

Engineering and Testing for EMC and Safety Compliance

Accredited under A2LA Certificate # 2653.01

Certification Application Report
FCC Part 15.249 & Industry Canada RSS-210

Test Lab:		Applicant:	
Rhein Tech Laboratories, Inc.	Phone: 703-689-0368	Ikusi – Angel Iglesias	Phone: +34 943 448854
360 Herndon Parkway	Fax: 703-689-2056	Contact: Francisco Lopez	Fax: +34 943 448811
Suite 1400	Web: www.rheintech.com	Paseo Miramon 170 Apartado 1320	
Herndon, VA 20170		20009 San Sebastian SPAIN	
Email: atcbinfo@rheintech.com		E-Mail: lopez.f@ikusi.es	
FCC ID	PVT-R70MR06C3	Test Report Date	December 14, 2007
IC	4166A-R70MR06C3	RTL Work Order Number	2007262
Platform	N/A	RTL Quote Number	QRTL07-308
Model #	R70MR06C3		
FCC Classification	DXX – Part 15 Low Power Communication Device Transmitter		
FCC Rule Part	Part 15.249 (10-01-06): Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5850 MHz, and 24.0-24.25 GHz		
Industry Canada Standard	RSS-210 (Issue 7): Low Power License-Exempt Radio Communication Devices (All Frequency Bands)		
Digital Interface Information	Digital Interface was found to be compliant		
Receiver Information	Receiver was found to be compliant		
Frequency Range (MHz)	Output Power (W)	Frequency Tolerance	Emission Designator
902.5 – 927.45	N/A	N/A	9K91F1D

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this test report. Modifications made to the equipment during testing, in order to achieve compliance with these standards, are listed in the report.

Furthermore, there was no deviation from, additions to, or exclusions from the FCC Part 2, FCC Part 15, Industry Canada RSS-210, and ANSI C63.4.

Signature:

Date: December 14, 2007

Typed/Printed Name: Desmond A. Fraser

Position: President

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc. and IKUSI – Angel Iglesias. The test results relate only to the item tested.

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IKUSI – Angel Iglesias
Model: R70MR06C3
Standards: FCC 15.249/IC RSS-210
ID's: PVT-R70MR06C3 & 4166A-R70MR06C3
Report #: 2007262

Table of Contents

1	General Information	4
1.1	Scope	4
1.2	Modifications.....	4
1.3	Test Facility	4
1.4	Related Submittal(s)/Grant(s)	4
2	Test Information	5
2.1	Test Justification	5
2.2	Exercising the EUT	5
2.3	Test Result Summary	5
2.4	Test System Details.....	5
2.5	Configuration of Tested System	6
3	Conducted AC Emissions – FCC §15.207 & IC RSS-Gen.....	7
3.1	Site and Test Description.....	7
3.2	Test Limits	7
3.3	Conducted AC Emissions Test Data.....	8
4	Radiated Emission Limits Fundamental Emissions – FCC §15.249 & IC RSS-210 §A2.9	10
4.1	Radiated Emission Limits Test Procedure	10
4.2	Radiated Emission Limits Test Data	10
5	Radiated Emission Limits Radiated Harmonics – FCC §15.249 & IC RSS-210 §A2.9	10
5.1	Radiated Emission Limits Test Procedure	10
6	Conclusion.....	11

Table Index

Table 2-1:	Test Result Summary with FCC Rules and Regulations	5
Table 2-2:	Equipment under Test (EUT)	5
Table 3-1:	Conducted Emissions Test Equipment	7
Table 3-2:	Conducted AC Emissions; Neutral (Line 1); Receive Mode	8
Table 3-3:	Conducted AC Emissions; Hot (Line 2); Receive Mode	8
Table 3-4:	Conducted AC Emissions; Neutral (Line 1); Transmit Mode	8
Table 3-5:	Conducted AC Emissions; Hot (Line 2); Transmit Mode	9
Table 4-1:	Radiated Emissions Fundamental Emissions	10
Table 5-1:	Radiated Spurious Emissions Test Equipment	11
Table 6-1:	Industry Canada Modulated Bandwidth Test Equipment	34
Table 6-2:	Minimum 20 dB Modulated Bandwidths	34
Table 6-3:	Radiated Receiver/Digital Emissions Data.....	38
Table 6-4:	Radiated Receiver/Digital Emissions Test Equipment	38

