higher than that measured on the corresponding RMC channels and 1g SAR level <u>reported</u> in 'RMC 12.2kbps' is <75% SAR limit.

Page: 72 of 491 UL

Issue Date: 31 July 2013

7.3.15.Specific Absorption Rate - UMTS-FDD 5 Body-Worn Configuration 1g Power Back-off Not Supported Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.452

Maximum Reported Level (W/kg): 0.519

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.9 to 22.9

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
78	Front	4132	23.9	24.5	0.452	0.519	1, 2, 3	QPSK
79	Back	4132	23.9	24.5	0.436	0.501	1, 2, 3	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Worst case channel from hotspot mode configuration is used for body-worn configuration.

*KDB 941225 D02 - SAR is not required for RMC+HSPA or RMC+DC-HSDPA (HSDPA/HSUPA/DC-HSDPA) channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding RMC channels and 1g SAR level <u>reported</u> in 'RMC 12.2kbps' is <75% SAR limit.

Page: 73 of 491 UL

Issue Date: 31 July 2013

7.3.16.Specific Absorption Rate - LTE Band 2 20MHz BW Head Configuration 1g

Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.570

Maximum Reported Level (W/kg): 0.718

Environmental Conditions:

Power Back-off Not Supported

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.7 to 22.7

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
80	Touch Left	18900	22.7	23.7	0.570	0.718	1	QPSK
81	Touch Left	18900	21.5	22.7	0.436	0.575	2	QPSK
82	Tilt Left	18900	22.7	23.7	0.150	0.189	1	QPSK
83	Tilt Left	18900	21.5	22.7	0.118	0.156	2	QPSK
84	Touch Right	18900	22.7	23.7	0.350	0.441	1	QPSK
85	Touch Right	18900	21.5	22.7	0.260	0.343	2	QPSK
86	Tilt Right	18900	22.7	23.7	0.226	0.285	1	QPSK
87	Tilt Right	18900	21.5	22.7	0.163	0.215	2	QPSK
88	Touch Left	18700	22.6	23.7	0.536	0.691	1	QPSK
89	Touch Left	19100	22.7	23.7	0.569	0.716	1	QPSK

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. 50% RB Allocation Middle of the channel Bandwidth.

Largest Channel BW

1. OPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is higher than 100% RB output power and if SAR Values in step (1) and (2) \leq 0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 74 of 491 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r02, the following steps were followed to perform SAR evaluation:

Issue Date: 31 July 2013

7.3.17.Specific Absorption Rate - LTE Band 2 20MHz BW Hotspot Mode Configuration 1g

Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.850

Maximum Reported Level (W/kg): 1.095

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
90	Front	18900	22.7	23.7	0.680	0.856	1, 4	QPSK
91	Front	18700	22.6	23.7	0.764	0.984	1, 4	QPSK
92	Front	19100	22.7	23.7	0.695	0.875	1, 4	QPSK
93	Front	18900	21.5	22.7	0.536	0.707	2, 4	QPSK
94	Front	18900	21.5	22.7	0.579	0.763	3, 4	QPSK
95	Back	18900	22.7	23.7	0.829	1.044	1, 4	QPSK
96	Back	18700	22.6	23.7	0.850	1.095	1, 4, 5	QPSK
97	Back	19100	22.7	23.7	0.752	0.947	1, 4	QPSK
98	Back	18900	21.5	22.7	0.667	0.879	2, 4	QPSK
99	Back	18700	21.5	22.7	0.608	0.802	2, 4	QPSK
100	Back	19100	21.5	22.7	0.619	0.816	2, 4	QPSK
101	Back	18700	21.5	22.7	0.616	0.812	3, 4	QPSK
102	Left Hand Side	18900	22.7	23.7	0.204	0.257	1, 4	QPSK
103	Left Hand Side	18900	21.5	22.7	0.165	0.218	2, 4	QPSK
104	Right Hand Side	18900	22.7	23.7	0.117	0.147	1, 4	QPSK
105	Right Hand Side	18900	21.5	22.7	0.088	0.115	2, 4	QPSK

Page: 75 of 491 UL

Issue Date: 31 July 2013

Specific Absorption Rate - LTE Band 2 20MHz BW Hotspot Mode Configuration 1g Power Back-off Not Supported (Continued):

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
106	Bottom	18900	22.7	22.7	0.171	0.171	1, 4	QPSK
107	Bottom	18900	21.5	22.7	0.132	0.174	2, 4	QPSK

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. 50% RB Allocation Middle of the channel Bandwidth.
- 3. 100% RB Allocation of channel Bandwidth.
- 4. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 5. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under **SAR Measurement Variability and Measurement Uncertainty Analysis Results** Table.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is higher than 100% RB output power and if SAR Values in step (1) and (2) ≤0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 76 of 491 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r02, the following steps were followed to perform SAR evaluation:

ersion 2.0 Issue Date: 31 July 2013

7.3.18.Specific Absorption Rate - LTE Band 2 20MHz BW Body-Worn Configuration 1g Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.439

Maximum Reported Level (W/kg): 0.566

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
108	Front	18700	22.6	23.7	0.402	0.518	1, 2, 3	QPSK
109	Back	18700	22.6	23.7	0.439	0.566	1, 2, 3	QPSK

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Worst case channel from hotspot mode configuration is used for body-worn configuration.

Page: 77 of 491 UL

Issue Date: 31 July 2013

7.3.19.Specific Absorption Rate - LTE Band 4 20MHz BW Head Configuration 1g Power Back-off Not Supported Test Summary:

rest Summary.

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.398

Maximum Reported Level (W/kg): 0.513

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.6 to 22.6

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
110	Touch Left	20175	22.7	23.7	0.341	0.429	1	QPSK
111	Touch Left	20050	21.5	22.7	0.264	0.348	2	QPSK
112	Tilt Left	20175	22.7	23.7	0.141	0.178	1	QPSK
113	Tilt Left	20050	21.5	22.7	0.109	0.144	2	QPSK
114	Touch Right	20175	22.7	23.7	0.311	0.392	1	QPSK
115	Touch Right	20050	21.5	22.7	0.230	0.303	2	QPSK
116	Tilt Right	20175	22.7	23.7	0.177	0.223	1	QPSK
117	Tilt Right	20050	21.5	22.7	0.133	0.175	2	QPSK
118	Touch Left	20050	22.7	23.7	0.367	0.462	1	QPSK
119	Touch Left	20300	22.6	23.7	0.398	0.513	1	QPSK

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. 50% RB Allocation Middle of the channel Bandwidth.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is higher than 100% RB output power and if SAR Values in step (1) and (2) \leq 0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 78 of 491 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r02, the following steps were followed to perform SAR evaluation:

Issue Date: 31 July 2013

7.3.20. Specific Absorption Rate - LTE Band 4 20MHz BW Hotspot Mode Configuration 1g

Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 1.060

Maximum Reported Level (W/kg): 1.366

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.0 to 22.0

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
120	Front	20175	22.7	23.7	0.868	1.093	1, 4	QPSK
121	Front	20050	22.7	23.7	0.829	1.044	1, 4	QPSK
122	Front	20300	22.6	23.7	0.871	1.122	1, 4	QPSK
123	Front	20050	21.5	22.7	0.626	0.825	2, 4	QPSK
124	Front	20175	21.4	22.7	0.658	0.888	2, 4	QPSK
125	Front	20300	21.4	22.7	0.680	0.917	2, 4	QPSK
126	Front	20300	21.4	22.7	0.694	0.936	3, 4	QPSK
127	Back	20175	22.7	23.7	1.010	1.272	1, 4	QPSK
128	Back	20050	22.7	23.7	1.000	1.259	1, 4	QPSK
129	Back	20300	22.6	23.7	1.060	1.366	1, 4, 5	QPSK
130	Back	20050	21.5	22.7	0.753	0.993	2, 4	QPSK
131	Back	20175	21.4	22.7	0.768	1.036	2, 4	QPSK
132	Back	20300	21.4	22.7	0.771	1.040	2, 4	QPSK
133	Back	20300	21.4	22.7	0.790	1.066	3, 4	QPSK
134	Left Hand Side	20175	22.7	23.7	0.170	0.214	1, 4	QPSK
135	Left Hand Side	20050	21.5	22.7	0.128	0.169	2, 4	QPSK
136	Right Hand Side	20175	22.7	23.7	0.129	0.162	1, 4	QPSK
137	Right Hand Side	20050	21.5	22.7	0.086	0.113	2, 4	QPSK

Page: 79 of 491 UL

Issue Date: 31 July 2013

Specific Absorption Rate - LTE Band 4 20MHz BW Hotspot Mode Configuration 1g Power Back-off Not Supported (Continued):

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
138	Bottom	20175	22.7	23.7	0.173	0.218	1, 4	QPSK
139	Bottom	20050	21.5	22.7	0.105	0.138	2, 4	QPSK

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. 50% RB Allocation Middle of the channel Bandwidth.
- 3. 100% RB Allocation of channel Bandwidth.
- 4. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 5. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under **SAR Measurement Variability and Measurement Uncertainty Analysis Results** Table.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is higher than 100% RB output power and if SAR Values in step (1) and (2) \leq 0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 80 of 491 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r02, the following steps were followed to perform SAR evaluation:

Version 2.0 Issue Date: 31 July 2013

7.3.21.Specific Absorption Rate - LTE Band 4 20MHz BW Body-Worn Configuration 1g Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.610

Maximum Reported Level (W/kg): 0.786

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.0 to 22.0

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
140	Front	20300	22.6	23.7	0.573	0.738	1, 2, 3	QPSK
141	Back	20300	22.6	23.7	0.610	0.786	1, 2, 3	QPSK

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Worst case channel from hotspot mode configuration is used for body-worn configuration.

Page: 81 of 491 UL

Issue Date: 31 July 2013

7.3.22.Specific Absorption Rate - LTE Band 5 10MHz BW Head Configuration 1g Power Back-off Not Supported Test Summary:

Tissue Volume:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.350

Maximum Reported Level (W/kg): 0.402

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.2 to 22.2

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
142	Touch Left	20525	22.6	23.2	0.229	0.263	1	QPSK
143	Touch Left	20525	21.6	22.2	0.192	0.220	2	QPSK
144	Tilt Left	20525	22.6	23.2	0.175	0.201	1	QPSK
145	Tilt Left	20525	21.6	22.2	0.133	0.153	2	QPSK
146	Touch Right	20525	22.6	23.2	0.350	0.402	1	QPSK
147	Touch Right	20525	21.6	22.2	0.254	0.292	2	QPSK
148	Tilt Right	20525	22.6	23.2	0.196	0.225	1	QPSK
149	Tilt Right	20525	21.6	22.2	0.155	0.178	2	QPSK
150	Touch Right	20450	22.5	23.2	0.318	0.374	1	QPSK
151	Touch Right	20600	22.5	23.2	0.320	0.376	1	QPSK
N1 (/)	_							

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. 50% RB Allocation Middle of the channel Bandwidth.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is higher than 100% RB output power and if SAR Values in step (1) and (2) \leq 0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 82 of 491 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r02, the following steps were followed to perform SAR evaluation:

Issue Date: 31 July 2013

7.3.23. Specific Absorption Rate - LTE Band 5 10MHz BW Hotspot Mode Configuration 1g

Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.386

Maximum Reported Level (W/kg): 0.454

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.9 to 22.9

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reporte d SAR (W/kg)	Note(s)	Mod.
152	Front	20525	22.6	23.2	0.312	0.358	1, 3	QPSK
153	Front	20525	21.6	22.2	0.251	0.288	2, 3	QPSK
154	Back	20525	22.6	23.2	0.336	0.386	1, 3	QPSK
155	Back	20525	21.6	22.2	0.260	0.299	2, 3	QPSK
156	Left Hand Side	20525	22.6	23.2	0.180	0.207	1, 3	QPSK
157	Left Hand Side	20525	21.6	22.2	0.141	0.162	2, 3	QPSK
158	Right Hand Side	20525	22.6	23.2	0.134	0.154	1, 3	QPSK
159	Right Hand Side	20525	21.6	22.2	0.107	0.123	2, 3	QPSK
160	Bottom	20525	22.6	23.2	0.016	0.018	1, 3	QPSK
161	Bottom	20525	21.6	22.2	0.010	0.011	2, 3	QPSK

Page: 83 of 491 UL

0.437

Issue Date: 31 July 2013

1, 3

QPSK

Specific Absorption Rate - LTE Band 4 20MHz BW Hotspot Mode Configuration 1g

Power Back-off Not Supported (Continued):

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reporte d SAR (W/kg)	Note(s)	Mod.
162	Back	20450	22.5	23.2	0.386	0.454	1, 3	QPSK

23.2

0.372

22.5

163 **Note(s):**

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. 50% RB Allocation Middle of the channel Bandwidth.

20600

3. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

Largest Channel BW

1. QPSK 1RB Allocation

Back

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is higher than 100% RB output power and if SAR Values in step (1) and (2) \leq 0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 84 of 491 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r02, the following steps were followed to perform SAR evaluation:

Issue Date: 31 July 2013

7.3.24.Specific Absorption Rate - LTE Band 5 10MHz BW Body-Worn Configuration 1g Power Back-off Not Supported Test Summary:

rest Summary.

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.328
Maximum Reported Level (W/kg): 0.385

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.9 to 22.9

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
164	Front	20450	22.5	23.2	0.328	0.385	1, 2, 3	QPSK
165	Back	20450	22.5	23.2	0.327	0.384	1, 2, 3	QPSK

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Worst case channel from hotspot mode configuration is used for body-worn configuration.

Page: 85 of 491 UL

Issue Date: 31 July 2013

7.3.25.Specific Absorption Rate - LTE Band 7 20MHz BW Head Configuration 1g Power Back-off Not Supported Test Summary:

0.343

rest odiffinary.

