

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: September 07~ 20, 2012 Test Report S/N: LR500111209I Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID IC APPLICANT PJA-ES100 10595A-ES100 CUBEDGE Inc.

Equipment Class : Part 15 Spread Spectrum Transmitter (DSS)

Manufacturing Description:Bluetooth SpeakerManufacturer:CUBEDGE Inc.Model name:EDGE.sound

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2003

RSS-210 and ISSUE No.:8 Date:2010

Frequency Range : 2402 ~ 2480MHz

RF power : Max 4.50 dBm – Conducted

Data of issue : September 20, 2012

This test report is issued under the authority of:

Kyu-Hyun Lee, Manager

The test was supervised by:

Jung-Moo Her, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 INFORMATION ABOUT THE FHSS CHARACTERISTICS	6
3.3 TECHNICAL CHARACTERISTICS TEST	7
3.3.1 CARRIER FREQUENCY SEPARATION	7
3.3.2 NUMBER OF HOPPING FREQUENCIES	9
3.3.3 20 dB BANDWIDTH	11
3.3.4 TIME OF OCCUPANCY (Dwell Time)	18
3.3.5 TRANSMITTER OUTPUT POWER	23
3.3.6 BAND – EDGE & SPURIOUS	27
3.3.7 FIELD STRENGTH OF HARMONICS-Transmitter	33
3.3.8 FIELD STRENGTH OF HARMONICS-Receiver	38
3.3.9 AC CONDUCTED EMISSIONS	43
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	48

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2013-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2013-04-24	EMC accredited Lab.
FCC	U.S.A	610755	2014-04-27	FCC filing
FCC	U.S.A	649054	2013-04-13	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2014-06-21	VCCI registration
VCCI	JAPAN	T-2009	2013-12-23	VCCI registration
VCCI	JAPAN	G-563	2015-05-28	VCCI registration
IC	CANADA	5799A-1	2015-06-21	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name : CUBEDGE Inc.

Address : 360 Nueces St. Suite. 1415 Austin, TX 78701, United States

Telephone / Facsimile : +1-512-501-1880 / +1-512-501-1881

2-2 Equipment Under Test (EUT)

Trade name : Bluetooth Speaker

Model name : EDGE.sound

Serial number : Identical prototype

Date of receipt : September 06, 2012

EUT condition : Pre-production, not damaged

Antenna type : Chip antenna (M/N: ADSBTF0702-A02) Max Gain 4.20 dBi

Frequency Range : $2402 \sim 2480 \text{MHz}$

RF output power : Max. 4.50 dBm - Conducted

Number of channels : 79

Duty cycle : 81.24 % Channel spacing : 1MHz

Channel Access Protocol : Frequency Hopping Spread Spectrum (FHSS)

Power Source : 3.7 Vdc by Battery (Li-Polymer Battery)

Firmware Version : V1.0.0

2-4 Tested frequency

Bluetooth	LOW	MID	HIGH
Frequency (MHz)	2402	2441	2480

2-5 Ancillary Equipment

Equipment Model No.		Serial No.	Manufacturer
-			-

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	Carrier Frequency Separation	> 25 kHz		С
15.247(a)	Number of Hopping Frequencies > 15 hops			С
15.247(a)	20 dB Bandwidth 99% Bandwidth	> 1.5 MHz		С
15.247(a)	Dwell Time	< 0.4 seconds	Conducted	С
15.247(b)	Transmitter Output Power	< 250 mWatt		С
15.247(d)	Conducted Spurious emission > 20 dBc			С
15.247(d)	Band Edge	> 20 dBc		С
15.249 / 15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)	D. I. e. I.	С
15.109	Field Strength	-	Radiated	С
15.207 /15.107	AC Conducted Emissions	EN 55022	Line Conducted	С
15.203	Antenna requirement	-	-	С

<u>Note 2</u>: The data in this test report are traceable to the national or international standards.

Note 1: Antenna Requirement

→ The CUBEDGE, FCC ID: PJA-ES100, IC: 10595A-ES100 unit complies with the requirement of §15.203.

The antenna type is chip antenna.

Note 2: The sample was tested according to the following specification: FCC Parts 15.247; ANSI C-63.4-2003

Note3: TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.10-2009) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" were used in the measurement of the CUBEDGE, FCC ID: PJA-ES100, IC: 10595A-ES100

3.2 Information about the FHSS characteristics:

3.2.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1600 hops/s.

3.2.2 Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

3.2.3 System Receiver Input Bandwidth

Each channel bandwidth is 1MHz

3.2.4 Equipment Description

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of The regulations in Section15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h):In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

3.3 Transmitter requirements

3.3.1 Carrier Frequency Separation

Procedure:

The test follows DA000705. The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = $1 \sim 3$ MHz (wide enough to capture the peaks of two adjacent channels)

RBW = 10 kHz (1% of the span or more) Sweep = auto

VBW = 10 kHz Detector function = peak

Trace = max hold

Measurement Data:

Test Results				
Carrier Frequency Separation (MHz) Result				
1.0014	Complies			

- See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

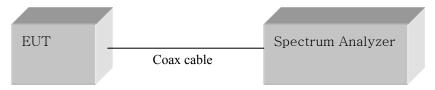
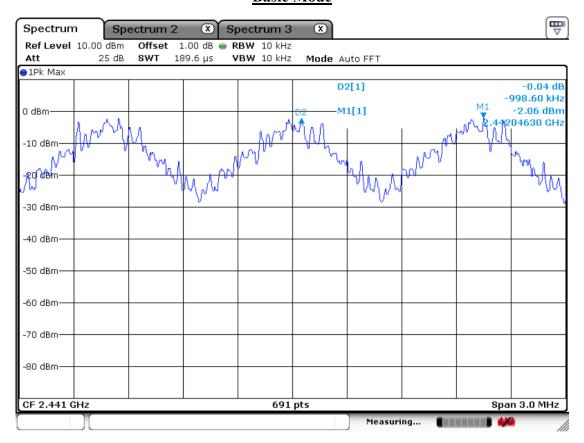
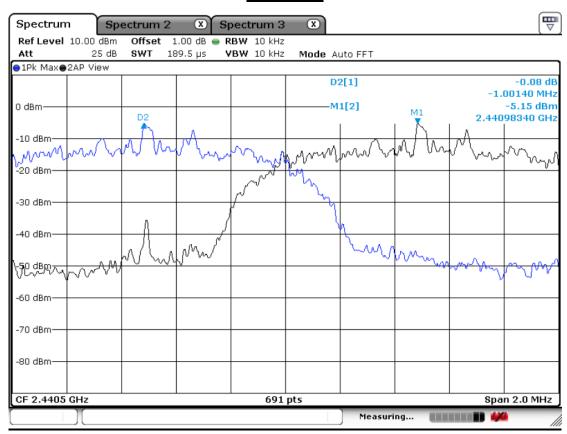