Figure Index

Figure 2-1: Worst Case Configuration of System under Test.....	6
--	---

Plot Index

Plot 6-1: Modulated Bandwidth Low Channel.....	35
Plot 6-2: Modulated Bandwidth Mid Channel.....	36
Plot 6-3: Modulated Bandwidth High Channel	37

Appendix Index

Appendix A: FCC Part 1.1307, 1.1310, 2.1091, 2.1093; IC RSS-Gen: RF Exposure	12
Appendix B: FCC/TCB Agency Authorization Letter	13
Appendix C: FCC Confidentiality Request Letter	14
Appendix D: IC Agent Authority and Listing Requirements Letters	15
Appendix E: IC Confidentiality Request Letter	16
Appendix F: Label and Label Location	17
Appendix G: Operational Description	19
Appendix H: Schematics	20
Appendix I: Block Diagram	21
Appendix J: Manual.....	22
Appendix K: Test Photographs	23
Appendix L: External Photographs	27
Appendix M: Internal Photographs	29
Appendix N: Additional Information for Canadian Certification.....	34

Photograph Index

Photograph 1: FCC ID Label Location on Side of EUT.....	17
Photograph 2: ID Label Sample.....	18
Photograph 3: Radiated Emissions - Front View	23
Photograph 4: Radiated Emissions - Rear View.....	24
Photograph 5: Conducted AC Emissions - Front View	25
Photograph 6: Conducted AC Emissions - Rear View.....	26
Photograph 7: Front.....	27
Photograph 8: Side with ID Label	28
Photograph 9: Inside Front Cover.....	29
Photograph 10: PCB Mounted in Case.....	30
Photograph 11: PCB Top with Shield	31
Photograph 12: PCB Top without Shield	32
Photograph 13: PCB Bottom	33

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IKUSI – Angel Iglesias
Model: R70MR06C3
Standards: FCC 15.249/IC RSS-210
ID's: PVT-R70MR06C3 & 4166A-R70MR06C3
Report #: 2007262

1 General Information

1.1 Scope

FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5850 MHz, and 24.0-24.25 GHz.

IC RSS-210 Section A2.9: 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz.

1.2 Modifications

R30 was changed to 470K ohm and C41 to 120 ohm to reduce the field strength.

1.3 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at Rhein Tech Laboratories (RTL), 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 2003).

1.4 Related Submittal(s)/Grant(s)

This is an original certification application for IKUSI Model R70MR06C3, FCC ID: PVT-R70MR06C3, IC: 4166A-R70MR06C3.

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IKUSI – Angel Iglesias
Model: R70MR06C3
Standards: FCC 15.249/IC RSS-210
ID's: PVT-R70MR06C3 & 4166A-R70MR06C3
Report #: 2007262

2 Test Information

2.1 Test Justification

The EUT was tested in all three orthogonal planes in order to determine worst-case emissions. The low channel at 902.5 MHz, mid channel at 915.7 MHz, and high channel at 927.45 MHz, were tested and investigated from 9 kHz to 10 GHz. Data for all three channels is presented in this report. The test results relate only to the item that was tested. The PCB trace antenna transmits and receives.

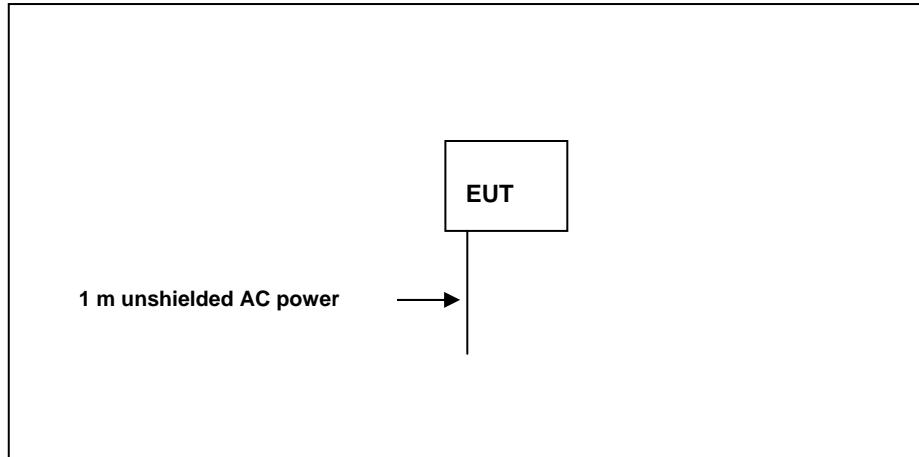
2.2 Exercising the EUT

The EUT was provided with software to continuously transmit during testing. The carrier was also checked to verify that the information was being transmitted. There were no deviations from the test standard(s) and/or methods. The IF, LO, and up to the 2nd LO, were investigated and tested, and found to be compliant.

