

FCC Test Report

Report No.: 2505R15120EA-A1

Applicant: Whirlpool Microwave Products Development Limited.

Address: 17th Fl, Elite Centre, 22 Hung To Rd, Kwun Tong, Hong Kong

Product Name: Household microwave oven

Product Model: MMMF8030P

Multiple Models: JMHF730R

Trade Mark: MAYTAG, JennAir

FCC ID: PR4FLUSHP2MT

Standards: FCC CFR Title 47 Part 18

Test Date: 2025-03-12 to 2025-03-21

Test Result: Complied

Report Date: 2025-04-11

Reviewed by:

Luke Li

Approved by:

Jacob Kong

Luke Li
Project Engineer

Jacob Kong
Manager

Prepared by:

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen,
Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk “★”

Announcement

1. This test report shall not be reproduced except in full, without the written approval of World Alliance Testing & Certification (Shenzhen) Co., Ltd
2. The results in this report apply only to the sample tested.
3. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
4. The information marked “#” is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No.	Issued Date	Description
00	2025-04-11	<i>Original</i>

Contents

1	General Information	4
1.1	Client Information	4
1.2	Product Description of EUT	4
1.3	Related Submittal(s)/Grant(s).....	4
1.4	Measurement Uncertainty	4
1.5	Laboratory Location.....	5
1.6	Test Methodology	5
2	Description of Measurement.....	6
2.1	Test Configuration.....	6
2.2	Test Auxiliary Equipment	6
2.3	Interconnecting Cables.....	6
2.4	Block Diagram of Connection between EUT and AE	6
2.5	Test Setup.....	6
2.6	Test Procedure	8
2.7	Measurement Method.....	9
2.8	Measurement Equipment	10
3	Test Results	12
3.1	Test Summary.....	12
3.2	Limit	13
3.3	Operating frequencies	14
3.4	Power Output Measurement	15
3.5	AC Line Conducted Emissions Test Data.....	16
3.6	Radiated emission Test Data.....	18
3.7	Radio frequency exposure	23
4	Test Setup Photo.....	24
5	E.U.T Photo	25

1 General Information

1.1 Client Information

Applicant:	Whirlpool Microwave Products Development Limited.
Address:	17th Fl, Elite Centre, 22 Hung To Rd, Kwun Tong, Hong Kong
Manufacturer:	Whirlpool Microwave Products Development Limited.
Address:	17th Fl, Elite Centre, 22 Hung To Rd, Kwun Tong, Hong Kong

1.2 Product Description of EUT

The EUT is Household microwave oven operate on 2450MHz ISM frequency Band.

Sample Serial Number	2ZK0-1 (assigned by WATC)
Sample Received Date	2025-03-11
Sample Status	Good Condition
Operating Frequency Range	2450MHz±50.0 MHz
Power Supply	AC 120V/60Hz
Microwave Rated Input Power [#]	1800W
Microwave Rated Output Power [#]	950W
Modification	Sample No Modification by the test lab

1.3 Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s)

1.4 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
AC Power Lines Conducted Emissions	±3.14dB
Radiated emission	Below 30MHz
	Below 1GHz
	Above 1GHz
Frequency Error	150Hz

Note 1: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Note 2: The Decision Rule is based on simple acceptance with ISO Guide 98-4:2012 Clause 8.2 (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

1.5 Laboratory Location

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: qa@wutc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.6 Test Methodology

FCC CFR 47 Part 18

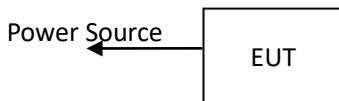
FCC OST MP-5-1986

Unless otherwise stated there are no any additions to, deviations, or exclusions from the method

2 Description of Measurement

2.1 Test Configuration

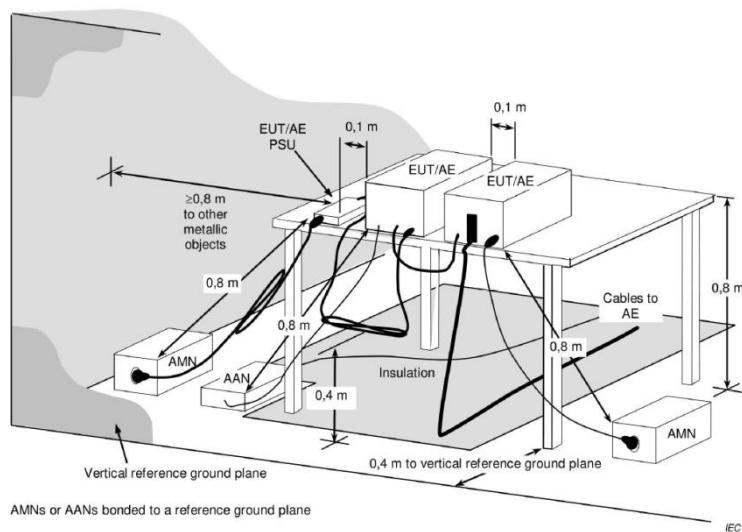
Test Mode:	
Microwave	The EUT was operate at the maximum microwave output power, according to FCC OST MP-5-1986 section 4.1, a quantity of water in a beaker was put in the oven cooking cavity during test


2.2 Test Auxiliary Equipment

Manufacturer	Description	Model	Serial Number
Xiangbo	Glass Beaker	unknown	unknown