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.306

Environmental Conditions:

Maximum Reported Level (W/kg):

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
166	Touch Left	21100	23.2	23.7	0.293	0.329	1	QPSK
167	Touch Left	21100	22.0	22.7	0.220	0.258	2	QPSK
168	Tilt Left	21100	23.2	23.7	0.184	0.206	1	QPSK
169	Tilt Left	21100	22.0	22.7	0.183	0.215	2	QPSK
170	Touch Right	21100	23.2	23.7	0.306	0.343	1	QPSK
171	Touch Right	21100	22.0	22.7	0.235	0.276	2	QPSK
172	Tilt Right	21100	23.2	23.7	0.198	0.222	1	QPSK
173	Tilt Right	21100	22.0	22.7	0.151	0.177	2	QPSK
174	Touch Right	20850	23.0	23.7	0.236	0.277	1	QPSK
175	Touch Right	21350	23.1	23.7	0.231	0.265	1	QPSK

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. 50% RB Allocation Middle of the channel Bandwidth.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is higher than 100% RB output power and if SAR Values in step (1) and (2) \leq 0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 86 of 491 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r02, the following steps were followed to perform SAR evaluation:

Issue Date: 31 July 2013

7.3.26. Specific Absorption Rate - LTE Band 7 20MHz BW Hotspot Mode Configuration 1a

Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.452

Maximum Reported Level (W/kg): 0.507

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
176	Front	21100	23.2	23.7	0.452	0.507	1, 3	QPSK
177	Front	21100	22.0	22.7	0.348	0.409	2, 3	QPSK
178	Back	21100	23.2	23.7	0.411	0.461	1, 3	QPSK
179	Back	21100	22.0	22.7	0.310	0.364	2, 3	QPSK
180	Left Hand Side	21100	23.2	23.7	0.170	0.191	1, 3	QPSK
181	Left Hand Side	21100	22.0	22.7	0.129	0.152	2, 3	QPSK
182	Right Hand Side	21100	23.2	23.7	0.106	0.119	1, 3	QPSK
183	Right Hand Side	21100	22.0	22.7	0.081	0.095	2, 3	QPSK
184	Bottom	21100	23.2	23.7	0.176	0.197	1, 3	QPSK
185	Bottom	21100	22.0	22.7	0.136	0.160	2, 3	QPSK

Page: 87 of 491 UL

Issue Date: 31 July 2013

Specific Absorption Rate - LTE Band 7 20MHz BW Hotspot Mode Configuration 1g Power Back-off Not Supported (Continued):

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
186	Front	20850	23.0	23.7	0.206	0.242	1, 3	QPSK
187	Front	21350	23.1	23.7	0.237	0.272	1, 3	QPSK

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. 50% RB Allocation Middle of the channel Bandwidth.
- 3. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is higher than 100% RB output power and if SAR Values in step (1) and (2) \leq 0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 88 of 491 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r02, the following steps were followed to perform SAR evaluation:

Version 2.0 Issue Date: 31 July 2013

7.3.27.Specific Absorption Rate - LTE Band 7 20MHz BW Body-Worn Configuration 1g Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.213

Maximum Reported Level (W/kg): 0.239

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
188	Front	21100	23.2	23.7	0.213	0.239	1, 2, 3	QPSK
189	Back	21100	23.2	23.7	0.175	0.196	1, 2, 3	QPSK

Note(s):

- 1. 1 RB Allocation Middle of the Channel Bandwidth.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Worst case channel from hotspot mode configuration is used for body-worn configuration.

Page: 89 of 491 UL

Issue Date: 31 July 2013

7.3.28.Specific Absorption Rate - LTE Band 17 10MHz BW Head Configuration 1g Power Back-off Not Supported Tost Supported

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.251

Maximum Reported Level (W/kg): 0.288

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
190	Touch Left	23790	23.1	23.7	0.185	0.212	1	QPSK
191	Touch Left	23790	22.0	22.7	0.144	0.169	2	QPSK
192	Tilt Left	23790	23.1	23.7	0.134	0.154	1	QPSK
193	Tilt Left	23790	22.0	22.7	0.105	0.123	2	QPSK
194	Touch Right	23790	23.1	23.7	0.246	0.282	1	QPSK
195	Touch Right	23790	22.0	22.7	0.193	0.227	2	QPSK
196	Tilt Right	23790	23.1	23.7	0.154	0.177	1	QPSK
197	Tilt Right	23790	22.0	22.7	0.132	0.155	2	QPSK
198	Touch Right	23780	23.0	23.7	0.230	0.270	1	QPSK
199	Touch Right	23800	23.1	23.7	0.251	0.288	1	QPSK

Note(s):

- 1. 1 RB Allocation High End of the Channel Bandwidth.
- 2. 50% RB Allocation High End of the channel Bandwidth.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is higher than 100% RB output power and if SAR Values in step (1) and (2) \leq 0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 90 of 491 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r02, the following steps were followed to perform SAR evaluation:

Issue Date: 31 July 2013

7.3.29.Specific Absorption Rate - LTE Band 17 10MHz BW Hotspot Mode Configuration 1g

Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.316

Maximum Reported Level (W/kg): 0.367

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Results	Results:										
Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.			
200	Front	23790	23.1	23.7	0.299	0.343	1, 3	QPSK			
201	Front	23790	22.0	22.7	0.231	0.271	2, 3	QPSK			
202	Back	23790	23.1	23.7	0.312	0.358	1, 3	QPSK			
203	Back	23790	22.0	22.7	0.248	0.291	2, 3	QPSK			
204	Left Hand Side	23790	23.1	23.7	0.227	0.261	1, 3	QPSK			
205	Left Hand Side	23790	22.0	22.7	0.177	0.208	2, 3	QPSK			
206	Right Hand Side	23790	23.1	23.7	0.141	0.162	1, 3	QPSK			
207	Right Hand Side	23790	22.0	22.7	0.116	0.136	2, 3	QPSK			
208	Bottom	23790	23.0	23.7	0.032	0.038	1, 3	QPSK			
209	Bottom	23790	22.0	22.7	0.026	0.031	2, 3	QPSK			

Page: 91 of 491 UL

Issue Date: 31 July 2013

Specific Absorption Rate - LTE Band 17 10MHz BW Hotspot Mode Configuration 1g Power Back-off Not Supported (Continued):

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
210	Back	23780	23.0	23.7	0.312	0.367	1, 3	QPSK
211	Back	23800	23.1	23.7	0.316	0.363	1, 3	QPSK

Note(s):

- 1. 1 RB Allocation High End of the Channel Bandwidth.
- 2. 50% RB Allocation High End of the channel Bandwidth.
- 3. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is higher than 100% RB output power and if SAR Values in step (1) and (2) \leq 0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 92 of 491 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r02, the following steps were followed to perform SAR evaluation:

Issue Date: 31 July 2013

1g Power Bac	Power Back-off Not Supported Test Summary:										
Tissue Volu	me:		1g								
Maximum M	easured Leve	l (W/kg):	0.217								
Maximum R	eported Level	(W/kg):	0.255								
Environme	ntal Condition	ons:									
Temperature	e Variation in	Lab (°C):	23.0 to 2	3.0							
Temperature	e Variation in	Liquid (°C):	22.1 to 2	2.1							
Results:											
Scan No. EUT Channel Number			Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.			
212	Front	23780	23.0	23.7	0.208	0.244	1, 2, 3	QPSK			
213	Front	23780	23.0	23.7	0.217	0.255	1, 2, 3	QPSK			

Note(s):

- 1. 1 RB Allocation High End of the Channel Bandwidth.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Worst case channel from hotspot mode configuration is used for body-worn configuration.

Page: 93 of 491 UL

Issue Date: 31 July 2013

7.3.31.Specific Absorption Rate - Wi-Fi 2450 Head Configuration 1g Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.083

Maximum Reported Level (W/kg): 0.107

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 23.7 to 23.7

Results:

EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
Touch Left	6	15.9	17.0	0.044	0.057	1	DBPSK
Tilt Left	6	15.9	17.0	0.014	0.018	1	DBPSK
Touch Right	6	15.9	17.0	0.083	0.107	1	DBPSK
Tilt Right	6	15.9	17.0	0.013	0.016	1	DBPSK
Touch Right	1	14.9	15.5	0.061	0.070	1	DBPSK
Touch Right	11	14.2	15.0	0.035	0.042	1	DBPSK
T T	ouch Left ilt Left ouch Right ilt Right ouch Right	Touch Left 6 Touch Right 6 Touch Right 6 Touch Right 1	Channel Number Power (dBm) Touch Left 6 15.9 Touch Right 6 15.9 Touch Right 6 15.9 Touch Right 1 14.9	Channel Number Power (dBm) Touch Left 6 15.9 17.0 Touch Right 6 15.9 17.0 Tilt Right 6 15.9 17.0 Touch Right 1 14.9 15.5	Channel Number Avg Power (dBm) Rated Power (dBm) Meas. Level (W/kg) Fouch Left 6 15.9 17.0 0.044 Tilt Left 6 15.9 17.0 0.014 Touch Right 6 15.9 17.0 0.083 Tilt Right 6 15.9 17.0 0.013 Touch Right 1 14.9 15.5 0.061	Channel Number Avg Power (dBm) Rated Power (dBm) Meas. Level (W/kg) Reported SAR (W/kg) Fouch Left 6 15.9 17.0 0.044 0.057 Tilt Left 6 15.9 17.0 0.014 0.018 Touch Right 6 15.9 17.0 0.083 0.107 Tilt Right 6 15.9 17.0 0.013 0.016 Touch Right 1 14.9 15.5 0.061 0.070	Current Number Avg Power (dBm) Rated Power (dBm) Meas. Level (W/kg) Reported SAR (W/kg) Note(s) Fouch Left 6 15.9 17.0 0.044 0.057 1 Tilt Left 6 15.9 17.0 0.014 0.018 1 Touch Right 6 15.9 17.0 0.083 0.107 1 Tilt Right 6 15.9 17.0 0.013 0.016 1 Touch Right 1 14.9 15.5 0.061 0.070 1

Note(s):

Page: 94 of 491 UL

^{1.} WLAN 802.11b 1Mbps

^{*}KDB 248227 - SAR is not required for 802.11g/n channels when the maximum average output power is equal to that measured on the corresponding 802.11b channels.

Issue Date: 31 July 2013

7.3.32. Specific Absorption Rate - Wi-Fi 2450 Hotspot Mode Configuration 1g Power Back-off Not Supported

0.102

Test Summary:

Tissue Volume: 1g

Maximum Reported Level (W/kg): 0.131

Environmental Conditions:

Maximum Measured Level (W/kg):

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
220	Front	6	15.9	17.0	0.040	0.052	1, 2	DBPSK
221	Back	6	15.9	17.0	0.102	0.131	1, 2	DBPSK
222	Left Hand Side	6	15.9	17.0	0.014	0.018	1, 2	DBPSK
223	Bottom	6	15.9	17.0	0.047	0.061	1, 2	DBPSK
224	Back	1	14.9	15.5	0.079	0.091	1, 2	DBPSK
225	Back	11	14.2	15.0	0.053	0.064	1, 2	DBPSK

Note(s):

- 1. WLAN 802.11b 1Mbps
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

Page: 95 of 491 UL

^{*}KDB 248227 - SAR is not required for 802.11g/n channels when the maximum average output power is equal to that measured on the corresponding 802.11b channels.

Issue Date: 31 July 2013

7.3.33.Specific Absorption Rate - Wi-Fi 2450 Body-Worn Configuration 1g Power Back-off Not Supported Test Summary:

0.043

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.033

Environmental Conditions:

Maximum Reported Level (W/kg):

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
226	Front	6	15.9	17.0	0.028	0.036	1, 2, 3	DBPSK
227	Back	6	15.9	17.0	0.033	0.043	1, 2, 3	DBPSK

Note(s):

- 1. WLAN 802.11b 1Mbps
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Worst case channel from hotspot mode configuration is used for body-worn configuration.

Page: 96 of 491 UL

^{*}KDB 248227 - SAR is not required for 802.11g/n channels when the maximum average output power is equal to that measured on the corresponding 802.11b channels.

ersion 2.0 Issue Date: 31 July 2013

7.3.34.Specific Absorption Rate - Wi-Fi 5GHz Head Configuration 1g Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.010

Maximum Reported Level (W/kg): 0.012

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 0.0 to 22.5

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.	
802.11a									
-	Touch Left	36	11.7	12.4	0.000	0.000	1, 4, 5	BPSK	
228	Tilt Left	36	11.7	12.4	0.003	0.004	1, 4, 5	BPSK	
229	Touch Right	36	11.7	12.4	0.008	0.009	1, 4, 5	BPSK	
230	Tilt Right	36	11.7	12.4	0.006	0.006	1, 4, 5	BPSK	
231	Touch Right	52	12.7	13.6	0.006	0.008	1, 4, 5	BPSK	
232	Touch Right	116	11.7	12.3	0.010	0.012	1, 4, 6	BPSK	
233	Touch Right	149	11.8	12.3	0.007	0.008	1, 4, 5	BPSK	

Page: 97 of 491 UL

Issue Date: 31 July 2013

Specific Absorption Rate - Wi-Fi 5GHz Head Configuration 1g (Continued) Power Back-off Not Supported Test Summary:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.	
802.11ac VHT40									
- Touch Right 38 10.7 11.0 0.000 0.000 2, 4, 5 BPSK									
234	Touch Right	54	10.1	11.0	0.008	0.010	2, 4, 5	BPSK	
-	Touch Right	134	10.7	10.8	0.000	0.000	2, 4, 6	BPSK	
-	Touch Right	159	10.5	10.8	0.000	0.000	2, 4, 5	BPSK	
			802.11a	c VHT80					
-	Touch Right	42	10.2	10.5	0.000	0.000	3, 4, 5	BPSK	
-	Touch Right	58	9.3	10.5	0.000	0.000	3, 4, 5	BPSK	
-	Touch Right	106	9.9	10.5	0.000	0.000	3, 4, 6	BPSK	
-	Touch Right	155	10.5	10.5	0.000	0.000	3, 4, 5	BPSK	
Note/ol.									

