

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Novatel Wireless 9645 Scranton Road, Suite 205 San Diego, CA 92121 Dates of Test: Jun 20 – Jul 5 & 18-19, Aug 24-25, 2012 Test Report Number: SAR.20120702 Revision I

FCC ID: PKRNVWMIFI5792 IC Certificate: 3229A-MIFI5792

Model(s): MiFi5792

Test Sample: Engineering Unit Same as Production

FID Number: SA310512700011
Equipment Type: Wireless Hotspot Modem
Classification: Portable Transmitter Next to Body

TX Frequency Range: 824 – 848 MHz; 1850 – 1909 MHz; 704 – 716 MHz, 1710 – 1755 MHz, 2412 – 2462 MHz

Frequency Tolerance: ± 2.5 ppm

Maximum RF Output: 850 MHz (GSM) – 33.8 dBm, 850 MHz (WCDMA) – 23.9 dBm, 850 MHz (LTE) – 24.0 dBm,

1900 MHz (GSM) – 30.9 dBm, 1900 MHz (WCDMA) – 23.9 dBm, 1900 MHz (LTE) – 24.0 dBm, 710 MHz (LTE) – 24.0 dBm, 1735 MHz (LTE) – 24.0 dBm; 2450 MHz – 17.5 dBm Conducted

Signal Modulation: WCDMA, GMSK, 8-PSK, QPSK, 16QAM, DSSS, OFDM Antenna Type: WWAN – Pulse, P/N 01019674 (Main), PIFA Antenna; WLAN – Novatel Wireless, PCB Printed, IFA Antenna

Application Type: Certification

FCC Rule Parts: Part 2, 15C, 22, 24, 27

KDB Test Methodology: KDB 447498, KDB 248227, KDB 941225 D01, D02, D03, D05 & D06

KDB Issued for Test: KDB990635 (See Appendix G) Industry Canada: RSS-102, Safety Code 6

Max. Stand Alone SAR Value: 1.395 W/kg Max. Simultaneous SAR Value: 1.59 W/kg

Separation Distance: 10 mm (Except Side C with Battery 5 mm)

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, and OET Bulletin 65 Supp. C (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President ACCREDITED
Certificate # 2387.01

Table of Contents

1. Introduction	
SAR Definition [5]	
2. SAR Measurement Setup	
Robotic System	
System Hardware	
System Description	
E-Field Probe	
3. Robot Specifications	
4. Probe and Dipole Calibration	
5. Phantom & Simulating Tissue Specifications	
SAM Phantom	
Head & Body Simulating Mixture Characterization	
Device Holder	
6. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]	
Uncontrolled Environment	
Controlled Environment	
7. Measurement Uncertainty	
8. System Validation	13
Tissue Verification	13
Test System Verification	
9. LTE Document Checklist	15
10. SAR Test Data Summary	19
Procedures Used To Establish Test Signal	
Device Test Condition	19
Figure 10.1	
11. FCC 3G Measurement Procedures	
11.1 Procedures Used to Establish RF Signal for SAR	21
11.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA	
11.3 SAR Measurement Conditions for GSM	
11.4 SAR Measurement Conditions for LTE Bands	27
SAR Data Summary – 835 MHz Body - WCDMA	53
SAR Data Summary – 835 MHz Body - GPRS	54
SAR Data Summary – 1900 MHz Body - WCDMA	55
SAR Data Summary – 1900 MHz Body - GPRS	56
SAR Data Summary – 1900 MHz Body – LTE Band 2	57
SAR Data Summary – 1735 MHz Body – LTE Band 4	58
SAR Data Summary – 835 MHz Body – LTE Band 5	59
SAR Data Summary – 710 MHz Body – LTE Band 17	60
SAR Data Summary – 2450 MHz Body 802.11b	
SAR Data Summary – Simultaneous Transmit	62
12. Test Equipment List	64
13. Conclusion	
14. References	66
Appendix A – System Validation Plots and Data	67
Appendix B – SAR Test Data Plots	
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Phantom Calibration Data Sheets	
Appendix G – KDB990635	
Appendix H – LTE Plots	

1. Introduction

This measurement report shows compliance of the Novatel Wireless Model MiFi5792 FCC ID: PKRNVWMIFI5792 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 3229A-MIFI5792 with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test results recorded herein are based on a single type test of Novatel Wireless Model MiFi5792 and therefore apply only to the tested sample.

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

The following table indicates all the wireless technologies operating in the MiFi5792 wireless modem. The table also shows the tolerance for the power level for each mode.

Band	Technology	Class	3GPP Nominal Power dBm	Calibrated Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
Band 2 – 1900 MHz	LTE	3	23	23	+1.0/-1.5	21.5	24
Band 4 – 1750 MHz	LTE	3	23	23	+1.0/-1.5	21.5	24
Band 5 – 850 MHz	LTE	3	23	23	+1.0/-1.5	21.5	24
Band 17 – 710 MHz	LTE	3	23	23	+1.0/-1.5	21.5	24
Band 2 – 1900 MHz	WCDMA/HSPA	3	23	23	+1.0/-1.5	21.5	24
Band 5 – 850 MHz	WCDMA/HSPA	3	23	23	+1.0/-1.5	21.5	24
Band 5 – 850 MHz	GPRS	4	33	32.5	±1.5	31	34
Band 5 – 850 MHz	EDGE	E2	27	26.5	±1.5	25	28
Band 2 – 1900 MHz	GPRS	1	30	29.5	±1.5	28	31
Band 2 – 1900 MHz	EDGE	E2	26	25.5	±1.5	24	27
WLAN – 2.4 GHz	802.11b	N/A	N/A	13.5	±4.0	9.5	17.5
WLAN – 2.4 GHz	802.11g/n(Ch. 1 and 11)	N/A	N/A	7	±4.0	3	11
WLAN – 2.4 GHz	802.11 g/n(Ch. 2-10	N/A	N/A	11	±4.0	7	15

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

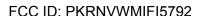
Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4^{TM} 2.66 GHz PC with Windows XP Pro^{TM} , and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.


System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

The Aprel E-Field probe is evaluated to establish the diode compression point.

A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

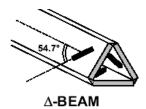
Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

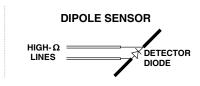
In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:

$$f_3(x,y,z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$


The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.


E-Field Probe

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 4mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 4mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

The manufacturer specified precision of the robot is \pm 0.05 mm and the precision of the APREL bottom detection device is \pm 0.1 mm. These precisions are calibrated and tested in the manufacturing process of the bottom detection device. A constant distance is maintained because the surface of the phantom is dynamically detected for each point. The surface detection algorithm corrects the position of the robot so that the probe rests on the surface of the phantom. The probe is then moved to the measurement location 2.44 mm above the phantom surface resulting in the probe center location to be at 4.0 mm above the phantom surface. Therefore, the probe sensor will be at 4.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies below 3 GHz. The probe is moved to the measurement location 1.44 mm above the phantom surface resulting in the probe center location to be at 2.0 mm above the phantom surface. Therefore, the probe sensor will be at 2.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies above 3 GHz.

The probe boundary effect compensation cannot be disabled in the ALSAS-10U testing system. The probe tip will always be at least half a probe tip diameter from the phantom surface. For frequencies up to 3 GHz, the probe diameter is 5 mm. With the sensor offset set at 1.54 mm (default setting), the sensor to phantom gap will be 4.0 mm which is greater than half the probe tip diameter. For frequencies greater than 3 GHz, the probe diameter is 3 mm. With the sensor offset set at 0.56 mm (default setting), the sensor to phantom gap will be 3.0 mm which is greater than half the probe tip diameter.

The separation of the first 2 measurement points in the zoom scan is specified in the test setup software. For frequencies below 3 GHz, the user must specify a zoom scan resolution of less than 6 mm in the z-axis to have the first two measurements within 1 cm of the surface. The z-axis is set to 4 mm as shown on each of the data sheets in Appendix B. For frequencies above 3 GHz, the user must specify a zoom scan resolution of less than 3 mm in the z-axis to have the first two measurements within 5 mm of the surface. The z-axis is set to 2 mm as shown on each of the data sheets in Appendix B.

The zoom scan volume for devices ≤ 3 GHz with a cube scan of 5x5x8 yields a volume of 32x32x28 mm³. For devices ≥ 3 GHz and ≤ 4.5 GHz, the cube scan of 9x9x9 yields a volume of 32x32x24 mm³. For devices ≥ 4.5 GHz, the cube scan of 7x7x12 yields a volume of 24x24x22 mm³.

3. Robot Specifications

Specifications

Positioner: ThermoCRS, Robot Model: Robocomm 3

Repeatability: 0.05 mm

No. of axis: 6

Data Acquisition Card (DAC) System

Cell Controller

Processor: Pentium 4[™] Clock Speed: 2.66 GHz

Operating System: Windows XP Pro™

Data Converter

Features: Signal Amplifier, End Effector, DAC

Software: ALSAS 10-U Software

E-Field Probe

Model: Various See Probe Calibration Sheet
Serial Number: Various See Probe Calibration Sheet
Construction: Triangular Core Touch Detection System

Frequency: 10MHz to 6GHz

Phantom

Phantom: Uniphantom, Right Phantom, Left Phantom

4. Probe and Dipole Calibration

See Appendix D and E.

5. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittai plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. The Uni-Phantom is used to conduct body measurements and held to face measurements. The depth of the phantom allows for 15 cm of tissue material to be filled within the phantom. See photos in Appendix C.

Head & Body Simulating Mixture Characterization

The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 5.1 Typical Composition of Ingredients for Tissue

la ana di anta				Simulating Tissue		
Ingredients		835 MHz Body	1900 MHz Body	2450 MHz Body	750 MHz Body	1750 MHz Body
Mixing Percentage						
Water		52.50	69.91	73.20		
Sugar		45.00	0.00	0.00		
Salt		1.40	0.13	0.10	Proprietary	Proprietary
HEC		1.00	0.00	0.00	Proprietary	
Bactericide		0.10	0.00	0.00		
DGBE		0.00	29.96	26.70		
Dielectric Constant Target		55.20	53.30	52.70	55.5	53.4
Conductivity (S/m) Target		0.97	1.52	1.95	0.96	1.49

Device Holder

In combination with the SAM phantom, the mounting device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, and uni-phantom).

6. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Head	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

7. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i ¹ (1-g)	c _i ¹ (10-g)	Standard Uncertainty (1-g) %	Standard Uncertai nty (10- g) %	Vi
Marana and Gardan								
Measurement System								
Probe Calibration	3.5	normal	1	1	1	3.5	3.5	∞
Axial Isotropy	3.7	rectangular	√3	0.7	0.7	1.5	1.5	∞
Hemispherical Isotropy	10.9	rectangular	√3	0.7	0.7	4.4	4.4	∞
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6	∞
Linearity	4.7	rectangular	√3	1	1	2.7	2.7	∞
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6	∞
Readout Electronics	1.0	normal	1	1	1	1.0	1.0	∞
Response Time	0.8	rectangular	√3	1	1	0.5	0.5	∞
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0	∞
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner Mech. Restriction	0.4	rectangular	√3	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	2.9	rectangular	√3	1	1	1.7	1.7	8
Extrapolation and Integration	3.7	rectangular	√3	1	1	2.1	2.1	∞
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0	7
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0	2
Drift of Output Power	4.8	rectangular	√3	1	1	2.5	2.5	∞
Phantom and Setup								
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	√3	1	1	2.0	2.0	∞
Liquid Conductivity(target)	5.0	rectangular	√3	0.7	0.5	2.0	1.4	∞
Liquid Conductivity (meas.)	0.5	normal	1	0.7	0.5	0.4	0.3	5
Liquid Permittivity(target)	5.0	rectangular	√3	0.6	0.5	1.7	1.4	∞
Liquid Permittivity (meas.)	1.0	normal	1	0.6	0.5	0.6	0.5	5
Combined Uncertainty		RSS				9.6	9.4	>500
Combined Uncertainty (coverage factor=2)		Normal(k=2)				19.2	18.9	>500