2.3 Test Result Summary

Table 2-1: Test Result Summary with FCC Rules and Regulations

Standard	Test	Pass/Fail or N/A
FCC 15.249(a)	Radiated Emissions	Pass
FCC 15.207	AC Line Conducted Emissions	Pass
RSS-Gen	20 dB Bandwidth	N/A


2.4 Test System Details

The test sample was received on September 24, 2007. The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system, are shown in the table below.

Table 2-2: Equipment under Test (EUT)

Part	Manufacturer	Model	Serial Number	FCC ID	Cable Description	RTL Bar Code
Transceiver	IKUSI	R70MR06C3	N/A	PVT-R70MR06C3	N/A	18150
Transceiver	IKUSI	R70MR06C3	N/A	PVT-R70MR06C3	N/A	18152

2.5 Configuration of Tested System

Figure 2-1: Worst Case Configuration of System under Test

3 Conducted AC Emissions – FCC §15.207 & IC RSS-Gen

3.1 Site and Test Description

The power line conducted emissions measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 80 centimeters high. Power was fed to the EUT through a 50-ohm/50 microhenry Line Impedance Stabilization Network (LISN). The EUT LISN was fed power through an A.C. filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed A.C. power. A metal power outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

The spectrum analyzer was connected to the AC line through an isolation transformer. The 50-ohm output of the EUT LISN was connected to the spectrum analyzer input through a Solar 100 kHz high-pass filter. The filter is used to prevent overload of the spectrum analyzer from noise below 100 kHz. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or peak mode, if applicable).

The analyzer's 6 dB bandwidth was set to 9 kHz. Video filter less than 10 times the resolution bandwidth is not used. Average measurements are performed in linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, and by increasing the sweep time in order to obtain a calibrated measurement. The emission spectrum was scanned from 150 kHz to 30 MHz. The highest emission amplitudes relative to the appropriate limits were measured and have been recorded.

3.2 Test Limits

Line-Conducted Emissions		
Limit (dB μ V)		
Frequency (MHz)	Quasi-Peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5.00	56	46
5.00 to 30.00	60	50

Table 3-1: Conducted Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Date
900913	Hewlett Packard	85462A	EMI Receiver RF Section (9 kHz – 6.5 GHz)	3325A00159	3/21/08
901084	AFJ International	LS16	16A LISN	16010020082	3/28/08

Rhein Tech Laboratories
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: IKUSI – Angel Iglesias
 Model: R70MR06C3
 Standards: FCC 15.249/IC RSS-210
 ID's: PVT-R70MR06C3 & 4166A-R70MR06C3
 Report #: 2007262

3.3 Conducted AC Emissions Test Data

Table 3-2: Conducted AC Emissions; Neutral (Line 1); Receive Mode

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)	Pass/Fail
0.184	Pk	29.8	0.2	30.0	79.0	-49.0	66.0	-36.0	Pass
0.273	Pk	29.3	0.2	29.5	79.0	-49.5	66.0	-36.5	Pass
0.336	Pk	27.6	0.2	27.8	79.0	-51.2	66.0	-38.2	Pass
0.940	Pk	25.0	0.4	25.4	73.0	-47.6	60.0	-34.6	Pass
3.820	Pk	16.5	1.0	17.5	73.0	-55.5	60.0	-42.5	Pass
5.370	Pk	23.0	1.3	24.3	73.0	-48.7	60.0	-35.7	Pass

Table 3-3: Conducted AC Emissions; Hot (Line 2); Receive Mode

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)	Pass/Fail
0.233	Pk	25.5	0.1	25.6	79.0	-53.4	66.0	-40.4	Pass
0.277	Pk	25.2	0.2	25.4	79.0	-53.6	66.0	-40.6	Pass
0.336	Pk	30.1	0.2	30.3	79.0	-48.7	66.0	-35.7	Pass
0.800	Pk	27.0	0.3	27.3	73.0	-45.7	60.0	-32.7	Pass
3.970	Pk	15.9	1.0	16.9	73.0	-56.1	60.0	-43.1	Pass
5.590	Pk	19.3	1.3	20.6	73.0	-52.4	60.0	-39.4	Pass