Figure 1: Measurement setup for the carrier frequency separation

Carrier Frequency Separation Basic Mode

EDR Mode

3.3.2 Number of Hopping Frequencies

Procedure:

The test follows DA000705. The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

The spectrum analyzer is set to:

Frequency range Start = 2400.0MHz, Stop = 2483.5 MHz RBW = 100 kHz (1% of the span or more) Sweep = auto

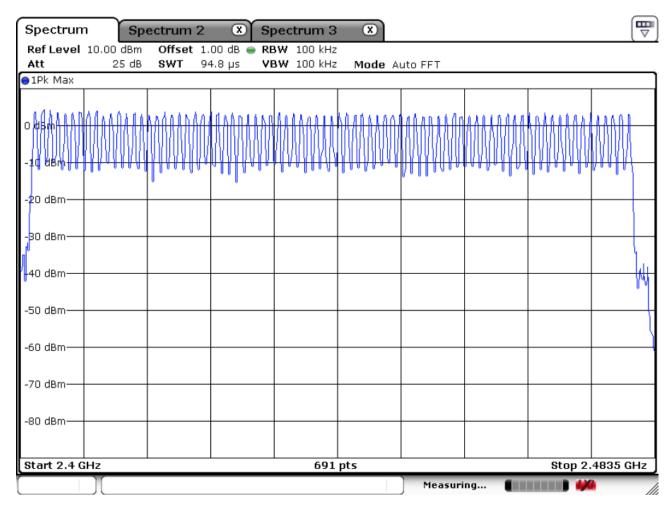
 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = $\max \text{ hold}$ Span > 40MHz

Measurement Data: Complies

Total number of Hopping Channels	79
----------------------------------	----

- See next pages for actual measured spectrum plots.


Minimum Standard:

At least 15 hopes

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Number of Hopping Frequencies

3.3.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 3 MHz (approximately 2 or 3 times of the 20 dB bandwidth)

RBW = 30 kHz Sweep = auto

 $VBW = 30 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = max hold

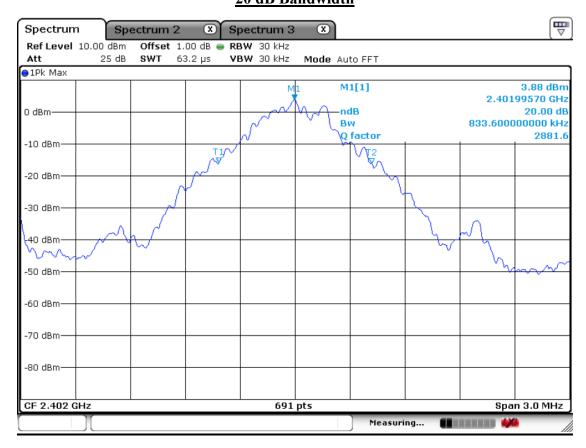
Measurement Data: Basic Mode

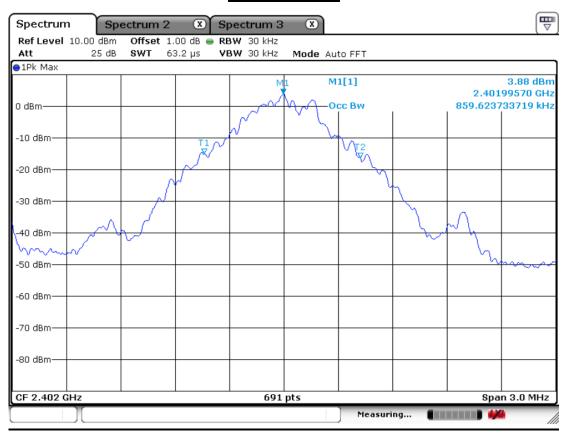
Frequency	Channel No.	Test Results(MHz)		
(MHz)	Channel No.	20dB Bandwidth	99% Bandwidth	
2402	0	0.834	0.860	
2441	39	0.825	0.860	
2480	78	0.821	0.860	

Measurement Data: EDR Mode

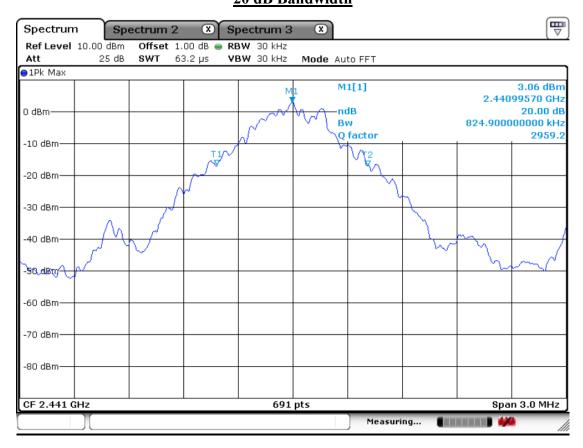
Frequency	Channel No.	Test Results(MHz)		
(MHz)	Channel No.	20dB Bandwidth	99% Bandwidth	
2402	0	1.285	1.185	
2441	39	1.263	1.172	
2480	78	1.255	1.168	

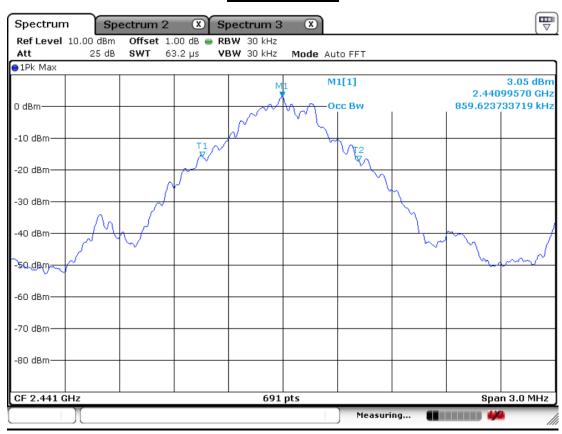
See next pages for actual measured spectrum plots.