8. System Validation

Tissue Verification

Table 8.1 Measured Tissue Parameters

Date(s) Jul. 1, 2012 Jun. 21, 2012 Jun. 30, 2012	Table 8.1 Measured Tissue Parameters								
Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 55.53 55.21 55.20 54.98 55.20 54.32 Conductivity: σ 0.98 0.99 0.97 0.98 0.97 0.99 Date(s) Jul. 1, 2012 Jul. 2, 2012 Jun. 23, 2012 Jun. 24, 2012 Jun. 27, 2012 Jun. 21, 2012 Jun. 22, 2012	Data(a)		+		*				
Dielectric Constant: ε 55.53 55.21 55.20 54.98 55.20 54.32 Conductivity: σ 0.96 0.99 0.97 0.98 0.97 0.99 Date(s) Jul. 1, 2012 Jul. 2, 2012 Jun. 23, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Jun. 27, 2012 Jun. 21, 2012 Jun. 21, 2012 Jun. 27, 2012 Jun. 21, 2012 Jun. 22, 2	, ,		+	ı	1				
Conductivity: σ 0.96 0.99 0.97 0.98 0.97 0.99 Date(s) 835 MHz Body 835 MHz Body 1750 MHz Body Date(s) Jul. 1, 2012 Jul. 2, 2012 Jun. 23, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Target Measured 33.43 53.56 Conductivity: σ 0.97 0.98 0.97 0.97 1.49 1.51 Date(s) Jun. 24, 2012 Jun. 27, 2012 Jun. 21, 2012 Jun. 27, 2012 Jun. 21, 2012 Liquid Temperature (°C) 20.0 Target Measured	Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	
Date(s) Bass MHz Body 835 MHz Body 1750 MHz Body Jul. 3, 2012 Jul. 2, 2012 Jul. 3, 2012 </td <td colspan="2">Dielectric Constant: ε</td> <td>55.53</td> <td>55.21</td> <td>55.20</td> <td>54.98</td> <td>55.20</td> <td>54.32</td>	Dielectric Constant: ε		55.53	55.21	55.20	54.98	55.20	54.32	
Date(s) Jul. 1, 2012 Jul. 2, 2012 Jun. 23, 2012 Liquid Temperature (*C) 20.0 Target Measured 53.43 53.56 Conductivity: σ 0.97 0.98 0.97 0.97 1.49 1.51 Date(s) Jun. ≥4, 2012 Jun. ≥7, 2012 Jun. ≥1, 2012 Jun. ≥2, 2012 Jun. ≥1, 2012 Liquid Temperature (*C) 20.0 Target Measured Target Measured Target Measured Measured Target Measured Measured Target Measured Measured 1.50 1.49 1.50 1.49 1.52 1.52 1.52 1.58 1.52 1.58 1.52 1.58 1.52 1.58 1.52 1.58 1.52 1.58 1.52 1.58 1.52 1.52 1.52 1.52 1.52 1.56 1.52	Conductivity: σ		0.96	0.99	0.97	0.98	0.97	0.99	
Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 55.20 53.97 55.20 54.76 53.43 53.56 Conductivity: σ 0.97 0.98 0.97 0.97 1.49 1.51 Date(s) 1750 Hz Body 1750 Hz Body 1900 Hz Body 1900 Hz Body 1900 Hz Body Date(s) 177, 2012 Jun. 27, 2012 Jun. 27, 2012 Jun. 21, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Dielectric Constant: ε 53.43 53.40 53.43 53.32 53.30 52.65 Conductivity: σ 1.49 1.50 1.49 1.52 1.52 1.58 Date(s) Jun. 28, 2012 Jun. 29, 2012 Jun. 30, 2012 <			835 N	MHz Body	835 N	1Hz Body	1750 I	MHz Body	
Dielectric Constant: ε S5.20 S3.97 S5.20 S4.76 S3.43 S3.56	Date(s)		Jul.	1, 2012	Jul.	2, 2012	Jun.	23, 2012	
Conductivity: σ 0.97 0.98 0.97 0.97 1.49 1.51 Date(s) 1750 MHz Body 1750 MHz Body 1750 MHz Body 1900 MHz Body 1900 MHz Body Date(s) Jun. 24, 2012 Jun. 27, 2012 Jun. 21, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Dielectric Constant: ε 53.43 53.40 53.43 53.32 53.30 52.65 Conductivity: σ 1.49 1.50 1.49 1.52 1.52 1.58 Date(s) Jun. 28, 2012 Jun. 29, 2012 Jun. 30, 2012<	Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	
Date(s) 1750 MHz Body 1750 MHz Body 1750 MHz Body 1900 MHz Body Date(s) Jun. 24, 2012 Jun. 27, 2012 Jun. 21, 2012 Liquid Temperature (*C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.43 53.40 53.43 53.32 53.30 52.65 Conductivity: σ 1.49 1.50 1.49 1.52 1.52 1.58 Date(s) Jun. 28, 2012 Jun. 29, 2012 Jun. 30, 2012	Dielectric Constant: ε		55.20	53.97	55.20	54.76	53.43	53.56	
Date(s) Jun. 24, 2012 Jun. 27, 2012 Jun. 21, 2012 Liquid Temperature (*C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.43 53.40 53.43 53.32 53.30 52.65 Conductivity: σ 1.49 1.50 1.49 1.52 1.52 1.58 Date(s) 1900 MHz Body 153.30 52.71 Conductivity: σ 1.52 1.56 1.52 1.55 1.52 1.58 Date(s) 1.52 1.56 1.52 1.55 1.51 1.52 1.58 Dielectric Constant: ε 53.30 52.84 53.30 53.11 53.30 52.71 Conductivity: σ 1.52 1.56 1.52 1.55 1.52 1.58 Date(s) Jul. 4, 2012 Jul. 5, 2012 Jul. 22, 2012 Jul. 24, 2012 Jul. 24, 2012 Jul. 24, 2012	Conductivity: σ		0.97	0.98	0.97	0.97	1.49	1.51	
Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.43 53.40 53.43 53.32 53.30 52.65 Conductivity: σ 1.49 1.50 1.49 1.52 1.52 1.58 Date(s) 1900 MHz Body			1750	MHz Body	1750 l	MHz Body	1900 I	MHz Body	
Dielectric Constant: ε 53.43 53.40 53.43 53.32 53.30 52.65	Date(s)		Jun.	24, 2012	Jun.	27, 2012	Jun.	21, 2012	
Conductivity: σ 1.49 1.50 1.49 1.52 1.52 1.52 1.50 Date(s) Jun. 28, 2012 Jun. 29, 2012 Jun. 30, 2012	Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	
Date(s) 1900 MHz Body Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.30 52.84 53.30 53.11 53.30 52.71 Conductivity: σ 1.52 1.56 1.52 1.55 1.52 1.58 Date(s) 1900 MHz Body 1900 MHz Body 2450 MHz Body 2450 MHz Body 2450 MHz Body Date(s) 101. 4, 2012 101. 5, 2012 101. 22, 2012 101. 22, 2012 101. 22, 2012 101. 22, 2012 101. 22, 2012 101. 22, 2012 102. 22, 2012 102. 23. 2012 102. 23. 2012 102. 23. 2012 102. 23. 2012 102. 23. 2012 102. 23. 2012 102. 23. 2012 102. 23. 2012 102. 23. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 103. 2012 <	Dielectric Constant: ε		53.43	53.40	53.43	53.32	53.30	52.65	
Date(s) Jun. 28, 2012 Jun. 29, 2012 Jun. 30, 2012 Liquid Temperature (°C) 20.0 Target Measured 53.30 52.71 52.71 53.30 52.71 53.30 53.11 53.30 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.72 52.72 52.72 52.72 52.72 52.72 52.72 52.72 52.72 52.73 52.73 52.73 52.35 53.71 53.30 53.70 52.70 52.35 52.70 52.35 53.73 53.70 52.70 52.35 52.70 52.35 52.70 52.35 52.70 52.35 52.70 52.35 52.70 52.35 52.70 52.35 52.70 52.35	Conductivity: σ		1.49	1.50	1.49	1.52	1.52	1.58	
Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.30 52.84 53.30 53.11 53.30 52.71 Conductivity: σ 1.52 1.56 1.52 1.55 1.52 1.58 1900 MHz Body 1900 MHz Body 2450 MHz Body 100 MHz Body 2450 MHz Body 2450 MHz Body 2450 MHz Body 100 MHz Body 2450 MHz Body 100 MHz Body 2450 MHz Body 100 MHz Body			1900	MHz Body	1900 [MHz Body	1900 I	MHz Body	
Dielectric Constant: ε 53.30 52.84 53.30 53.11 53.30 52.71 Conductivity: σ 1.52 1.56 1.52 1.55 1.52 1.58 1900 MHz Body 1900 MHz Body 2450 MHz Body Date(s) Jul. 4, 2012 Jul. 5, 2012 Jun. 22, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Target Measured 52.35 52.05 52.35 52.35 52.00 52.70 52.35	Date(s)		Jun.	28, 2012	Jun. 29, 2012		Jun. 30, 2012		
Conductivity: σ 1.52 1.56 1.52 1.55 1.52 1.58 Date(s) 1900 MHz Body 1900 MHz Body 2450 MHz Body 2450 MHz Body Liquid Temperature (°C) 20.0 Target Measured	Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	
Date(s) 1900 MHz Body 1900 MHz Body 2450 MHz Body Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.30 53.17 53.30 53.00 52.70 52.35 Conductivity: σ 1.52 1.56 1.52 1.57 1.95 1.96 1750 MHz Body 1900 MHz Body 835 MHz Body 835 MHz Body Body Body 1900 MHz Body 2450 MHz Body 1900 MHz Body 2450 MHz Body 1900 MHz Body 2450 MHz Body 2450 MHz Body 1900 MHz Body 2450 MHz Body 1900 MHz Body 2450 MHz Body	Dielectric Constant: ε		53.30	52.84	53.30	53.11	53.30	52.71	
Date(s) Jul. 4, 2012 Jul. 5, 2012 Jun. 22, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Dielectric Constant: ε 53.30 53.17 53.30 53.00 52.70 52.35 Conductivity: σ 1.52 1.56 1.52 1.57 1.95 1.96 Date(s) Jul. 18, 2012 Jul. 18, 2012 Jul. 19, 2012 Jul. 19, 2012 Jul. 19, 2012 Jul. 19, 2012 Measured Target Measured	Conductivity: σ		1.52	1.56	1.52	1.55	1.52	1.58	
Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.30 53.17 53.30 53.00 52.70 52.35 Conductivity: σ 1.52 1.56 1.52 1.57 1.95 1.96 1750 MHz Body 1900 MHz Body 835 MHz Body Date(s) Jul. 18, 2012 Jul. 18, 2012 Jul. 19, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.43 53.56 53.30 53.17 55.20 54.36 Conductivity: σ 1.49 1.51 1.52 1.55 0.97 0.98 Tool MHz Body 1900 MHz Body 2450 MHz Body 2450 MHz Body 2450 MHz Body Date(s) Jul. 19, 2012 Aug. 25, 2012 Aug. 24, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured			1900	MHz Body	1900 [MHz Body	2450 MHz Body		
Dielectric Constant: ε 53.30 53.17 53.30 53.00 52.70 52.35 Conductivity: σ 1.52 1.56 1.52 1.57 1.95 1.96 1750 MHz Body 1900 MHz Body 835 MHz Body Date(s) Jul. 18, 2012 Jul. 18, 2012 Jul. 19, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.43 53.56 53.30 53.17 55.20 54.36 Conductivity: σ 1.49 1.51 1.52 1.55 0.97 0.98 750 MHz Body 1900 MHz Body 2450 MHz Body Date(s) Jul. 19, 2012 Aug. 25, 2012 Aug. 24, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 55.53 55.07 53.30 52.99 52.70 52.35	Date(s)		Jul.	4, 2012	Jul.	5, 2012	Jun. 22, 2012		
Conductivity: σ 1.52 1.56 1.52 1.57 1.95 1.96 Date(s) Jul. 18, 2012 Jul. 19, 2012 Liquid Temperature (°C) 20.0 Target Measured Measured Target Measured Target Measured Dielectric Constant: ε 53.43 53.56 53.30 53.17 55.20 54.36 Conductivity: σ 1.49 1.51 1.52 1.55 0.97 0.98 750 MHz Body 1900 MHz Body 2450 MHz Body Date(s) Jul. 19, 2012 Aug. 25, 2012 Aug. 24, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Target Measured Dielectric Constant: ε 55.53 55.07 53.30 52.70 52.35	Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	
1750 MHz Body 1900 MHz Body 835 MHz Body Date(s) Jul. 18, 2012 Jul. 18, 2012 Jul. 19, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.43 53.56 53.30 53.17 55.20 54.36 Conductivity: σ 1.49 1.51 1.52 1.55 0.97 0.98 750 MHz Body 1900 MHz Body 2450 MHz Body Date(s) Jul. 19, 2012 Aug. 25, 2012 Aug. 24, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Measured Dielectric Constant: ε 55.53 55.07 53.30 52.99 52.70 52.35	Dielectric Constant: ε	•	53.30	53.17	53.30	53.00	52.70	52.35	
Date(s) Jul. 18, 2012 Jul. 18, 2012 Jul. 19, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.43 53.56 53.30 53.17 55.20 54.36 Conductivity: σ 1.49 1.51 1.52 1.55 0.97 0.98 750 MHz Body 1900 MHz Body 2450 MHz Body Date(s) Jul. 19, 2012 Aug. 25, 2012 Aug. 24, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Dielectric Constant: ε 55.53 55.07 53.30 52.99 52.70 52.35	Conductivity: σ		1.52	1.56	1.52	1.57	1.95	1.96	
Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 53.43 53.56 53.30 53.17 55.20 54.36 Conductivity: σ 1.49 1.51 1.52 1.55 0.97 0.98 750 MHz Body 1900 MHz Body 2450 MHz Body Date(s) Jul. 19, 2012 Aug. 25, 2012 Aug. 24, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Dielectric Constant: ε 55.53 55.07 53.30 52.99 52.70 52.35			1750	MHz Body	1900 1	MHz Body	835 N	/IHz Body	
Dielectric Constant: ε 53.43 53.56 53.30 53.17 55.20 54.36 Conductivity: σ 1.49 1.51 1.52 1.55 0.97 0.98 750 MHz Body 1900 MHz Body 2450 MHz Body Date(s) Jul. 19, 2012 Aug. 25, 2012 Aug. 24, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 55.53 55.07 53.30 52.99 52.70 52.35	Date(s)		Jul.	18, 2012	Jul. 1	18, 2012	Jul.	19, 2012	
Conductivity: σ 1.49 1.51 1.52 1.55 0.97 0.98 750 MHz Body 1900 MHz Body 2450 MHz Body Date(s) Jul. 19, 2012 Aug. 25, 2012 Aug. 24, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 55.53 55.07 53.30 52.99 52.70 52.35	Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	
T50 MHz Body 1900 MHz Body 2450 MHz Body Date(s) Jul. 19, 2012 Aug. 25, 2012 Aug. 24, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 55.53 55.07 53.30 52.99 52.70 52.35	Dielectric Constant: ε		53.43	53.56	53.30	53.17	55.20	54.36	
T50 MHz Body 1900 MHz Body 2450 MHz Body Date(s) Jul. 19, 2012 Aug. 25, 2012 Aug. 24, 2012 Liquid Temperature (°C) 20.0 Target Measured Target Measured Target Measured Dielectric Constant: ε 55.53 55.07 53.30 52.99 52.70 52.35	Conductivity: σ		1.49	1.51	1.52	1.55	0.97	0.98	
Liquid Temperature (°C)20.0TargetMeasuredTargetMeasuredTargetMeasuredDielectric Constant: ε55.5355.0753.3052.9952.7052.35			750 MHz Body		1900 [MHz Body		MHz Body	
Dielectric Constant: ε 55.53 55.07 53.30 52.99 52.70 52.35	Date(s)		+		Aug.	25, 2012	Aug.	24, 2012	
	Liquid Temperature (°C)	20.0	Target			Measured	Target	Measured	
	Dielectric Constant: ε	ı	55.53	55.07	53.30	52.99	52.70	52.35	
				0.97					

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

Table 8.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation (%)	Plot Number
01-Jul-2012	750 MHz	8.7	8.96	Body	+ 2.99	1
21-Jun-2012	835 MHz	9.81	9.92	Body	+ 1.12	-
30-Jun-2012	835 MHz	9.81	10.04	Body	+ 2.34	2
01-Jul-2012	835 MHz	9.81	9.77	Body	- 0.41	-
02-Jul-2012	835 MHz	9.81	9.83	Body	+ 0.20	-
23-Jun-2012	1750 MHz	37.5	36.95	Body	- 1.47	-
24-Jun-2012	1750 MHz	37.5	39.93	Body	+ 6.48	3
27-Jun-2012	1750 MHz	37.5	37.99	Body	+ 1.31	-
21-Jun-2012	1900 MHz	40.9	39.56	Body	- 3.28	-
28-Jun-2012	1900 MHz	40.9	40.13	Body	- 1.88	-
29-Jun-2012	1900 MHz	40.9	39.12	Body	- 4.35	4
30-Jun-2012	1900 MHz	40.9	41.13	Body	+ 0.56	-
04-Jul-2012	1900 MHz	40.9	41.27	Body	+ 0.90	-
05-Jul-2012	1900 MHz	40.9	39.97	Body	- 2.27	-
02-Jul-2012	2450 MHz	51.50	52.68	Body	+ 2.29	5
19-Jul-2012	750 MHz	8.7	8.81	Body	+ 1.26	-
19-Jul-2012	835 MHz	9.81	9.96	Body	+ 1.53	-
18-Jul-2012	1750 MHz	37.5	38.52	Body	+ 2.72	-
18-Jul-2012	1900 MHz	40.9	41.23	Body	+ 0.81	-
25-Aug-2012	1900 MHz	39.9	40.20	Body	+ 0.75	
24-Aug-2012	2450 MHz	50.3	51.10	Body	+ 1.59	-

See Appendix A for data plots.