Table 3-4: Conducted AC Emissions; Neutral (Line 1); Transmit Mode

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)	Pass/Fail
0.190	Pk	30.4	0.2	30.6	79.0	-48.4	66.0	-35.4	Pass
0.287	Pk	30.0	0.3	30.3	79.0	-48.7	66.0	-35.7	Pass
0.336	Pk	27.1	0.2	27.3	79.0	-51.7	66.0	-38.7	Pass
1.160	Pk	24.5	0.4	24.9	73.0	-48.1	60.0	-35.1	Pass
3.520	Pk	16.1	1.0	17.1	73.0	-55.9	60.0	-42.9	Pass
5.590	Pk	23.4	1.3	24.7	73.0	-48.3	60.0	-35.3	Pass

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IKUSI – Angel Iglesias
Model: R70MR06C3
Standards: FCC 15.249/IC RSS-210
ID's: PVT-R70MR06C3 & 4166A-R70MR06C3
Report #: 2007262

Table 3-5: Conducted AC Emissions; Hot (Line 2); Transmit Mode

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)	Pass/Fail
0.237	Pk	26.1	0.1	26.2	79.0	-52.8	66.0	-39.8	Pass
0.284	Pk	25.6	0.2	25.8	79.0	-53.2	66.0	-40.2	Pass
0.335	Pk	29.5	0.2	29.7	79.0	-49.3	66.0	-36.3	Pass
0.940	Pk	28.7	0.4	29.1	73.0	-43.9	60.0	-30.9	Pass
3.970	Pk	16.6	1.0	17.6	73.0	-55.4	60.0	-42.4	Pass
5.520	Pk	18.5	1.3	19.8	73.0	-53.2	60.0	-40.2	Pass

Test Personnel:

Daniel Baltzell
Test Engineer

Daniel W. Boley

October 9, 2007

4 Radiated Emission Limits Fundamental Emissions – FCC §15.249 & IC RSS-210 §A2.9

4.1 Radiated Emission Limits Test Procedure

Radiated Emissions of the Fundamentals were tested at three meters, and meet the quasi-peak limit of 50 mV/m. The EUT was tested in all three orthogonal planes for the low, mid, and high channels; the worst case emissions are shown. Peak measurements were taken and are compared to the quasi-peak limit.


4.2 Radiated Emission Limits Test Data

Table 4-1: Radiated Emissions Fundamental Emissions

Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dBm)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
902.500	Pk	61.8	29.2	91.0	94.0	-3.0
915.700	Pk	63.7	29.2	92.9	94.0	-1.1
927.450	Pk	64.1	29.3	93.4	94.0	-0.6

Test Personnel:

Daniel Baltzell
Test Engineer

Signature

December 7, 2007
Date Of Test

5 Radiated Emission Limits Radiated Harmonics – FCC §15.249 & IC RSS-210 §A2.9

5.1 Radiated Emission Limits Test Procedure

Radiated emissions of the harmonics were tested at three meters, and meet the requirements of 500 microvolts/meter in average mode, and 20 dB higher in peak mode, per 15.249(e). The EUT was tested in the X-Y, X-Z, and Y-Z orthogonal planes.

All spurious emissions were greater than 20 dB below the limit; no data is being reported per 15.31(o).

Rhein Tech Laboratories
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: IKUSI – Angel Iglesias
 Model: R70MR06C3
 Standards: FCC 15.249/IC RSS-210
 ID's: PVT-R70MR06C3 & 4166A-R70MR06C3
 Report #: 2007262