Note(s):

- 1. WLAN 802.11a 6Mbps
- 2. WLAN 802,11ac VHT40 13.5 Mbps
- 3. WLAN 802.11ac VHT80 13.5 Mbps
- 4. Value measured was below noise floor
- 5. For frequency bands with an operating range of ≤ 100 MHz, when the SAR measured for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 D01, section 4.3.3
- 6. For frequency bands with an operating range of ≥ 200 MHz, when the SAR for the highest output power channel within is ≤ 0.4 W/kg, SAR for the remaining channels is not required. Per KDB 447498 D01, section 4.3.3

Page: 98 of 491 UL

^{*}KDB 248227 - SAR is not required for 802.11n HT20 / 802.11ac VHT20 channels as the maximum average output power is less than ¼ dB higher than 802.11a.

^{*}KDB 248227 - SAR is not required for 802.11n HT40 channels as the maximum average output power is less than ¼ dB higher than 802.11ac VHT40.

Issue Date: 31 July 2013

7.3.35.Specific Absorption Rate - Wi-Fi 5GHz Hotspot Mode Configuration 1g Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.063

Maximum Reported Level (W/kg): 0.078

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.5 to 22.5

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
235	Front	36	11.7	12.4	0.024	0.028	1, 2, 3	BPSK
236	Back	36	11.7	12.4	0.042	0.049	1, 2, 3	BPSK
237	Left Hand Side	36	11.7	12.4	0.001	0.001	1, 2, 3	BPSK
238	Bottom	36	11.7	12.4	0.004	0.005	1, 2, 3	BPSK
239	Back	52	12.7	13.6	0.063	0.078	1, 2, 3	BPSK
240	Back	116	11.7	12.3	0.007	0.008	1, 2, 4	BPSK
241	Back	149	11.8	12.3	0.029	0.032	1, 2, 3	BPSK

Note(s):

- 1. WLAN 802.11a 6Mbps
- 2. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. For frequency bands with an operating range of ≤ 100 MHz, when the SAR measured for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 D01, section 4.3.3
- 4. For frequency bands with an operating range of ≥ 200 MHz, when the SAR for the highest output power channel within is ≤ 0.4 W/kg, SAR for the remaining channels is not required. Per KDB 447498 D01, section 4.3.3

Page: 99 of 491 UL

^{*}KDB 248227 - SAR is not required for 802.11n HT20 / 802.11ac VHT20 channels as the maximum average output power is less than ¼ dB higher than 802.11a.

^{*} KDB General RF Exposure Guidance v05, the 802.11n HT40 / 802.11ac VHT40 / 802.11ac VHT80 qualify for SAR Test Exclusion. (Please see section 6.4)

Issue Date: 31 July 2013

7.3.36.Specific Absorption Rate - Wi-Fi 5GHz Body Worn Configuration 1g
Power Back-off Not Supported

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.063

Maximum Reported Level (W/kg): 0.078

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.5 to 22.5

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
235	Front	36	11.7	12.4	0.024	0.028	1, 2, 3	BPSK
236	Back	36	11.7	12.4	0.042	0.049	1, 2, 3	BPSK
239	Back	52	12.7	13.6	0.063	0.078	1, 2, 3	BPSK
240	Back	116	11.7	12.3	0.007	0.008	1, 2, 4	BPSK
241	Back	149	11.8	12.3	0.029	0.032	1, 2, 3	BPSK

Note(s):

- 1. WLAN 802.11a 6Mbps
- 2. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

*The applied FCC body-worn Personal Hotspot orientations where the corresponding edge(s) closest to the user with the most conservative exposure condition were all evaluated at 10 mm from the body. For modes and configuration that overlap with Personal hotspot, SAR evaluation was NOT performed at 15mm separation.

- 3. For frequency bands with an operating range of ≤ 100 MHz, when the SAR measured for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 D01, section 4.3.3
- 4. For frequency bands with an operating range of ≥ 200 MHz, when the SAR for the highest output power channel within is ≤ 0.4 W/kg, SAR for the remaining channels is not required. Per KDB 447498 D01, section 4.3.3

Page: 100 of 491 UL

^{*}KDB 248227 - SAR is not required for 802.11n HT20 / 802.11ac VHT20 channels as the maximum average output power is less than ¼ dB higher than 802.11a.

^{*} KDB General RF Exposure Guidance v05, the 802.11n HT40 / 802.11ac VHT40 / 802.11ac VHT80 qualify for SAR Test Exclusion. (Please see section 6.4)

Issue Date: 31 July 2013

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate-GSM 850/ UMTS FDD 5 / LTE Band 5/ LTE Band 17 Head Configuration 1g	95%	±20.08%
Specific Absorption Rate-GSM / GPRS / EDGE 850 / UMTS FDD 5 / LTE Band 5/ LTE Band 17 Body Configurations 1g	95%	±21.09%
Specific Absorption Rate-UMTS FDD 4 / LTE Band 4 Head Configuration 1g	95%	±21.09%
Specific Absorption Rate-UMTS FDD 4 / LTE Band 4 Body Configuration 1g	95%	±20.59%
Specific Absorption Rate-PCS 1900 / UMTS FDD 2/ LTE Band 2 Head Configuration 1g	95%	±23.70%
Specific Absorption Rate-GSM / GPRS / EDGE 1900 / UMTS FDD 2 / LTE Band 2 Body Configuration 1g	95%	±20.18%
Specific Absorption Rate-Wi-Fi 2450 MHz Head Configuration 1g	95%	±19.79%
Specific Absorption Rate-Wi-Fi 2450 MHz Body Configuration 1g	95%	±19.92%
Specific Absorption Rate-Wi-Fi 5GHz Head Configuration 1g	95%	±20.41%
Specific Absorption Rate-Wi-Fi 5GHz Body Configuration 1g	95%	±20.37%

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Note:

1. See Appendix 2 section A.2.3 for table calculations and parameters

Page: 101 of 491 UL

Issue Date: 31 July 2013

Appendix 1. Test Equipment Used Cal. Date Last UL No. Instrument Manufacturer Type No. Serial No. Interval Calibrated (Months) Narda 20W Calibrated as A034 8706 Narda 374BNM Termination part of system **SMA Directional** Calibrated as **MiDISCO** A1097 MDC6223-30 None part of system Coupler Schmid & Partner **SM DAK 040** Calibrated DAK Fluid probe 1089 M1755 Engineering AG before use CA Schmid & Partner A1328 Handset Positioner Modification SD 000 H01 DA Engineering AG Schmid & Partner A1182 Handset Positioner V3.0 None Engineering AG Schmid & Partner **Data Acquisition** A2109 417 12 DAE3 17 April 2013 Electronics Engineering AG Schmid & Partner **Data Acquisition** A2110 DAE3 431 20 Sept 2012 12 **Electronics** Engineering AG Schmid & Partner **Data Acquisition** A1234 DAE3 450 22 Jan 2013 12 Electronics Engineering AG Schmid & Partner A2077 Probe EX3 DV4 3814 24 Sep 2012 12 Engineering AG Schmid & Partner A1185 Probe ET3 DV6 1528 26 July 2012 12 Engineering AG Schmid & Partner 1529 12 A1186 Probe ET3 DV6 22 April 2013 Engineering AG Schmid & Partner A2243 Probe ES3DV3 3304 31 Aug 2012 12 Engineering AG Schmid & Partner 1011 18 Feb 2013 A1985 750 MHz Dipole Kit D750V3 12 Engineering AG Schmid & Partner 12 A2201 900 MHz Dipole Kit D900V2 035 16 Aug 2012 Engineering AG Schmid & Partner 1800 MHz Dipole A1190 D1800V2 264 15 Aug 2012 12 Engineering AG Kit Schmid & Partner 1900 MHz Dipole A2200 D1900V2 537 14 Aug 2012 12 Engineering AG Kit Schmid & Partner 2440 MHz Dipole A2202 D2440V2 701 13 Aug 2012 12 Kit Engineering AG Schmid & Partner 2600 MHz Dipole A2244 D2600V2 71046 31 Aug 2012 12 Engineering AG Schmid & Partner A1377 5.0 GHz Dipole Kit D5GHzV2 1016 20 Feb 2013 12 Engineering AG zhl-42w Calibrated as A1497 Amplifier Mini-Circuits e020105 part of system (sma) Schmid & Partner SAM Calibrated TP-1207 A1566 SAM Phantom Engineering AG before use (Site 56) Schmid & Partner SAM Calibrated A1238 SAM Phantom TP-1192 Engineering AG before use (Site 56) Schmid & Partner SAM Calibrated A2125 SAM Phantom TP-1031 Engineering AG before use (Site 57) 2mm Oval Schmid & Partner Eli5 (Site Calibrated A2252 1177 Phantom Engineering AG before use 57) Schmid & Partner SAM Calibrated A2124 SAM Phantom TP-1020 **Engineering AG** before use (Site 58)

Page: 102 of 491 UL

Serial No: UL-SAR-RP RP10014945JD13A V2.0 Issue Date: 31 July 2013

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2255	SAM Phantom	Schmid & Partner Engineering AG	SAM (Site 58)	TP-1193	Calibrated before use	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A2263	Digital Camera	Samsung	PL211	9453C90B 607487L	-	-
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	09 Oct 2012	12
C1145	Cable	Rosenberger MICRO- COAX	FA147A F003003030	41843-1	Calibrated as part of system	-
C1146	Cable	Rosenberger MICRO- COAX	FA147A F030003030	41752-1	Calibrated as part of system	-
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-
G0591	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	F01/5J86A1/C/01	Calibrated before use	-
G0592	Robot Power Supply	Schmid & Partner Engineering AG	DASY53	F125MZ7A1/C/01	Calibrated before use	-
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-
M1047	Robot Arm	Staubli	RX908 L	F00/SD8 9A1/A/01	Calibrated before use	-
M1653	Robot Arm	Staubli	RX908 L	F01/5J8 6A1/C/01	Calibrated before use	-
M1680	Robot Arm	Staubli	TX60 L	F12/5MZ7 A1/A/01	Calibrated before use	-
M1159	Signal Generator	Agilent Technologies	E8241A	US42110332	Internal Checked 10 Apr 2013	4
M1647	Signal Generator	Hewlett Packward	8648C	3537A01598	Internal Checked 17 May 2013	4
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1270	Digital Thermometer	RS	N/A	N/A	03 May 2013	12
M1651	Digital Thermometer	Dickson	FH325	08021393	03 May 2013	12
M1023	Dual Channel Power Meter	R&S	NRVD	863715/030	06 Jun 2013	12
S256	SAR Lab	UL	Site 56	N/A	Calibrated before use	-
S512	SAR Lab	UL	Site 57	N/A	Calibrated before use	-
S513	SAR Lab	UL	Site 58	N/A	Calibrated before use	-
Note:			·			

All the assets were in calibration during the course of testing.

Page: 103 of 491 UL

/ersion 2.0 Issue Date: 31 July 2013

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

Page: 104 of 491 UL

Checked by A Just DATE: 26-SEPT-2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

A2077

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Certificate No: EX3-3814_Sep12

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3814

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

September 24, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753F	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: September 24, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3814_Sep12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal

A. B. C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3814_Sep12 Page 2 of 11

EX3DV4 – SN:3814 September 24, 2012

Probe EX3DV4

SN:3814

Manufactured:

September 2, 2011

Calibrated:

September 24, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3814 September 24, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.53	0.50	0.44	± 10.1 %
DCP (mV) ^B	99.9	93.7	98.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		Α	В	С	VR	Unc [⊦]
		1		dB	dB	dB	mV	(k=2)
0	CW	0.00	Х	0.00	0.00	1.00	172.6	±3.0 %
			Y	0.00	0.00	1.00	154.1	
			Z	0.00	0.00	1.00	144.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Calibration Parameter Determined in Head Tissue Simulating Media

-								
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
1450	40.5	1.20	8.56	8.56	8.56	0.19	2.04	± 12.0 %
2450	39.2	1.80	6.89	6.89	6.89	0.33	0.97	± 12.0 %
2600	39.0	1.96	6.81	6.81	6.81	0.34	1.00	± 12.0 %
5200	36.0	4.66	5.06	5.06	5.06	0.42	1.80	± 13.1 %
5300	35.9	4.76	4.73	4.73	4.73	0.42	1.80	± 13.1 %
5500	35.6	4.96	4.54	4.54	4.54	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.26	4.26	4.26	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.50	4.50	4.50	0.45	1.80	± 13.1 %

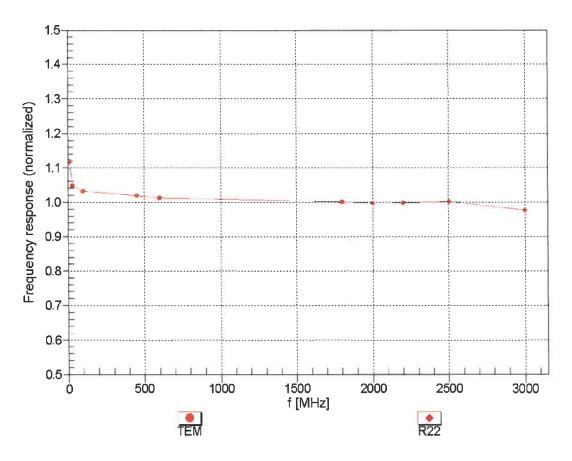
Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

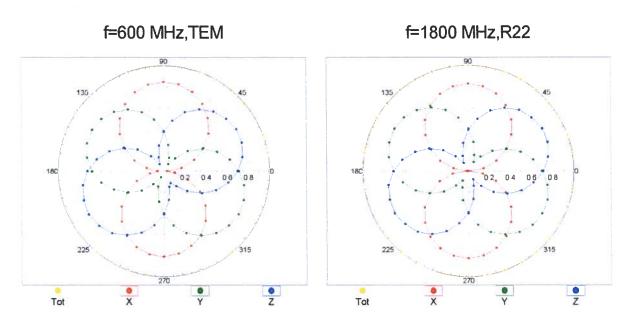
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