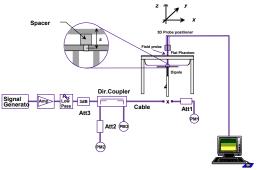


Figure 8.1 Dipole Validation Test Setup

Note: KDB 450824 was applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

9. LTE Document Checklist

1) Identify the operating frequency range of each LTE transmission band used by the device

LTE Operating	Uplink (transmit)	Downlink (Receive)	Duplex mode
Band	Low - high	Low - high	(FDD/TDD)
2	1850-1910	1930-1990	FDD
4	1710-1755	2110-2155	FDD
5	824-849	869-894	FDD
17	704-716	734-746	FDD

2) Identify the channel bandwidths used in each frequency band; 1.4, 3, 5, 10, 15, 20 MHz etc

LTE Band Class	Bandwidth (MHz)	Frequency or Freq. Band (MHz)
2	1.4, 3, 5, 10, 15, 20	1850-1910 MHz
4	1.4, 3, 5, 10, 15, 20	1710-1755 MHz
5	1.4, 3, 5, 10	824-849 MHz
17	5, 10	704-716 MHz

3) Identify the high, middle and low (H, M, L) channel numbers and frequencies in each LTE frequency band

LTE Band	Bandwidth	Frequency (MHz)/Channel #					
Class	(MHz)	L	ow	M	id	High	
2	1.4	1850.7	18607	1880.0	18900	1909.3	19193
2	3	1851.5	18615	1880.0	18900	1908.5	19185
2	5	1852.5	18625	1880.0	18900	1907.5	19175
2	10	1855.0	18650	1880.0	18900	1905.0	19150
2	15	1857.5	18675	1880.0	18900	1902.5	19125
2	20	1860.0	18700	1880.0	18900	1900.0	19100
4	1.4	1710.7	19957	1732.5	20175	1754.3	20393
4	3	1711.5	19965	1732.5	20175	1753.5	20385
4	5	1712.5	19975	1732.5	20175	1752.5	20375
4	10	1715.0	20000	1732.5	20175	1750.0	20350
4	15	1717.5	20025	1732.5	20175	1747.5	20325
4	20	1720.0	20050	1732.5	20175	1745.0	20300
5	1.4	824.7	20407	836.5	20525	848.3	20643
5	3	825.5	20415	836.5	20525	847.5	20635
5	5	826.5	20425	836.5	20525	846.5	20625
5	10	829.0	20450	836.5	20525	844.0	20600
17	5	706.5	23755	710.0	23790	713.5	23825
17	10	709.0	23780	710.0	23790	711.0	23800

- 4) Specify the UE category and uplink modulations used:
 - UE Category: 3
 - Uplink modulations: QPSK and 16QAM

5) Include descriptions of the LTE transmitter and antenna implementation; and also identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware components and/or antenna(s) with other transmitters etc

The MiFi5792 has 3 antennas:

- WWAN Main (Transmit and Receive) Antenna
- WLAN Main (Transmit and Receive) Antenna
- Diversity (Receive Only) Antenna with GPS (Receive Only) capabilities

Transmission relationship

- All transmission (TX) is limited to the WWAN and WLAN antennas only
- The device is <u>unable</u> to transmit EDGE/GPRS/WCDMA/HSPA and LTE simultaneously.
- The Diversity antenna is receive only antenna which is reserved for the WWAN operation.
- Rx is simultaneous on Main and Diversity
- Simultaneous Tx with the WWAN and WLAN is allows active.

Antenna port	EDGE/GPRS HSF		LTE		802.11 b/g/n		GPS
	TX	RX	TX RX		TX	RX	RX
#1 WWAN Main	Yes	Yes	Yes	Yes	No	No	No
#2 WLAN Main	No	No	No	No	Yes	Yes	No
#3 (Diversity/GPS)	No	Yes	No	Yes	No	No	Yes

6) Identify the LTE voice/data requirements in each operating mode and exposure condition with respect to head and body test configurations, antenna locations, handset flip-cover or slide positions, antenna diversity conditions etc

The MiFi5792 is a data only hotspot device. Data mode was tested in each operating mode and exposure condition in the body configuration. See test setup photos to see all configurations tested.

- 7) Identify if Maximum Power Reduction (MPR) is optional or mandatory, i.e. built-in by design:
 - a) Only mandatory MPR may be considered during SAR testing, when the maximum output power is permanently limited by the MPR implemented within the UE; and only for the applicable RB (resource block) configurations specified in LTE standards

MPR is mandatory, built-in by design on all production units. It was enabled during testing.

Modula	ition	Ch	Channel Bandwidth/transmission Bandwidth Configuration								
				(1	RB)			(dB)			
		1.4	1.4 3.0 5 10 15 20								
		MHz	MHz MHZ MHz MHz MHz MHz								
QPS	K	> 5	>5 >4 >8 >12 >16 >18								
16QA	M	≤ 5	≤ 5 ≤ 4 ≤ 8 ≤ 12 ≤ 16 ≤ 18								
16QA	M	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2			

- b) A-MPR (additional MPR) must be disabled
- c) A-MPR was disabled during testing.

8) Include the maximum average conducted output power measured on the required test channels for each channel bandwidth and UL modulation used in each frequency band:

The maximum average conducted output power measured for the testing is listed on pages 27-39 of this report. The below table shows the factory set point with the allowable tolerance.

Band	Technology	Class	3GPP Nominal Power dBm	Calibrated Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
Band 2 – 1900 MHz	LTE	3	23	23	+1.0/-1.5	21.5	24
Band 4 – 1750 MHz	LTE	3	23	23	+1.0/-1.5	21.5	24
Band 5 – 850 MHz	LTE	3	23	23	+1.0/-1.5	21.5	24
Band 17 – 710 MHz	LTE	3	23	23	+1.0/-1.5	21.5	24

9) Identify all other U.S. wireless operating modes (3G, Wi-Fi, WiMax, Bluetooth etc), device/exposure configurations (head and body, antenna and handset flip-cover or slide positions, antenna diversity conditions etc.) and frequency bands used for these modes

Other wireless modes:

Band	Technology	Class	3GPP Nominal Power dBm	Calibrated Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
Band 2 – 1900 MHz	WCDMA/HSPA	3	23	23	+1.0/-1.5	21.5	24
Band 5 – 850 MHz	WCDMA/HSPA	3	23	23	+1.0/-1.5	21.5	24
Band 5 – 850 MHz	GPRS	4	33	32.5	±1.5	31	34
Band 5 – 850 MHz	EDGE	E2	27	26.5	±1.5	25	28
Band 2 – 1900 MHz	GPRS	1	30	29.5	±1.5	28	31
Band 2 – 1900 MHz	EDGE	E2	26	25.5	±1.5	24	27
WLAN – 2.4 GHz	802.11b	N/A	N/A	13.5	±4.0	9.5	17.5
WLAN – 2.4 GHz	802.11g/n(Ch. 1 and 11)	N/A	N/A	7	±4.0	3	11
WLAN – 2.4 GHz	802.11 g/n(Ch. 2-10	N/A	N/A	11	±4.0	7	15

10) Include the maximum average conducted output power measured for the other wireless modes and frequency bands.

The maximum average conducted output power measured for the testing is listed on pages 21-23 of this report. The table in item 9 shows the factory set point with the allowable tolerance.

11) Identify the <u>simultaneous transmission conditions</u> for the voice and data configurations supported by all wireless modes, device configurations and frequency bands, for the head and body exposure conditions and device operating configurations (handset flip or cover positions, antenna diversity conditions etc.)

The device is unable to transmit WCDMA/GPRS/EDGE/CDMA and LTE simultaneously.

The MiFi5792 is able to transmit WWAN and WLAN simultaneously.

TX Modes	WCDMA/GPRS/EDGE/CDMA	LTE	802.11 b/g/n
1	ON	OFF	ON
2	OFF	ON	ON

12) When power reduction is applied to certain wireless modes to satisfy SAR compliance for simultaneous transmission conditions, other equipment certification or operating requirements, include the maximum average conducted output power measured in each power reduction mode applicable to the simultaneous voice/data transmission configurations for such wireless configurations and frequency bands; and also include details of the power reduction implementation and measurement setup

Power reduction is not required to satisfy SAR compliance.

13) Include descriptions of the test equipment, test software, built-in test firmware etc. required to support testing the device when power reduction is applied to one or more transmitters/antennas for simultaneous voice/data transmission

Power reduction is not required to satisfy SAR compliance.

14) When appropriate, include a SAR test plan proposal with respect to the above

Power reduction is not required to satisfy SAR compliance.

15) If applicable, include preliminary SAR test data and/or supporting information in laboratory testing inquiries to address specific issues and concerns or for requesting further test reduction considerations appropriate for the device; for example, simultaneous transmission configurations.

Not applicable.

10. SAR Test Data Summary See Measurement Result Data Pages

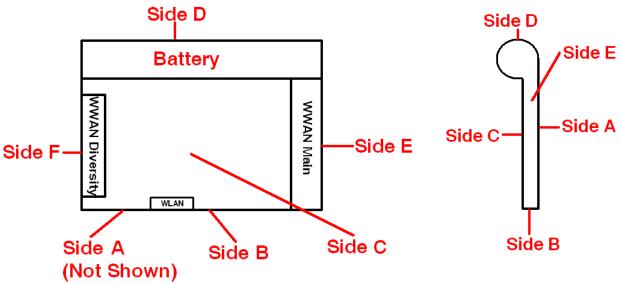
See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.


The testing was conducted on all edges closest to each antenna. Side A, Side B, Side C, Side D and Side E testing was conducted for the WWAN antenna. The Side F was not tested as the WWAN antenna was more than 2.5 cm from this side. The Side A, Side B, and Side C were tested for the WLAN antenna. Side D, Side E and Side F were not tested as the antenna was more than 2.5 cm from these sides. All further test reductions are shown on pages 24-25 for GSM/WCDMA bands, page 23 for WLAN and pages 27-39 for LTE bands. All testing was conducted per KDB 941225 D06. See the photo in Appendix C for a pictorial of the setups, labeling of the sides tested and antenna locations. The distance between the WWAN and WLAN antenna is 4.1 cm.

This device is capable of operating in 850/1900 GPRS/EDGE frequency bands. In GPRS mode, the device is in Class 4 for 850 MHz and Class 1 for 1900 MHz. In EDGE mode, the device is in Class E2 for 850/1900 MHz. The testing was conducted in the GPRS mode. The GPRS mode has 1-slot, 2-slot, 3-slot and 4-slot configurations. The power measured is peak power. The average power in all GPRS Slots is relatively equal. Therefore, the testing was conducted in 1-Slot. The EDGE mode is >5 dB lower than its equivalent slot configuration for GPRS. Therefore, the device was only tested in the highest power configuration which was 1-slot GPRS.

The WCDMA testing was conducted using 12.2 kbps RMC configured in Test Loop Mode 1. The HSPA testing was conducted with HS-DPCCH, E-DPCCH and E-DPDCH all enabled and a 12.2 kbps RMC. FRC was configured according to HS-DPCCH Sub-Test 1 using H-set 1 and QPSK.

Figure 10.1
SAR Location Diagram of Modem Testing

Antenna Distances

WWAN main to WLAN (mm):	42 mm
WWAN main to Diversity (mm):	86 mm
WLAN to Diversity (mm):	32 mm
WWAN main to Outside Battery Edge (mm):	23 mm
WLAN to Outside Battery Edge (mm):	65 mm

11. FCC 3G Measurement Procedures

Power measurements were performed using a base station simulator under average power.

11.1 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and recommended for evaluating SAR. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

11.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA

Configure the call box 8960 to support all WCDMA tests in respect to the 3GPP 34.121 (listed in Table below). Measure the power at Ch4132, 4182 and 4233 for US cell; Ch9262, 9400 and 9538 for US PCS band.

For Rel99

- Set a Test Mode 1 loop back with a 12.2kbps Reference Measurement Channel (RMC).
- Set and send continuously Up power control commands to the device
- Measure the power at the device antenna connector using the power meter with average detector.

For HSDPA Rel 6

- Establish a Test Mode 1 look back with both 1 12.2kbps RMC channel and a H-Set1 Fixed Reference Channel (FRC). With the 8960 this is accomplished by setting the signal Channel Coding to "Fixed Reference Channel" and configuring for HSET-1 QKSP.
- Set beta values and HSDPA settings for HSDPA Subtest1 according to Table below.
- Send continuously Up power control commands to the device
- Measure the power at the device antenna connector using the power meter with modulated average detector.
- Repeat the measurement for the HSDPA Subtest2, 3 and 4 as given in Table below.

For HSUPA Rel 6

- Use UL RMC 12.2kbps and FRC H-Set1 QPSK, Test Mode 1 loop back. With the 8960 this is accomplished by setting the signal Channel Coding to "E-DCH Test Channel" and configuring the equipment category to Cat5_10ms.
- Set the Absolute Grant for HSUPA Subtest1 according to Table below.
- Set the device power to be at least 5dB lower than the Maximum output power
- Send power control bits to give one TPC_cmd = +1 command to the device. If device doesn't send any E-DPCH data with decreased E-TFCI within 500ms, then repeat this process until the decreased E-TFCI is reported.
- Confirm that the E-TFCI transmitted by the device is equal to the target E-TFCI in Table below. If the E-TFCI transmitted by the device is not equal to the target E-TFCI, then send power control bits to give one TPC_cmd = -1 command to the UE. If UE sends any E-DPCH data with decreased E-TFCI within 500 ms, send new power control bits to give one TPC_cmd = -1 command to the UE. Then confirm that the E-TFCI transmitted by the UE is equal to the target E-TFCI in Table below.
- Measure the power using the power meter with modulated average detector.
- Repeat the measurement for the HSUPA Subtest2, 3, 4 and 5 as given in Table below.

11.3 SAR Measurement Conditions for GSM

Configure the 8960 box to support GMSK and 8PSK call respectively, and set one timeslot and two timeslot transmission for GMSK GSM/GPRS and 8PSK EDGE. Measure and record power outputs for both modulations.

