

RF Exposure Exhibit

EUT Name: Wireless Video Access Point

Model No.: 405

CFR 47 Part 2.1093

Prepared for:

Mark Rieger
Pace Americas
310 Providence Mine Road, Ste. 200
Nevada City, CA 95959
Tel: (530) 274 5440
Fax: (530) 273 6340

Prepared by:

TUV Rheinland of North America, Inc.
1279 Quarry Lane
Pleasanton, CA 94566
Tel: (925) 249-9123
Fax: (925) 249-9124
<http://www.tuv.com/>

Report/Issue Date: July 3, 2013
Project Number: 110737
Report Number: 31360999.009

RF Exposure Exhibit _____ 1

1 RF Exposure _____ 3

1 RF Exposure

1.1 Test Methodology

In this document, we try to prove the safety of radiation harmfulness to the human body for our product. The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 is followed. The Gain of the antenna used in this calculation is declared by the manufacturer, and the maximum total power input to the antenna is measured. Through the Friis transmission formula and the maximum gain of the antenna, we can calculate the distance, away from the product, where the limit of MPE is reached.

Although the Friis transmission formula is a far field assumption, the calculated result of that is an over-prediction for near field power density. We will take that as the worst case to specify the safety range.

1.2 RF Exposure Limit

According to FCC 1.1310 table 1: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (minutes)
(A) Limits For Occupational / Control Exposures				
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f ²)	6
30–300	1.0	6
300 - 1500	f/300	6
1500 - 100,000	5	6
(B) Limits For General Population / Uncontrolled Exposure				
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.037	0.2	30
300 - 1500	f/1500	30
1500 - 100,000	1.0	30

F = Frequency in MHz

* = Plane-wave equivalent power density

1.3 EUT Operating Condition

The software provided by Manufacturer enabled the EUT to transmit data at lowest, middle and highest channel individually.

1.4 Classification

The antenna of the product, under normal use condition, is at least 20cm away from the body of the user. Warning statement to the user for keeping at least 20cm or more separation distance with the antenna should be included in user's manual. So, this device is classified as a Mobile Device.

1.5 Test Results

1.5.1 Antenna Gain

The transmitting antenna was integrated. The directional antenna gain was +8.00 dBi or 6.31 (numeric).

1.5.2 Output Power into Antenna & RF Exposure value at distance 20cm

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Frequency (MHz)	Highest Power (dBm)	Max. Ant. Gain (dbi)	Power Density (mW/cm ²)	Limit (mW/cm ²)	Result
5150-5250	+14.87	8.0	0.0385	1.0	Pass
5250-5350	+20.79	8.0	0.1506	1.0	Pass
5470-5725	+21.41	8.0	0.1738	1.0	Pass
5725-5850	+27.41	8.0	0.6918	1.0	Pass

Note: Only one channel in the above frequency bands would be active at one time.

1.5.3 Sample Calculation

The Friss transmission formula: $P_d = (P_{out} * G) / (4 * \pi * R^2)$

Where;

P_d = power density in mW/cm²

P_{out} = output power to antenna in mW

G = 6.31; gain of antenna in linear scale

$\pi \approx 3.1416$

R = 20cm; distance between observation point and center of the radiator
in cm

Ref. : David K. Cheng, *Field and Wave Electromagnetics*, Second Edition, Page 640, Eq. (11-133).