Table 5-1: Radiated Spurious Emissions Test Equipment

RTL Asset	Manufacturer	Model	Part Type	Serial Number	Calibration Date
900791	Chase	CBL6111B	Bilog antenna (30 MHz – 2000 MHz)	N/A	9/21/08
900932	Miteq	JS4-01002600-36-5P	Preamplifier (30 MHz – 26 GHz)	849863	2/15/08
901132	Par Electronics	N/A	Notch Filter	N/A	2/1/09
900905	Rhein Tech Laboratories, Inc.	PR-1040	Pre Amplifier 40dB (10 MHz – 2 GHz)	1006	5/16/08
900772	EMCO	3161-02	Horn Antenna (2 - 4 GHz)	9804-1044	6/14/10
900323	EMCO	3160-07	Horn Antenna (8.2 - 12.4 GHz)	9605-1054	6/14/10
900321	EMCO	3161-03	Horn Antenna (4.0 - 8.2 GHz)	9508-1020	6/14/10
901413	Agilent	E4448A	Spectrum Analyzer	US44020346	6/13/08
901425	Insulated Wire, Inc.	KPS-1503-2400-KPS	RF cable, 20'	NA	10/08/08
901424	Insulated Wire Inc.	KPS-1503-360-KPS	RF cable 36"	NA	10/08/08
900878	Rhein Tech Laboratories, Inc.	AM3-1197-0005	3 meter antenna mast, polarizing	Outdoor Range 1	Not Required
901242	Rhein Tech Laboratories, Inc.	WRT-000-0003	Wood rotating table	N/A	Not Required

6 Conclusion

The data in this measurement report shows that IKUSI Model R70MR06C3; FCC ID: PVT-R70MR06C3, and IC: 4166A-R70MR06C3, complies with all the applicable requirements of Parts 2 and 15 of the FCC Rules, and Industry Canada RSS-210.

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IKUSI – Angel Iglesias
Model: R70MR06C3
Standards: FCC 15.249/IC RSS-210
ID's: PVT-R70MR06C3 & 4166A-R70MR06C3
Report #: 2007262

Appendix N: Additional Information for Canadian Certification

Industry Canada - Modulated Bandwidth - RSS-Gen

Modulated Bandwidth Test Procedure

The minimum 20 dB bandwidth was measured using a 50 ohm spectrum analyzer with the resolution bandwidth set at 300 Hz, and the video bandwidth set at 3 kHz.

Table 7-1: Industry Canada Modulated Bandwidth Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Date
901413	Agilent Technologies	E4448A	Spectrum Analyzer	US44020346	6/13/08

Modulated Bandwidth Test Data

Table 7-2: Minimum 20 dB Modulated Bandwidths

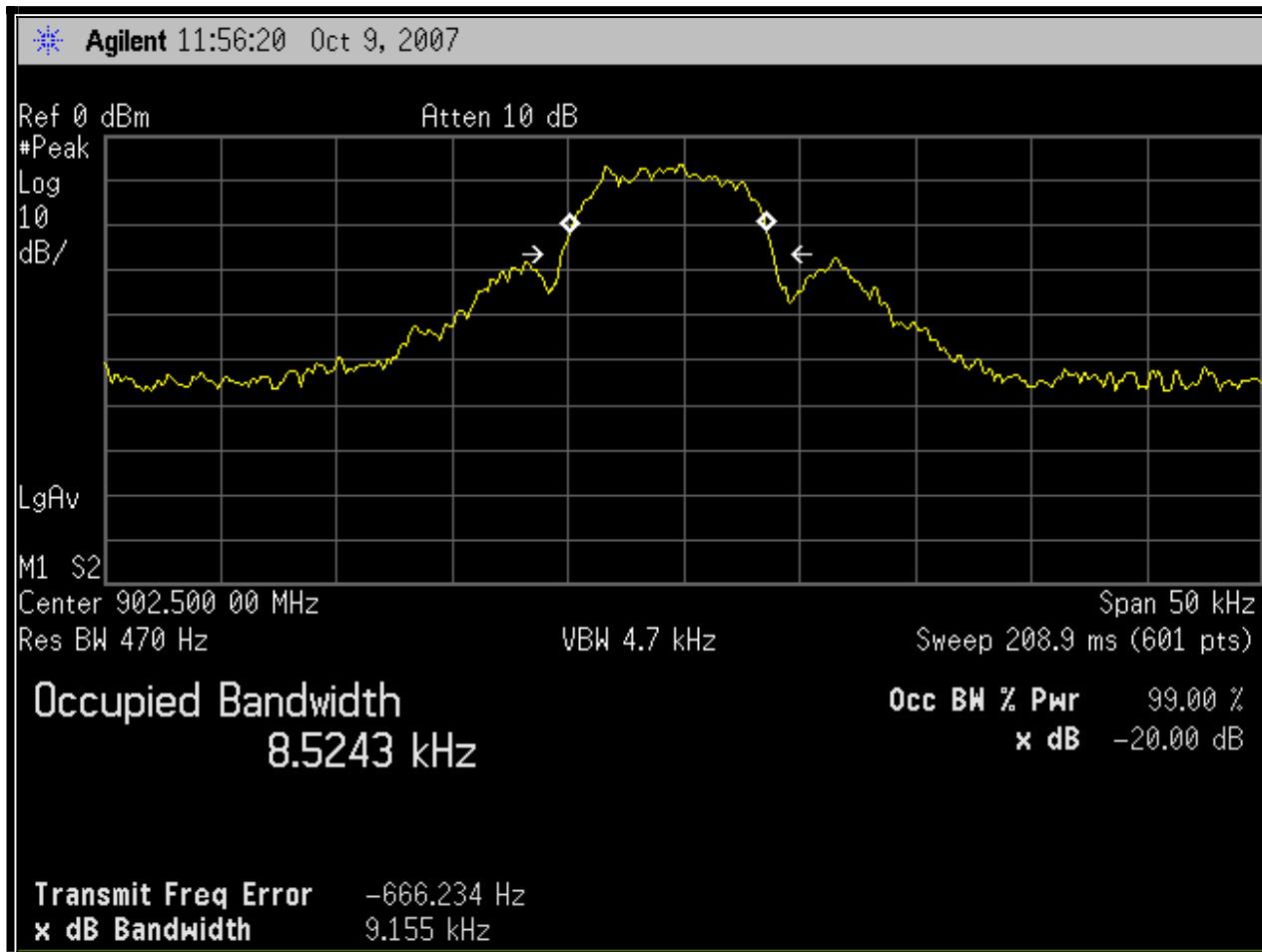
Frequency (MHz)	20 dB Bandwidth (kHz)
902.5	9.155
915.7	9.912
927.45	9.136