3GPP Release	Mode	Cellular Band [dBm]			Sub-Test (See Table	MPR
Version		4132	4183	4233	` Below)	
99	WCDMA	23.89	23.91	23.87	-	-
6		23.86	23.87	23.79	1	0
6	HSDPA	23.82	23.89	23.85	2	0
6	ПЭПЬЯ	23.39	23.42	23.37	3	0.5
6		23.94	23.49	23.40	4	0.5
6		23.80	23.90	23.83	1	0
6]	21.95	21.99	21.96	2	2
6	HSUPA	22.97	23.08	22.99	3	1
6		22.06	22.01	22.04	4	2
6		23.82	23.84	23.87	5	0

3GPP Release	Mode	PCS Band [dBm]			Sub-Test (See Table	MPR
Version		9262	9400	9538	Below)	
99	WCDMA	23.83	23.86	23.81	-	-
6		23.79	23.82	23.76	1	0
6	HSDPA	23.81	23.75	23.79	2	0
6	НЭДРА	23.36	23.34	23.36	3	0.5
6		23.41	23.31	23.39	4	0.5
6		23.84	23.82	23.75	1	0
6		21.97	22.01	21.89	2	2
6	HSUPA	22.94	23.05	22.94	3	1
6		21.99	21.95	22.03	4	2
6		23.82	23.80	23.71	5	0

Sub-Test Setup for Release 6 HSDPA

Sub-Test	eta_{c}	$oldsymbol{eta_d}$	B _c / β _d	eta_{hs}		
1	2/15	15/15	2/15	4/15		
2	12/15	15/15	15/15	24/15		
3	15/15	8/15	15/8	30/15		
4	15/15	4/15	15/4	30/15		
$\Delta_{\rm ack}$, $\Delta_{\rm nack}$ and $\Delta_{\rm cqi}$ = 8						

Sub-Test Setup for Release 6 HSUPA

Sub-Test	βc	β_{d}	B _c / β _d	β_{hs}	B _{ec}	B_{ed}	MPR	AG Index	E-TFCI
1	11/15	15/15	11/15	22/15	209/225	1039/225	0.0	20	75
2	6/15	15/15	6/15	12/15	12/15	94/75	2.0	12	67
3	15/15	9/15	15/9	30/15	30/15	47/15	1.0	15	92
4	2/15	15/15	2/15	4/15	2/15	56/15	2.0	17	71
5	15/15	15/15	15/15	30/15	24/15	134/15	0.0	21	81
Δ_{ack} , Δ_{nack} and $\Delta_{\text{coi}} = 8$									

GPRS-GMSK/1 slot							
Band	Channel	Peak Power	Frame Average				
Cellular	128	33.81	24.78				
Cellular	190	33.83	24.80				
	251	33.82	24.79				
	512	30.85	21.82				
PCS	661	30.83	21.80				
	810	30.88	21.85				

GPRS-GMSK/2 slot							
Band	Channel	Peak Power	Frame Average				
Cellular	128	30.82	24.80				
	190	30.81	24.79				
	251	30.83	24.81				
	512	27.82	21.80				
PCS	661	27.85	21.83				
	810	27.86	21.84				

GPRS-GMSK/3 slot						
Band	Channel	Peak Power	Frame Average			
Cellular	128	28.97	24.71			
	190	28.98	24.71			
	251	28.96	24.70			
PCS	512	25.91	21.65			
	661	25.93	21.67			
	810	25.92	21.66			

GPRS-GMSK/4 slot							
Band	Channel	Peak Power	Frame Average				
	128	27.79	24.78				
Cellular	190	27.76	24.75				
	251	27.77	24.76				
	512	24.73	21.72				
PCS	661	24.75	21.74				
	810	24.74	21.73				

EDGE-8PSK/1 slot						
Band	Channel Peak Power		Frame Average			
	128	27.98	18.95			
Cellular	190	28.01	18.98			
	251	27.99	18.96			
	512	26.49	17.46			
PCS	661	26.74	17.71			
	810	26.70	17.67			

EDGE-8PSK/2 slot						
Band	Channel Peak Power		Frame Average			
Cellular	128	24.33	18.31			
	190	24.61	18.59			
	251	24.98	18.96			
	512	23.73	17.71			
PCS	661	23.88	17.86			
	810	23.85	17.83			

EDGE-8PSK/3 slot						
Band	Channel	Peak Power	Frame Average			
	128	22.37	18.11			
Cellular	190	22.91	18.65			
	251	22.99	18.73			
	512	21.90	17.64			
PCS	661	21.99	17.73			
	810	21.98	17.72			

EDGE-8PSK/4 slot						
Band	Channel Peak Power		Frame Average			
Cellular	128	21.47	18.46			
	190	21.95	18.94			
	251	21.99	18.98			
PCS	512	20.76	17.75			
	661	20.94	17.93			
	810	20.98	17.97			

Band	Mode	Channel	Frequency (MHz)	Conducted Power (dBm) Main
		1	2412	17.43
	802.11b	6	2437	17.48
		11	2462	17.37
	802.11g	1	2412	11.00
2450 MHz		6	2437	15.01
		11	2462	11.00
		1	2412	10.95
	802.11n	6	2437	15.00
		11	2462	10.98

Conducted Average Power Measurements
Figure 11.3.1 Test Reduction Table – WiFi

- 1941	Poguired						
Mode	Side	Required Channel	Tested/Reduced				
		1 – 2412 MHz	Reduced ¹				
	Side A	6 – 2437 MHz	Tested				
		11 – 2462 MHz	Reduced ¹				
		1 – 2412 MHz	Reduced ¹				
802.11b	Side B	6 – 2437 MHz	Tested				
		11 – 2462 MHz	Reduced ¹				
		1 – 2412 MHz	Reduced ¹				
	Side C	6 – 2437 MHz	Tested				
		11 – 2462 MHz	Reduced ¹				
		1 – 2412 MHz	Reduced ²				
	Side A	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
	Side B	1 – 2412 MHz	Reduced ²				
802.11g		6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
	Side C	1 – 2412 MHz	Reduced ²				
		6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side A	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
802.11n	Side B	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side C	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 section 1) e) i) page 2.

Reduced² – If the conducted power is in this mode is less then 0.25 dB higher than the b mode, testing is not required per KDB248227 page 5.

Figure 11.3.2 Test Reduction Table – 3G

Band/	Technology	Side	Required	Tested/
Frequency (MHz)			Channel	Reduced
			128	Reduced ¹
		Α	190	Tested
			251	Reduced ¹
			128	Reduced ¹
		В	190	Tested
			251	Reduced ¹
			128	Reduced ¹
	GSM	С	190	Tested
			251	Reduced ¹
			128	Reduced ¹
		D	190	Tested
			251	Reduced ¹
		E	128	Reduced ¹
			190	Tested
Band 5			251	Reduced ¹
824-849 MHz		Α	4132	Tested
			4183	Tested
			4233	Tested
		В	4132	Reduced ¹
			4183	Tested
			4233	Reduced ¹
			4132	Reduced ¹
	WCDMA	С	4183	Tested
			4233	Reduced ¹
			4132	Reduced ¹
		D	4183	Tested
			4233	Reduced ¹
			4132	Reduced ¹
		Е	4183	Tested
			4233	Reduced ¹

Reduced — When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 section 1) e) i) page 2.

Band/	Technology	Side	Required	Tested/
Frequency (MHz)			Channel	Reduced
			512	Reduced ¹
		Α	661	Tested
			810	Reduced ¹
			512	Reduced ¹
		В	661	Tested
			810	Reduced ¹
			512	Reduced ¹
	GSM	С	661	Tested
			810	Reduced ¹
			512	Reduced ¹
		D	661	Tested
			810	Reduced ¹
		E	512	Reduced ¹
			661	Tested
Band 2			810	Reduced ¹
1850-1910 MHz		Α	9262	Tested
			9400	Tested
			9538	Tested
		В	9262	Reduced ¹
			9400	Tested
			9538	Reduced ¹
			9262	Tested
	WCDMA	С	9400	Tested
			9538	Tested
			9262	Reduced ¹
		D	9400	Tested
			9538	Reduced ¹
			9262	Reduced ¹
		Ε	9400	Tested
(lease the energy defendance of the		Paris de de la com	9538	Reduced ¹

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 section 1) e) i) page 2.

11.4 SAR Measurement Conditions for LTE Bands

11.4.1 LTE Functionality

The follow table identifies all the channel bandwidths in each frequency band supported by this device.

LTE Band Class	Bandwidth (MHz)	Frequency or Freq. Band (MHz)
2	1.4, 3, 5, 10, 15, 20	1850-1910 MHz
4	1.4, 3, 5, 10, 15, 20	1710-1755 MHz
5	1.4, 3, 5, 10	824-849 MHz
17	5, 10	704-716 MHz

11.4.2 Test Conditions

All SAR measurements for LTE were performed using the Anritsu MT8820C. A closed loop power control setting allowed the UE to transmit at the maximum output power during the SAR measurements. The Figure 11.1 table indicates all the test reduction utilized for this report.

MPR was enabled for this device. A-MPR was disabled for all SAR test measurements.

Table 11.4.1 LTE Power Measurements

	Table 11.4.1 LTE Power Measurements						
Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					18607	1850.7	23.2
			6	0	18900	1880	23.1
					19193	1909.3	23.0
					18607	1850.7	24.0
			3	1	18900	1880	24.0
		4 4 5 4 1			19193	1909.3	23.8
		1.4 MHz			18607	1850.7	24.0
			1	0	18900	1880	24.0
					19193	1909.3	23.9
					18607	1850.7	24.0
			1	5	18900	1880	24.0
					19193	1909.3	23.8
		2.441			18615	1851.5	23.1
			15	0	18900	1880	23.1
					19185	1908.5	22.9
				3	18615	1851.5	23.4
			8		18900	1880	23.3
2	ODCK				19185	1908.5	23.2
2	QPSK	3 MHz	1	0	18615	1851.5	24.0
					18900	1880	24.0
					19185	1908.5	23.9
				14	18615	1851.5	24.0
			1		18900	1880	24.0
					19185	1908.5	23.9
					18625	1852.5	23.1
			25	0	18900	1880	23.0
					19175	1907.5	22.9
					18625	1852.5	23.2
			12	6	18900	1880	23.0
		E N411-			19175	1907.5	23.1
		5 MHz			18625	1852.5	24.0
			1	0	18900	1880	24.0
					19175	1907.5	24.0
					18625	1852.5	24.0
			1	24	18900	1880	24.0
					19175	1907.5	23.8

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					18650	1855	23.2
			50	0	18900	1880	23.0
					19150	1905	23.0
					18650	1855	23.2
			25	12	18900	1880	23.0
		40 8411-			19150	1905	23.1
		10 MHz			18650	1855	24.0
			1	0	18900	1880	24.0
					19150	1905	24.0
					18650	1855	24.0
			1	24	18900	1880	24.0
					19150	1905	23.9
		45.000			18675	1857.5	23.2
			75	0	18900	1880	23.0
					19125	1902.5	23.1
				19	18675	1857.5	23.2
			36		18900	1880	23.0
_	ODCK				19125	1902.5	23.0
2	QPSK	15 MHz		0	18675	1857.5	24.0
			1		18900	1880	24.0
					19125	1902.5	24.0
			1	74	18675	1857.5	24.0
					18900	1880	24.0
					19125	1902.5	23.8
					18625	1852.5	23.0
			100	0	18900	1880	23.0
					19175	1907.5	23.2
					18700	1860	22.9
			50	25	18900	1880	23.0
		20 MHz			19100	1900	23.1
		20 MHz			18700	1860	24.0
			1	0	18900	1880	24.0
					19100	1900	24.0
					18700	1860	24.0
			1	99	18900	1880	24.0
					19100	1900	23.9

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
			6		18607	1850.7	22.1
				0	18900	1880	21.9
					19193	1909.3	22.0
					18607	1850.7	23.0
			3	1	18900	1880	22.9
					19193	1909.3	23.0
		1.4 MHz			18607	1850.7	23.2
			1	0	18900	1880	23.3
					19193	1909.3	23.1
					18607	1850.7	23.0
			1	5	18900	1880	22.9
					19193	1909.3	23.0
					18615	1851.5	22.2
			15	0	18900	1880	22.0
		2 8411-			19185	1908.5	22.2
			8	3	18615	1851.5	22.2
					18900	1880	21.9
2	16000				19185	1908.5	22.1
2	16QAM	3 MHz		0	18615	1851.5	23.2
			1		18900	1880	23.3
					19185	1908.5	23.1
			1	14	18615	1851.5	23.0
					18900	1880	23.2
					19185	1908.5	23.1
					18625	1852.5	22.3
			25	0	18900	1880	22.2
					19175	1907.5	22.2
					18625	1852.5	22.0
			12	6	18900	1880	22.0
		5 MHz			19175	1907.5	22.2
		J IVITZ			18625	1852.5	23.1
			1	0	18900	1880	23.0
					19175	1907.5	23.0
					18625	1852.5	22.9
			1	24	18900	1880	23.1
					19175	1907.5	23.0

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					18650	1855	22.2
			50	0	18900	1880	22.3
					19150	1905	22.1
					18650	1855	22.3
			25	12	18900	1880	22.2
					19150	1905	22.1
		10 MHz			18650	1855	23.1
			1	0	18900	1880	23.3
					19150	1905	23.2
					18650	1855	23.2
			1	24	18900	1880	23.0
					19150	1905	23.0
				0	18675	1857.5	22.0
			75	0	18900	1880	22.1
				0	19125	1902.5	21.9
					18675	1857.5	22.1
			36	19	18900	1880	22.1
					19125	1902.5	21.9
2	16QAM	15 MHz		1 0	18675	1857.5	23.2
			1 0		18900	1880	23.3
				19125	1902.5	23.3	
				18	18675	1857.5	23.1
			1	74	18900	1880	23.2
					19125	1902.5	23.0
					18625	1852.5	22.1
			100	0	18900	1880	22.0
					19175	1907.5	21.9
					18700	1860	22.1
			50	25	18900	1880	22.2
		20 1411-			19100	1900	22.1
		20 MHz			18700	1860	23.3
			1	0	18900	1880	23.3
					19100	1900	23.2
					18700	1860	23.1
			1		1880	23.2	
					19100	1900	23.0

Dand	Modulation	Dandwidth	DD Ciro	DD Offcot	Channal	Frequency	Dower
Band	iviodulation	Bandwidth	RD SIZE	KB Offset	Channel	Frequency	Power
	,	,		,			
				19957	1710.7	23.2	
			6	0	20175	1732.5	23.1
					20393	1754.3	23.2
					19957	1710.7	24.0
			3	1	20175	1732.5	24.0
		1.4 MHz			20393	1754.3	24.0
		1.4 IVITZ			19957	1710.7	24.0
			1	0	20175	1732.5	23.9
					20393	1754.3	23.9
					19957	1710.7	24.0
			1	5	20175	1732.5	24.0
					20393	1754.3	23.9
					19965	1711.5	23.3
			15	0	20175	1732.5	23.4
					20385	1753.5	23.2
					19965	1711.5	23.1
			8	3	20175	1732.5	23.1
	6 D.C.V.	2.5411			20385	1753.5	23.2
4	QPSK	3 MHz			19965	1711.5	24.0
			1	1 0	20175	1732.5	24.0
					20385	1753.5	23.9
					19965	1711.5	24.0
			1	14	20175	1732.5	24.0
					20385	1753.5	24.0
					19975	1712.5	23.3
			25	0	20175	1732.5	23.3
					20375	1752.5	23.2
					19975	1712.5	23.1
			12	6	20175	1732.5	23.3
					20375	1752.5	23.2
		5 MHz			19975	1712.5	24.0
			1	0	20175	1732.5	24.0
					20375	1752.5	24.0
					19975	1712.5	24.0
			1	24	20175	1732.5	24.0
					20375	1752.5	23.9

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					20000	1715	23.1
			50	0	20175	1732.5	23.2
					20350	1750	23.3
					20000	1715	23.2
			25	12	20175	1732.5	23.3
		40.8411			20350	1750	23.4
		10 MHz			20000	1715	24.0
			1	0	0 20175	1732.5	24.0
					20350	1750	24.0
					20000	1715	24.0
			1	24	20175	1732.5	24.0
					1750	24.0	
					20025	1717.5	23.1
			75	0	20175	1732.5	23.2
					20325	1747.5	23.2
					20025	1717.5	23.2
			36	19 2017	20175	1732.5	23.2
	ODCK	45.8411			20325	1747.5	23.2
4	QPSK	15 MHz			20025	1717.5	24.0
				0	20175	1732.5	24.0
				20325	1747.5	24.0	
				20025	1717.5	24.0	
			1	74	20175	1732.5	24.0
					20325	1747.5	24.0
					20050	1720	23.2
			100	0	20175	1732.5	23.2
					20300	1745	23.3
					20050	1720	23.1
			50	25	20175	1732.5	23.1
					20300	1745	23.3
		20 MHz			20050	1720	24.0
			1	0	20175	1732.5	24.0
					20300	1745	24.0
					20050	1720	24.0
			1	99	20175	1732.5	24.0
					20300	1745	24.0