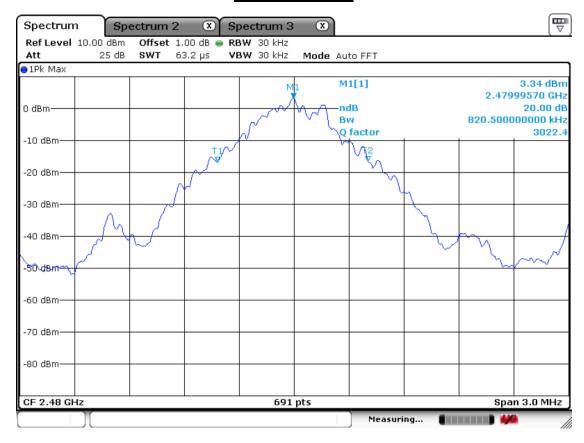

Minimum Standard:

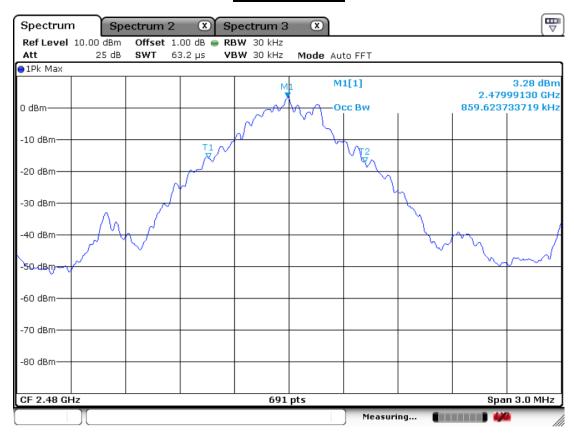

N/A

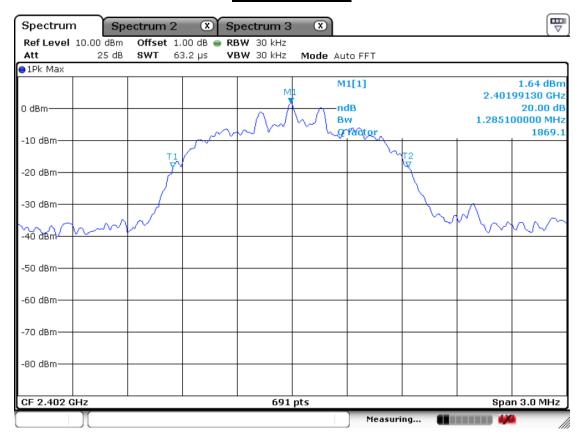
Measurement Setup

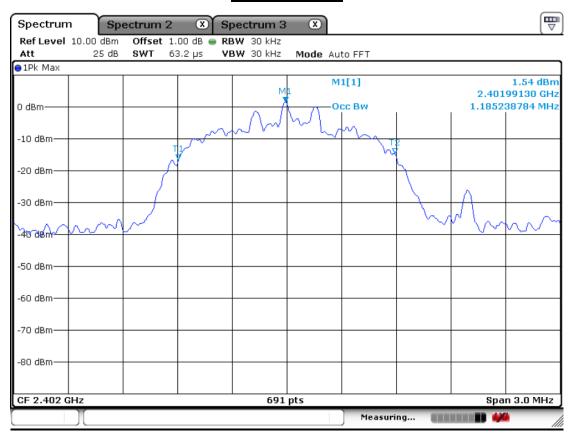

Same as the Chapter 3.2.1 (Figure 1)

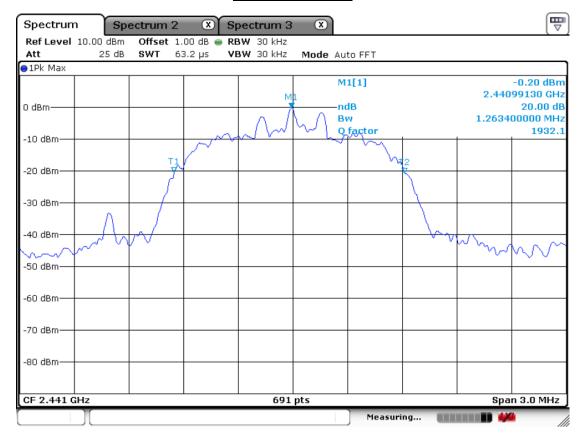

Channel 1 of basic mode 20 dB Bandwidth

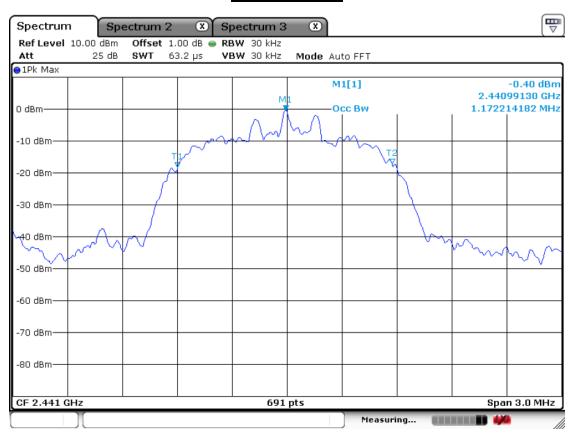


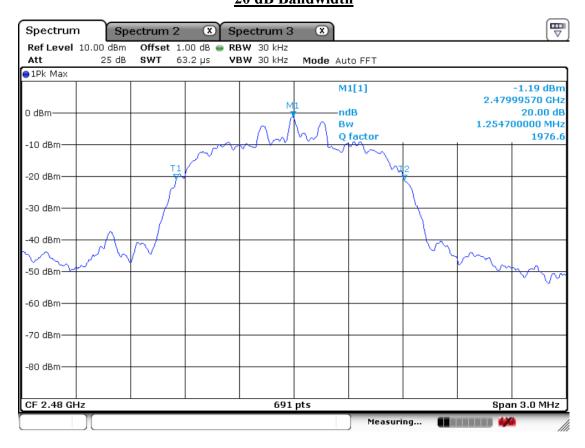

Channel 2 of basic mode 20 dB Bandwidth

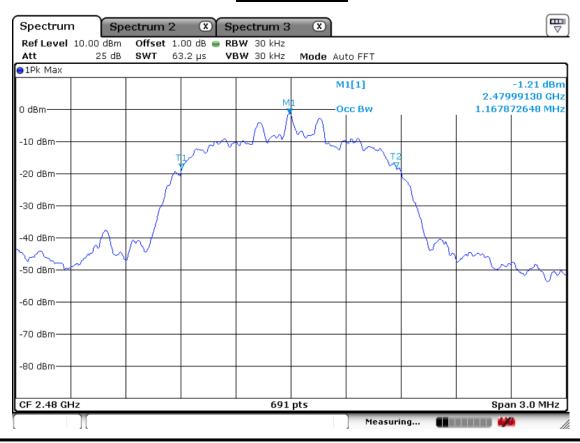



Channel 3 of basic mode 20 dB Bandwidth


Channel 1 at EDR mode 20 dB Bandwidth




Channel 2 at EDR mode


20 dB Bandwidth

Channel 3 at EDR mode 20 dB Bandwidth

3.3.4 Time of Occupancy (Dwell Time)

Procedure:

The test follows DA000705. The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

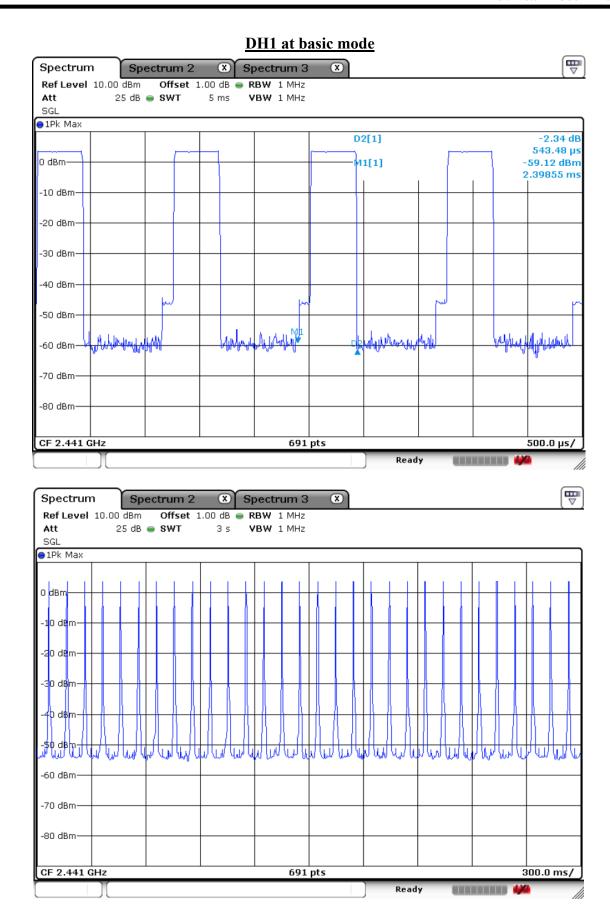
Center frequency = 2441 MHz Span = zero

RBW = 1 MHz $VBW = 1 MHz (VBW \ge RBW)$

Trace = max hold Detector function = peak

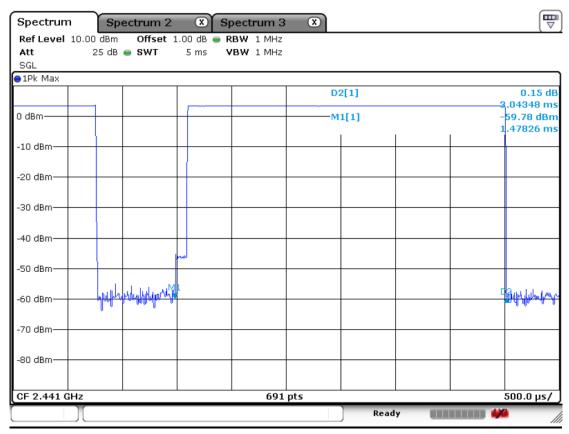
Measurement Data:

Mode	Number of transmission in a 31.6s (79Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
DH1	30(Times / 3sec) *10.533 = 315.99	0.543	171.58	400
DH3	15(Times / 3sec) *10.533 = 158.00	1.797	283.92	400
DH5	10(Times / 3sec) *10.533 = 105.33	3.043	320.52	400
EDR 3Mbps DH5	10(Times / 3sec) *10.533 = 105.33	3.080	324.42	400


- See next pages for actual measured spectrum plots.
- dwell time = $\{(\text{number of hopping per second / number of slot}) \times \text{duration time per channel}\} \times 0.4 \text{ ms}$


Minimum Standard:

0.4 seconds within a 30 second period per any frequency


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

DH5 at basic mode

DH5 at EDR mode with 3Mbps Spectrum Spectrum 2 Spectrum 3 Ref Level 10.00 dBm Offset 1.00 dB @ RBW 1 MHz 25 dB 🅌 SWT Att VBW 1 MHz 5 ms SGL ●1Pk Max D2[1] -2.28 dB 3.07971 ms ⊕ dBmi~/^ ~~~WYYTEYY}~~\ -61.01 dBm 1.19565 ms -10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBm -70 dBm--80 dBm-CF 2.441 GHz 691 pts 500.0 µs/ Ready Spectrum Spectrum 2 Spectrum 3 X Att 25 dB 🅌 SWT 3 s VBW 1 MHz SGL ●1Pk Max 0 dBm--10 dBn -20 dBr -30 dBn -40 dBn -50 dB Mohane homen ا كناريالينس -70 dBm--80 dBm-300.0 ms/ CF 2.441 GHz 691 pts

Ready

3.3.5 Transmitter Output Power

Procedure:

The test follows DA000705. The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 10 MHz (approximately 5 times of the 20 dB bandwidth)

RBW = 3 MHz (greater than the 20dB bandwidth of the emission being measured)

 $VBW = 3 MHz (VBW \ge RBW)$

Detector function = peak

Trace = max hold

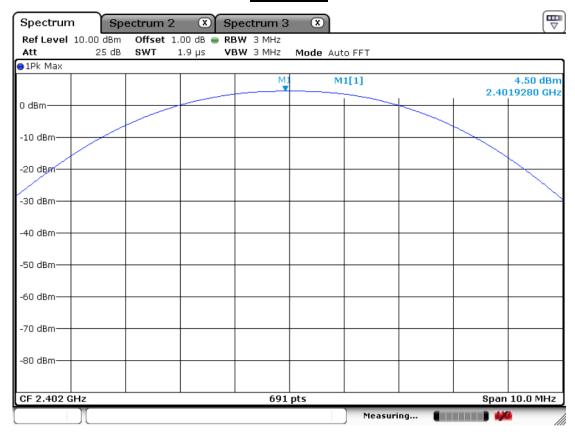
Sweep = auto

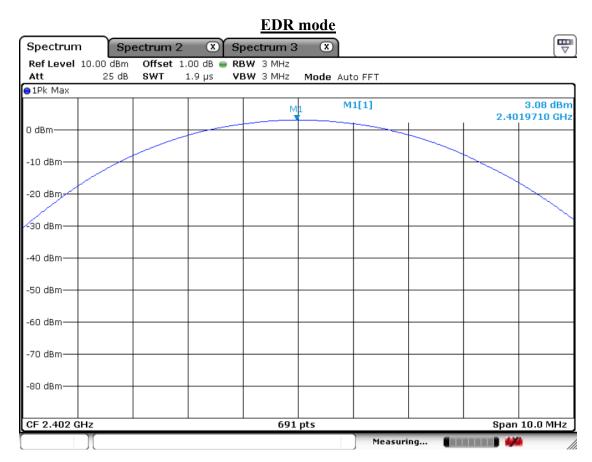
Measurement Data: Basic Mode

Frequency	Ch.	Test Results		
(MHz)	CII.	dBm	mW	Result
2402	0	4.50	2.82	Complies
2441	39	3.52	2.25	Complies
2480	78	3.80	2.40	Complies