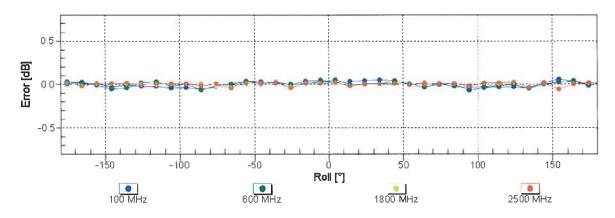
Calibration Parameter Determined in Body Tissue Simulating Media


			-		_			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
1450	54.0	1.30	8.26	8.26	8.26	0.23	1.40	± 12.0 %
2450	52.7	1.95	7.41	7.41	7.41	0.80	0.66	± 12.0 %
2600	52.5	2.16	7.08	7.08	7.08	0.79	0.61	± 12.0 %
3700	51.0	3.55	6.27	6.27	6.27	0.22	2.24	± 13.1 %
5200	49.0	5.30	4.39	4.39	4.39	0.52	1.90	± 13.1 %
5300	48.9	5.42	4.11	4.11	4.11	0.55	1.90	± 13.1 %
5500	48.6	5.65	4.02	4.02	4.02	0.52	1.90	± 13.1 %
5600	48.5	5.77	3.71	3.71	3.71	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.97	3.97	3.97	0.60	1.90	± 13.1 %

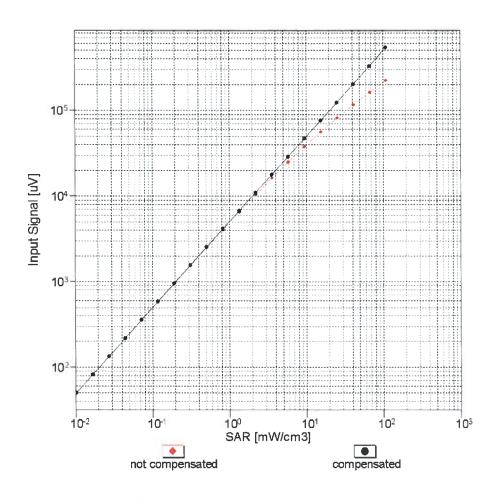
Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

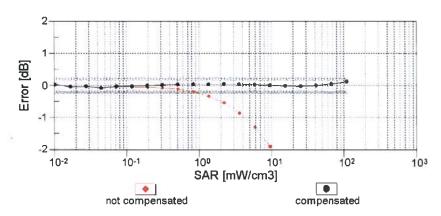
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


September 24, 2012 EX3DV4-SN:3814

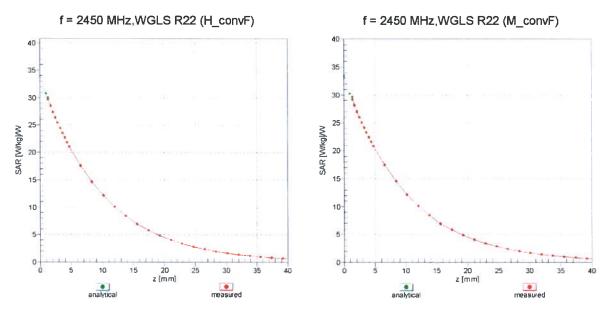

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

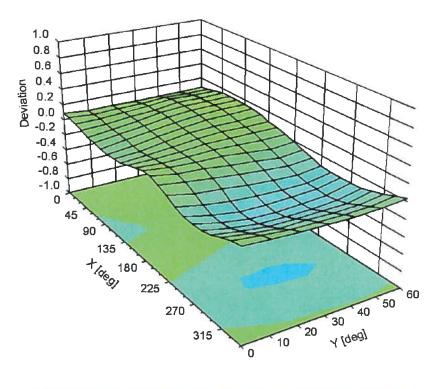
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

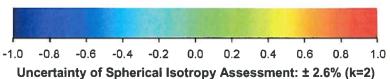

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4-SN:3814

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-65.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

fiset: A1185

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: ET3-1528_Jul12

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1528

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

July 26, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate,

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Name Function Signature Laboratory Technician Calibrated by: Jeton Kastrati Katja Pokovic **Technical Manager** Approved by:

Issued: July 26, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1528_Jul12

Page 1 of 11

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space

sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A. B. C

φ rotation around probe axis Polarization φ

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z:* Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.v.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 11 Certificate No: ET3-1528_Jul12

Probe ET3DV6

SN:1528

Manufactured:

March 21, 2000

Calibrated:

July 26, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.45	1.86	1.61	± 10.1 %
DCP (mV) ^B	95.5	97.5	100.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc [±] (k=2)
0	CW	0.00	Х	0.00	0.00	1.00	166.6	±1.9 %
			Υ	0.00	0.00	1.00	160.4	
			Z	0.00	0.00	1.00	170.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6- SN:1528 July 26, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.01	7.01	7.01	0.23	2.32	± 13.4 %
750	41.9	0.89	6.37	6.37	6.37	0.49	2.16	± 12.0 %
835	41.5	0.90	6.06	6.06	6.06	0.61	1.95	± 12.0 %
900	41.5	0.97	5.95	5.95	5.95	0.30	3.00	± 12.0 %
1450	40.5	1.20	5.22	5.22	5.22	0.49	2.80	± 12.0 %
1750	40.1	1.37	5.12	5.12	5.12	0.80	2.07	± 12.0 %
1900	40.0	1.40	4.92	4.92	4.92	0.80	2.10	± 12.0 %
2150	39.7	1.53	4.65	4.65	4.65	0.80	2.00	± 12.0 %
2450	39.2	1.80	4.31	4.31	4.31	0.80	1.74	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (s and g) can be relaxed to ± 10% if liquid compensation formula is applied to

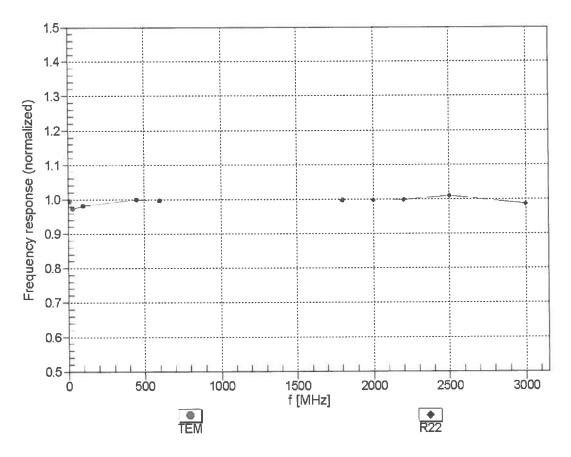
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6- SN:1528 July 26, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Calibration Parameter Determined in Body Tissue Simulating Media

			_					
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.47	7.47	7.47	0.16	2.32	± 13.4 %
750	55.5	0.96	6.17	6.17	6.17	0.33	2.75	± 12.0 %
835	55.2	0.97	5.99	5.99	5.99	0.33	3.00	± 12.0 %
900	55.0	1.05	5.92	5.92	5.92	0.55	2.18	± 12.0 %
1450	54.0	1.30	5.11	5.11	5.11	0.76	2.07	± 12.0 %
1750	53.4	1.49	4.64	4.64	4.64	0.80	2.45	± 12.0 %
1900	53.3	1.52	4.42	4.42	4.42	0.80	2.33	± 12.0 %
2150	53.1	1.66	4.37	4.37	4.37	0.80	1.93	± 12.0 %
2450	52.7	1.95	3.99	3.99	3.99	0.56	0.98	± 12.0 %

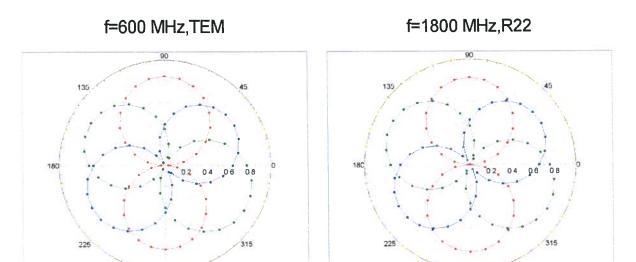

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

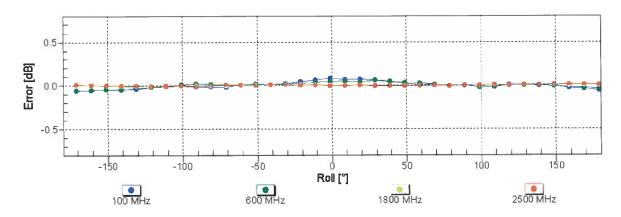
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

July 26, 2012 ET3DV6-SN:1528

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



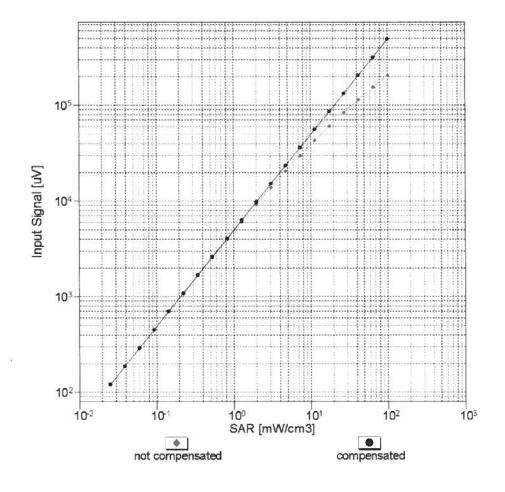
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

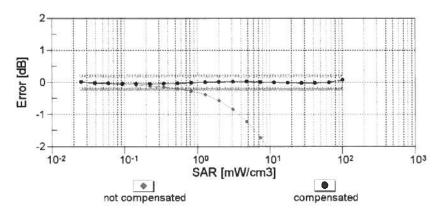

Certificate No: ET3-1528_Jul12

ET3DV6- SN:1528 July 26, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Tot

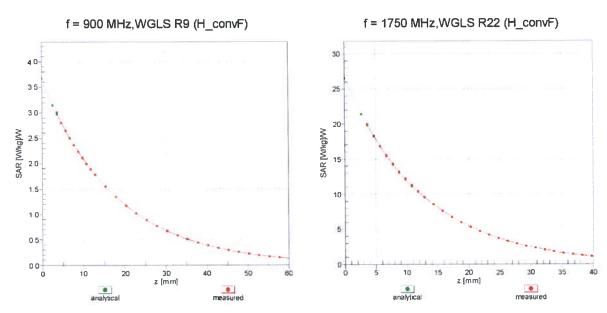


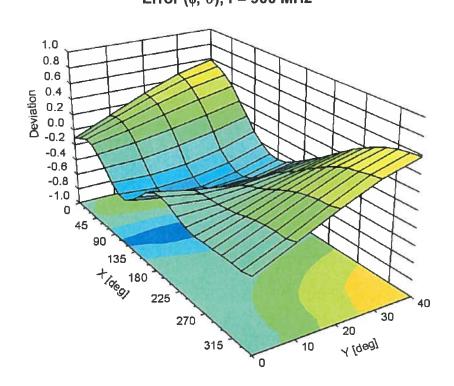

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

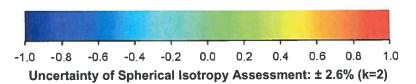
Tot

July 26, 2012 ET3DV6-SN:1528

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ET3DV6- SN:1528 July 26, 2012

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

July 26, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	18.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

checked by ! A. trubs Dive : 2 - May - 20/2

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: ET3-1529_Apr13

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1529

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4
Calibration procedure for dosimetric E-field probes

Calibration date:

April 22, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: April 22, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1529_Apr13

Probe ET3DV6

SN:1529

Manufactured: March 21, 2000 April 22, 2013

Calibrated:

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6-SN:1529

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1529

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.68	1.89	1.78	± 10.1 %
DCP (mV) ^B	109.8	99.0	97.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	149.7	±2.5 %
		Υ	0.0	0.0	1.0		199.9	
		Z	0.0	0.0	1.0		195.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

B Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6-SN:1529

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1529

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.59	6.59	6.59	0.53	2.04	± 12.0 %
835	41.5	0.90	6.24	6.24	6.24	0.35	2.65	± 12.0 %
900	41.5	0.97	6.13	6.13	6.13	0.40	2.37	± 12.0 %
1450	40.5	1.20	5.20	5.20	5.20	0.46	2.90	± 12.0 %
1750	40.1	1.37	5.13	5.13	5.13	0.80	2.07	± 12.0 %
1900	40.0	1.40	4.93	4.93	4.93	0.80	2.05	± 12.0 %
2100	39.8	1.49	4.93	4.93	4.93	0.80	1.93	± 12.0 %
2450	39.2	1.80	4.30	4.30	4.30	0.80	2.10	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

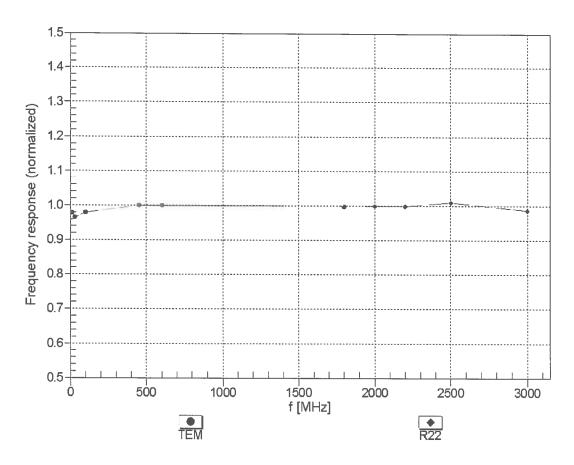
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6- SN:1529 April 22, 2013