Pand	Modulation	Pandwidth	DP Sizo	DD Offcot	Channal	Frequency	Dower
Band	iviodulation	Bandwidth	RD SIZE	KB Offset	Channel	Frequency	Power
				19957	1710.7	22.0	
			6	0	20175	1732.5	22.0
					20393	1754.3	22.2
					19957	1710.7	23.1
			3	1	20175	1732.5	23.1
		1.4 MHz			20393	1754.3	23.2
		1.4 IVITZ			19957	1710.7	23.0
			1	0	20175	1732.5	23.0
					20393	1754.3	23.1
					19957	1710.7	23.1
			1	5	20175	1732.5	23.0
					20393	1754.3	23.1
				0	19965	1711.5	22.2
			15	0	20175	1732.5	22.3
					20385	1753.5	22.4
					19965	1711.5	22.1
			8	3	20175	1732.5	22.3
	460444	2.5411		3	20385	1753.5	22.2
4	16QAM	3 MHz			19965	1711.5	23.1
			1 0	20175	1732.5	23.0	
					20385	1753.5	23.1
					19965	1711.5	23.3
			1	14	20175	1732.5	23.2
					20385	1753.5	23.4
					19975	1712.5	22.3
			25	0	20175	1732.5	22.2
					20375	1752.5	22.1
					19975	1712.5	22.3
			12	6	20175	1732.5	22.2
					20375	1752.5	22.4
		5 MHz			19975	1712.5	23.0
			1	0	20175	1732.5	23.0
					20375	1752.5	23.1
					19975	1712.5	23.0
			1	24	20175	1732.5	23.0
					20375	1752.5	23.1

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
			50	0	20000	1715	22.2
					20175	1732.5	22.1
					20350	1750	22.3
					20000	1715	22.3
			25	12	20175	1732.5	22.2
		40.8411			20350	1750	22.4
		10 MHz			20000	1715	23.3
			1	0	0 20175	1732.5	23.2
					20350	1750	23.2
					20000	1715	23.3
			1	24	20175	1732.5	23.1
				0	20350	1750	23.2
					20025	1717.5	22.1
			75	0	20175	1732.5	22.0
					20325	1747.5	22.1
					20025	1717.5	22.3
			36	19	20175	1732.5	22.3
4	16QAM	15 MHz			20325	1747.5	22.2
7	IOQAM	13 141112	20	20025	1717.5	23.2	
			1	0	20175	1732.5	23.3
					20325	1747.5	23.3
					20025	1717.5	23.1
			1	74	20175	1732.5	23.0
					20325	1747.5	23.2
					20050	1720	22.2
			100	0	20175	1732.5	22.1
					20300	1745	22.3
					20050	1720	22.1
			50	25	20175	1732.5	22.0
		20 MHz			20300	1745	22.2
		20 141112			20050	1720	23.3
			1	0	20175	1732.5	23.4
					20300	1745	23.2
					20050	1720	23.1
			1	99	20175	1732.5	23.2
					20300	1745	23.2

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					20407	824.7	23.0
			6	0	20525	836.5	23.0
					20643	848.3	23.1
					20407	824.7	24.0
			3	1	20525	836.5	23.9
					20643	848.3	24.0
		1.4 MHz			20407	824.7	23.9
			1	0	20525	836.5	24.0
					20643	848.3	24.0
					20407	824.7	24.0
			1	5	20525	836.5	23.9
					20643	848.3	24.0
					20415	825.5	23.0
			15	0	20525	836.5	22.9
					20635	847.5	23.1
					20415	825.5	23.0
			8	3	20525	836.5	23.1
5	ODCK	2 8411-			20635	847.5	23.1
3	QPSK	3 MHz	1 0	20415	825.5	23.9	
					20525	836.5	24.0
					20635	847.5	24.0
			20415	20415	825.5	24.0	
			1	14	20525	836.5	24.0
					20635	847.5	24.0
					20425	826.5	23.1
			25	0	20525	836.5	22.9
					20625	846.5	23.1
					20425	826.5	23.0
			12	6	20525	836.5	23.1
		5 MHz			20625	846.5	23.1
		J IVITZ			20425	826.5	23.8
			1	0	20525	836.5	24.0
					20625	846.5	24.0
			1	1 24	20425	826.5	24.0
					20525	836.5	24.0
					20625	846.5	24.0

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					20450	829	22.9
			50	0	20525	836.5	22.8
					20600	844	22.8
					20450	829	23.0
			25	12	20525	836.5	22.9
	ODCK	40.444			20600	844	23.0
	QPSK	10 MHz			20450	829	24.0
			1	0	20525	836.5	24.0
					20600	844	23.9
					20450	829	23.9
			1	24	20525	836.5	24.0
					20600	844	24.0
					20407	824.7	22.1
			6	0	20525	836.5	22.2
					20643	848.3	22.2
			1		20407	824.7	22.9
				1	20525	836.5	23.0
		1 4 8411-			20643	848.3	23.1
5		1.4 MHz			20407	824.7	23.1
				0	20525	836.5	23.2
					20643	848.3	23.2
					20407	824.7	23.2
			1	5	20525	836.5	23.2
	160484				20643	848.3	23.4
	16QAM				20415	825.5	22.0
			15	0	20525	836.5	22.1
					20635	847.5	22.1
					20415	825.5	21.9
			8	3	20525	836.5	22.1
		2.5411			20635	847.5	22.0
		3 MHz			20415	825.5	23.0
			1	0	20525	836.5	23.1
					20635	847.5	23.1
					20415	825.5	23.4
			1	14	20525	836.5	23.3
					20635	847.5	23.4

						_	
Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					20425	826.5	21.9
			25	0	20525	836.5	21.9
					20625	846.5	21.9
					20425	826.5	22.1
			12	6	20525	836.5	22.1
		5 MHz			20625	846.5	22.3
		J IVITIZ			20425	826.5	23.0
			1	0	20525 20625	836.5	23.2
					20625	846.5	23.2
			1		20425	826.5	23.3
				24	20525	836.5	23.3
_	460444				20625	846.5	23.4
5	16QAM		50		20450	829	21.8
				0	20525	836.5	21.8
					20600	844	21.9
					20450	829	21.9
			25	12	20525	836.5	21.9
		10 1411-			20600	844	21.9
		10 MHz			20450	829	23.1
			1	0	20525	836.5	23.4
					20600	844	23.2
					20450	829	23.1
			1	24	20525	836.5	23.3
					20600	844	23.3

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					23755	706.5	23.1
			25	0	23790	710	23.2
					23825	713.5	23.0
					23755	706.5	23.0
			12	6	23790	710	23.2
		E N411-			23825	713.5	23.1
		5 MHz			23755	706.5	23.9
			1	0	23790	710	23.9
					23825	713.5	24.0
			1		23755	706.5	24.0
				24	23755 706 23790 71	710	24.0
17	QPSK				23825	713.5	23.8
1/	QP3K		50		23780	709	22.9
				0	23790	710	22.9
					23800	711	23.1
					23780	709	23.0
			25	12	23790	710	23.0
		10 MHz			23800	711	23.0
		TO IVITIZ			23780	709	23.9
			1	0	23790	710	23.9
					23800	711	24.0
					23780	709	24.0
			1	24	23790	710	23.8
					23800	711	24.0

Band	Modulation	Bandwidth	RB Size	RR Offset	Channel	Frequency	Power
Danu	IVIOGGIACIOII	Danawiath	ND SIZE	ND Offset	Citatillei	Trequency	rowei
	I	T	I	T		I	
					23755	706.5	22.0
			25	0	23790	710	22.1
					23825	713.5	22.0
					23755	706.5	22.1
			12	6	23790	710	22.3
		5 MHz			23825	713.5	22.3
		3 101112			23755	706.5	23.1
			1	0	23790 23825 23755	710	23.3
					23825	713.5	23.2
					23755	706.5	23.0
			1	24	23790	710	23.1
5	16QAM				23825	713.5	22.9
3	TOQAM		50		23780	709	21.9
					23790	710	21.9
					23800	711	22.0
					23780	709	22.1
			25	12	23790	710	22.0
		10 1411-			23800	711	22.0
		10 MHz			23780	709	23.1
			1	0	23790	710	23.1
					23800	711	22.9
					23780	709	22.9
			1	24	23790	710	23.0
					23800	711	22.8

Table 11.4.2 Test Reduction Table - LTE

Donall	-	Demined	Toot Itout	action rab		DD	Tootod/	
Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/	
Frequency (MHz)	0.0.0	Test Channel			Allocation	Offset	Reduced	
		18700					Tested	
		18900			50	25	Tested	
		19100					Tested	
		18700					Reduced ¹	
		18900			100	0	Reduced ¹	
		19100		QPSK			Reduced ¹	
		18700		Qi Oit			Tested	
		18900				0	Reduced ²	
		19100			1		Reduced ²	
		18700			•		Tested	
		18900				99	Reduced ²	
		19100	20 MHz				Reduced ²	
	Α	18700	20 1111 12				Tested	
		18900			50	25	Reduced ³	
		19100					Reduced ³	
		18700					Reduced ¹	
		18900			100	0	Reduced ¹	
		19100		16QAM			Reduced ¹	
		18700		TOQAW			Tested	
		18900				0	Reduced⁴	
		19100	r bandwidths (15 M		1		Reduced⁴	
		18700					Tested	
		18900				99	Reduced⁴	
		19100					Reduced⁴	
Band 2				MHz, 10 MHz, 5 MH	z, 3 MHz, 1.4 MH	z)	Reduced⁵	
1850-1910 MHz		18700	,		50		Reduced ⁶	
		18900				25	Tested	
		19100					Reduced ⁶	
		18700					Reduced ¹	
		18900			100	0	Reduced ¹	
		19100		QPSK			Reduced ¹	
		18700		QFSK			Reduced ²	
		18900				0	Tested	
		19100			1		Reduced ²	
		18700			•		Reduced ²	
		18900				99	Tested	
		19100	20 MHz				Reduced ²	
	В	18700	20 IVII 12				Reduced ³	
		18900			50	25	Tested	
		19100					Reduced ³	
		18700					Reduced ¹	
		18900			100	0	Reduced ¹	
		19100		16QAM			Reduced ¹	
		18700		IOUAIVI			Reduced⁴	
		18900				0	Tested	
		19100			4		Reduced⁴	
		18700			1		Reduced⁴	
		18900				99	Tested	
		19100					Reduced⁴	
		All lower	bandwidths (15 N	MHz, 10 MHz, 5 MH	z, 3 MHz, 1.4 MH	z)	Reduced⁵	

Reduced - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3)
A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3)

B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Danawiath	wodulation	Allocation	Offset	Reduced
		18700					Tested
	Į į	18900			50	25	Tested
		19100					Tested
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		0.0017			Reduced ¹
		18700		QPSK			Tested
		18900				0	Reduced ²
		19100			4		Reduced ²
		18700			1		Tested
		18900				99	Reduced ²
		19100	00.1411				Reduced ²
	С	18700	20 MHz				Tested
		18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		400414			Reduced ¹
		18700		16QAM			Tested
		18900				0	Reduced⁴
		19100			1		Reduced ⁴
		18700			1		Tested
		18900				99	Reduced⁴
		19100					Reduced⁴
Band 2			bandwidths (15 N	1Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced⁵
1850-1910 MHz		18700	banawiatiis (15 iv	1	50	_, 	Reduced ⁶
		18900				25	Tested
		19100					Reduced ⁶
		18700					Reduced ¹
		18900				0	Reduced ¹
		19100		0.0014			Reduced ¹
		18700		QPSK			Reduced ²
		18900				0	Tested
		19100					Reduced ²
		18700			1		Reduced ²
		18900				99	Tested
		19100	00.141.1				Reduced ²
	D	18700	20 MHz				Reduced ³
		18900			50	25	Tested
	Į l	19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		400444			Reduced ¹
	Į į	18700		16QAM			Reduced⁴
	Į l	18900				0	Tested
	Į l	19100				_	Reduced⁴
	Į l	18700			1		Reduced⁴
	Į į	18900	lower bandwidths (15 MHz,		·	99	Tested
	Į l	19100				99	Reduced⁴

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
Frequency (MITZ)					Allocation	Oliset	
		18700			50	25	Reduced ⁶
		18900			50	25	Tested
		19100					Reduced ⁶
		18700			400	0	Reduced 1
		18900			100	0	Reduced
		19100	4	QPSK			Reduced ¹
		18700				_	Reduced ²
		18900				0	Tested
		19100	_ _ _ _ 20 MHz		1		Reduced ²
		18700					Reduced ²
		18900				99	Tested
Band 2	E	19100					Reduced ²
1850-1910 MHz		18700	20 1011 12		50		Reduced ³
1030-1310 WILL		18900		ļ		25	Tested
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700		IOQAW			Reduced⁴
		18900				0	Tested
		19100			4		Reduced⁴
		18700			1		Reduced ⁴
		18900				99	Tested
		19100					Reduced⁴
		All lower	bandwidths (15 N	MHz, 10 MHz, 5 MH	z, 3 MHz, 1.4 MH	z)	Reduced ⁵

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3)
B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4)
B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	0:4-	Required	Daniel de la contraction	Bar aladada	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
1 requesties (iiiriz)		18700			7 tiloodtioii	011000	Tested
		18900			50	25	Tested
		19100			00	20	Tested
		18700					Reduced ¹
		18900	1		100	0	Reduced ¹
		19100			100	O	Reduced ¹
		18700		QPSK			Tested
		18900				0	Reduced ²
		19100				Ü	Reduced ²
		18700			1		Tested
		18900				99	Reduced ²
		19100				00	Reduced ²
	Α	18700	20 MHz				Tested
		18900			50	25	Reduced ³
		19100			00	20	Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100				Ü	Reduced ¹
		18700	1	16QAM			Tested
		18900	1			0	Reduced⁴
		19100	1			O	Reduced ⁴
		18700	-			99	Tested
		18900					Reduced ⁴
		19100				00	Reduced ⁴
Band 4			handwidths (15 N	MHz, 10 MHz, 5 MH	lz 3 MHz 14 MH	7)	Reduced ⁵
1710-1755 MHz		18700	bandwidths (15 N	71 12, 10 WH 12, 0 WH 12	50	25	Reduced ⁶
		18900					Reduced ⁶
		19100					Tested
		18700			100	0	Reduced ¹
		18900					Reduced ¹
		19100				O	Reduced ¹
		18700		QPSK			Reduced ²
		18900	1			0	Reduced ²
		19100	1			O	Tested
		18700	1		1		Reduced ²
		18900				99	Reduced ²
		19100				00	Tested
	В	18700	20 MHz				Reduced ³
		18900			50	25	Reduced ³
		19100			30	20	Tested
		18700					Reduced ¹
		18900	1		100	0	Reduced ¹
		19100	1		100	J	Reduced ¹
		18700	1	16QAM			Reduced ⁴
		18900				0	Reduced ⁴
		19100				J	Tested
		18700	1		1		Reduced ⁴
		18900	1			99	Reduced Reduced
		19100	-			99	Tested
	1		wer bandwidths (15 MF				Reduced ⁵

