

SAR Compliance Test Report

Test report no.: **Template version: Testing laboratory:** Salo SAR 0737 08 7.0

TCC Nokia Salo Laboratory

P.O.Box 86

Joensuunkatu 7H / Kiila 1B FIN-24101 SALO, FINLAND Tel. +358 (0) 7180 08000 Fax. +358 (0) 7180 45220

Date of report: **Number of pages:**

Client:

2007-09-13

18

Nokia Corporation

Lise Meitner Strasse 10

89081 ULM **GERMANY**

Tel. +49 731 1754 0 Fax. +49 731 1754 6800

Responsible test

engineer:

Tested device:

Virpi Tuominen

Product contact person:

Thomas Reitmayer

Measurements made by:

Ari Orte, Virpi Tuominen

FCC ID: PPIRM-322

RM-322

IC: 661U-RM322

Supplement reports:

Salo SAR 0734 20, Salo SAR 0735 11

Testing has been carried out in accordance with:

47CFR §2.1093

Radiofreguency Radiation Exposure Evaluation: Portable Devices FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Technique

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at

TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

CC	ONTENTS	
1.	SUMMARY OF SAR TEST REPORT	3
	1.1 Test Details	3
	1.2 Maximum Results	
	1.2.1 Head Configuration	
	1.2.2 Body Worn Configuration	
	1.2.3 Maximum Drift	
	1.2.4 Measurement Uncertainty	4
2.	. DESCRIPTION OF THE DEVICE UNDER TEST	4
	2.1 DESCRIPTION OF THE ANTENNA	4
3.	. TEST CONDITIONS	5
	3.1 Temperature and Humidity	5
	3.2 Test Signal, Frequencies and Output Power	
4.	DESCRIPTION OF THE TEST EQUIPMENT	6
••	4.1 MEASUREMENT SYSTEM AND COMPONENTS	
	4.1.1 Isotropic E-field Probe Type ET3DV6	
	4.1.1 Isotropic L-neia Probe Type L13DV0	
	4.3 TISSUE SIMULANTS	
	4.3.1 Tissue Simulant Recipes	
	4.3.2 System Checking	
	4.3.3 Tissue Simulants used in the Measurements	
5.		
	5.1 DEVICE HOLDER	10
	5.2 Test Positions	
	5.2.1 Against Phantom Head	
	5.2.2 Body Worn Configuration	
	5.3 SCAN PROCEDURES	
	5.4 SAR AVERAGING METHODS.	
6.		
7.	. RESULTS	13
ΑF	PPENDIX A: SYSTEM CHECKING SCANS	14
ΑF	PPENDIX B: MEASUREMENT SCANS	15
ΔΓ	PPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	17
ΑF	PPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	18
_		

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2007-09-10
SN, HW and SW numbers of	SN: 004401/01/363512/9, HW: 0211, SW: pr3.50.1, DUT: 12222
tested device	
Batteries used in testing	BL-4C, DUT: 12044, 12154
Headsets used in testing	-
Other accessories used in	-
testing	
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Radiated power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS1900	810 / 1909.8	26.5 dBm EIRP	Right, Cheek	0.776 W/kg	0.87 W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / f (MHz)	Radiated power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS1900	810 / 1909.8	26.5 dBm EIRP	2.2cm	0.209 W/kg	0.23 W/kg	1.6 W/kg	PASSED

^{*}SAR values are scaled up by 12% to cover measurement drift.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.11dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	1900	GMSK	1/8	1850 - 1910
GPRS	1900	GMSK	1/8 to 2/8	1850 - 1910
EGPRS	1900	GMSK / 8PSK	1/8 to 2/8	1850 - 1910
BT	2450	GFSK	1	2402 – 2480
WLAN	2450	11Mbps QPSK	1	2412 - 2462

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM/GPRS/EGPRS900 and GSM/GPRS/EGPRS1800 bands which are not part of this filing.

2.1 Description of the Antenna

The device has an internal antenna.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.1 to 22.0
Ambient humidity (RH %):	40 to 56

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit(s) as used for SAR testing.

The test cases reported in this document have been limited to the BT-active cases reported in Salo_SAR_0734_20, since the only change has been an increase in BT transmit power.