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1529

Calibration Parameter Determined in Body Tissue Simulating Media

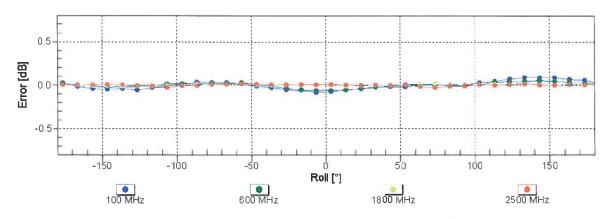

			_		9			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.31	6.31	6.31	0.43	2.28	± 12.0 %
835	55.2	0.97	6.16	6.16	6.16	0.44	2.29	± 12.0 %
900	55.0	1.05	6.12	6.12	6.12	0.47	2.27	± 12.0 %
1450	54.0	1.30	5.03	5.03	5.03	0.79	1.99	± 12.0 %
1750	53.4	1.49	4.68	4.68	4.68	0.80	2.40	± 12.0 %
1900	53.3	1.52	4.46	4.46	4.46	0.80	2.29	± 12.0 %
2100	53.2	1.62	4.52	4.52	4.52	0.80	2.11	± 12.0 %
2450	52.7	1.95	4.01	4.01	4.01	0.63	2.10	± 12.0 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

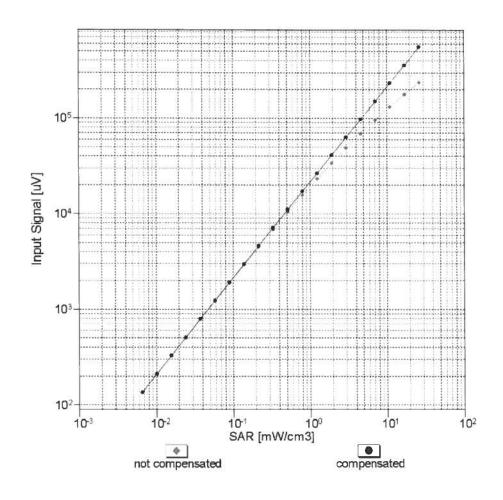
At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

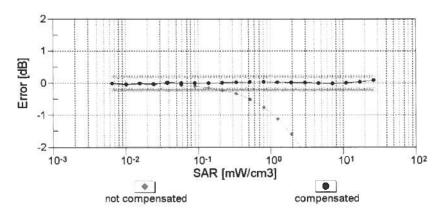
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

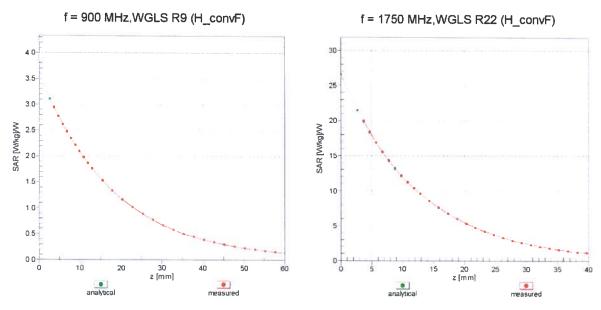
ET3DV6-SN:1529


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

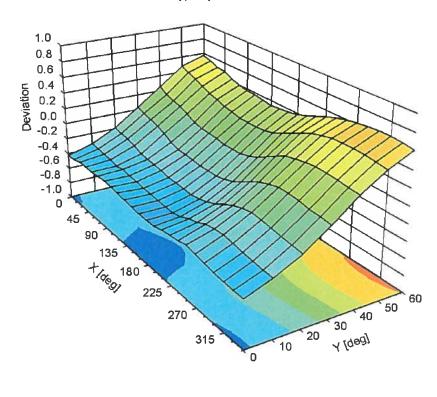


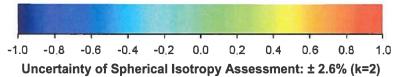
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ET3DV6-SN:1529


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , ϑ), f = 900 MHz

ET3DV6-SN:1529

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1529

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-6.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Theehed by RB DATE: 18-09-2012

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: ES3-3304_Aug12

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3304

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

August 31, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: September 3, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3304_Aug12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3304_Aug12 Page 2 of 11

ES3DV3 - SN:3304 August 31, 2012

Probe ES3DV3

SN:3304

Manufactured: August 27, 2010

Calibrated:

August 31, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3304_Aug12 Page 3 of 11 ES3DV3- SN:3304 August 31, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.14	1.33	1.33	± 10.1 %
DCP (mV) ^B	104.7	101.1	103.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc [⊨] (k=2)
0	CW	0.00	X	0.00	0.00	1.00	146.4	±3.8 %
			Υ	0.00	0.00	1.00	159.8	
			Z	0.00	0.00	1.00	158.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3- SN:3304 August 31, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.44	6.44	6.44	0.29	1.92	± 12.0 %
835	41.5	0.90	6.17	6.17	6.17	0.27	1.96	± 12.0 %
900	41.5	0.97	6.09	6.09	6.09	0.33	1.75	± 12.0 %
1750	40.1	1.37	5.47	5.47	5.47	0.61	1.36	± 12.0 %
1900	40.0	1.40	5.24	5.24	5.24	0.80	1.18	± 12.0 %
2100	39.8	1.49	5.24	5.24	5.24	0.80	1.16	± 12.0 %
2450	39.2	1.80	4.59	4.59	4.59	0.78	1.22	± 12.0 %
2600	39.0	1.96	4.40	4.40	4.40	0.75	1.28	± 12.0 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

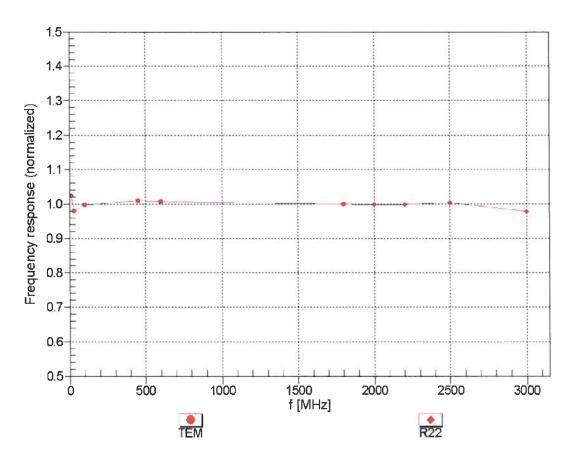
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ES3DV3- SN:3304 August 31, 2012

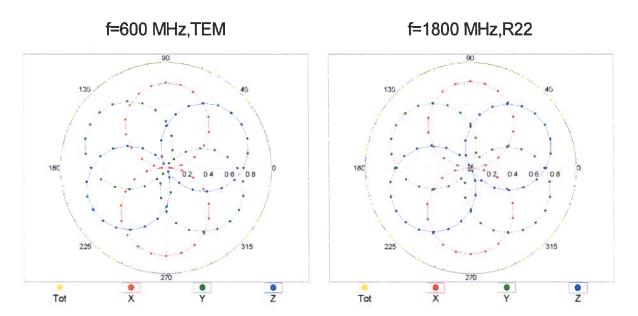
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

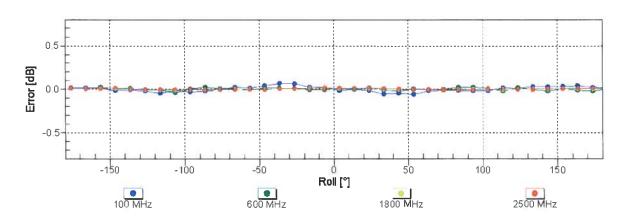
Calibration Parameter Determined in Body Tissue Simulating Media


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.25	6.25	6.25	0.58	1.30	± 12.0 %
835	55.2	0.97	6.13	6.13	6.13	0.60	1.32	± 12.0 %
900	55.0	1.05	6.11	6.11	6.11	0.80	1.18	± 12.0 %
1750	53.4	1.49	5.15	5.15	5.15	0.45	1.78	± 12.0 %
1900	53.3	1.52	4.88	4.88	4.88	0.70	1.35	± 12.0 %
2100	53.2	1.62	4.94	4.94	4.94	0.64	1.43	± 12.0 %
2450	52.7	1.95	4.32	4.32	4.32	0.74	1.09	± 12.0 %
2600	52.5	2.16	4.16	4.16	4.16	0.68	0.99	± 12.0 %

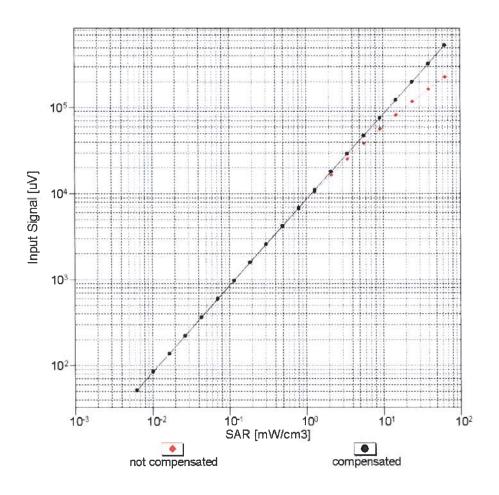
Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

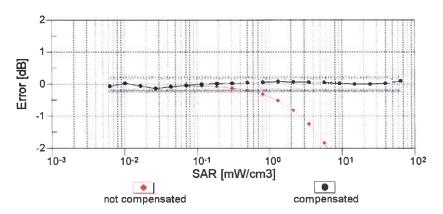
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


ES3DV3-SN:3304 August 31, 2012

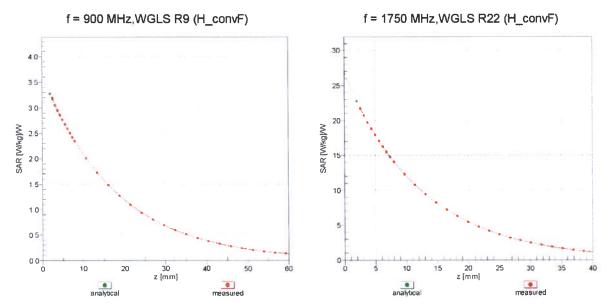

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

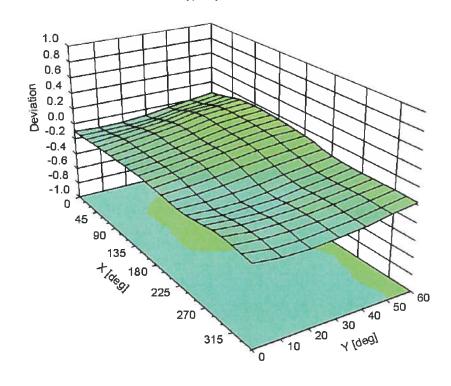
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

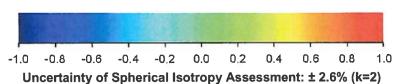

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	33.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

A1985

Certificate No: D750V3-1011_Feb13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D750V3 - SN: 1011

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: February 18, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN; 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047,3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Derau El-Daoug
Approved by:	Katja Pokovic	Technical Manager	ann
			16 hay

Issued: February 18, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1011_Feb13

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.50 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.55 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.8 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.77 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.49 W/kg
SAR for nominal Body TSL parameters	поrmalized to 1W	5.84 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 0.0 jΩ
Return Loss	- 29.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω - 1.4 jΩ
Return Loss	- 38.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.040 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 29, 2009

DASY5 Validation Report for Head TSL

Date: 15.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1011

Communication System: CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.28, 6.28, 6.28); Calibrated: 28.12.2012;

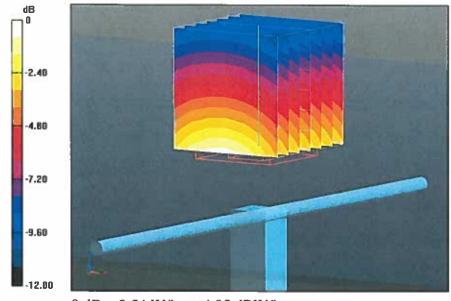
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

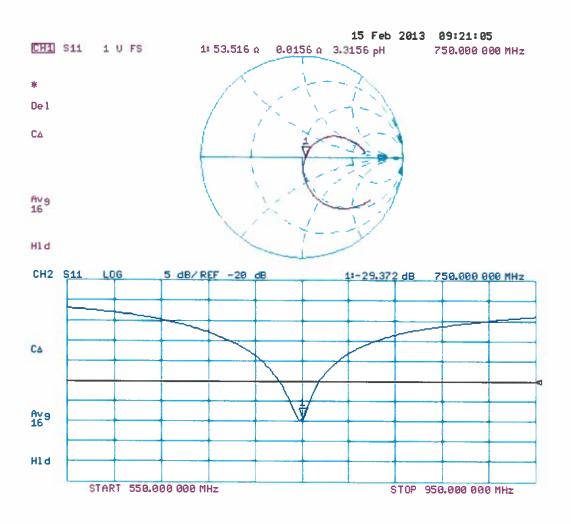
DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.195 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.30 W/kg


SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.41 W/kg

Maximum value of SAR (measured) = 2.54 W/kg

0 dB = 2.54 W/kg = 4.05 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 18.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1011

Communication System: CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 54.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.11, 6.11, 6.11); Calibrated: 28.12.2012;

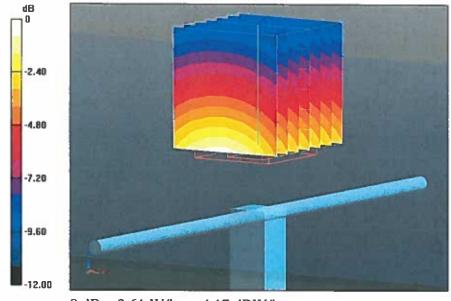
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

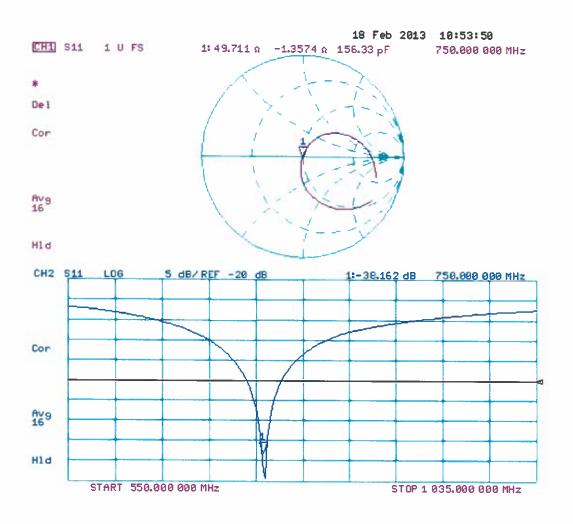
DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.190 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.30 W/kg