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Banawiath	Modulation	Allocation	Offset	Reduced
, , , , , , , , , , , , , , , , , , , ,		18700					Reduced ⁶
		18900			50	25	Reduced ⁶
		19100					Tested
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100					Reduced ¹
		18700		QPSK			Reduced ²
		18900				0	Reduced ²
		19100				· ·	Tested
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100				00	Tested
	С	18700	20 MHz				Reduced ³
	0	18900	_		50	25	Reduced ³
		19100			00	20	Tested
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100			100	J	Reduced ¹
		18700		16QAM			Reduced ⁴
		18900				0	Reduced ⁴
		19100				0	Tested
		18700			1 Hz, 3 MHz, 1.4 MH		Reduced ⁴
		18900				99	Reduced ⁴
		19100				00	Tested
Band 4			handwidths (15 N	MHz 10 MHz 5 MH	z 3 MHz 14 MH	7)	Reduced ⁵
1710-1755 MHz		18700		VII 12, 10 IVII 12, 3 IVII	1112, 3 1011 12, 1.4 1011 1		Reduced ⁶
		18900			50	25	Reduced ⁶
		19100			30	25	Tested
		18700			100	0	Reduced ¹
		18900					Reduced ¹
		19100			100	0	Reduced ¹
		18700		QPSK			Reduced ²
		18900				0	Reduced ²
		19100				J	Tested
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100				00	Tested
	D	18700	20 MHz				Reduced ³
		18900			50	25	Reduced ³
		19100			00	20	Tested
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100			100	J	Reduced ¹
		18700		16QAM			Reduced ⁴
		18900				0	Reduced ⁴
		19100				3	Tested
		18700			1		Reduced ⁴
		18900				99	Reduced⁴
		19100				55	Tested
			handwidthe (15 N	1Hz, 10 MHz, 5 MH	7 3 MHz 1 1 MU	7)	Reduced ⁵
5 1 1 16 11 0	ND	n the 50% DR testing					

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		18700					Reduced ⁶
		18900			50	25	Reduced ⁶
		19100					Tested
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		QPSK			Reduced ¹
		18700		QFSK			Reduced ²
		18900				0	Reduced ²
		19100			1		Tested
		18700	20 MHz		'		Reduced ²
	E	18900				99	Reduced ²
Band 4		19100					Tested
1710-1755 MHz		18700					Reduced ³
17 10-17 33 WHZ		18900			50	25	Reduced ³
		19100					Tested
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced
		18700		1000/11/1			Reduced⁴
		18900				0	Reduced⁴
		19100			1		Tested
		18700			'		Reduced⁴
		18900				99	Reduced⁴
		19100					Tested
		All lower	bandwidths (15 N	//Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced⁵

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3)
B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4)
B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Prequency (MHz) Side Test Channel 18700 18900 19100 18900 1910	Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
18700		Side		Banawiath	wodulation	Allocation	Offset	Reduced
18900	, (m)							Reduced ⁶
19100 18900 100 0 Reduced 18900 19100 18700 18900 19100 19100 18700 18900 19100 18700 18900 19100 18700 18900 19100 18700 18900 19100 18700 18900 19100 16QAM 18900 19100 18700			18900			50	25	
18900								
18900								
19100 18700 18900 19100 160AM 160AM 18700 18800 19100 160AM 18700 1870						100	0	
18700 18900 19100 18000 19100 18000 19100 18700 18000 19100 1800					0.0017		-	
18900 18700 18700 18900 19100 160AM 160AM 18700 18700 18700 18700 18900 19100 18000 19100 1800					QPSK			
19100			18900				0	Tested
18700						4	-	
A 18900 19100 20 MHz			18700			1		Reduced ²
A			18900				99	
A			19100	00.141.1				Reduced ²
18900 19100 18900 100 0 Reduced*		Α		20 MHz				
19100						50	25	
18700 18900 16QAM								Reduced ³
19100								
19100			18900			100	0	Reduced ¹
Band 5 18700 1 1 1 1 1 1 1 1 1			19100		400 414			
18900 19100 1 1 1			18700		ToQAM			Reduced⁴
Band 5 18700 1990 1 1 1 1 1 1 1 1 1							0	
Band 5 18700 1990 1 1 1 1 1 1 1 1 1						1		
Band 5 All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz) Reduced 5 Reduced 5 Reduced 6 Reduced 6 Reduced 6 Reduced 6 Reduced 6 Reduced 7 Reduced 7 Reduced 7 Reduced 7 Reduced 9 Reduced 1 Reduced 9 Reduced 1 Reduced 2 Reduced 3 Reduced 4 Redu						1		
Band 5 18700 18900 100 0 16000 18900 18700 18900 18700 18900 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18900 100 0 100 0 100 0 100			18900				99	Tested
Band 5 18700 18900 100 0 16000 18900 18700 18900 18700 18900 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18900 100 0 100 0 100 0 100			19100					Reduced ⁴
Beautiful	Band 5		All lower	bandwidths (15 N	Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	
19100 18700 18900 100 0 Reduced	824-849 MHz			Danawiatiis (10 iv		50		
19100 18700 18900 100 0 Reduced			18900					Tested
B								
B			18700					Reduced ¹
B							0	
B			19100		ODOK			Reduced ¹
19100 18700 18900 19100 10			18700		QPSK			Reduced ²
19100 18700 18900 19100 10			18900				0	Tested
B						4		Reduced ²
B 18700 20 MHz 50 Reduced ² 18900 50 25 Tested Reduced ³ 18700 Reduced ¹ 18900 100 0 Reduced ¹ 19100 Reduced ¹ 18700 Reduced ¹ 18700 Reduced ¹ 18700 Reduced ¹ 18700 Reduced ⁴			18700			1		
B 18700 20 MHZ 18900 50 25 Tested Reduced³ 19100 0 Reduced¹ 18900 100 0 Reduced¹ 18700 Reduced¹ 18700 Reduced¹ 18700 Reduced¹ 18700 Reduced⁴ 18900 Reduced⁴ 18900 Reduced⁴ 18900 Reduced⁴ 18900 Reduced⁴ Reduced⁴ Reduced⁴			18900				99	Tested
B 18700 20 MHZ 18900 50 25 Tested Reduced³ 19100 0 Reduced¹ 18900 100 0 Reduced¹ 18700 Reduced¹ 18700 Reduced¹ 18700 Reduced¹ 18700 Reduced⁴ 18900 Reduced⁴ 18900 Reduced⁴ 18900 Reduced⁴ 18900 Reduced⁴ Reduced⁴ Reduced⁴				00 MH-				
19100 Reduced ³ Reduced ¹ Reduced ¹ 18900 100 0 Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ⁴ Red		В		20 MHZ				
19100 Reduced ³ Reduced ¹ Reduced ¹ 18900 100 0 Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ⁴ Red			18900			50	25	Tested
18900 19100 16QAM 100 0 Reduced								
18900 19100 16QAM 100 0 Reduced			18700					Reduced ¹
19100						100	0	
18700 18900 19100 18700 18800 18900 19100 99 Tested Reduced ⁴					400 414			
18900 19100 18700 18900 19100 19100 1 Tested Reduced ⁴ 99 Tested Reduced ⁴					16QAM			
19100 18700 18900 19100 19100 1 1 Reduced ⁴ Reduced ⁴ 99 Tested Reduced ⁴ Reduced ⁴							0	
18700 Reduced ⁴ 18900 99 Tested 19100 Reduced ⁴						4		Reduced⁴
18900 99 Tested 19100 Reduced ⁴						1		Reduced⁴
19100 Reduced ⁴							99	
							99	
				bandwidths (15 N	⁄IHz, 10 MHz. 5 MF	lz, 3 MHz. 1.4 MH	z)	Reduced ⁵

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Prequency (MHz) Side Test Channel Sandwith Modulation Allocation Offset Reduced Tested Reduced	Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
18700		Side		Banawiath	wodulation	Allocation	Offset	Reduced
18900	,							Reduced ⁶
19100 18900 100 0 Reduced' Reduced' 18900 19100 0 Reduced' Reduced			18900			50	25	
18900								
18900			18700					Reduced ¹
19100 18700 18900 19100 16QAM 18700 18800 19100 16QAM 18700 1870						100	0	
18700 18900 19100 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 18700 1870					0.0017		-	
18900 18700 18700 18900 19100 16QAM 16QAM 19100 18700 18800 19100 16QAM 16QAM 16QAM 18900 19100 18700 18800 19100 1880					QPSK			
19100			18900				0	Tested
18700						4	-	
C			18700			1		Reduced ²
C			18900				99	
C				00.1411				
18900 19100 16QAM 100 0 Reduced*		С		20 MHz				
19100						50	25	
18700 18900 16QAM								Reduced ³
19100								
19100			18900			100	0	Reduced ¹
Band 5 18700 1 1 1			19100		400 414			
18900			18700		ToQAM			Reduced⁴
Band 5 824-849 MHz Band 5 Band 6 Band 5 Band 6 Band 5 Band 7 Band 2 Band 4 Band 2 Band 3 Band 3 Band 100 Band 2 Band 3 Band 4 Band							0	
Band 5 824-849 MHz Band 5 Band 6 Band 5 Band 6 Band 5 Band 7 Band 2 Band 4 Band 2 Band 3 Band 3 Band 100 Band 2 Band 3 Band 4 Band								
Band 5 All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz) Reduced ⁵ 18700								
Band 5 824-849 MHz 18700 18900 100 0 100 0 100			18900				99	Tested
Band 5 824-849 MHz 18700 18900 100 0 100 0 100			19100					Reduced ⁴
18900 19100 18900 19100 18900 19100 18900 19100 18900 19100 18900 19100 18900 19100 18900 19100 18700 18900 19100 18700 18900 19100 18700 18900 18900 18900 18900 18900 18900 18900 18900 18900 18900 18700 18900 18700 18900 1870	Band 5		All lower	bandwidths (15 N	Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	
19100 Reduced Reduce	824-849 MHz			,		50		
19100 Reduced Reduce			18900					Tested
18900 19100 18700 18900 19100 20 MHz								
18900 19100 18700 18900 19100 20 MHz			18700					Reduced ¹
18700 18900 19100 18700 20 MHz							0	
18900 18900 18700 18900 19100 20 MHz			19100		ODOK			Reduced ¹
19100 18700 18900 19100 20 MHz 1			18700		QPSK			Reduced ²
19100 18700 18900 19100 20 MHz 1			18900				0	Tested
18700 18900 19100 20 MHz						4		Reduced ²
D 18700 20 MHz 50 Reduced ² 18900 50 25 Tested Reduced ³ 18700 Reduced ¹ 18900 100 0 Reduced ¹ 19100 Reduced ¹ 18700 Reduced ¹ 18700 Reduced ¹ 18700 Reduced ¹ Reduced ⁴ 18900 100 Tested Reduced ⁴ 18700 Reduced ⁴			18700			1		
D 18700 20 MHz 50 Reduced ² 18900 50 25 Tested Reduced ³ 18700 Reduced ¹ 18900 100 0 Reduced ¹ 19100 Reduced ¹ 18700 Reduced ¹ 18700 Reduced ¹ 18700 Reduced ¹ Reduced ⁴ 18900 100 Tested Reduced ⁴ 18700 Reduced ⁴			18900				99	Tested
D 18700 20 MHZ 18900 50 25 Tested Reduced³ 19100 0 Reduced¹ 18900 100 0 Reduced¹ 18700 18700 100 0 Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced⁴ Reduced⁴ Reduced⁴ Reduced⁴ 18900 100 0 Reduced⁴				00 1411-				
19100 Reduced ³ Reduced ¹ Reduced ¹ 18900 100 0 Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ⁴ 18700 Reduced ⁴ Reduced		D		20 MHz				
19100 Reduced ³ Reduced ¹ Reduced ¹ 18900 100 0 Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ⁴ 18700 Reduced ⁴ Reduced			18900			50	25	Tested
18700 18900 16QAM 100 0 Reduced								
18900 19100 16QAM 100 0 Reduced								
19100 16QAM Reduced						100	0	
18700 18900 19100 18700 18700 19100 18700 19100 19100 19100 101000 101000 101000 101000 101000 101000 101000 101000 101000 1010000 1010000 1010000 10100000 10100000 101000000							-	
18900 19100 18700 18900 19100 1 1 0 Tested Reduced ⁴ 99 Tested Reduced ⁴					16QAM			
19100 18700 18900 19100 19100 1 Reduced ⁴ 99 Tested Reduced ⁴ Reduced ⁴							0	
18700 Reduced ⁴ 18900 99 Tested 19100 Reduced ⁴							_	
18900 99 Tested 19100 Reduced ⁴						1		Reduced⁴
19100 Reduced ⁴				lower handwidths (15 MHz		·	99	
					MHz. 10 MHz 5 MH	lz. 3 MHz 14 MH	z)	

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		18700					Reduced ⁶
		18900			50	25	Tested
		19100					Reduced ⁶
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		ODOK			Reduced ¹
		18700		QPSK			Reduced ²
		18900			1	0	Tested
		19100	20 MHz				Reduced ²
		18700			ı		Reduced ²
	E	18900				99	Tested
Dand 5		19100					Reduced ²
Band 5 824-849 MHz		18700					Reduced ³
024-049 WII IZ		18900			50	25	Tested
		19100					Reduced ³
		18700				0	Reduced ¹
		18900			100		Reduced ¹
		19100		16QAM			Reduced ¹
		18700		IOQAW			Reduced⁴
		18900				0	Tested
		19100			1		Reduced ⁴
		18700			ı		Reduced⁴
		18900				99	Tested
		19100					Reduced⁴
		All lower	bandwidths (15 N	ИНz, 10 MHz, 5 MF	Iz, 3 MHz, 1.4 MH	z)	Reduced ⁵