Test Personnel:

Daniel Baltzell

Test Engineer

Signature

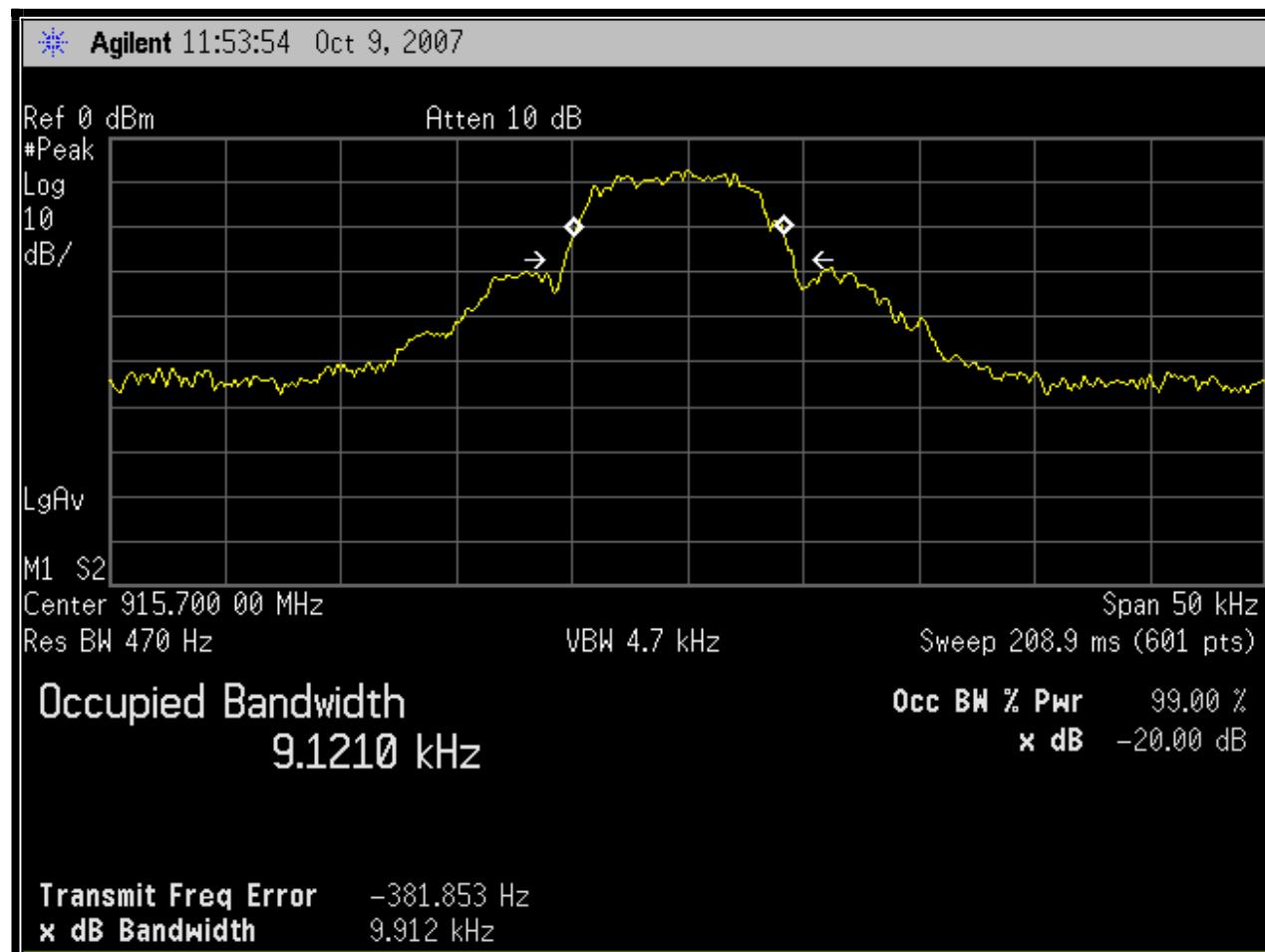

October 9, 2007

Date Of Test

Modulated Bandwidth Plots

Frequency (MHz): 902.5
Resolution Bandwidth (Hz): 470
Video Bandwidth (kHz): 4.7
Sweep Time (s): 0.2089