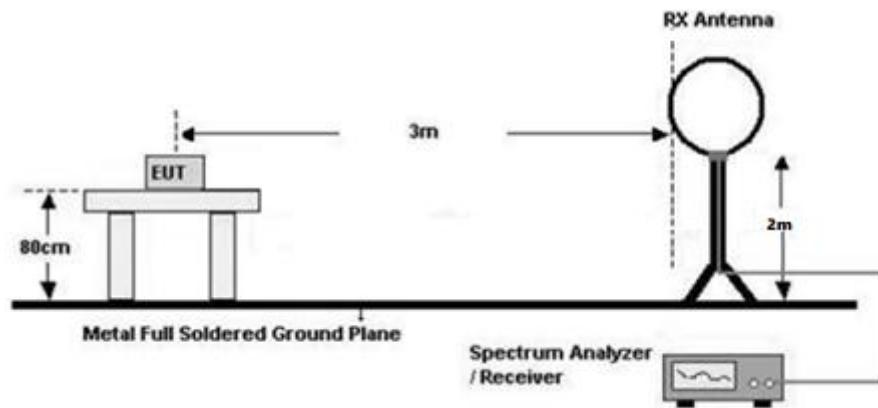
2.3 Interconnecting Cables

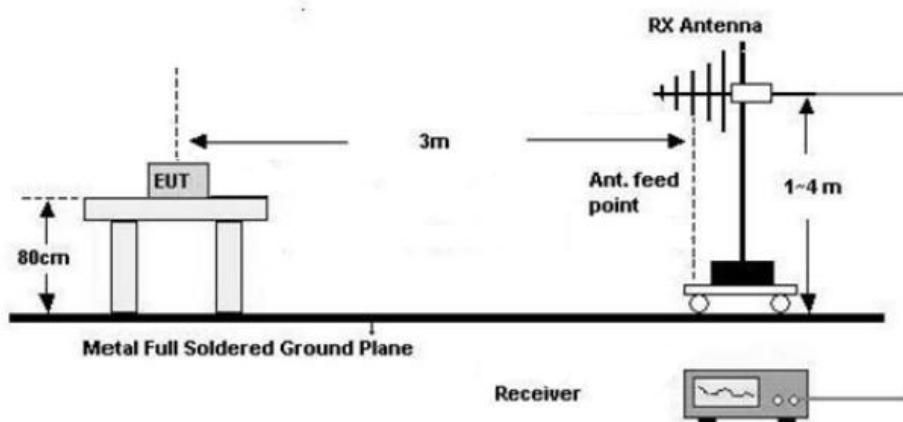
Manufacturer	Description	Length(m)	From	To
Whirlpool	AC Power Cable	1.0	Power Source	EUT


2.4 Block Diagram of Connection between EUT and AE

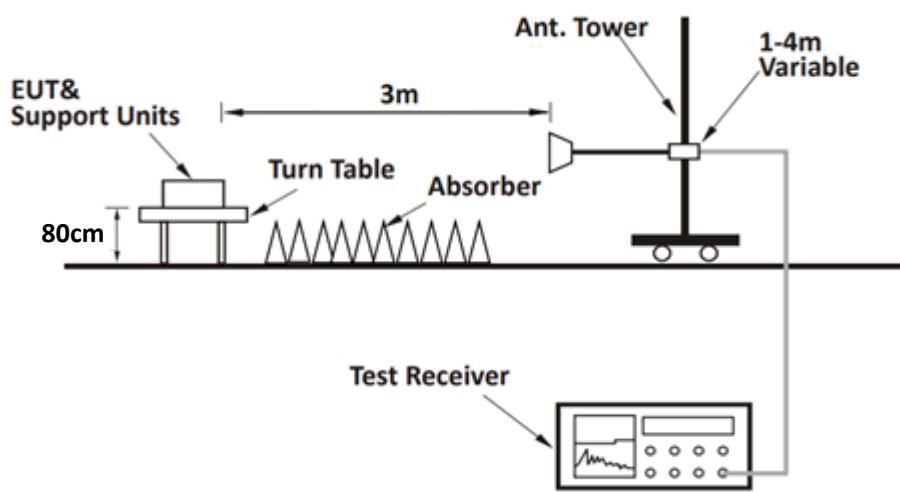
Note: for reference only, the actual connection setup used for testing please refer to the test photos.

2.5 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:


Below 30MHz (3m SAC)

30MHz-1GHz (3m SAC)

Above 1GHz

2.6 Test Procedure

Conducted emission:

1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
2. Both sides of A.C. line are checked for maximum conducted interference.
3. The receiver is set to 9kHz resolution bandwidth, final data was recorded in the Quasi-peak and average detection mode.
4. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

a) For 9kHz-30MHz:

1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
2. Loop antenna was used, the antenna height set at around 2 meters. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360°.
3. The RBW/VBW of receiver is set to 200Hz/1kHz for 9kHz to 150kHz range, to 9kHz/30kHz for 150kHz to 30MHz range for scan Peak emission, 200Hz/9kHz IF BW was used for final measurement in the average detection mode for frequency range 9~150kHz/150kHz~30MHz respectively.
4. If the Peak emission complies with the average limit, then perform final measurement is optional.

b) For 30MHz-1GHz:

1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
3. The RBW/VBW of receiver is set to 100kHz/300kHz for scan Peak emission, 120kHz IF BW was used for final measurement in the average detection mode.
4. If the Peak emission complies with the average limit, then perform final measurement is optional.

c) For above 1GHz:

1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.

4. Measurements may be performed at a distance closer than that specified in the regulations, in this case the distance correct factor should apply to the result.
5. The RBW/VBW of spectrum analyzer is set to 1MHz/3MHz for scan Peak emission, for measured average emission, reduce the VBW to 10Hz.
6. If the Peak emission complies with the Average limit, then perform average measurement is optional.