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Prequency (MHz) Side Test Channel 1870	Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
18700	Frequency (MHz)	Side		Danawiath	wodulation	Allocation	Offset	Reduced
18900	7							
19100 18900 100 0 Reduced 18900			18900			50	25	
18900								
18900								
19100 18700 18900 19100 160AM 18700 18900 19100 160AM 18700 1870						100	0	
18700 18900 19100 18700 18700 18900 19100 18700 18700 18900 19100 18700 18700 18900 19100 18700 18700 18900 19100 18700 18700 18900 19100 18000 19100 18700 18900 19100 18700 18900 19100 1800					0.0017		-	
18900					QPSK			
19100 18700 18700 19100 19100 18000 19100 18000 19100 18000 19100 18000 19100 18000 18000 19100 18000 18000 18000 18000 18000 18000 18000 19100 18000 18000 19100 18000 18000 19100 1800			18900				0	Tested
18700							-	
A 18900 19100 20 MHz			18700	1		1		Reduced ²
A			18900				99	
A				00.1411				
18900 19100 1800 19100 18700 18900 19100 18700		Α		20 MHz				
19100						50	25	
18700 18900 16QAM								
19100								
19100			18900			100	0	Reduced ¹
Band 17 Tour					400414			
18900 19100 1 1 1 1 1 1 1 1 1			18700		TOQAIVI			Reduced⁴
19100							0	
Band 17						1		
Band 17						1		
Band 17 T04-716 MHz T8700 Tested T8900 Tested T			18900				99	Tested
Band 17 T04-716 MHz T8700 Tested T8900 Tested T			19100					Reduced⁴
Beautiful	Band 17		All lower	bandwidths (15 N	1Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	
19100 18700 18900 19100 18700 18700 18700 18900 19100 18700 18900 19100 18900 18900 18900 18900 18900 18900 18900 18900 18700 18900 18900 18700 18900 1870	704-716 MHz			,		50	25	
19100 18700 18900 19100 18700 18700 18900 19100 18700 18900 19100 18700 18900 19100 18900 18900 18900 18900 18900 18900 18700 18900 18700 18900 18700 18900 1870			18900	-				Tested
18900 19100 1870								
18900 19100 1870			18700			100	0	Reduced ¹
B								
B			19100					Reduced ¹
19100 Reduced Reduce			18700		QPSK			Reduced ²
19100 Reduced Reduce			18900				0	Tested
B								Reduced ²
B 18700 20 MHz 50 Reduced ² 18900 50 25 Tested Reduced ³ 18700 Reduced ¹ 18900 100 0 Reduced ¹ 19100 Reduced ¹ 18700 Reduced ¹ 18700 Reduced ¹ 18700 Reduced ⁴ 18900 100 Tested Reduced ⁴ 18700 Reduced ⁴			18700			1		Reduced ²
B 18700 20 MHZ 18900 50 25 Tested Reduced³ Reduced³ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced⁴			18900				99	Tested
B 18700 20 MHZ 18900 50 25 Tested Reduced³ Reduced³ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced¹ Reduced⁴				00 MH-				
19100 Reduced ³ Reduced ¹ Reduced ¹ Reduced ¹ 19100 O Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ⁴ Reduced ⁴		В		20 MHZ				
19100 Reduced ³ Reduced ¹ Reduced ¹ Reduced ¹ 19100 O Reduced ¹ Reduced ¹ Reduced ¹ Reduced ¹ Reduced ⁴ Reduced ⁴			18900			50	25	Tested
18900 16QAM 100 0 Reduced Reduced Reduced Reduced Reduced Reduced Reduced Reduced Reduced Reduce								
18900 16QAM 100 0 Reduced Reduced Reduced Reduced Reduced Reduced Reduced Reduced Reduced Reduce			18700					Reduced ¹
19100						100	0	
18700 16QAM 0 Reduced ⁴ 18900 1 1 Reduced ⁴ 19100 1 Reduced ⁴ Reduced ⁴ Reduced ⁴ 18700 1 Reduced ⁴ 18900 99 Tested Reduced ⁴ R					400 4 4			
18900 0 Tested 19100 Reduced ⁴ 18700 Reduced ⁴ 18900 99 Tested 19100 Reduced ⁴					ToQAM			
19100 18700 18900 19100 19100 1 Reduced ⁴ 99 Tested Reduced ⁴ Reduced ⁴							0	
18700 1 Reduced ⁴ 18900 99 Tested Reduced ⁴ 19100 Reduced ⁴ Re				-		,	-	Reduced⁴
18900 99 Tested 19100 Reduced ⁴						1	99	Reduced⁴
19100 Reduced ⁴								
				bandwidths (15 N	MHz. 10 MHz. 5 MH	z. 3 MHz. 1.4 MH	z)	Reduced⁵

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Banawiath	wodulation	Allocation	Offset	Reduced
, , , , , , , , , , , , , , , , , , , ,		18700					Reduced ⁶
		18900			50	25	Tested
		19100					Reduced ⁶
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		0.0017		-	Reduced ¹
		18700		QPSK			Reduced ²
		18900				0	Tested
		19100					Reduced ²
		18700			1		Reduced ²
		18900				99	Tested
		19100	00 MH				Reduced ²
	С	18700	20 MHz				Reduced ³
		18900			50	25	Tested
		19100					Reduced ³
		18700		16QAM			Reduced ¹
		18900			100	0	Reduced ¹
		19100					Reduced ¹
		18700					Reduced⁴
		18900				0	Tested
		19100			1		Reduced⁴
		18700			1		Reduced ⁴
		18900				99	Tested
		19100					Reduced⁴
Band 17		All lower	bandwidths (15 N	MHz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced⁵
704-716 MHz		18700		QPSK	50		Reduced ⁶
		18900	- -			25	Tested
		19100					Reduced ⁶
		18700			100	0	Reduced ¹
		18900					Reduced ¹
		19100					Reduced ¹
		18700		QFSN			Reduced ²
		18900				0	Tested
		19100					Reduced ²
		18700			1		Reduced ²
		18900				99	Tested
		19100	20 MHz				Reduced ²
	D	18700	20 WII 12				Reduced ³
		18900			50	25	Tested
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700		IUQAW			Reduced ⁴
		18900				0	Tested
		19100	-		1		Reduced⁴
		18700				99	Reduced⁴
		18900					Tested
		19100					Reduced⁴
		All lower		MHz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced⁵

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		18700					Reduced ⁶
		18900			50	25	Tested
		19100					Reduced ⁶
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		ODOK			Reduced ¹
		18700		QPSK			Reduced ²
		18900			1	0	Tested
		19100	20 MHz				Reduced ²
		18700			ı		Reduced ²
	E	18900				99	Tested
Band 17		19100					Reduced ²
704-716 MHz		18700					Reduced ³
704-71010112		18900			50	25	Tested
		19100					Reduced ³
		18700				0	Reduced ¹
		18900			100		Reduced ¹
		19100		16QAM			Reduced ¹
		18700		TOQAW			Reduced⁴
		18900				0	Tested
		19100			1		Reduced ⁴
		18700			Ţ		Reduced ⁴
		18900				99	Tested
		19100					Reduced⁴
		All lower	bandwidths (15 N	ИНz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced⁵

A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

SAR Data Summary – 835 MHz Body - WCDMA

MEASUREMENT RESULTS										
Gap	Plot	Frequency		Modulation	Position	End Power	RMC	Test Set Up	SAR	
-		MHz	Ch.			(dBm)		•	(W/kg)	
	-	826.4	4132	WCDMA		23.89	12.2 kbps	Test Loop 1	1.099	
10 mm	-	836.6	4183	WCDMA	Side A	23.91	12.2 kbps	Test Loop 1	0.861	
10 mm	1	846.6	4233	WCDMA		23.87	12.2 kbps	Test Loop 1	1.173	
	-	836.6	4183	WCDMA	Side B	23.91	12.2 kbps	Test Loop 1	0.550	
5 mm at battery	-	836.6	4183	WCDMA	Side C	23.91	12.2 kbps	Test Loop 1	0.661	
10 mm	-	836.6	4183	WCDMA	Side D	23.91	12.2 kbps	Test Loop 1	0.349	
10 mm	-	836.6	4183	WCDMA	Side E	23.91	12.2 kbps	Test Loop 1	0.194	

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	_
2.	Test Signal Call Mode	Test Code	⊠Base Station Simula	ator
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
1	Ti D41 :414150		-	

SAR Data Summary – 835 MHz Body - GPRS

MEASUREMENT RESULTS

Gap	Plot	lot Frequency		Rev Level/ Modulation	Position	End Power	TX Level	Multislot	SAR (W/kg)	
-		MHz	Ch.	Modulation		(dBm)		Configuration	(vv/kg)	
10 mm	2	836.6	190	GMSK	Side A	33.83	5	1 Slot	0.483	
10 mm	-	836.6	190	GMSK	Side B	33.83	5	1 Slot	0.238	
5 mm at battery	-	836.6	190	GMSK	Side C	33.83	5	1 Slot	0.408	
10	-	836.6	190	GMSK	Side D	33.83	5	1 Slot	0.194	
10 mm	-	836.6	190	GMSK	Side E	33.83	5	1 Slot	0.128	

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	_
2.	Test Signal Call Mode	Test Code	⊠Base Station Simu	lator
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
4.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – 1900 MHz Body - WCDMA

Gap	Plot	Plot	Freque	ency	Rev Level/ Modulation	Position	End Power	RMC	Test Set Up	SAR
		MHz	Ch.	Modulation		(dBm)		-	(W/kg)	
	-	1852.4	9262	WCDMA		23.83	12.2 kbps	Test Loop 1	1.362	
10 mm	3	1880.0	9400	WCDMA	Side A	23.86	12.2 kbps	Test Loop 1	1.395	
10 111111	-	1907.6	9538	WCDMA		23.81	12.2 kbps	Test Loop 1	1.225	
	-	1880.0	9400	WCDMA	Side B	23.86	12.2 kbps	Test Loop 1	0.680	
E mm at	-	1852.4	9262	WCDMA		23.83	12.2 kbps	Test Loop 1	1.334	
5 mm at battery	-	1880.0	9400	WCDMA	Side C	23.86	12.2 kbps	Test Loop 1	1.319	
battery	-	1907.6	9538	WCDMA		23.81	12.2 kbps	Test Loop 1	1.058	
10 mm	-	1880.0	9400	WCDMA	Side D	23.86	12.2 kbps	Test Loop 1	0.370	
10 111111	1	1880.0	9400	WCDMA	Side E	23.86	12.2 kbps	Test Loop 1	0.740	

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	_
2.	Test Signal Call Mode	Test Code	⊠Base Station Sin	nulator
3.	Test Configuration	☐With Belt Clip	☐Without Belt Cli	ip N/A
1	Tissue Denth is at least 15 () em		-

1880.0

1880.0

-

10 mm

661

661

FCC ID: PKRNVWMIFI5792

SAR Data Summary – 1900 MHz Body - GPRS

GMSK

GMSK

MEASUREMENT RESULTS End Frequency Rev Level/ **Multislot** SAR Plot **Position** Power Gap TX Level Modulation Configuration (W/kg) Ch. MHz (dBm) 1880.0 GMSK Side A 30.83 1 Slot 0.430 4 661 0 10 mm 1880.0 661 GMSK Side B 30.83 0 1 Slot 0.233 5 mm at 0 1880.0 661 **GMSK** Side C 30.83 1 Slot 0.429 battery

Side D

Side E

30.83

30.83

0

0

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1 Slot

1 Slot

0.197

0.347

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
2.	Test Signal Call Mode	Test Code	⊠Base Station Simu	ulator
3.	Test Configuration	☐With Belt Clip	Without Belt Clip	N/A
4.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – 1900 MHz Body – LTE Band 2

MEASU	REMEN	IT RESUL	TS							
Gap	Plot	Position	Frequency		BW/ Modulation	RB Size	RB Offset	MPR	End Power	SAR (W/kg)
-			MHz	Ch.		Size	Oliset	Target	(dBm)	
	•		1860.0	18700	20 MHz/QPSK	50	24	1	22.9	0.946
	•		1880.0	18900	20 MHz/QPSK	50	24	1	23.0	0.848
	•		1900.0	19100	20 MHz/QPSK	50	24	1	23.1	0.721
	5	Side A	1860.0	18700	20 MHz/QPSK	1	0	0	24.0	1.342
	-	Side A	1000.0	10700	20 MHz/QPSK	1	99	0	24.0	1.275
	-				20 MHz/16QAM	50	24	2	23.3	0.820
10	-		1860.0	18700	20 MHz/16QAM	1	0	1	23.2	0.987
10 mm	-				20 MHz/16QAM	1	99	1	23.1	0.945
	-		1880.0	18900	20 MHz/QPSK	50	24	1	23.0	0.532
	-	O: 4- D	1880.0	40000	20 MHz/QPSK	1	0	0	24.0	0.735
	-			18900	20 MHz/QPSK	1	99	0	24.0	0.752
	-	Side B		18900	20 MHz/16QAM	50	24	2	22.2	0.554
	-		1880.0		20 MHz/16QAM	1	0	1	23.3	0.646
	-				20 MHz/16QAM	1	99	1	23.2	0.686
	-		1860.0	18700	20 MHz/QPSK	50	24	1	22.9	0.858
	-	Side C	1880.0	18900	20 MHz/QPSK	50	24	1	23.0	0.885
	-		1900.0	19100	20 MHz/QPSK	50	24	1	23.1	0.838
5 mm at	-		1880.0	18900	20 MHz/QPSK	1	0	0	24.0	1.235
battery	-		1880.0		20 MHz/QPSK	1	99	0	24.0	1.044
-	-			18900	20 MHz/16QAM	50	24	2	22.2	0.791
	-		1880.0		20 MHz/16QAM	1	0	1	23.3	1.035
	-				20 MHz/16QAM	1	99	1	23.2	0.903
	-		1880.0	18900	20 MHz/QPSK	50	24	1	23.0	0.392
	-		4000.0	40000	20 MHz/QPSK	1	0	0	24.0	0.576
	-	Side D	1880.0	18900	20 MHz/QPSK	1	99	0	24.0	0.458
	-	Side D			20 MHz/16QAM	50	24	2	22.2	0.294
	-		1880.0	18900	20 MHz/16QAM	1	0	1	23.3	0.370
40	-				20 MHz/16QAM	1	99	1	23.2	0.366
10 mm	-		1880.0	18900	20 MHz/QPSK	50	24	1	23.0	0.633
	-		4000.0	40000	20 MHz/QPSK	1	0	0	24.0	0.881
	-	0:4- 5	1880.0	18900	20 MHz/QPSK	1	99	0	24.0	0.951
	-	Side E			20 MHz/16QAM	50	24	2	22.2	0.252
	-		1880.0	18900	20 MHz/16QAM	1	0	1	23.3	0.312
	-				20 MHz/16QAM	1	99	1	23.2	0.331

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	⊠Body	_
2.	Test Signal Call Mode	Test Code	⊠Base Station Simulator	
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
4.	Tissue Depth is at least 15	.0 cm		