SAR(1 g) = 2.25 W/kg; SAR(10 g) = 1.49 W/kg

Maximum value of SAR (measured) = 2.61 W/kg

0 dB = 2.61 W/kg = 4.17 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

DATE , 7-August 2012

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) ASSET: A 220/
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D900V2-035_Aug12

CALIBRATION CERTIFICATE

Object

D900V2 - SN: 035

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 16, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Mran El Daon
Approved by:	Katja Pokovic	Technical Manager	2011

Issued: August 16, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D900V2-035_Aug12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-035_Aug12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.96 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.62 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	10.5 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.68 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.74 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	1.06 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.74 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	10.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.76 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.96 mW / g ± 16.5 % (k=2)

Certificate No: D900V2-035_Aug12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.8 Ω - 5.8 jΩ
Return Loss	- 24.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 5.5 jΩ
Return Loss	- 24.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.404 ns
	l

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 26, 1998

Certificate No: D900V2-035_Aug12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 16.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 035

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 0.96 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 30.12.2011;

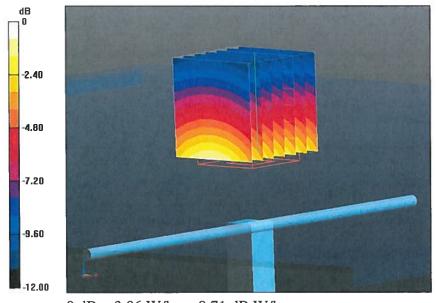
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

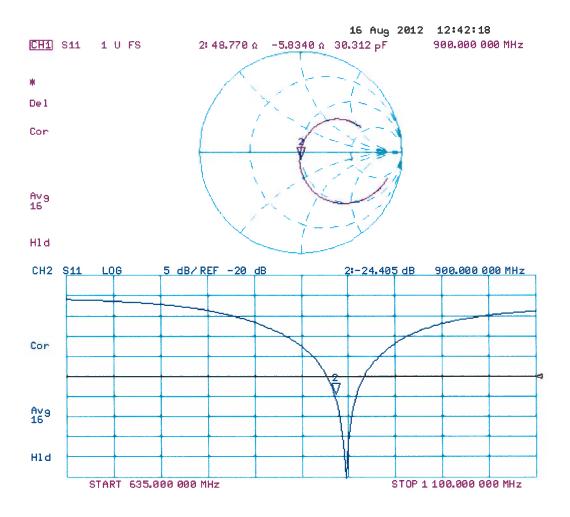
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.325 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.926 mW/g

SAR(1 g) = 2.62 mW/g; SAR(10 g) = 1.68 mW/g


Maximum value of SAR (measured) = 3.06 W/kg

0 dB = 3.06 W/kg = 9.71 dB W/kg

Certificate No: D900V2-035_Aug12

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 035

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 1.06 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.94, 5.94, 5.94); Calibrated: 30.12.2011;

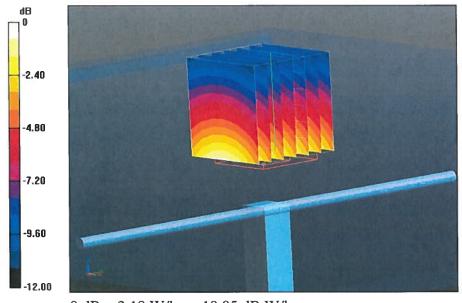
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

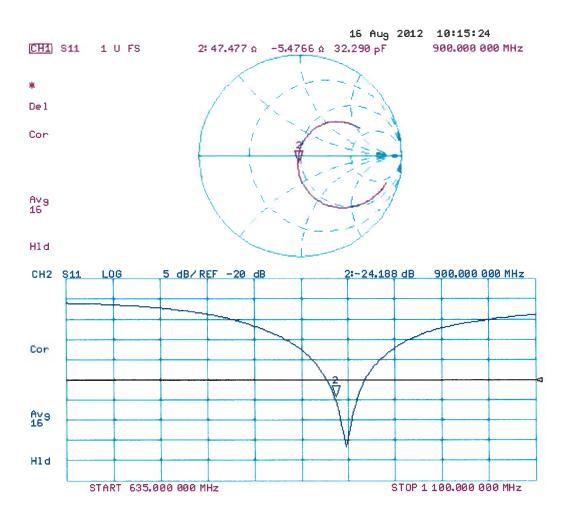
• DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.325 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 4.184 mW/g


SAR(1 g) = 2.74 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 10.05 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) ASET (A//70)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client RFI Certificate No: D1800V2-264_Aug12

CALIBRATION CERTIFICATE

Object D1800V2 - SN: 264

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 15, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	a contract of the contract of		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Orran El-Naong
Approved by:	Katja Pokovic	Technical Manager	2014.

Issued: August 15, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-264_Aug12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1800V2-264_Aug12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	· ·

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.22 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	37.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.87 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	19.6 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.0 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.50 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	37.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.04 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.1 mW / g ± 16.5 % (k=2)

Certificate No: D1800V2-264_Aug12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.8 Ω - 5.8 jΩ
Return Loss	- 22.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	42.9 Ω - 5.3 jΩ
Return Loss	- 20.4 d B

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 05, 2000

Certificate No: D1800V2-264_Aug12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 15.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 264

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.07, 5.07, 5.07); Calibrated: 30.12.2011;

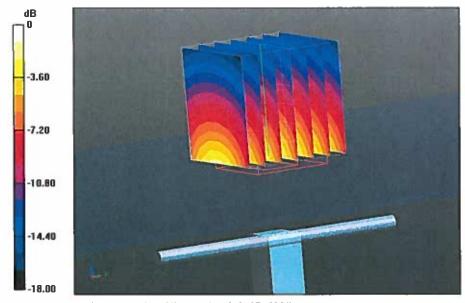
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

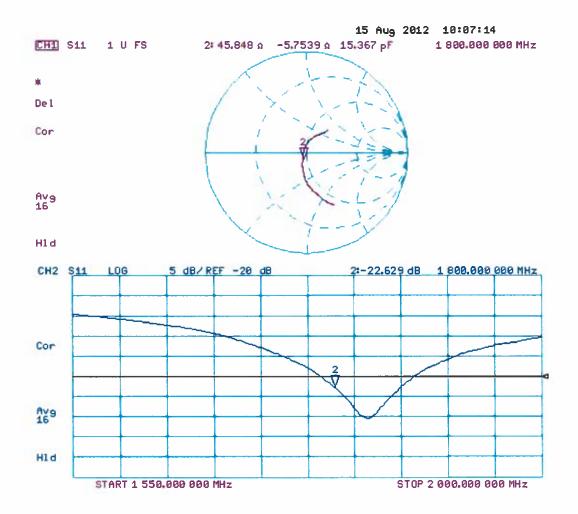
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.984 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 16.364 mW/g

SAR(1 g) = 9.22 mW/g; SAR(10 g) = 4.87 mW/g


Maximum value of SAR (measured) = 11.3 W/kg

0 dB = 11.3 W/kg = 21.06 dB W/kg

Certificate No: D1800V2-264_Aug12 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 264

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.74, 4.74, 4.74); Calibrated: 30.12.2011;

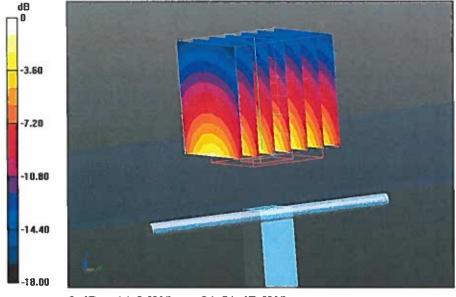
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

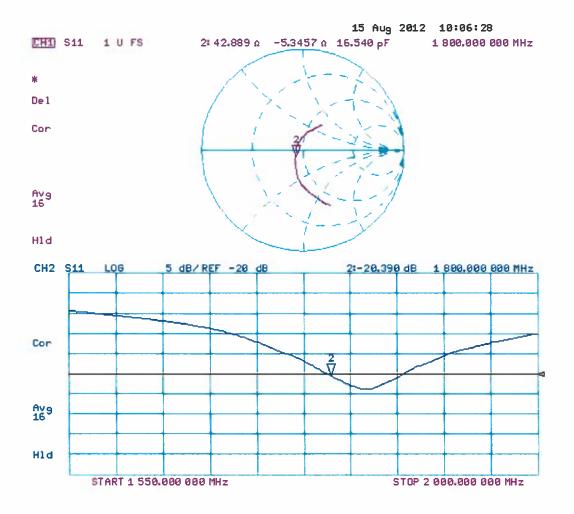
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.107 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 16.733 mW/g

SAR(1 g) = 9.5 mW/g; SAR(10 g) = 5.04 mW/g


Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 21.51 dB W/kg

Certificate No: D1800V2-264_Aug12 Page 7 of 8

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D1900V2-537_Aug12

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 537

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 14, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Orrea Elabou
Approved by:	Katja Pokovic	Technical Manager	26M

Issued: August 14, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory,

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.78 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.16 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.7 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		4800

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.37 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-537_Aug12

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.1 Ω - 5.7 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.0 Ω - 5.2 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

	1
Electrical Delay (one direction)	1.181 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 22, 2001

Certificate No: D1900V2-537_Aug12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 14.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 537

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011;

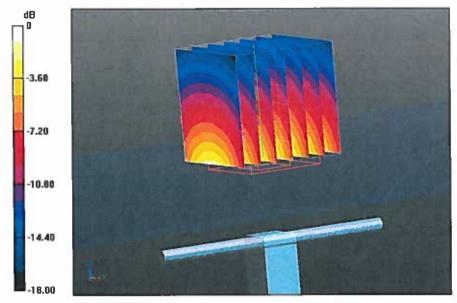
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

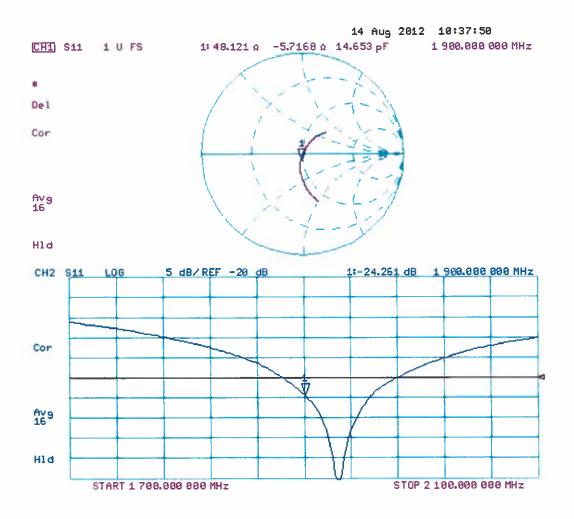
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.874 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 17.436 mW/g

SAR(1 g) = 9.78 mW/g; SAR(10 g) = 5.16 mW/g


Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 21.51 dB W/kg

Certificate No: D1900V2-537_Aug12 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 537

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011;

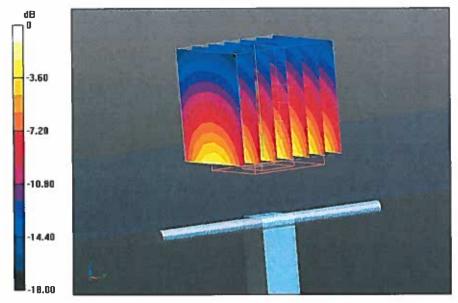
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

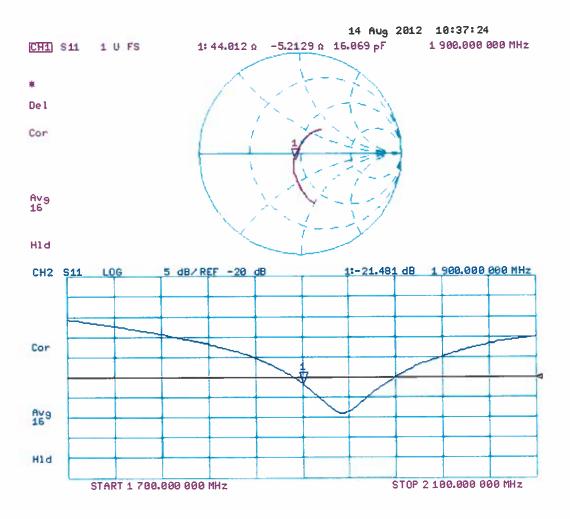
• DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.874 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 17.899 mW/g


SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.37 mW/g

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 22.14 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) ASET A 2202

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D2440V2-701_Aug12

CALIBRATION CERTIFICATE

Object D2440V2 - SN: 701

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 13, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	_ Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Mran El-Duou
Approved by:	Katja Pokovic	Technical Manager	70110

Issued: August 13, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2440V2-701_Aug12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2440V2-701_Aug12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.06 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.2 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	52.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.09 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.1 mW / g ± 16.5 % (k=2)

Certificate No: D2440V2-701_Aug12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.4 Ω - 8.2 jΩ
Return Loss	- 21.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8 Ω - 6.9 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.141 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 24, 2000

Certificate No: D2440V2-701_Aug12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2440 MHz; Type: D2440V2; Serial: D2440V2 - SN: 701

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;

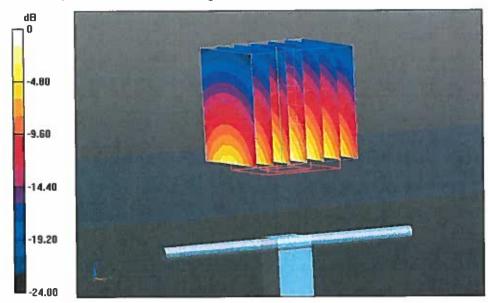
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