2.7 Measurement Method

Description of Test	Measurement Method
AC Line Conducted Emissions	FCC OST MP-5-1986 Section 7
Radiated emission	FCC OST MP-5-1986 Section 5
Operating frequencies	FCC OST MP-5-1986 Section 4.5
Power Output Measurement	FCC OST MP-5-1986 Section 4.3
Radio frequency exposure requirements	FCC OST MP-5-1986 Section 3.1

2.8 Measurement Equipment

Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date
AC Line Conducted Emission Test					
ROHDE& SCHWARZ	EMI TEST RECEIVER	ESR	101817	2024/6/4	2025/6/3
R&S	LISN	ENV216	101748	2024/6/4	2025/6/3
N/A	Coaxial Cable	NO.12	N/A	2024/6/4	2025/6/3
Farad	Test Software	EZ-EMC	Ver. EMEC-3A1	/	/
Radiated Emission Test					
R&S	EMI test receiver	ESR3	102758	2024/6/4	2025/6/3
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2024/6/4	2025/6/3
SONOMA INSTRUMENT	Low frequency amplifier	310	186014	2024/6/4	2025/6/3
A.H. Systems	PREAMPLIFIER	PAM-0118P	531	2024/6/4	2025/6/3
COM-POWER	Amplifier	PAM-840A	461306	2024/8/7	2025/8/6
BACL	Loop Antenna	1313-1A	4010611	2024/2/7	2027/2/6
SCHWARZBECK	Log - periodic wideband antenna	VULB 9163	9163-872	2023/7/7	2026/7/6
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2026/7/5
Ducommun technologies	Horn Antenna	ARH-4223-02	1007726-03	2023/7/10	2026/7/9
Oulitong	Band Reject Filter	OBSF-2400-248 3.5-50N	OE02103119	2024/6/4	2025/6/3
N/A	Coaxial Cable	NO.9	N/A	2024/6/4	2025/6/3
N/A	Coaxial Cable	NO.13	N/A	2024/8/7	2025/8/6
N/A	Coaxial Cable	NO.15	N/A	2024/6/4	2025/6/3
N/A	Coaxial Cable	NO.16	N/A	2024/6/4	2025/6/3
N/A	Coaxial Cable	NO.17	N/A	2024/6/4	2025/6/3
Audix	Test Software	E3	191218 V9	/	/
Operating frequencies					
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2024/6/4	2025/6/3
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2026/7/5
N/A	Coaxial Cable	N/A	NO.9	2024/6/4	2025/6/3

N/A	Coaxial Cable	N/A	NO.10	2024/8/7	2025/8/6
N/A	Coaxial Cable	N/A	NO.11	2024/6/4	2025/6/3
Audix	Test Software	E3	191218 V9	/	/
Power Output					
YOKOGAWA	Digital Power Meter	253503	25BW3075	2024/8/23	2025/8/22
Victor	Digital Thermometer	6801	100730669	2024/12/1	2025/11/30
Radio frequency exposure					
ETS	Microwave Survey Meter	1501	3640274	2024/10/11	2025/10/10

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

3 Test Results

3.1 Test Summary

FCC Rules	Description of Test	Result
FCC §18.307	AC Line Conducted Emissions	Compliance
FCC §18.305	Radiated emission	Compliance
FCC §18.301 FCC OST MP-5 §3.2	Operating frequencies	Compliance
FCC OST MP-5 §4.3	Power Output Measurement	Reporting only
FCC §18.313, §2.1091; §1.1310	Radio frequency exposure requirements	Compliance

Note: This is a Class II Permissive Change test report. The applicant declared the difference between EUT and original device (Granted on 2023/07/27) as below:

1. Change the model name
2. Add multiple Model
3. Change trade mark
4. Change the magnetron
5. Change the transformer
6. Change the H.V. capacitor
7. Update the main board

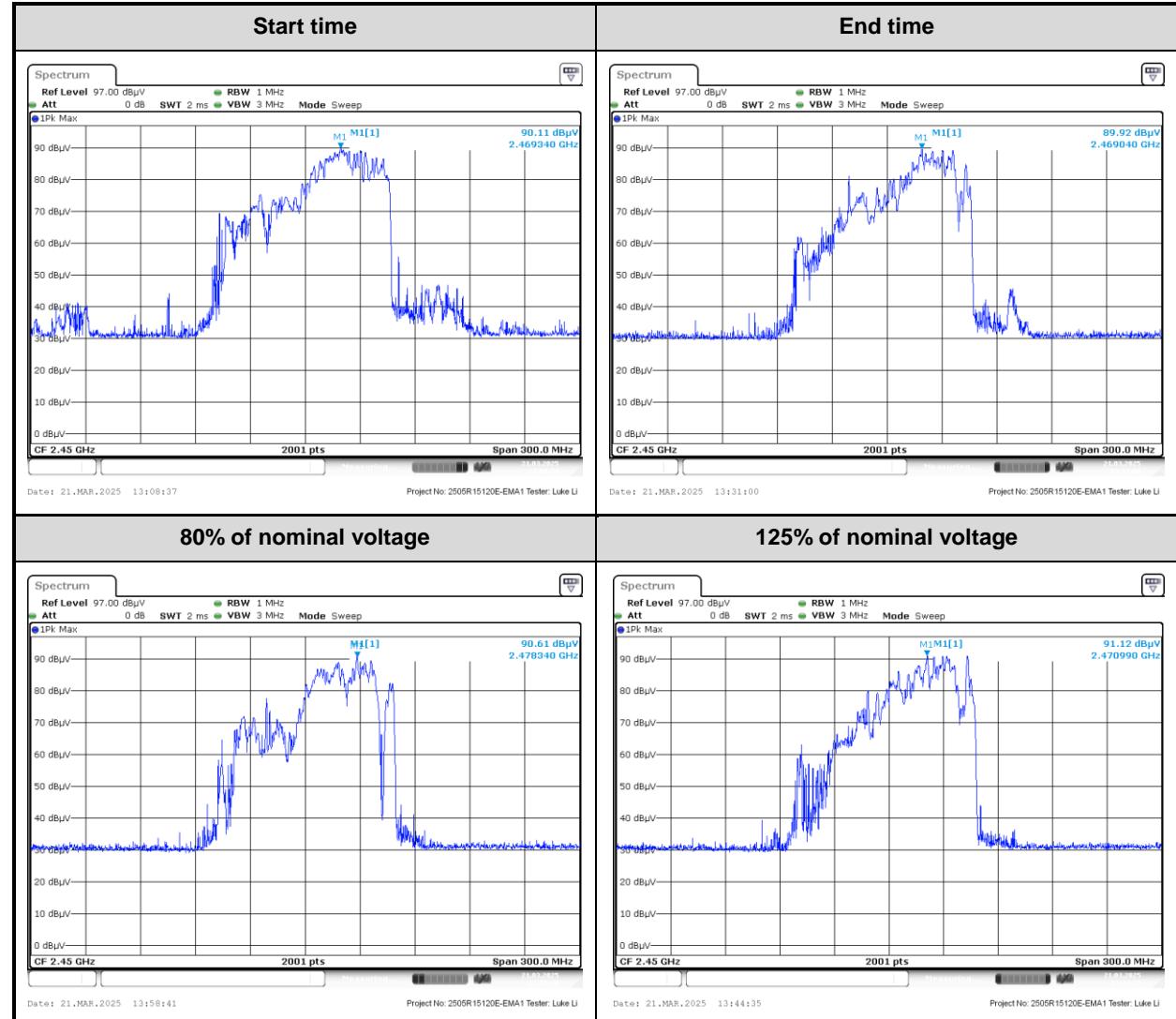
The microwave frequency, rated input& output power was not change