SAR Data Summary – 1735 MHz Body – LTE Band 4

MEASU	REMEN	IT RESUL	TS							
Gap Plot F		Position	Freq	uency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	SAR (W/kg)
			MHz	Ch.				_	(dBm)	
	-		1720.0	20050	20 MHz/QPSK	50	24	1	23.1	0.953
	-		1732.5	20175	20 MHz/QPSK	50	24	1	23.1	0.982
	-		1745.0	20300	20 MHz/QPSK	50	24	1	23.3	1.011
	-	Side A	1745.0	20300	20 MHz/QPSK	1	0	0	24.0	1.350
	-	Side A	1745.0	20300	20 MHz/QPSK	1	99	0	24.0	1.312
	-				20 MHz/16QAM	50	24	2	23.1	0.727
10 mm	-		1745.0	20300	20 MHz/16QAM	1	0	1	23.2	1.102
10 111111	-				20 MHz/16QAM	1	99	1	23.2	1.077
	-		1745.0	20300	20 MHz/QPSK	50	24	1	23.3	0.637
	-		4745.0	20200	20 MHz/QPSK	1	0	0	24.0	0.743
	_	Side B	1745.0	20300	20 MHz/QPSK	1	99	0	24.0	0.787
	-			20300	20 MHz/16QAM	50	24	2	23.1	0.515
	-		1745.0		20 MHz/16QAM	1	0	1	23.2	0.734
	-	1			20 MHz/16QAM	1	99	1	23.2	0.671
	-	Side C	1745.0	20300	20 MHz/QPSK	50	24	1	23.3	0.752
	6		4745.0	00000	20 MHz/QPSK	1	0	0	24.0	1.020
5 mm at	-		1745.0	20300	20 MHz/QPSK	1	99	0	24.0	1.094
battery	_		1745.0	20300	20 MHz/16QAM	50	24	2	23.1	0.698
	-	1			20 MHz/16QAM	1	0	1	23.2	0.788
	-				20 MHz/16QAM	1	99	1	23.2	0.823
	-		1745.0	20300	20 MHz/QPSK	50	24	1	23.3	0.517
	-	1	4745.0	00000	20 MHz/QPSK	1	0	0	24.0	0.739
	-	0:4- D	1745.0	20300	20 MHz/QPSK	1	99	0	24.0	0.605
	-	Side D			20 MHz/16QAM	50	24	2	23.1	0.355
	-		1745.0	20300	20 MHz/16QAM	1	0	1	23.2	0.491
40	-	1			20 MHz/16QAM	1	99	1	23.2	0.474
10 mm	-		1745.0	20300	20 MHz/QPSK	50	24	1	23.3	0.524
	-	1	4745.0	20200	20 MHz/QPSK	1	0	0	24.0	0.678
	-	0:4- 5	1745.0	20300	20 MHz/QPSK	1	99	0	24.0	0.735
	-	Side E			20 MHz/16QAM	50	24	2	23.1	0.338
	-	1	1745.0	20300	20 MHz/16QAM	1	0	1	23.2	0.440
	-	1			20 MHz/16QAM	1	99	1	23.2	0.422

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	⊠Body	_
2.	Test Signal Call Mode	☐Test Code	⊠Base Station Simulator	
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
4.	Tissue Depth is at least 15	.0 cm		

SAR Data Summary – 835 MHz Body – LTE Band 5

MEASU	REMEN	IT RESUL	TS							
Gap	Plot	Position		uency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	SAR (W/kg)
			MHz	Ch.					(dBm)	
	-		836.5	20525	10 MHz/QPSK	25	12	1	22.8	0.644
	-		836.5	20525	10 MHz/QPSK	1	0	0	24.0	1.045
	-	Side A	000.0	20020	10 MHz/QPSK	1	49	0	24.0	0.952
	-	Olde A			10 MHz/16QAM	25	12	2	21.9	0.533
	-		836.5	20525	10 MHz/16QAM	1	0	1	23.4	0.960
10 mm	-				10 MHz/16QAM	1	49	1	23.3	0.885
10 111111	-		836.5	20525	10 MHz/QPSK	25	12	1	22.8	0.382
	-	- Side B	836.5	20525	10 MHz/QPSK	1	0	0	24.0	0.585
	•			20020	10 MHz/QPSK	1	49	0	24.0	0.540
	-				10 MHz/16QAM	25	12	2	21.9	0.306
	-		836.5	20525	10 MHz/16QAM	1	0	1	23.4	0.482
	-				10 MHz/16QAM	1	49	1	23.3	0.443
	-		836.5	20525	10 MHz/QPSK	25	12	1	22.8	0.658
	7	- Side C	836.5	20525	10 MHz/QPSK	1	0	0	24.0	0.942
5 mm at	-		030.3	20525	10 MHz/QPSK	1	49	0	24.0	0.817
battery	-		836.5	20525	10 MHz/16QAM	25	12	2	21.9	0.465
	-				10 MHz/16QAM	1	0	1	23.4	0.766
	-				10 MHz/16QAM	1	49	1	23.3	0.690
	-		836.5	20525	10 MHz/QPSK	25	12	1	22.8	0.284
	-		020.5	20525	10 MHz/QPSK	1	0	0	24.0	0.435
	-	Side D	836.5	20525	10 MHz/QPSK	1	49	0	24.0	0.374
	-	Side D			10 MHz/16QAM	25	12	2	21.9	0.257
	-		836.5	20525	10 MHz/16QAM	1	0	1	23.4	0.401
10	-				10 MHz/16QAM	1	49	1	23.3	0.337
10 mm	-		836.5	20525	10 MHz/QPSK	25	12	1	22.8	0.213
	-		000 5	20525	10 MHz/QPSK	1	0	0	24.0	0.311
	-	C: 4 - E	836.5	20525	10 MHz/QPSK	1	49	0	24.0	0.279
	-	Side E			10 MHz/16QAM	25	12	2	21.9	0.148
	-		836.5	20525	10 MHz/16QAM	1	0	1	23.4	0.214
	-				10 MHz/16QAM	1	49	1	23.3	0.183

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	⊠Body	_
2.	Test Signal Call Mode	☐Test Code	⊠Base Station Simulator	
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
4.	Tissue Depth is at least 15	.0 cm		

SAR Data Summary – 710 MHz Body – LTE Band 17

MEASU	REMEN	IT RESUL	TS							
Gap	Plot	Position		uency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	SAR (W/kg)
			MHz	Ch.				rarget	(dBm)	
	-		710.0	23790	10 MHz/QPSK	25	12	1	23.0	0.642
	-		710.0	23790	10 MHz/QPSK	1	0	0	23.9	0.734
	-	Side A	7 10.0	23790	10 MHz/QPSK	1	49	0	23.8	0.529
	-	Side A			10 MHz/16QAM	25	12	2	22.0	0.563
	1		710.0	23790	10 MHz/16QAM	1	0	1	23.1	0.720
10 mm	-				10 MHz/16QAM	1	49	1	23.0	0.482
10 111111			710.0	23790	10 MHz/QPSK	50	0	1	22.9	0.391
	-	Side B	710.0	22700	10 MHz/QPSK	1	0	0	23.9	0.485
	-		710.0	23790	10 MHz/QPSK	1	49	0	23.8	0.360
	-	Side B	710.0	23790	10 MHz/16QAM	25	12	2	22.0	0.365
	-				10 MHz/16QAM	1	0	1	23.1	0.426
	-				10 MHz/16QAM	1	49	1	23.0	0.350
	-		710.0	23790	10 MHz/QPSK	50	0	1	22.9	0.604
	8	Side C	710.0	00700	10 MHz/QPSK	1	0	0	23.9	0.745
5 mm at	-		710.0	23790	10 MHz/QPSK	1	49	0	23.8	0.536
battery	-		710.0	23790	10 MHz/16QAM	25	12	2	22.0	0.530
,	-				10 MHz/16QAM	1	0	1	23.1	0.648
	-				10 MHz/16QAM	1	49	1	23.0	0.481
	-		710.0	23790	10 MHz/QPSK	50	0	1	22.9	0.289
	-	1	740.0	00700	10 MHz/QPSK	1	0	0	23.9	0.349
	-	0:4- 0	710.0	23790	10 MHz/QPSK	1	49	0	23.8	0.261
	-	Side D			10 MHz/16QAM	25	12	2	22.0	0.258
	-	1	710.0	23790	10 MHz/16QAM	1	0	1	23.1	0.304
40	-	1			10 MHz/16QAM	1	49	1	23.0	0.229
10 mm	-		710.0	23790	10 MHz/QPSK	50	0	1	22.9	0.138
	-	1	740.0	00700	10 MHz/QPSK	1	0	0	23.9	0.165
	-	0:4- 5	710.0	23790	10 MHz/QPSK	1	49	0	23.8	0.128
	-	Side E			10 MHz/16QAM	25	12	2	22.0	0.133
	-	1	710.0	23790	10 MHz/16QAM	1	0	1	23.1	0.155
	-	1			10 MHz/16QAM	1	49	1	23.0	0.122

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	⊠Body	_
2.	Test Signal Call Mode	☐Test Code	⊠Base Station Simulator	
3.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
4.	Tissue Depth is at least 15	.0 cm		

SAR Data Summary – 2450 MHz Body 802.11b

MEASUREMENT RESULTS									
Gap	Plot	Position	Frequency		Modulation	Antenna	End Power	SAR (W/kg)	
Oup			MHz	Ch.	modulation	7 tintorina	(dBm)	(////.g/	
10 mm	-	Side A	2437	6	DSSS		17.48	0.195	
10 111111	9	Side B	2437	6	DSSS	Main	17.48	0.287	
5 mm at battery	_	Side C	2437	6	DSSS	IVIAIII	17.48	0.248	

1.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
2.	Test Signal Call Mode	⊠Test Code	Base Station Sim	ulator
3.	Test Configuration	☐With Belt Clip	Without Belt Clip	o ⊠N/A
4.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – Simultaneous Transmit

MEAS	MEASUREMENT RESULTS										
Plot	Position	Frequency (WLAN)		Frequency (WWAN)		WWAN Technology	SAR (W/kg)	SAR (W/kg)	Total		
		MHz	Ch.	MHz	Ch.		WLAN	WWAN	SAR (W/kg)		
ı	Side A	2437	6	1880.0	9400	WCDMA	0.195	1.395	1.59*		
-	Side B	2437	6	1732.5	20175	LTE Band 4	0.287	0.787	1.07		
-	Side C	2437	6	1852.4	9262	WCDMA	0.248	1.334	1.58*		
1	Side D	2437	6	1732.5	20175	LTE Band 4	0.154 ¹	0.739	0.89		
ı	Side E	2437	6	1880.0	18900	LTE Band 2	0.195 ¹	0.951	1.15		
10	Side A	2437	6	1880.0	9400	WCDMA	Volume Sca	n Measured	1.46 ²		
11	Side C	2437	6	1852.4	9262	WCDMA	Volume Sca	n Measured	1.45 ²		
							Dody				

Body 1.6 W/kg (mW/g) averaged over 1 gram

I.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	ght Head
	SAR Configuration	Head	⊠Body	
2.	Test Signal Call Mode		☐Base Station Simula	tor
3.	Test Configuration	☐With Belt Cli	ip Without Belt Clip	\boxtimes N/A

Tissue Depth is at least 15.0 cm

Note: The WWAN and WLAN antennas can transmit simultaneously. Therefore, the SAR is calculated by summing the individual SAR values on each side. The highest SAR value of all bands was used to determine each sides compliance.

Calculated SAR value for positions not requiring testing.

Information used for calculations:

WiFi maximum power level: 56 mW f_{GHz} 2.45 GHz

Side D Antenna Distance: 76 mm (66 mm from side + 10 mm gap)
Side E Antenna Distance: 60 mm (50 mm from side + 10 mm gap)

Side D WiFi Antenna: $[56/76]^*[\sqrt{2.45/7.5}]=0.154 \text{ W/kg}$ Side E WiFi Antenna: $[56/60]^*[\sqrt{2.45/7.5}]=0.195 \text{ W/kg}$

^{*} Calculating the SAR value at the high end of the power level tolerance increases the simultaneous value to greater than 1.6 W/kg and calculating SAR to peak location ratios also exceed 0.3. See calculation on page 63. Therefore a volume scan was conducted.

¹ SAR testing was not required in this position due to the distance of the antenna from this side. The SAR value was calculated based on the Draft version of the new KDB 447498 dated April 23, 2012 Section C) 1) iii) a) i) on page 10.

Calculated simultaneous SAR value at the upper limit of the tolerance and calculated SAR to peak location ratio.

For side A: Conducted power tested was 23.86 dB for the WWAN and the upper limit of the tolerance is 24.00 dB. Extrapolating the SAR value to the upper limit for WWAN results in a 3.28% increase in SAR. Conducted power tested was 17.48 dB for the WLAN and the upper limit of the tolerance is 17.50 dB. Extrapolating the SAR value to the upper limit for WLAN results in a 0.46% increase in SAR.

For side C: Conducted power tested was 23.83 dB for the WWAN and the upper limit of the tolerance is 24.00 dB. Extrapolating the SAR value to the upper limit for WWAN results in a 3.99% increase in SAR. Conducted power tested was 17.48 dB for the WLAN and the upper limit of the tolerance is 17.50 dB. Extrapolating the SAR value to the upper limit for WLAN results in a 0.46% increase in SAR.

Position	Measured SAR for WLAN	Calculated SAR for WLAN	Measured SAR for WWAN	Calculated SAR for WWAN	Extrapolated Simultaneous SAR
Side A	0.195	0.196	1.395	1.441	1.64*
Side C	0.248	0.249	1.334	1.387	1.64*

Note: The above table is to determine the appropriate method to show compliance for Side A and Side C.

SAR to peak location ratio is calculated using the following formula.

[Sum of stand alone SAR]/Minimum separation distance must be less than 0.3.

The minimum separation distance between the two antennas is 4.2 cm.

Therefore, for both Side A and Side C, the calculation is: 1.64/4.2 cm=0.39

^{*} Since the two sides (Side A and Side C) are calculated above the SAR limit at the upper limit of the conducted power tolerance, a volume scan is required for these two positions. The volume scan results are listed in the table on page 62 and demonstrates that the SAR value for the simultaneous transmission complies with the limit of 1.6 W/kg.

12. Test Equipment List

Table 12.1 Equipment Specifications

Туре	Calibration Due Date	Calibration Done Date	Serial Number
ThermoCRS Robot	N/A	N/A	RAF0338198
ThermoCRS Controller	N/A	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	09/07/2012	09/07/2011	RFE-217
SPEAG E-Field Probe EX3DV4	08/20/2013	08/20/2012	3693
Aprel UniPhantom	N/A	N/A	RFE-273
Aprel Validation Dipole ALS-D-750-S-2 Body	11/15/2012	11/15/2010	177-00501
Aprel Validation Dipole ALS-D-835-S-2 Body	11/16/2012	11/16/2010	180-00561
Speag Validation Dipole D1750V2	03/22/2013	03/22/2011	1028
Aprel Validation Dipole ALS-D-1900-S-2 Body	11/16/2012	11/16/2010	210-00713
Aprel Validation Dipole ALS-D-2450-S-2 Body	11/18/2012	11/18/2010	RFE-278
SPEAG Validation Dipole D1900V2	11/12/2012	11/12/2010	5d116
SPEAG Validation Dipole D2450V2	11/11/2012	11/11/2010	829
Agilent N1911A Power Meter	03/29/2013	03/29/2012	GB45100254
Agilent N1922A Power Sensor	03/29/2013	03/29/2012	MY45240464
Advantest R3261A Spectrum Analyzer	03/29/2013	03/29/2012	31720068
Agilent (HP) 8350B Signal Generator	03/29/2013	03/29/2012	2749A10226
Agilent (HP) 83525A RF Plug-In	03/29/2013	03/29/2012	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/29/2013	03/29/2012	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	04/03/2013	04/03/2012	2904A00595
Agilent (HP) 8960 Base Station Sim.	04/05/2014	04/05/2012	MY48360364
Anritsu MT8820C	03/30/2014	03/30/2012	6201010002
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Body Equivalent Matter (750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (835/900 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1900 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2450 MHz)	N/A	N/A	N/A

13. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

14. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, June 2001.
- [5] IEEE Standard 1528 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.
- [6] Industry Canada, RSS 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2010.
- [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.