A DESCRIPTION OF THE TEST FOUNDATION

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE 4	555	12 months	2008-03
E-field Probe ET3DV6	1396	12 months	2008-02
Dipole Validation Kit, D1900V2	5d013	24 months	2008-07
DASY4 software	Version 4.7	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SML03	101265	12 months	2008-07
Amplifier	ZHL-42 (SMA)	N072095-5	12 months	2008-07
Power Meter	NRVS	849305/028	12 months	2008-07
Power Sensor	NRV-Z32	839176/020	12 months	2008-07
Call Tester	CMU 200	101111	-	-
Call Tester	CMU 200	100084	-	-
Vector Network Analyzer	8753E	US38432928	12 months	2008-07
Dielectric Probe Kit	85070B	US33020420	-	-

4.1.1 Isotropic E-field Probe Type ET3DV6

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Optical Surface Detection ± 0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dosimetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 \pm 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue simulant(s):

1900MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	54.50	70.25
Tween 20	45.23	29.41
Salt	0.27	0.34

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric Parameters		Temp
f [MHz]	Description	1g	€r	σ [S/m]	[°C]
	Reference result	9.69	39.3	1.44	
	$\pm10\%$ window	8.72 – 10.66			
1900	2007-09-10	9.97	39.3	1.45	21.0

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

f		Dielectric F	Temp	
[MHz]	Description	εr	σ [S/m]	[°C]
	Recommended value	40.0	1.40	
	± 5% window	38.0 – 42.0	1.33 – 1.47	
	± 370 WIIIUUW	30.0 - 42.0	1.33 - 1.41	
1880	2007-09-10	39.4	1.44	21.0

Body tissue simulant measurements

body dibbat billiant incabal anients							
f		Dielectric F	Temp				
[MHz]	Description	Er	σ [S/m]	[°C]			
	Recommended value	53.3	1.52				
	± 5% window	50.6 - 56.0	1.44 - 1.60				
1880	2007-09-10	52.5	1.54	21.0			

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in Section 1.2.2 using a separate flat spacer that was removed before the start of the measurements. The device was oriented with its antenna facing the phantom since this orientation gives higher results.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Uncertainty Component	Section Tol.		Prob	Div	Ci	Ci .Ui	Vi
oncertainty component	1528	(%)	Dist	DIV		(%)	
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	∞
Axial Isotropy	E2.2	±4.7	R	√3	(1-c _p)1/2	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p)1/2	±3.9	∞
Boundary Effect	E2.3	±1.0	R	√3	1	±0.6	∞
Linearity	E2.4	±4.7	R	√3	1	±2.7	∞
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	∞
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	∞
Response Time	E2.7	±0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	∞
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	× ×
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	∞
Probe Positioning with respect to	E6.3	±2.9	R	√3	1	±1.7	
Phantom Shell	20.5			,,,	-		-
Extrapolation, interpolation and				,			
Integration Algorithms for Max. SAR	E5	±3.9	R	√3	1	±2.3	∞
Evaluation							
Test sample Related				_	_		
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift	6.6.3	± 0.0	R	√3	1	±0.0	∞
measurement							
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and	E3.1	±4.0	R	√3	1	±2.3	ο Ω
thickness tolerances)	E3.1	±4.0	K	۷5	ı	±2.5	80
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	Permittivity Target - tolerance E3.2 ±5.0		R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty						±12.9	116
Coverage Factor for 95%			RSS k=2				
Expanded Uncertainty						±25.8	

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

1900MHz Head SAR results

	Test configuration		SAR, averaged over 1g (W/kg)			
Mode			Ch 512	Ch 661	Ch 810	
			1850.2 MHz	1880.0 MHz	1909.8 MHz	
GSM	Pov	ver	30.3 dBm	30.0 dBm	30.3 dBm	
	Left	Cheek	-	-	-	
		Tilt	-	-	-	
	Right	Cheek	-	-	-	
		Tilt	-	-	-	
2-slot GPRS	Pov	wer	27.5 dBm	26.8 dBm	26.5 dBm	
	Left	Cheek	-	-	-	
		Tilt	-	1	-	
	Right	Cheek	-	1	-	
		Tilt	-	-	-	
2-slot 8PSK EGPRS	Pov	wer	26.5 dBm	25.3 dBm	25.5 dBm	
	Left	Cheek	-	-	-	
		Tilt	-	-	-	
	Right	Cheek	-	-	-	
		Tilt	-	-	-	
2-slot GPRS	Right Cheek, BT	active	-	-	0.776	

The measured Body SAR values for the test device are tabulated below:

1900MHz Body SAR results

		SAR, averaged over 1g (W/kg)				
Mode	Test configuration	Ch 512	Ch 661	Ch 810		
		1850.2 MHz	1880.0 MHz	1909.8 MHz		
2-slot GPRS	Power	27.5 dBm	26.8 dBm	26.5 dBm		
	Without headset	-	-	-		
	Headset HS-47	-	-	-		
2-slot GPRS	Without headset, BT active	-	-	0.209		

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

Date/Time: 2007-09-10 15:03:54

Test Laboratory: TCC Nokia

Type: D1900V2; Serial: D1900V2 - SN:5d013

Communication System: CW1900 Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium Notes: t=21.0C

Medium parameters used: f = 1900 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

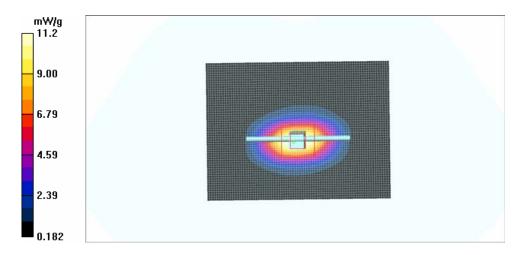
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1396;
- ConvF(5.28, 5.28, 5.28); Calibrated: 2007-02-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2007-03-15
- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP 1177
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=250mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.8 mW/g


d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.2 V/m Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.97 mW/gSAR(10 g) = 5.22 mW/g

Power Drift = -0.029 dB

Maximum value of SAR (measured) = 11.2 mW/g

APPENDIX B: MEASUREMENT SCANS

Date/Time: 2007-09-10 16:49:03

Test Laboratory: TCC Nokia

Type: RM-322; Serial: 004401/01/363512/9

Communication System: 2-slot GPRS1900 Frequency: 1909.8 MHz; Duty Cycle: 1:4.2 Medium: HSL1900; Medium Notes: 20.3C

Medium parameters used: f = 1910 MHz; $\sigma = 1.46 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

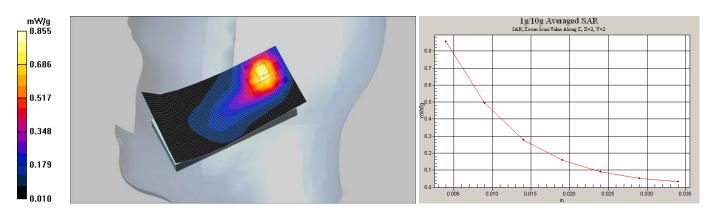
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1396; Probe Notes:
- ConvF(5.28, 5.28, 5.28); Calibrated: 2007-02-12
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2007-03-15
- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP 1177
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Cheek position, High, BT/Area Scan (41x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.921 mW/g


Cheek position, High, BT/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 20.3 V/m Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.776 mW/g

SAR(10 g) = 0.401 mW/gPower Drift = -0.114 dB

Maximum value of SAR (measured) = 0.855 mW/g

Copyright © 2007 TCC Nokia

Type: RM-322

Date/Time: 2007-09-10 18:07:20

Test Laboratory: TCC Nokia

Type: RM-322; Serial: 004401/01/363512/9

Communication System: 2-slot GPRS1900 Frequency: 1909.8 MHz; Duty Cycle: 1:4.2 Medium: BSL1900; Medium Notes: 20.5C

Medium parameters used: f = 1910 MHz; σ = 1.56 mho/m; ε_r = 52.4; ρ = 1000 kg/m³

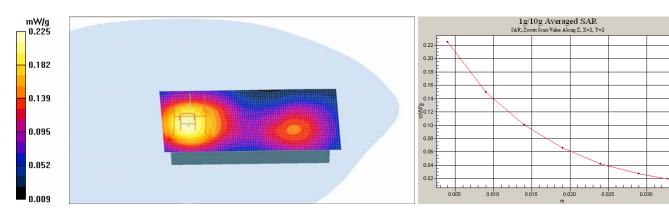
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1396; Probe Notes:
- ConvF(4.7, 4.7, 4.7); Calibrated: 2007-02-12
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2007-03-15
- Phantom: SAM 3; Type: Twin SAM 040 CA; Serial: TP-1179
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body Measurement, High, No accessory, BT/Area Scan (41x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.230 mW/g