3.2 Limit

Test items	Limit			
AC Line Conducted Emissions	Frequency of emission (MHz)		Conducted limit (dB μ V)	
			Quasi-peak	Average
	0.15–0.5		66 to 56 *	56 to 46 *
	0.5–5		56	46
	5–30		60	50
* Decreases with the logarithm of the frequency.				
Radiated emission	Equipment		RF Power generated by equipment (watts)	Field strength limit (uV/m)
	Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500 500 or more	25 25 \times SQRT(power/500)
Operating frequencies	§18.301 Within ISM frequency band 2400-2500MHz			
Radio frequency exposure requirements	§1.1310 (ii) Limits for General Population/Uncontrolled Exposure			
	Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)
	0.3–1.34	614	1.63	*(100)
	1.34–30	824/f	2.19/f	*(180/f ²)
	30–300	27.5	0.073	0.2
	300–1,500			f/1500
	1,500–100,000			1.0
f = frequency in MHz. * = Plane-wave equivalent power density.				

3.3 Operating frequencies

Test Date:	2025-03-21	Test By:	Luke Li
Environment condition:	Temperature: 25°C; Relative Humidity:56%; ATM Pressure: 100kPa		


Variation in Operating Frequency with Time

Frequency at Start time(MHz)	Frequency at End time(MHz)	Limit(MHz)
2469.34	2469.04	Within 2400~2500

Variation in Operating Frequency with Line Voltage

Frequency at 80% of nominal voltage(MHz)	Frequency at 125% of nominal voltage(MHz)	Limit(MHz)
2478.34	2470.99	Within 2400~2500

Test Plot:

3.4 Power Output Measurement

Test Date:	2025-03-12	Test By:	Ryan Zhang
Environment condition:	Temperature: 23.8°C; Relative Humidity:70%; ATM Pressure: 101.0kPa		

Power Input:

Input Voltage(V _{AC})	Input Current(A)	Input Power(W)	Rated Input Power(W)
116.3	14.75	1715.425	1800

Note:

Based on the measured input power, the EUT was found to be operating within the intended specifications.

Power Output:

Quantity of Water (ml)	Mass of the container (g)	Ambient temperature (°C)	Initial temperature (°C)	Final temperature (°C)	Heating time (s)	Power output (W)
1000	487	23.8	22.8	35.4	60	931

Formula:

$$P = \frac{4,187 \cdot m_w (T_2 - T_1) + 0,55 \cdot m_c (T_2 - T_0)}{t}$$

Note:

P is the microwave power output(W)

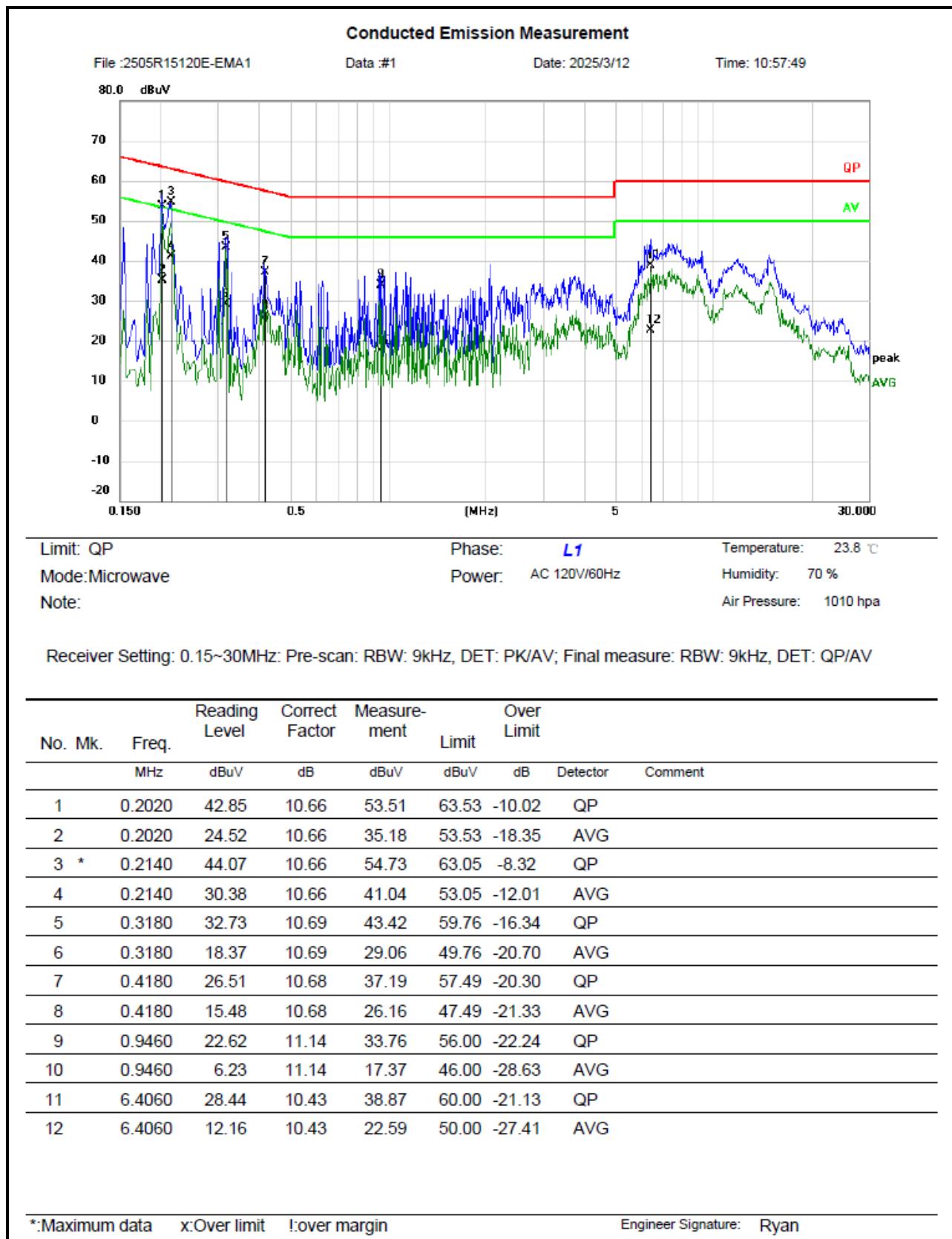
m_w is the mass of the water(g)