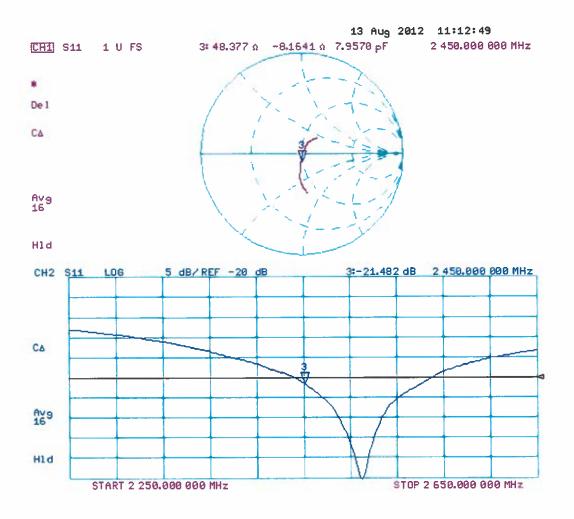
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.955 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 27.027 mW/g

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.06 mW/g


Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 24.51 dB W/kg

Certificate No: D2440V2-701_Aug12 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2440 MHz; Type: D2440V2; Serial: D2440V2 - SN: 701

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ mho/m; $\varepsilon_r = 51.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

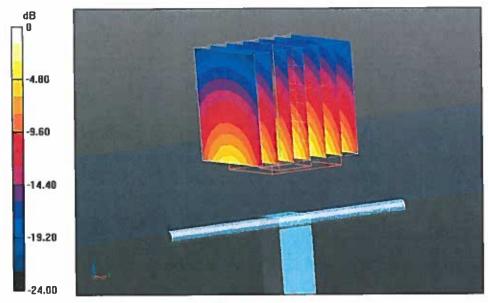
Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

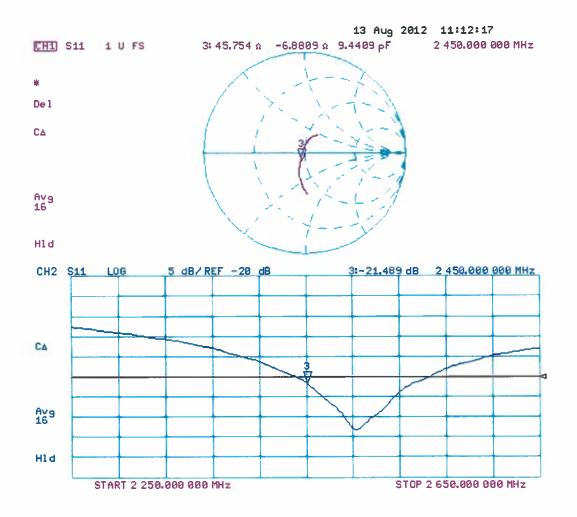
• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.149 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 26.944 mW/g

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.09 mW/gMaximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 24.66 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

RFI

Client

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

DATE 18-09-2012

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

iltilateral Agreement for the recognition of cali

44 Accreditation No.: SCS 108

Certificate No: D2600V2-1046_Aug12

CALIBRATION CERTIFICATE

Object D2600V2 - SN: 1046

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 31, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

1	Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
	Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
	Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
	Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
	Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
	DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
	Secondary Standards	ID#	Check Date (in house)	Scheduled Check
	Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
	RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
	Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
		Name	Function	Signature
	Calibrated by:	Israe El-Naouq	Laboratory Technician	0 0
				Obrea El Daous
	Approved by:	Katja Pokovic	Technical Manager	10111

Issued: August 31, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1046_Aug12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1046_Aug12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	58.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.57 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	26.2 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.17 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	55.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.30 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	25.0 mW / g ± 16.5 % (k=2)

Certificate No: D2600V2-1046_Aug12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.4 Ω - 5.3 jΩ
Return Loss	- 25.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.4 Ω - 4.4 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 24, 2011

Certificate No: D2600V2-1046_Aug12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 31.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1046

Communication System: CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.97 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.39, 4.39, 4.39); Calibrated: 30.12.2011;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

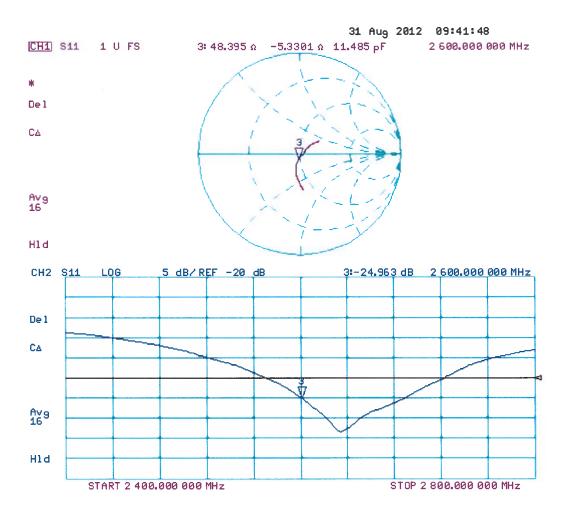
• DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.5 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 30.680 mW/g


SAR(1 g) = 14.6 mW/g; SAR(10 g) = 6.57 mW/g

Maximum value of SAR (measured) = 18.7 W/kg

0 dB = 18.7 W/kg = 25.44 dB W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 30.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1046

Communication System: CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.17 \text{ mho/m}$; $\varepsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.16, 4.16, 4.16); Calibrated: 30.12.2011;

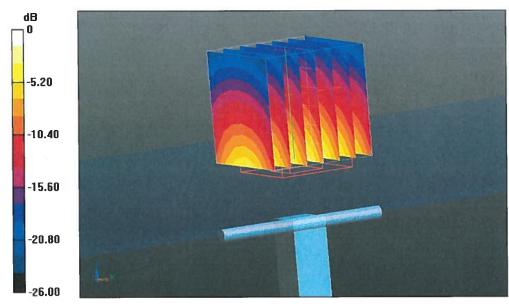
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

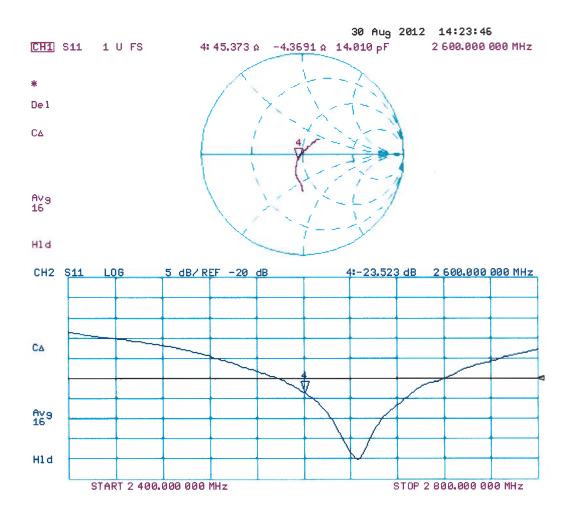
• DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.765 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 29.194 mW/g


SAR(1 g) = 14 mW/g; SAR(10 g) = 6.3 mW/g

Maximum value of SAR (measured) = 18.5 W/kg

0 dB = 18.5 W/kg = 25.34 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

26-FEB - 2013

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

A1377

Certificate No: D5GHzV2-1016_Feb13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1016

Calibration procedure(s) QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: February 20, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe EX3DV4	SN: 3503	28-Dec-12 (No. EX3-3503_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	in house check; Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Mran El Dang
Approved by:	Katja Pokovic	Technical Manager	Se les

Issued: February 20, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters". March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency" Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1016_Feb13 Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.47 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.74 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.5 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.36 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.71 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	200-	

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	45.9 ± 6 %	6.12 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.51 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1016_Feb13 Page 6 of 13

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	52.7 Ω - 9.7 jΩ
Return Loss	- 20.2 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	48.5 Ω - 0.8 jΩ
Return Loss	- 35.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.1 Ω + 7.1 jΩ
Return Loss	- 20.6 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	53.2 Ω - 9.1 jΩ
Return Loss	- 20.6 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	48.7 Ω - 0.2 jΩ
Return Loss	- 37.3 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	57.1 Ω + 8.7 jΩ
Return Loss	- 19.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 14, 2003

Certificate No: D5GHzV2-1016_Feb13 Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 20.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1016

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.47$ S/m; $\epsilon_r = 34.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.74$ S/m; $\epsilon_r = 34.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.05$ S/m; $\epsilon_r = 33.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan.

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.875 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

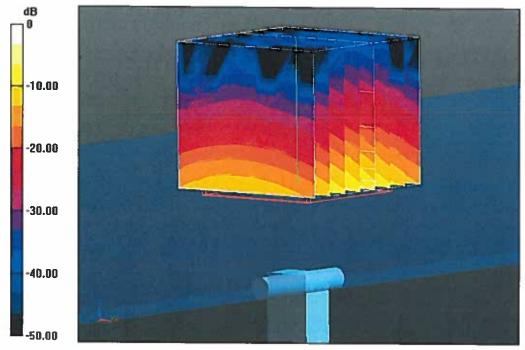
Reference Value = 65.120 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.38 W/kg

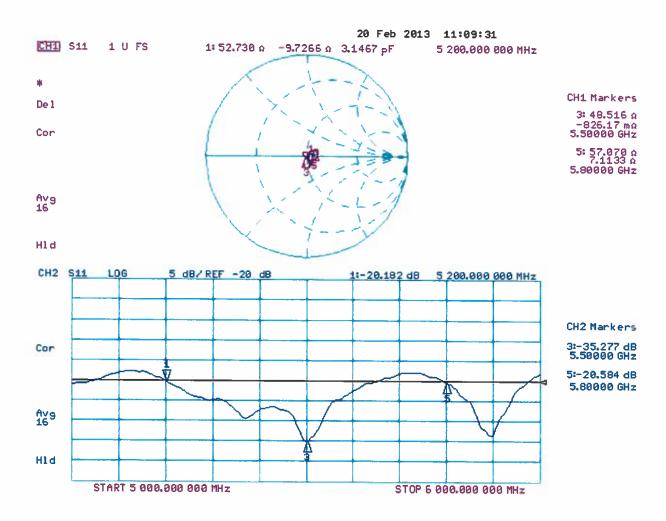
Maximum value of SAR (measured) = 20.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan.


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.682 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 32.4 W/kg


SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1016

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.36$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.71$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.12$ S/m; $\varepsilon_r = 45.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan.

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.072 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

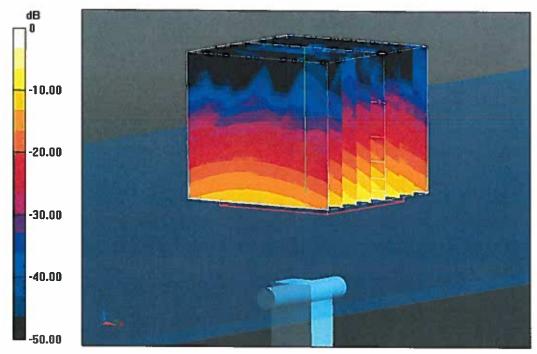
Reference Value = 59.550 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.1 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.23 W/kg

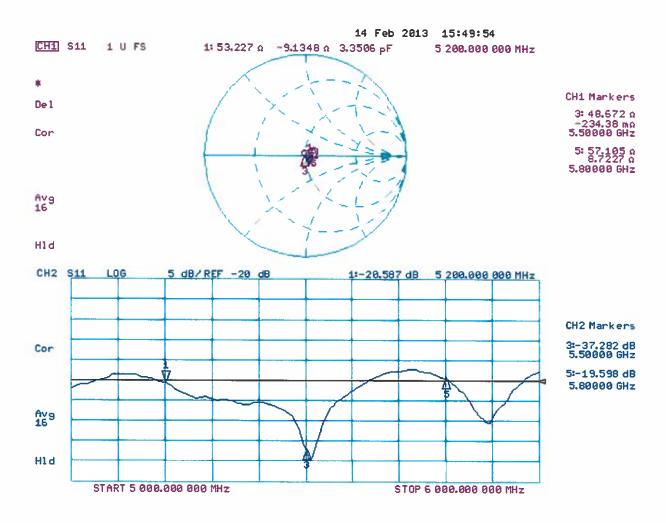
Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan.


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.431 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 35.6 W/kg


SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kg = 12.74 dBW/kg

Impedance Measurement Plot for Body TSL

Issue Date: 31 July 2013

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.
 - (ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. for bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix for measurement < 2.0 GHz, 7x7x7 matrix for measurement 2.0 GHz to 3.0 GHz, and 7x7x12 for > 5.0 GHz was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was reevaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Page: 105 of 491 UL

Issue Date: 31 July 2013

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, IEEE 1528 and FCC KDB procedures, against appropriate limits for each measurement position in accordance with the standard. In some cases the FCC was contacted using a PBA or KDB process to ensure test is performed correctly.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of ± 2.0°C

Prior to any SAR measurements on the EUT, system Check and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system Check and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001 and FCC KDB publication 865664 D01.

Following the successful system Check and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 175 points for frequency below 2.0 GHz, above 2.0GHz up to 3.0 GHz 7x7x7 cube of 343 points and a 7x7x12 cube of 588 points for frequency 5.0 GHz and above will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 1g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 or 7x7x7 or 7x7x12 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.