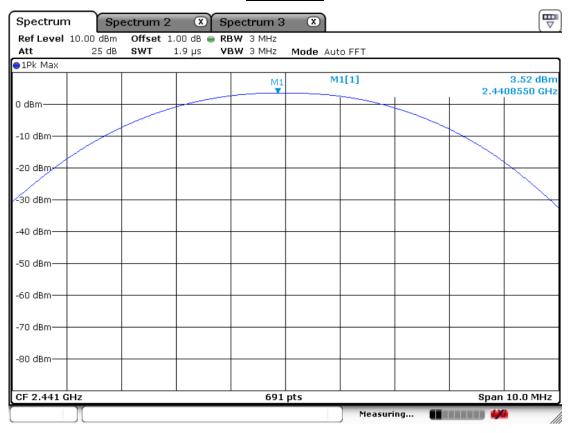
Measurement Data: EDR Mode

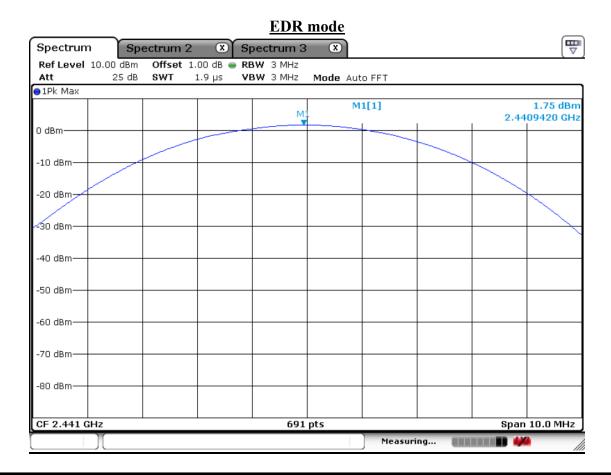
Frequency	Ch.	Test Results		
(MHz)	CII.	dBm	mW	Result
2402	0	3.08	2.03 Compl	
2441	39	1.75	1.50	Complies
2480	78	1.16	1.31	Complies

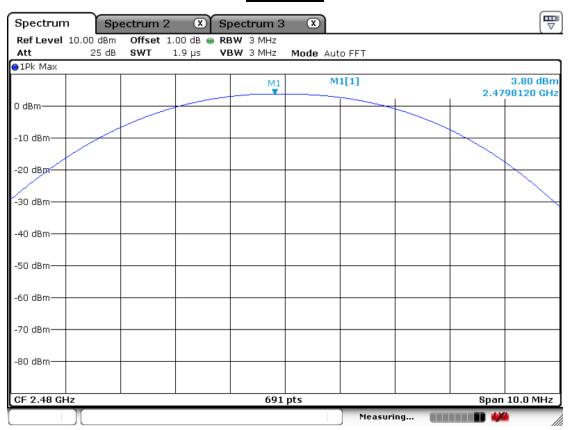

⁻ See next pages for actual measured spectrum plots.


Minimum Standard:	< 250 mW

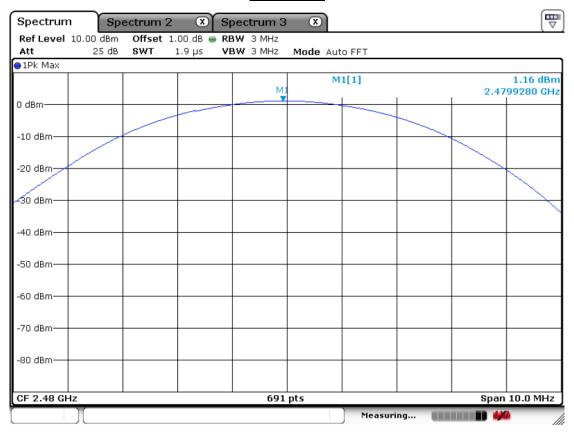
Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)


Channel 1 Basic mode



Channel 2 Basic mode



Channel 3 Basic mode

EDR mode

3.3.6 Band Edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

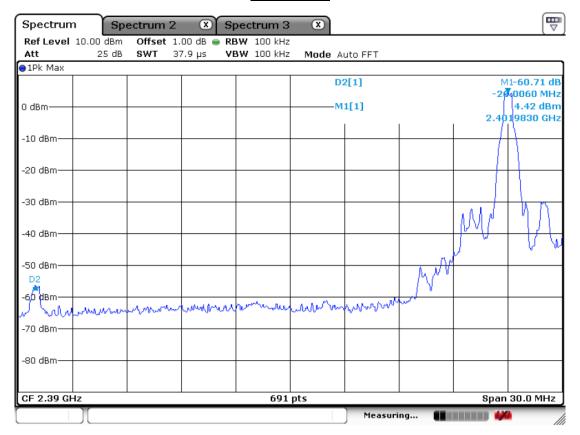
Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

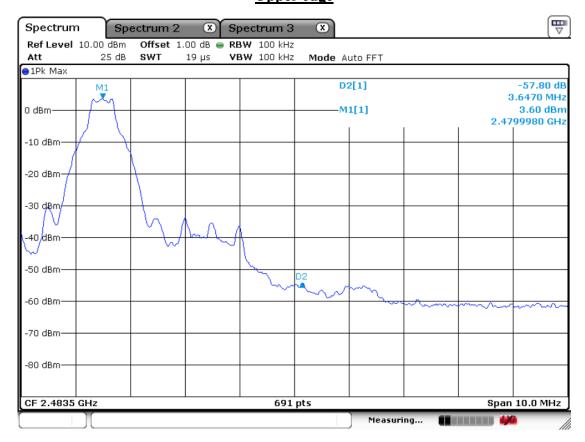
Span = $2\sim30 \text{ MHz}$ Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies


- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

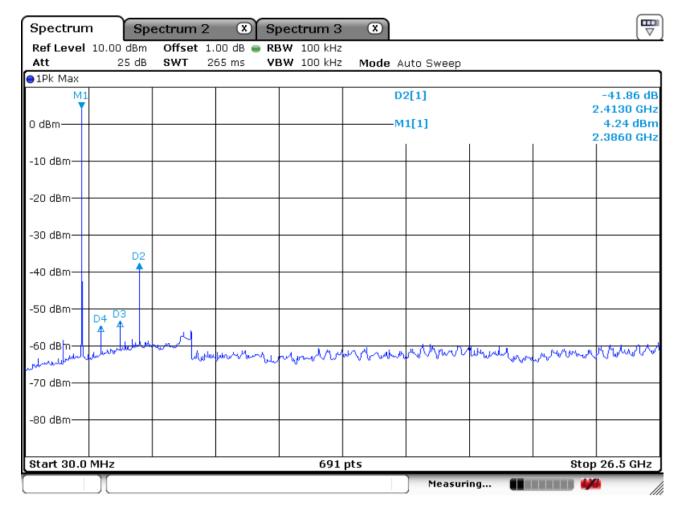

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

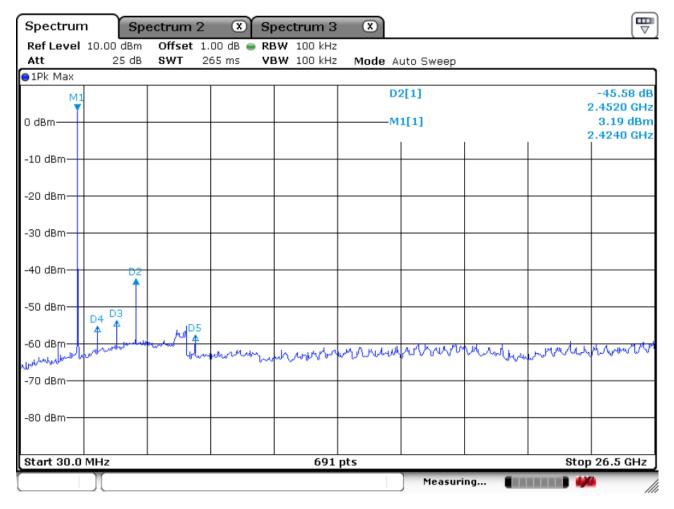
Band – edge Lower edge

Upper edge

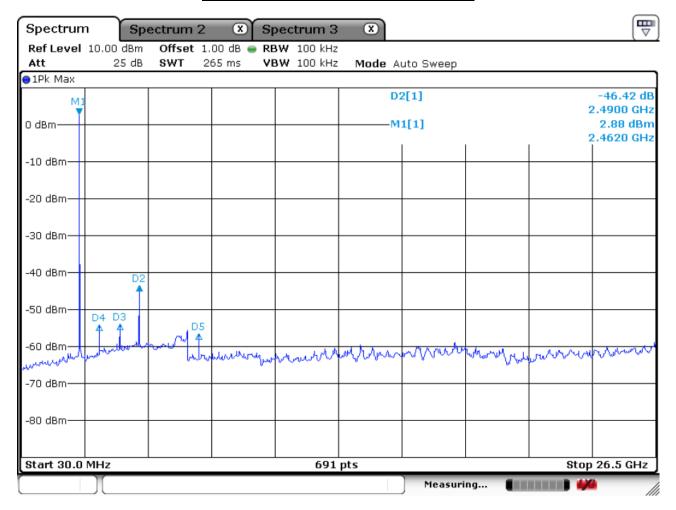
Band-edges in the restricted band 2310-2390 MHz measurement


Frequency	[dBuV/m]			(Correction Factor	Lim [dBu\		Res	sult V/m]	Mar [dl	
[MHz]			Pol.	Antenna	Amp. Gain + Cable Loss	AV /	Peak	AV /	Peak	AV /	Peak
2375.9	38.4	49.9	Н	28.2	31.2	54.0	74.0	35.4	46.9	18.6	27.1

Band-edges in the restricted band 2483.5-2500 MHz measurement


Frequency	Reading [dBuV/m]		Pol.		Correction Factor	Limits [dBuV/m]					
[MHz]	AV /	' Peak	POI.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV / Peak		AV /	Peak
2484.0	29.2	44.4	Н	28.2	31.2	54.0	74.0	26.2	41.4	27.8	32.6

Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented.


<u>Unwanted Emission – Low channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

<u>Unwanted Emission – Middle channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

<u>Unwanted Emission – High channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

3.3.7 Field Strength of Harmonics-Transmitter

Procedure:

Radiated emissions from the EUT were measured according to the dictates of DA000705. The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

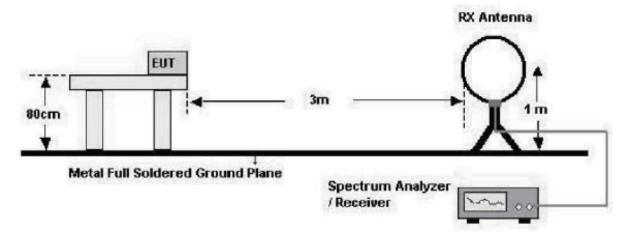
- (a) In the frequency range of 9kHz to 30 MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

 $VBW \ge RBW$

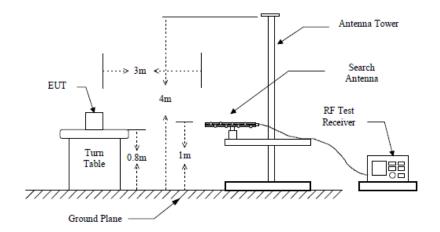
The spectrum analyzer is set to:

Center frequency = the worst channel

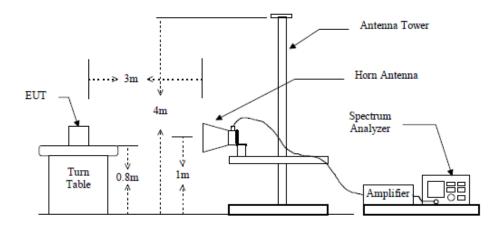
Frequency Range = $10 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$


RBW = $100 \text{ kHz} (10 \text{MHz} \sim 1 \text{ GHz})$

= 1 MHz (1 GHz \sim 10th harmonic)


Span = 100 MHz Detector function = peak

Trace = $\max \text{ hold}$ Sweep = auto


below 30MHz

below 1GHz (30MHz to 1GHz)

above 1GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20dB below limit include from 9KHz to 30MHz.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz) (@ 300m)
0.490 ~ 1.705	24000/F(kHz) (@ 30m)
1.705 ~ 30	30(@ 30m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