m_c is the mass of the container(g)

T₀ is the ambient temperature(°C)

T₁ is the initial temperature of water(°C)

T₂ is the final temperature of water(°C)

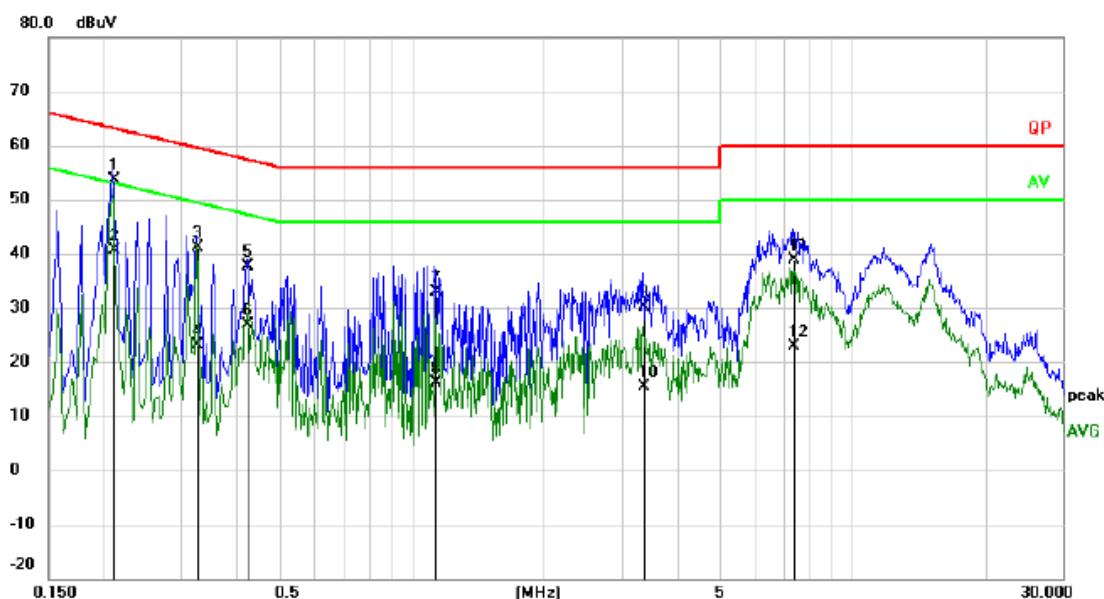

t is the water heating time(s), excluding the magnetron filament heating-up time

According to FCC § 18.305, the field strength limit of the outside band emissions is:

$$\begin{aligned}
\text{Limit} &= 20\lg(25*\text{SQRT}(\text{Power}/500))+20\lg(300/3) \\
&= 20\lg(25*\text{SQRT}(931/500))+20\lg(300/3) \\
&= 70.7\text{dBuV/m } @3\text{m distance}
\end{aligned}$$

3.5 AC Line Conducted Emissions Test Data

Test Date:	2025-03-12	Test By:	Ryan Zhang
Environment condition:	Temperature: 23.8°C; Relative Humidity:70%; ATM Pressure: 101.0kPa		


Conducted Emission Measurement

File :2505R15120E-EMA1

Data :#2

Date: 2025/3/12

Time: 10:59:09

Limit: QP

Phase: **N**

Temperature: 23.8 °C

Mode:Microwave

Power: AC 120V/60Hz

Humidity: 70 %

Note:

Air Pressure: 1010 hpa

Receiver Setting: 0.15~30MHz; Pre-scan: RBW: 9kHz, DET: PK/Avg; Final measure: RBW: 9kHz, DET: QP/Avg