Plot 7-1: Modulated Bandwidth Low Channel

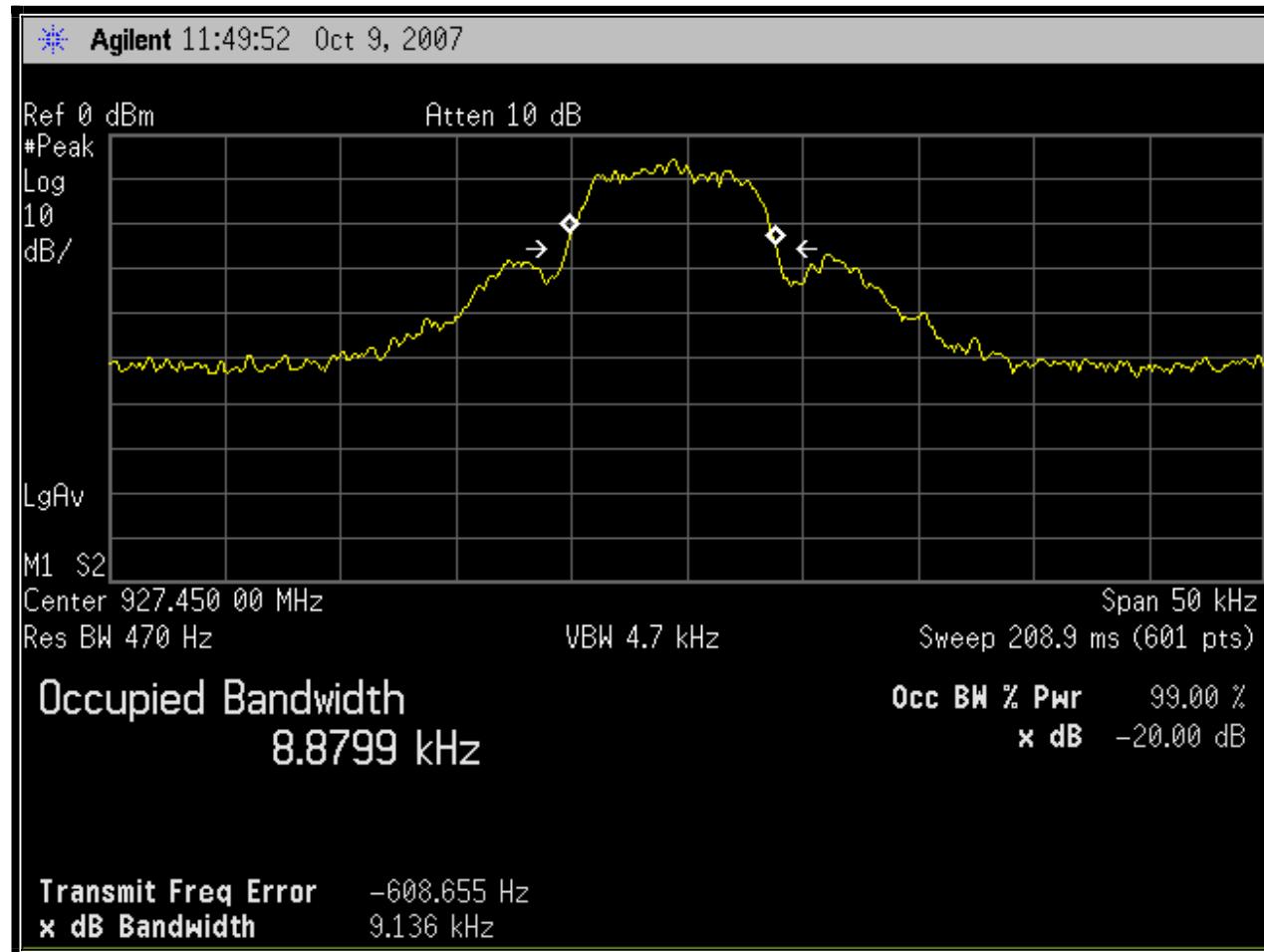


Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IKUSI – Angel Iglesias
Model: R70MR06C3
Standards: FCC 15.249/IC RSS-210
ID's: PVT-R70MR06C3 & 4166A-R70MR06C3
Report #: 2007262

Frequency (MHz): 915.7
Resolution Bandwidth (Hz): 470
Video Bandwidth (kHz): 4.7
Sweep Time (s): 0.2089

Plot 7-2: Modulated Bandwidth Mid Channel



Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: IKUSI – Angel Iglesias
Model: R70MR06C3
Standards: FCC 15.249/IC RSS-210
ID's: PVT-R70MR06C3 & 4166A-R70MR06C3
Report #: 2007262

Frequency (MHz): 927.45
Resolution Bandwidth (Hz): 470
Video Bandwidth (kHz): 4.7
Sweep Time (s): 0.2089

Plot 7-3: Modulated Bandwidth High Channel

Test Personnel:

Daniel Baltzell
Test Engineer

Daniel W. Baltzell

Signature

October 9 2007
Date Of Test

Rhein Tech Laboratories
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: IKUSI – Angel Iglesias
 Model: R70MR06C3
 Standards: FCC 15.249/IC RSS-210
 ID's: PVT-R70MR06C3 & 4166A-R70MR06C3
 Report #: 2007262

Radiated Receiver/Digital Emissions Data – IC RSS-Gen

Table 7-3: Radiated Receiver/Digital Emissions Data