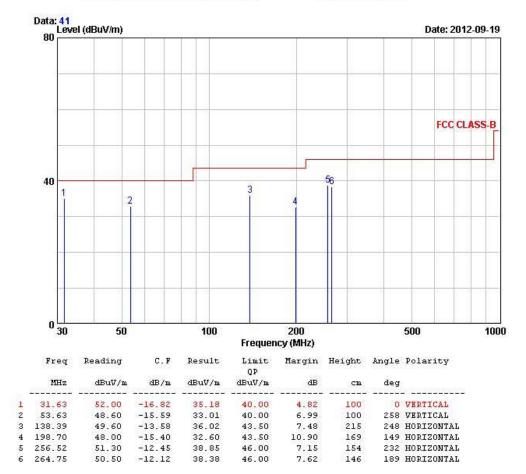
^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data:

Frequency			Reading Correction [dBuV/m] Pol. Factor							Result [dBuV/m]				
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak			
4804.3	43.0 59.0		Н	33.1	25.2	-30.23	54	74	20.7	36.7	33.3	37.3		
	Reading		Readin				Correction		Lin	nits	Res	sult	Mai	rgin
Frequency	_	V/m]	Pol.	_	Factor	D.C.F	[dBu	ıV/m] [dBuV		[dBuV/m] [dBi		В]		
[MHz]	AV /	Peak		Antenna Amp.Gain+Cable			AV/Peak		AV/Peak		V/Peak AV / Pe			
4882.1	30.8 51.2		2.1 30.8 51.2 H		33.1	25.2	25.2 -30.23	54	74	8.5	28.9	45.5	45.1	
												_		
	Pea	ding			Correction		Lin	nits	Pag	sult	Mai	rgin		
Frequency	_	V/m]	Pol.	_	Factor	D.C.F	_	V/m]	_	V/m]		B]		
[MHz]	_	Peak		Antenna	Amp.Gain+Cable		-	Peak	_	Peak	_	Peak		
4960.0	35.3	49.7	Н	33.1	25.2	-30.23	54	74	13.0	27.4	41.0	46.6		

⁻ No other emissions were detected at a level greater than 20dB below limit.

⁻ D.C.F (Duty Cycle Correction Factor) = 20log(The worst Case DWELL Time/100ms)


 $^{= 20\}log(3.080 \text{ms}/100 \text{ms}) = -30.23$

Radiated Emissions – BT + Charging mode

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: EDGE.sound TEST MODE: B/T+Charging mode
Temp Humi : 25 / 47 Tested by: PARK H W

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.3.8 Field Strength of Harmonics - Receivers

Definition:

The field strength of emissions from intentional radiators was measured. In case of the air temperature of the test site is out of the range is 10 to 40°C before the testing proceeds the warm-up time of EUT maintain adequately

Test method : FCC Part 15.209

Frequency Range : $25 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$

Bandwidth : 120 kHz (F < 1 GHz) 1 MHz (F > 1 GHz)

Distance of antenna : 3 meters

Test mode : Rx mode

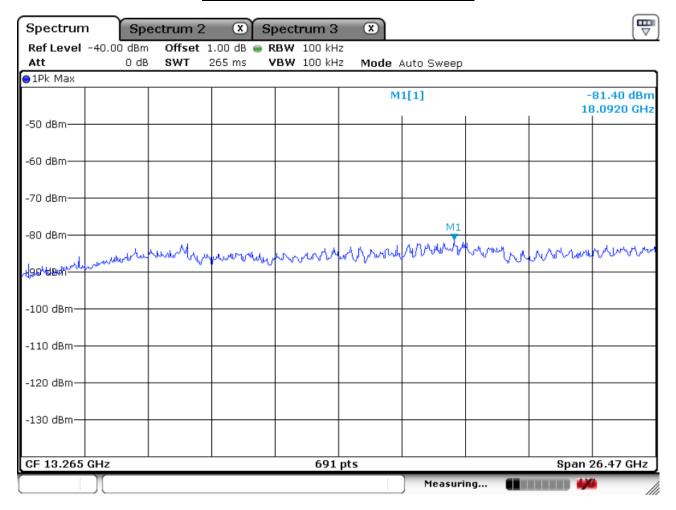
Result : Complies

Measurement Data:

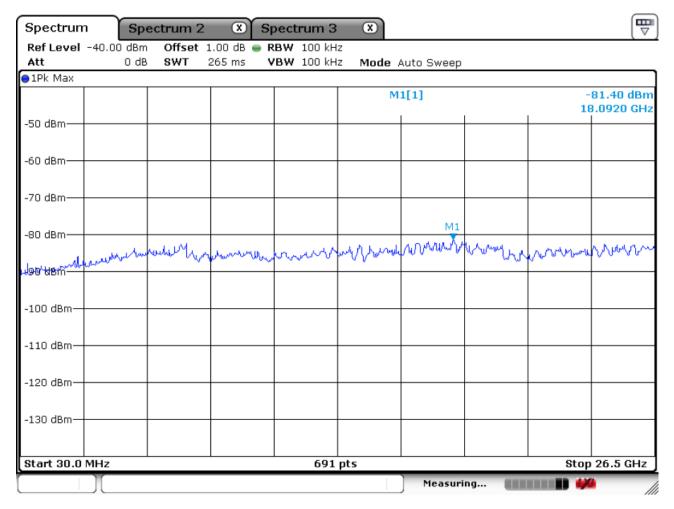
- Refer to the next page.

- No other emissions were detected at a level greater than 20dB below limit

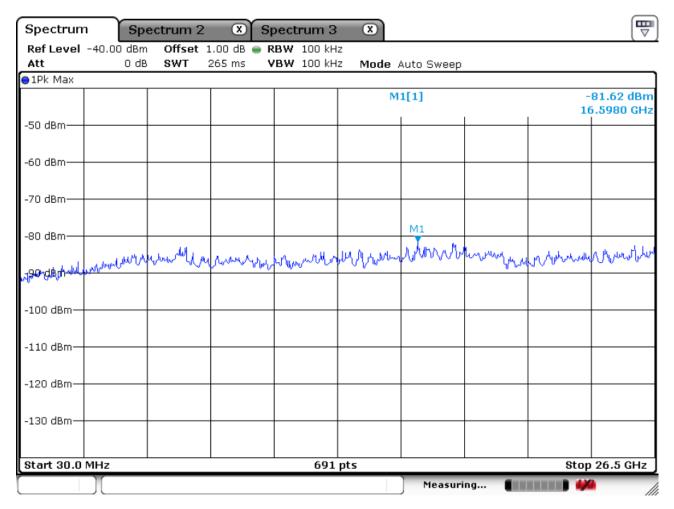
It gave the worse case emissions.