Page: 106 of 491 UL

Issue Date: 31 July 2013

A.2.3. Measurement Uncertainty Tables

A.2.3.1 Specific Absorption Rate Uncertainty -GSM 850 / UMTS FDD 5 / LTE Band 5/ LTE Band 17 Head Configuration 1g

Туре	Source of uncertainty	+	- Value	Probability	Divisor	C _{i (1g)}	Standard Uncertainty		ບ _i or
•	Í	Value	Value	Distribution		. (9)	+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.600	2.600	normal (k=1)	1.0000	1.0000	2.600	2.600	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6400	3.200	3.200	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6000	3.000	3.000	5
	Combined standard uncertainty			t-distribution			10.24	10.24	>250
	Expanded uncertainty			k = 1.96			20.08	20.08	>25

Page: 107 of 491 UL

Issue Date: 31 July 2013

A.2.3.2 Specific Absorption Rate-GSM / GPRS / EDGE 850 / UMTS FDD 5 / LTE Band 5/ LTE
Band 17 Body Configuration 1g

T	Course of uncontainty	+	_	Probability	Divisor		Stan Uncer		υi
Туре	Source of uncertainty	Value	Value	Distribution	Divisor	Ci (1g)	+ u (%)	- u (%)	or ບ _{eff}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration /Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	4.200	4.200	normal (k=1)	1.0000	1.0000	4.200	4.200	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6400	3.200	3.200	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6000	3.000	3.000	5
	Combined standard uncertainty			t-distribution			10.76	10.76	>25
	Expanded uncertainty			k = 1.96			21.09	21.09	>25

Page: 108 of 491 UL

Issue Date: 31 July 2013

A.2.3.3 Specific Absorption Rate- FDD 4 / LTE Band 4 Head Configuration 1g Standard υi **Probability** Uncertainty Type Source of uncertainty **Divisor** or Ci (1g) Value Value Distribution + u (%) - u (%) Veff 6.000 6.000 1.0000 6.000 6.000 В Probe calibration normal (k=1) 1.0000 ∞ 0.250 В 0.250 normal (k=1) 1.0000 1.0000 0.250 0.250 Axial Isotropy В Hemispherical Isotropy 1.300 1.300 normal (k=1) 1.0000 1.0000 1.300 1.300 ∞ В 0.500 1.0000 0.289 0.289 **Spatial Resolution** 0.500 Rectangular 1.7321 00 В Boundary Effect 0.769 0.769 1.7321 1.0000 0.444 0.444 Rectangular ∞ В Linearity 0.600 0.600 Rectangular 1.7321 1.0000 0.346 0.346 00 В **Detection Limits** 0.200 0.200 Rectangular 1.7321 1.0000 0.115 0.115 00 0.160 1.0000 1.0000 В Readout Electronics 0.160 normal (k=1) 0.160 0.160 ∞ В Response Time 0.000 0.000 Rectangular 1.7321 1.0000 0.000 0.000 ∞ В Integration Time 1.730 1.730 Rectangular 1.7321 1.0000 0.999 0.999 ∞ В RF Ambient conditions 3.000 3.000 Rectangular 1.7321 1.0000 1.732 1.732 ∞ Probe Positioner В 4.000 4.000 Rectangular 1.7321 1.0000 2.309 2.309 ∞ Mechanical Restrictions Probe Positioning with В 2.850 2.850 Rectangular 1.7321 1.0000 1.645 1.645 ∞ regard to Phantom Shell Extrapolation and В integration/ Maximum 5.080 5.080 1.7321 1.0000 2.933 2.933 Rectangular ∞ SAR evaluation Test Sample Α 4.200 4.200 normal (k=1) 1.0000 1.0000 4.200 4.200 10 Positioning Device Holder Α 0.154 0.154 normal (k=1) 1.0000 1.0000 0.154 0.154 10 uncertainty 4.000 В 4.000 1.0000 2.309 2.309 **Phantom Uncertainty** Rectangular 1.7321 ∞ В Drift of output power 5.000 5.000 Rectangular 1.7321 1.0000 2.887 2.887 ∞ Liquid Conductivity В 5.000 5.000 0.6400 Rectangular 1.7321 1.848 1.848 00 (target value) Liquid Conductivity Α 5.000 5.000 0.6400 3.200 3.200 normal (k=1) 1.0000 5 (measured value) Liquid Permittivity В 5.000 5.000 Rectangular 1.7321 0.6000 1.732 1.732 00 (target value) Liquid Permittivity Α 5.000 5.000 normal (k=1) 1.0000 0.6000 3.000 3.000 5 (measured value) Combined standard t-distribution 10.76 10.76 >300 uncertainty Expanded uncertainty k = 1.9621.09 21.09 >300

Page: 109 of 491 UL

Issue Date: 31 July 2013

A.2.3.4 Specific Absorption Rate- FDD 4 / LTE Band 4 Body Configuration 1g Standard υi **Probability** Uncertainty Type Source of uncertainty **Divisor** Ci (1g) or Value Value Distribution + u (%) - u (%) Veff 6.000 6.000 1.0000 1.0000 6.000 6.000 В Probe calibration normal (k=1) ∞ В 0.250 0.250 0.250 0.250 normal (k=1) 1.0000 1.0000 Axial Isotropy В Hemispherical Isotropy 1.300 1.300 normal (k=1) 1.0000 1.0000 1.300 1.300 ∞ 0.500 В 0.500 1.0000 0.289 0.289 **Spatial Resolution** Rectangular 1.7321 00 В Boundary Effect 0.769 0.769 1.7321 1.0000 0.444 0.444 Rectangular ∞ В Linearity 0.600 0.600 Rectangular 1.7321 1.0000 0.346 0.346 α В **Detection Limits** 0.200 0.200 Rectangular 1.7321 1.0000 0.115 0.115 00 В 1.600 1.0000 1.0000 1.600 1.600 Readout Electronics 1.600 normal (k=1) ∞ В Response Time 0.000 0.000 Rectangular 1.7321 1.0000 0.000 0.000 ∞ В Integration Time 1.730 1.730 Rectangular 1.7321 1.0000 0.999 0.999 ∞ В RF Ambient conditions 3.000 3.000 Rectangular 1.7321 1.0000 1.732 1.732 Probe Positioner В 4.000 4.000 Rectangular 1.7321 1.0000 2.309 2.309 Mechanical Restrictions Probe Positioning with В 2.850 2.850 Rectangular 1.7321 1.0000 1.645 1.645 ∞ regard to Phantom Shell Extrapolation and В integration/ Maximum 5.080 5.080 Rectangular 1.7321 1.0000 2.933 2.933 ∞ SAR evaluation Test Sample Α 3.100 3.100 normal (k=1) 1.0000 1.0000 3.100 3.100 10 Positioning Device Holder Α 0.154 0.154 normal (k=1) 1.0000 1.0000 0.154 0.154 10 uncertainty 4.000 В 4.000 1.0000 2.309 2.309 **Phantom Uncertainty** Rectangular 1.7321 ∞ В Drift of output power 5.000 5.000 Rectangular 1.7321 1.0000 2.887 2.887 ∞ Liquid Conductivity В 5.000 5.000 0.6400 Rectangular 1.7321 1.848 1.848 00 (target value) Liquid Conductivity Α 5.000 5.000 1.0000 0.6400 3.200 3.200 normal (k=1) 5 (measured value) Liquid Permittivity В 5.000 5.000 Rectangular 1.7321 0.6000 1.732 1.732 00 (target value) Liquid Permittivity Α 5.000 5.000 normal (k=1) 1.0000 0.6000 3.000 3.000 5 (measured value) Combined standard t-distribution 10.50 10.50 >250 uncertainty Expanded uncertainty k = 1.9620.59 20.59 >250

Page: 110 of 491 UL

Issue Date: 31 July 2013

A.2.3.5 Specific Absorption Rate-PCS 1900 / UMTS FDD 2 / LTE Band 2 Head Configuration 1g

A.2.3.5 Specific Absorption Rate-PCS 1900 / UMTS FDD 2 / LTE Band 2 Head Configuration									
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}		dard tainty	ს _i or
		value	Value	Distribution			+ u (%)	- u (%)	v_{eff}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	×
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Probe Positioning with Regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	oc
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	×
Α	Test Sample Positioning	6.500	6.500	normal (k=1)	1.0000	1.0000	6.500	6.500	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	oc
Α	Liquid Conductivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6400	3.200	3.200	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	oc
Α	Liquid Permittivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6000	3.000	3.000	5
	Combined standard uncertainty			t-distribution			11.85	11.85	>20
	Expanded uncertainty			k = 2			23.70	23.70	>20

Page: 111 of 491 UL

Issue Date: 31 July 2013

A.2.3.6 Specific Absorption Rate-PCS / GPRS / EDGE 1900 / UMTS FDD 2 / LTE Band 2 Body Configuration 1g

Confi	guration 1g								
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer + u (%)		სi or Veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.800	2.800	normal (k=1)	1.0000	1.0000	2.800	2.800	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6400	3.200	3.200	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6000	3.000	3.000	5
	Combined standard uncertainty			t-distribution			10.30	10.30	>250
	Expanded uncertainty			k = 1.96			20.18	20.18	>250

Page: 112 of 491 UL

Α

В

Α

(measured value) Liquid Permittivity

(measured value) Combined standard

Expanded uncertainty

(target value) Liquid Permittivity

uncertainty

Serial No: UL-SAR-RP RP10014945JD13A V2.0

Issue Date: 31 July 2013

A.2.3.7 Specific Absorption Rate-Wi-Fi 2450 MHz / LTE Band 7 Head Configuration 1g Standard υ_{i} **Probability** Uncertainty Source of uncertainty **Divisor Type** Ci (1g) or Value Value Distribution + u (%) - u (%) υ_{eff} В Probe calibration 6.000 6.000 1.0000 1.0000 6.000 6.000 normal (k=1) 00 В Axial Isotropy 0.250 0.250 normal (k=1) 1.0000 1.0000 0.250 0.250 ∞ В 1.300 1.0000 1.300 1.300 Hemispherical Isotropy 1.300 normal (k=1) 1.0000 00 В 0.500 0.500 1.0000 0.289 0.289 **Spatial Resolution** Rectangular 1.7321 00 В **Boundary Effect** 0.769 0.769 Rectangular 1.7321 1.0000 0.444 0.444 00 В 0.600 1.0000 Linearity 0.600 Rectangular 1.7321 0.346 0.346 00 В 0.200 1.0000 0.115 0.115 **Detection Limits** 0.200 Rectangular 1.7321 ∞ В Readout Electronics 0.160 0.160 normal (k=1) 1.0000 1.0000 0.160 0.160 В 0.000 Response Time 0.000 Rectangular 1.7321 1.0000 0.000 0.000 00 0.000 1.0000 0.000 В Integration Time 0.000 Rectangular 1.7321 0.000 ∞ В RF Ambient conditions 3.000 3.000 Rectangular 1.7321 1.0000 1.732 1.732 Probe Positioner Mechanical В 4.000 1.0000 2.309 2.309 4.000 Rectangular 1.7321 00 Restrictions Probe Positioning with В 2.850 2.850 1.0000 1.645 1.645 Rectangular 1.7321 ∞ regard to Phantom Shell Extrapolation and integration В 5.080 5.080 Rectangular 1.7321 1.0000 2.933 2.933 ∞ / Maximum SAR evaluation Α Test Sample Positioning 2.180 2.180 1.0000 1.0000 2.180 2.180 10 normal (k=1) 1.0000 Α Device Holder uncertainty 0.154 0.154 normal (k=1) 1.0000 0.154 0.154 10 4.000 1.0000 В Phantom Uncertainty 4.000 Rectangular 1.7321 2.309 2.309 ∞ В Drift of output power 5.000 5.000 Rectangular 1.7321 1.0000 2.887 2.887 ∞ Liquid Conductivity В 5.000 5.000 Rectangular 1.7321 0.6400 1.848 1.848 ∞ (target value) Liquid Conductivity

5.000

5.000

5.000

normal (k=1)

Rectangular

normal (k=1)

t-distribution

k = 1.96

1.0000

1.7321

1.0000

0.6400

0.6000

0.6000

3.200

1.732

3.000

10.10

19.79

3.200

1.732

3.000

10.10

19.79

5

 ∞

5

>300

>300

5.000

5.000

5.000

Page: 113 of 491 UL

Issue Date: 31 July 2013

Туре	.8 Specific Absorption R Source of uncertainty	+	-	Probability	Divisor	C _{i (1g)}	Standard Uncertainty		ບ _i or
. , , , ,		Value	Value	Distribution	2111001	-1 (1g)	+ u (%)	- u (%)	veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.470	2.470	normal (k=1)	1.0000	1.0000	2.470	2.470	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6400	3.200	3.200	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6000	3.000	3.000	5
	Combined standard uncertainty			t-distribution			10.16	10.16	>250
	Expanded uncertainty			k = 1.96			19.92	19.92	>250

Page: 114 of 491 UL

rsion 2.0 Issue Date: 31 July 2013

A.2.3.	9 Specific Absorption R	ate-Wi-l	Fi 5GHz	Head Config	uration 1	g			
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	Ci (1g)	Standard Uncertainty		ს _i or
		value	value	Distribution		, -,	+ u (%)	- u (%)	υ_{eff}
В	Probe calibration	6.550	6.550	normal (k=1)	1.0000	1.0000	6.550	6.550	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	× ×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.090	2.090	normal (k=1)	1.0000	1.0000	2.090	2.090	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6400	3.200	3.200	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6000	3.000	3.000	5
	Combined standard uncertainty			t-distribution			10.41	10.41	>400
	Expanded uncertainty			k = 1.96			20.41	20.41	>400

Page: 115 of 491 UL

Issue Date: 31 July 2013

Туре	Source of uncertainty	+	_	Probability	Divisor	C : 4 >	Standard Uncertainty		ს _i or
Type	Source of uncertainty	Value	Value	Distribution	DIVISOI	Ci (1g)	+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	6.550	6.550	normal (k=1)	1.0000	1.0000	6.550	6.550	- oo
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	1.980	1.980	normal (k=1)	1.0000	1.0000	1.980	1.980	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6400	3.200	3.200	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	5.000	5.000	normal (k=1)	1.0000	0.6000	3.000	3.000	5
	Combined standard uncertainty			t-distribution			10.39	10.39	>400
	Expanded uncertainty			k = 1.96			20.37	20.37	>400

Page: 116 of 491 UL