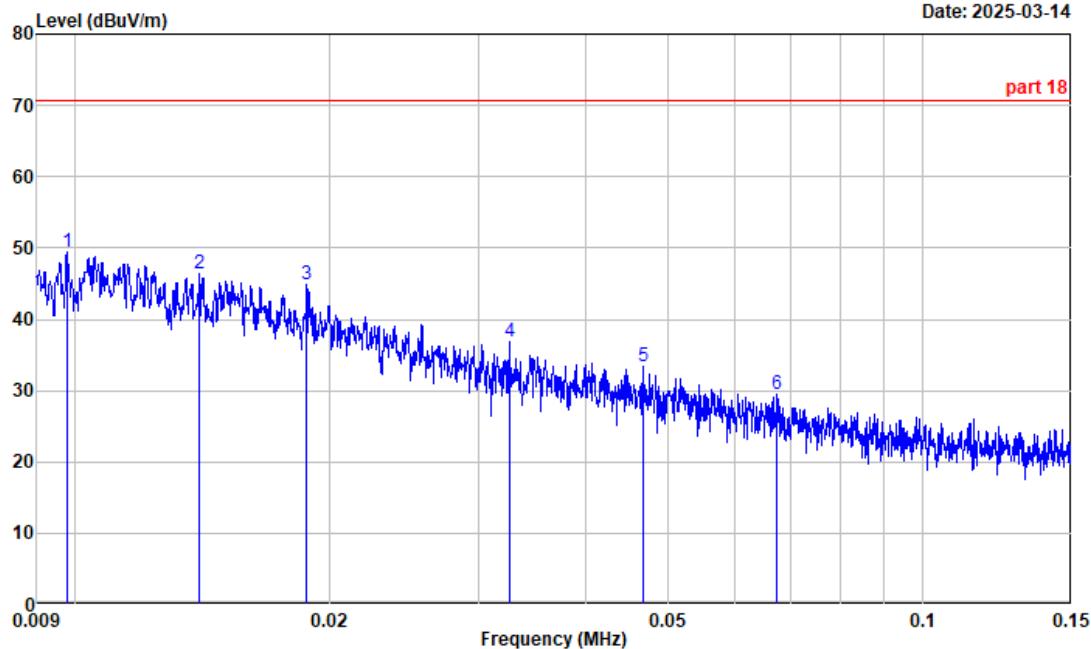
No.	Mk.	Freq.	Reading	Correct	Measure-	Over	Limit	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV	dBuV	dB		
1	*	0.2100	43.15	10.47	53.62	63.21	-9.59	QP	
2		0.2100	30.11	10.47	40.58	53.21	-12.63	AVG	
3		0.3260	30.50	10.62	41.12	59.55	-18.43	QP	
4		0.3260	12.52	10.62	23.14	49.55	-26.41	AVG	
5		0.4220	27.03	10.70	37.73	57.41	-19.68	QP	
6		0.4220	16.15	10.70	26.85	47.41	-20.56	AVG	
7		1.1300	22.66	10.27	32.93	56.00	-23.07	QP	
8		1.1300	5.80	10.27	16.07	46.00	-29.93	AVG	
9		3.3620	19.56	10.46	30.02	56.00	-25.98	QP	
10		3.3620	4.92	10.46	15.38	46.00	-30.62	AVG	
11		7.3420	28.53	10.32	38.85	60.00	-21.15	QP	
12		7.3420	12.65	10.32	22.97	50.00	-27.03	AVG	

*:Maximum data x:Over limit !:over margin

Engineer Signature: Ryan

Remark:

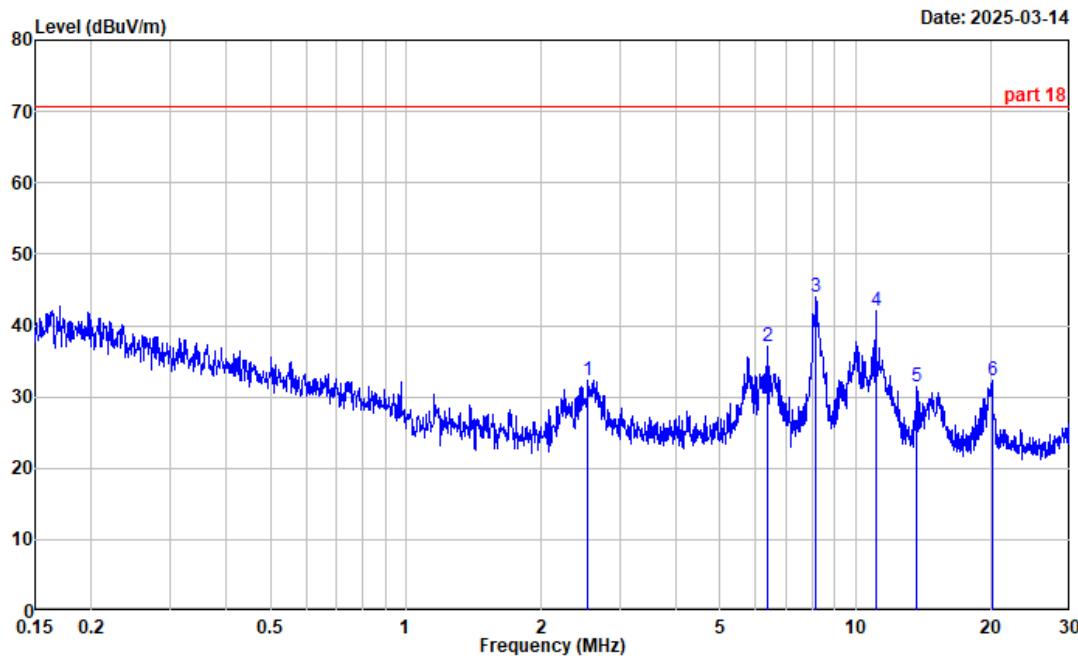
Measurement (dBuV)= Reading Level (dBuV) + Correct Factor(dB)


Correct Factor (dB)= LISN Voltage Division Factor (dB)+ Cable loss(dB)

Over Limit = Measurement – Limit

3.6 Radiated emission Test Data

9 kHz-30MHz:


Test Date:	2025-03-14	Test By:	Luke Li
Environment condition:	Temperature:20.0°C; Relative Humidity:66%; ATM Pressure: 100.8kPa		

Project No. : 2505R15120E-EMA1
 Test Mode : Microwave
 Test Voltage : AC 120V/60Hz
 Environment : 20.0°C/66%R.H./100.8kPa
 Tested by : Luke Li
 Polarization : PARALLEL
 Remark : Maximum microwave output power

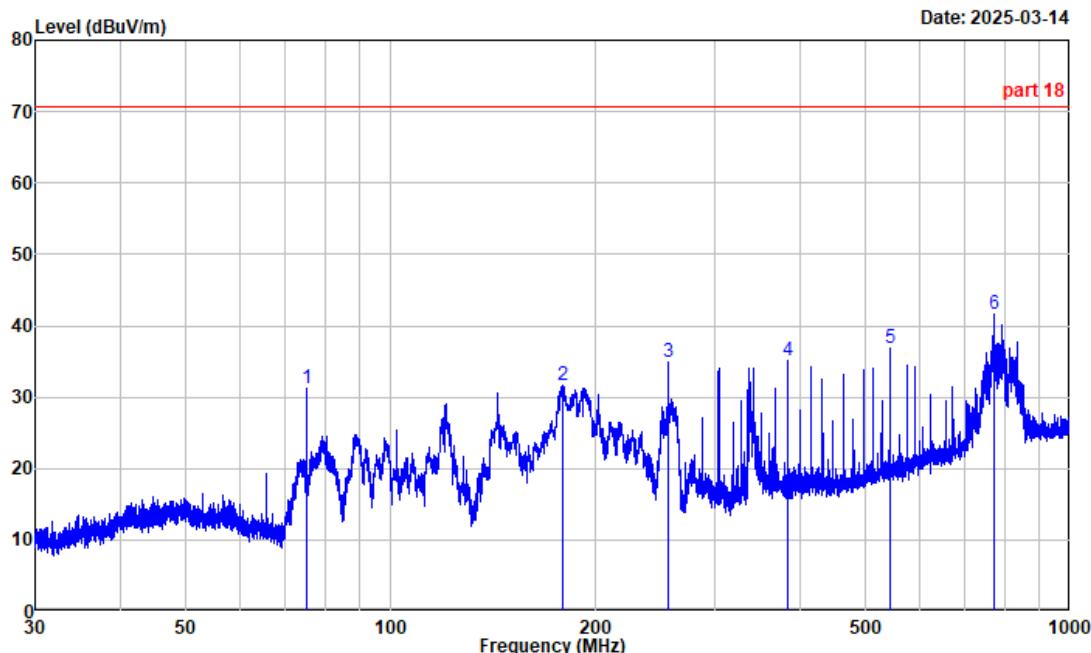
--No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Over Limit (dB)	Detector
1	0.010	12.01	37.46	49.47	70.70	-21.23	Peak
2	0.014	11.59	34.74	46.33	70.70	-24.37	Peak
3	0.019	13.24	31.73	44.97	70.70	-25.73	Peak
4	0.033	12.75	24.07	36.82	70.70	-33.88	Peak
5	0.047	12.25	21.16	33.41	70.70	-37.29	Peak
6	0.067	11.31	18.11	29.42	70.70	-41.28	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain
 Result = Reading + Factor
 Over Limit = Result - Limit
 SA setting: RBW/VBW: 200Hz/1kHz, DET: PK

Project No. : 2505R15120E-EMA1
 Test Mode : Microwave
 Test Voltage : AC 120V/60Hz
 Environment : 20.0°C/66%R.H./100.8kPa
 Tested by : Luke Li
 Polarization : PARALLEL
 Remark : Maximum microwave output power

--No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Over Limit (dB)	Detector
1	2.540	35.07	-2.81	32.26	70.70	-38.44	Peak
2	6.352	41.09	-4.02	37.07	70.70	-33.63	Peak
3	8.148	47.86	-3.81	44.05	70.70	-26.65	Peak
4	11.080	45.31	-3.34	41.97	70.70	-28.73	Peak
5	13.695	34.95	-3.49	31.46	70.70	-39.24	Peak
6	20.162	35.38	-3.10	32.28	70.70	-38.42	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain


Result = Reading + Factor

Over Limit = Result - Limit

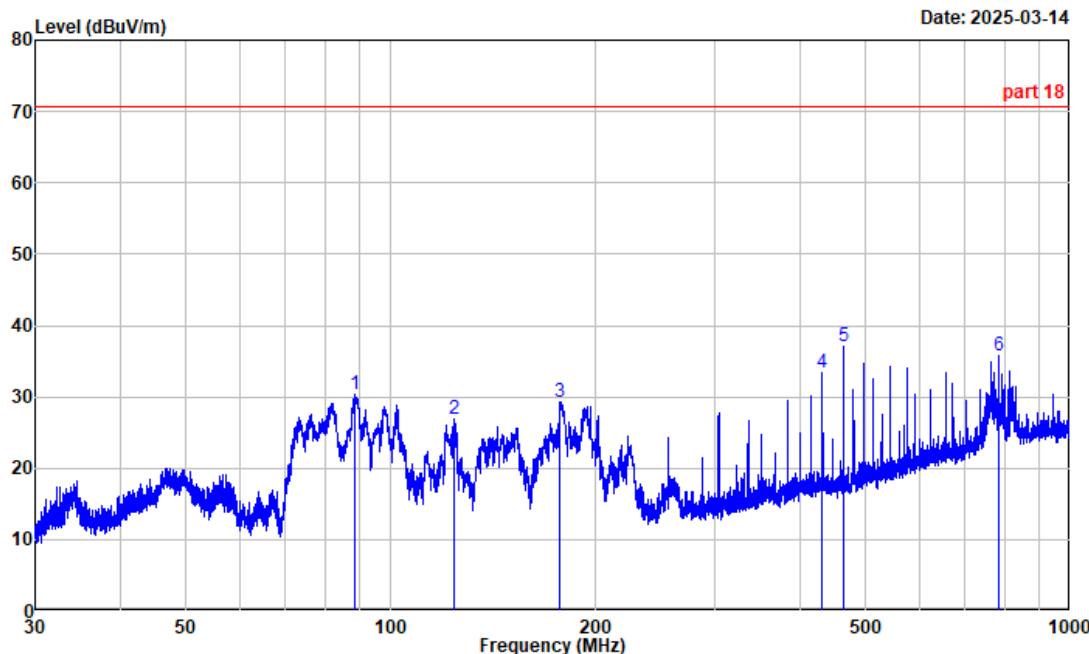
SA setting: RBW/VBW: 9kHz/30kHz, DET: PK