Body Measurement, High, No accessory, BT/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,


dy=7.5mm, dz=5mm

Reference Value = 12.7 V/m Peak SAR (extrapolated) = 0.310 W/kg

SAR(1 g) = 0.209 mW/gSAR(10 g) = 0.133 mW/g

Power Drift = -0.078 dB

Maximum value of SAR (measured) = 0.225 mW/g

Copyright © 2007 TCC Nokia

Type: RM-322

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

See the next three pages.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Nokia Salo TCC

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ET3-1396_Feb07

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

Client

ET3DV6 - SN:1396

Calibration procedure(s)

QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date:

February 12, 2007

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	ensor E4412A MY41495277 5-Apr-06 (METAS, No. 251-00557)		Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	20-119

Niels Kuster Quality Manager Approved by:

Issued: February 12, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

DASY - Parameters of Probe: ET3DV6 SN:1396

Sensitivity in Free	Diode C	ompression	В		
NormX	1.80 ± 10.1%	$\mu V/(V/m)^2$	DCP X	91 mV	
NormY	1.79 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	91 mV	
NormZ	1.99 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	91 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz	Typical SAR gradient: 5 % per mm
-------------	----------------------------------

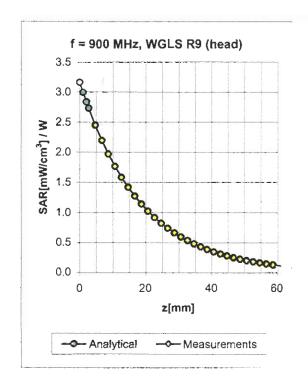
Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	7.7	4.2
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.0	8.5
SAR _{be} [%]	With Correction Algorithm	0.2	0.3

Sensor Offset

Probe Tip to Sensor Center 2.7 mm


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁹ Numerical linearization parameter: uncertainty not required.

ET3DV6 SN:1396 February 12, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.30	2.57	6.86 ± 11.0% (k=2)
1 810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.47	2.64	5.28 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.48	2.78	4.95 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.60	2.12	4.51 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.31	2.60	6.62 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.58	2.62	4.70 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.70	2.31	4.45 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.56	2.47	4.00 ± 11.8% (k=2)

Certificate No: ET3-1396_Feb07

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the next three pages.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Nokia Salo TCC

Certificate No: D1900V2-5d013_Jul06

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d013

Calibration procedure(s) QA CAL-05.v6

Calibration procedure for dipole validation kits

Calibration date: July 07, 2006

Condition of the calibrated Item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Power sensor HP 8481A	US37292783	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Reference 20 dB Attenuator	SN: 5086 (20g)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference 10 dB Attenuator	SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference Probe ET3DV6	SN: 1507	28-Oct-05 (SPEAG, No. ET3-1507_Oct05)	Oct-06
DAE4	SN: 601	15-Dec-05 (SPEAG, No. DAE4-601 Dec05)	Dec-06
₽ , 1			
D. (L.)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Secondary Standards	1	<u> </u>	Scheduled Check In house check: Oct-07
	ID#	Check Date (in house)	

Calibrated by:

Name Claudio Leubler Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: July 10, 2006

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Date/Time: 07.07.2006 15:28:1

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d013

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

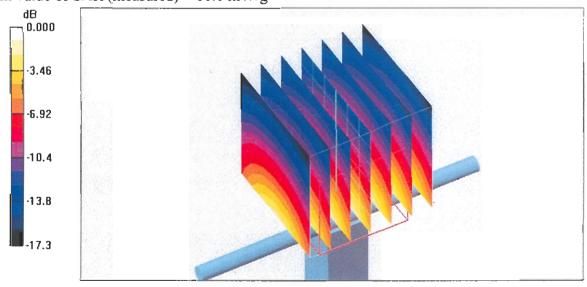
Medium parameters used: f = 1900 MHz; $\sigma = 1.44 \text{ mho/m}$; $\varepsilon_c = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 171


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.5 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.69 mW/g; SAR(10 g) = 5.11 mW/g

Maximum value of SAR (measured) = 11.0 mW/g

0 dB = 11.0 mW/g

Date/Time: 07.07.2006 16:17:57

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d013

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(4.3, 4.3, 4.3); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin = 250 mW; d = 10 mm big batch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.1 V/m; Power Drift = 0.079 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.36 mW/g

Maximum value of SAR (measured) = 11.3 mW/g

0 dB = 11.3 mW/g