Temperature: 83°F Humidity: 57%									
Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
139.500	Qp	V	120	1.0	62.2	-17.5	44.7	54.0	-9.3
143.329	Qp	H	0	1.5	58.5	-17.6	40.9	54.0	-13.1
166.329	Qp	H	0	1.2	68.7	-18.2	50.5	54.0	-3.5
169.835	Qp	V	0	1.0	65.5	-18.3	47.2	54.0	-6.8
211.085	Qp	H	0	2.2	59.7	-17.8	41.9	54.0	-12.1
212.997	Qp	V	160	1.0	63.5	-17.8	45.7	54.0	-8.3
218.085	Qp	H	0	2.5	60.9	-17.8	43.1	56.9	-13.8
290.585	Qp	H	180	1.5	54.2	-13.7	40.5	56.9	-16.4

Test Personnel:

Daniel Baltzell
 Test Engineer

Signature

October 10, 2007

Date Of Test

Table 7-4: Radiated Receiver/Digital Emissions Test Equipment

RTL Asset	Manufacturer	Model	Part Type	Serial Number	Calibration Date
900913	Hewlett Packard	8546A	Spectrum Analyzer (9 kHz – 6.5 GHz)	3325A00159	3/21/08
901053	Schaffner &Chase	CBL6112B	Bilog Antenna (20 MHz - 2 GHz)	2648	11/22/07
900905	Rhein Tech Laboratories, Inc.	PR-1040	Pre Amplifier 40 dB (10 MHz – 2 GHz)	1006	5/16/08
900878	Rhein Tech Laboratories, Inc.	AM3-1197-0005	3 meter Antenna Mast, polarizing	Outdoor Range 1	Not Required
901242	Rhein Tech Laboratories, Inc.	WRT-000-0003	Wood rotating table	N/A	Not Required