Field Strength Limit

Part 15.209 LIMIT:


Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz)
0.490 ~ 1.705	24000/F(kHz)
1.705 ~ 30	30
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.


<u>Conducted Emission – Low channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

<u>Conduceted Emission – Middle channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

<u>Conduceted Emission – High channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

Measurement Data:

Frequency	Reading			Correction	Limits	Result	Margin	
rrequency	[dBuV/m]	Pol.		Factor	[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Peak		Antenna Amp.Gain+Cable		AV / Peak	AV / Peak	AV / Peak	
	No en	nissions	were detec	ted at a level greater th	an 20dB below	limit.		
Evaguanav	Reading		(Correction	Limits	Result	Margin	
Frequency	[dBuV/m]	Pol.	Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Peak		Antenna	Amp.Gain+Cable	AV / Peak	AV / Peak	AV / Peak	
	No en	nissions	were detec	ted at a level greater th	an 20dB below			
Frequency	Reading		Correction		Limits	Result	Margin	
rrequeitcy	[dBuV/m]	Pol.		Factor	[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Peak		Antenna	Amp.Gain+Cable	AV / Peak	AV / Peak	AV / Peak	
	No en	nissions	were detect	ted at a level greater th	an 20dB below			

3.3.9 AC Conducted Emissions

Procedure:

AC power line conducted emissions from the EUT were measured according to the dictates of ANSI C63.4:2003. The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

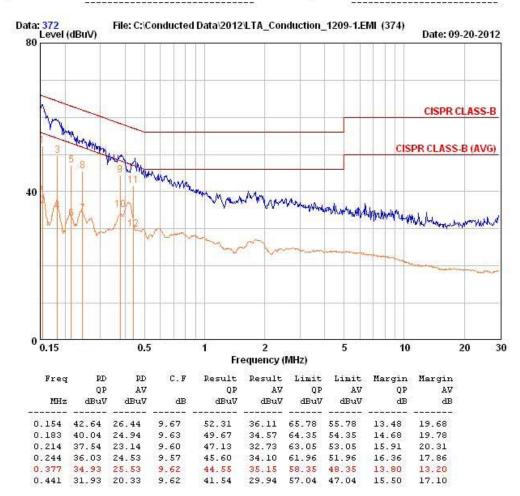
- Refer to the next page.
- No other emissions were detected at a level greater than 20dB below limit
- It gave the worse case emissions

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted I	cimit (dBuV)
(MHz)	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

^{*} Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

Radiated Emissions – BT + Charging mode - LINE



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

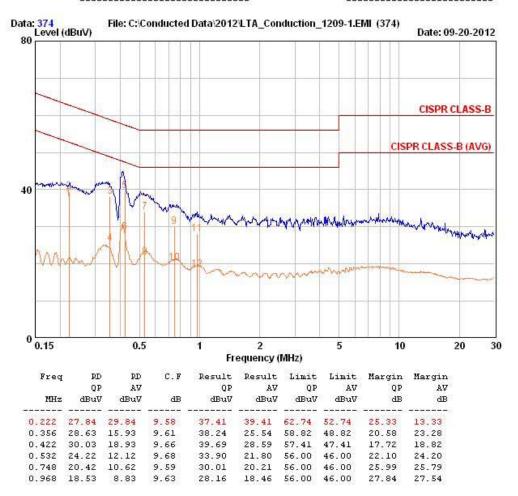
EUT / Model No. : EDGE.sound Phase : LINE

Test Mode : B/T+Charging mode Test Power : 120 / 60

Temp./Humi. : 22 / 62 Test Engineer : PARK H W

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

Radiated Emissions – BT + Charging mode - NEUTRAL



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : EDGE.sound Phase : NEUTRAL

Test Mode : B/T+Charging mode Test Power : 120 / 60

Temp./Humi. : 22 / 62 Test Engineer : PARK H W

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Spectrum Analyzer (~30GHz)	FSV-30	100757	R&S	1 year	2012-01-10
2	Signal Generator (~3.2GHz)	8648C	3623A02597	HP	1 year	2012-03-26
3	Signal Generator (1~20GHz)	83711B	US34490456	НР	1 year	2012-03-26
4	Attenuator (3dB)	8491A	37822	НР	2 year	2010-10-08
5	Attenuator (10dB)	8491A	63196	НР	2 year	2010-10-08
6	Attenuator (30dB)	8498A	3318A10929	НР	2 year	2011-01-05
7	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year	2012-03-26
8	EMI Test Receiver (~1GHz)	ESCI7	100722	R&S	1 year	2011-10-07
9	RF Amplifier (~1.3GHz)	8447D	2439A09058	HP	2 year	2010-10-08
10	RF Amplifier (1~18GHz)	8449B	3008A02126	НР	2 year	2012-03-26
11	Horn Antenna (1~18GHz)	BBHA 9120D	9120D122	SCHWARZBECK	2 year	2010-12-24
12	Horn Antenna (18 ~ 40GHz)	SAS-574	154	Schwarzbeck	2 year	2010-11-25
13	Horn Antenna (18 ~ 40GHz)	SAS-574	155	Schwarzbeck	2 year	2010-11-25
14	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	2 year	2010-10-07
15	Dipole Antenna	VHA9103	2116	SCHWARZBECK	2 year	2010-11-25
16	Dipole Antenna	VHA9103	2117	SCHWARZBECK	2 year	2010-11-25
17	Dipole Antenna	VHA9105	2261	SCHWARZBECK	2 year	2010-11-25
18	Dipole Antenna	VHA9105	2262	SCHWARZBECK	2 year	2010-11-25
19	Hygro-Thermograph	THB-36	0041557-01	ISUZU	2 year	2012-04-11
20	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
21	Power Divider	11636A	6243	HP	2 year	2010-10-08
22	DC Power Supply	6622A	3448A03079	НР	-	-
23	Frequency Counter	5342A	2826A12411	HP	1 year	2012-03-26
24	Power Meter	EPM-441A	GB32481702	HP	1 year	2012-03-26
25	Power Sensor	8481A	US41030291	НР	1 year	2011-10-07
26	Audio Analyzer	8903B	3729A18901	НР	1 year	2011-10-07
27	Modulation Analyzer	8901B	3749A05878	HP	1 year	2011-10-07
28	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2011-10-07
29	Stop Watch	HS-3	601Q09R	CASIO	2 year	2012-03-26
30	LISN	ENV216	100408	R&S	1 year	2011-10-07
31	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	2 year	2012-06-27
32	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-	-
33	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-	-
34	Loop Antenna	FMZB 1516	151602/94	SCHWARZBECK	2 year	2011-04-05