30MHz-1GHz:

Test Date:	2025-03-14	Test By:	Luke Li
Environment condition:	Temperature: 20.0°C; Relative Humidity:66%; ATM Pressure: 100.8kPa		

Project No. : 2505R15120E-EMA1
 Test Mode : Microwave
 Test Voltage : AC 120V/60Hz
 Environment : 20.0°C/66%R.H./100.8kPa
 Tested by : Luke Li
 Polarization : horizontal
 Remark : Maximum microwave output power

--No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Over Limit (dB)	Detector
1	75.347	49.19	-17.90	31.29	70.70	-39.41	Peak
2	179.308	47.25	-15.60	31.65	70.70	-39.05	Peak
3	256.072	47.24	-12.24	35.00	70.70	-35.70	Peak
4	384.100	44.15	-9.07	35.08	70.70	-35.62	Peak
5	543.989	43.39	-6.51	36.88	70.70	-33.82	Peak
6	771.449	44.02	-2.48	41.54	70.70	-29.16	Peak


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

Over Limit = Result - Limit

SA setting: Pre-scan: RBW/VBW: 100kHz/300kHz, DET: PK

Final measure: RBW: 120kHz, DET: QP

Project No. : 2505R15120E-EMA1
 Test Mode : Microwave
 Test Voltage : AC 120V/60Hz
 Environment : 20.0°C/66%R.H./100.8kPa
 Tested by : Luke Li
 Polarization : vertical
 Remark : Maximum microwave output power

--No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Over Limit (dB)	Detector
1	88.536	46.32	-16.03	30.29	70.70	-40.41	Peak
2	124.351	43.52	-16.58	26.94	70.70	-43.76	Peak
3	177.431	45.03	-15.76	29.27	70.70	-41.43	Peak
4	431.977	41.60	-8.28	33.32	70.70	-37.38	Peak
5	463.970	45.19	-8.13	37.06	70.70	-33.64	Peak
6	784.062	38.06	-2.38	35.68	70.70	-35.02	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

Over Limit = Result - Limit

SA setting: Pre-scan: RBW/VBW: 100kHz/300kHz, DET: PK

Final measure: RBW: 120kHz, DET: QP

Above 1GHz:

Test Date:	2025-03-21	Test By:	Luke Li
Environment condition:	Temperature: 23.4°C; Relative Humidity:47%; ATM Pressure: 102.5kPa		

Frequency (MHz)	Reading level (dB μ V)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Remark
2143.000	52.86	horizontal	-3.91	48.95	70.70	-21.75	Average
2341.000	42.80	horizontal	-2.97	39.83	70.70	-30.87	Average
2511.000	51.26	horizontal	-2.63	48.63	70.70	-22.07	Average
2149.000	53.84	vertical	-3.88	49.96	70.70	-20.74	Average
2305.000	42.15	vertical	-3.09	39.06	70.70	-31.64	Average
2516.000	48.25	vertical	-2.62	45.63	70.70	-25.07	Average
Second and third harmonic							
700ml Water							
4941.000	48.70	horizontal	-1.71	46.99	70.70	-23.71	Average
7420.000	44.91	horizontal	-1.32	43.59	70.70	-27.11	Average
4930.000	50.95	vertical	-1.71	49.24	70.70	-21.46	Average
7390.000	42.76	vertical	-1.30	41.46	70.70	-29.24	Average
300ml Water							
4932.300	49.12	horizontal	-1.71	47.41	70.70	-23.29	Average
7420.350	45.34	horizontal	-1.32	44.02	70.70	-26.68	Average
4944.450	49.65	vertical	-1.70	47.95	70.70	-22.75	Average
7419.000	44.21	vertical	-1.31	42.90	70.70	-27.80	Average

Remark:

Corrected Amplitude= Reading level + corrected Factor

Corrected Factor = Antenna factor + Cable loss – Amplifier gain

Margin = Corrected Amplitude – Limit

The emission levels of other frequencies that were lower than the limit 20dB not show in test report.

For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.

3.7 Radio frequency exposure

Test Date:	2025-03-12	Test By:	Ryan Zhang
Environment condition:	Temperature: 23.8 °C; Relative Humidity:70%; ATM Pressure: 101.0kPa		

Radiation leakage was measured in the as-received condition with the oven door closed using a microwave leakage meter.

A 275mL water load was placed in the center of the oven and the oven was operated at maximum output power.

There was no microwave leakage exceeding a power level of 0.1mW/cm² observed at any point 5 cm or more from the external surface of the oven.

A maximum of 1.0mW/cm² is allowed in accordance with the applicable Federal Standards. Hence, microwave leakage in the as-received condition with the oven door closed was below the maximum allowed.

4 Test Setup Photo

Please refer to the attachment 2505R15120E-A1Test Setup photo.

5 E.U.T Photo

Please refer to the attachment 2505R15120E-A1 External photo and 2505R15120E-A1 Internal photo.

---End of Report---