

Electronics Tomorrow Limited

Application
For
Certification
(FCC ID: PEQ739191001)

Superheterodyne Receiver

WO# 0112242
WL/Ann Choy
November 17, 2001

INTERTEK TESTING SERVICES

LIST OF EXHIBITS

INTRODUCTION

<i>EXHIBIT 1:</i>	General Description
<i>EXHIBIT 2:</i>	System Test Configuration
<i>EXHIBIT 3:</i>	Emission Results
<i>EXHIBIT 4:</i>	Equipment Photographs
<i>EXHIBIT 5:</i>	Product Labelling
<i>EXHIBIT 6:</i>	Technical Specifications
<i>EXHIBIT 7:</i>	Instruction Manual
<i>EXHIBIT 8:</i>	Miscellaneous Information

INTERTEK TESTING SERVICES

MEASUREMENT/TECHNICAL REPORT

**Electronics Tomorrow Limited - MODEL: 7391
FCC ID: PEQ739191001**

November 17, 2001

This report concerns (check one:) Original Grant X Class II Change _____

Equipment Type: Low Power Communication Receiver (example: computer, printer, modem, etc.)

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes _____ No X

If yes, defer until: _____
date

Company Name agrees to notify the Commission by: _____
date

of the intended date of announcement of the product so that the grant can be issued on that date.

Transition Rules Request per 15.37? Yes _____ No X

If no, assumed Part 15, Subpart C for intentional radiator - the new 47 CFR [10-1-96 Edition] provision.

Report prepared by: Wilson Loke
Intertek Testing Services
2/F., Garment Center,
576, Castle Peak Road,
HONG KONG
Phone: 852-2173-8575
Fax: 852-2745-8306

INTERTEK TESTING SERVICES

Table of Contents

1.0 General Description	2
1.1 Product Description	2
1.2 Related Submittal(s) Grants	2
1.3 Test Methodology	3
1.4 Test Facility	3
2.0 System Test Configuration	5
2.1 Justification.....	5
2.2 EUT Exercising Software	5
2.3 Special Accessories.....	5
2.4 Equipment Modification	6
2.5 Support Equipment List and Description.....	6
3.0 Emission Results	8
3.1 Field Strength Calculation.....	9
3.2 Radiated Emission Configuration Photograph.....	11
3.3 Radiated Emission Data	12
4.0 Equipment Photographs	15
5.0 Product Labelling	17
6.0 Technical Specifications	19
7.0 Instruction Manual	21
8.0 Miscellaneous Information	23
8.1 Discussion of Pulse Desensitization	24
8.2 Calculation of Average Factor.....	25
8.3 Emissions Test Procedures.....	26

INTERTEK TESTING SERVICES

List of attached file

Exhibit type	File Description	filename
Test Report	Test Report	report.doc
Operation Description	Technical Description	descri.pdf
Test Setup Photo	Radiated Emission	Rconfig photos.doc
External Photo	External Photo	external photos.doc
Internal Photo	Internal Photo	internal photos.doc
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf

INTERTEK TESTING SERVICES

EXHIBIT 1

GENERAL DESCRIPTION

INTERTEK TESTING SERVICES

1.0 General Description

1.1 Product Description

The Equipment Under Test (EUT) is a receiver with integral antenna operating at 433.92 MHz. The EUT is powered by 6.0V d.c. (4 x 1.5V "AA" size alkaline battery). It receives temperature signal from the remote sensor and displays it on the unit. Also, it has internal sensor which measures indoor temperature. The temperature measurement can be in degree Celsius or Fahrenheit. Besides, it has RE-SYNC function, clock function and weather forecast function. For RE-SYNC function, it will force the unit to receive signals for 10 minutes.

For electronic filing, the brief circuit description is saved with filename: descri.pdf

1.2 Related Submittal(s) Grants

This is an application for Certification of a receiver.

INTERTEK TESTING SERVICES

1.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the emission data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

INTERTEK TESTING SERVICES

EXHIBIT 2

SYSTEM TEST CONFIGURATION

INTERTEK TESTING SERVICES

2.0 System Test Configuration

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (1992).

The EUT was powered from 4 fully charged 1.5V "AA" alkaline battery.

The frequency range from 30MHz to 2GHz was searched for radiated emissions from the device. Only those emissions reported were detected. All other emissions were at least 20 dB below the applicable limits.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was operated standalone and placed in the center of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it received continuously.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

INTERTEK TESTING SERVICES

2.4 Equipment Modification

Any modifications installed previous to testing by Electronics Tomorrow Limited will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services.

2.5 Support Equipment List and Description

This product was tested in a standalone configuration.

All the items listed under section 2.0 of this report are

Confirmed by:

*Wilson Loke
Manager
Intertek Testing Services Hong Kong Ltd.
Agent for Electronics Tomorrow Limited*

Signature

November 17, 2001

Date

INTERTEK TESTING SERVICES

EXHIBIT 3

EMISSION RESULTS

INTERTEK TESTING SERVICES

3.0 Emission Results

Data is included worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

INTERTEK TESTING SERVICES

3.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

where FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

INTERTEK TESTING SERVICES

3.1 Field Strength Calculation (cont'd)

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 62.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$PD = 0 \text{ dB}$$

$$AV = -10 \text{ dB}$$

$$FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 \text{ dB}\mu\text{V/m}$$

$$\text{Level in mV/m} = \text{Common Antilogarithm} [(32 \text{ dB}\mu\text{V/m})/20] = 39.8 \mu\text{V/m}$$

INTERTEK TESTING SERVICES

3.2 Radiated Emission Configuration Photograph

**Worst Case Radiated Emission
at
433.657 MHz**

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: Rconfig photos.doc

INTERTEK TESTING SERVICES

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 15.4 dB

TEST PERSONNEL:

Signature _____

Ben W. K. Ho, Compliance Engineer _____
Typed/Printed Name

November 17, 2001 _____
Date

INTERTEK TESTING SERVICES

Company: Electronics Tomorrow Limited
Model: 7391

Date of Test: November 2, 2001

Table 1

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	433.657 ¹	34.9	11.7	16	30.6	46.0	-15.4
H	867.713 ¹	23.4	22.2	16	29.6	46.0	-16.4
H	1300.971 ⁴	36.9	25.5	34	28.4	54.0	-25.6
H	1734.628 ⁴	35.6	26.5	34	28.1	54.0	-25.9

Notes:

1. Peak Detector Data unless otherwise stated.
2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

Test Engineer: Ben W. K. Ho

INTERTEK TESTING SERVICES

EXHIBIT 4

EQUIPMENT PHOTOGRAPHS

INTERTEK TESTING SERVICES

4.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.doc & internal photos.doc

INTERTEK TESTING SERVICES

EXHIBIT 5

PRODUCT LABELLING

INTERTEK TESTING SERVICES

5.0 Product Labelling

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf

INTERTEK TESTING SERVICES

EXHIBIT 6

TECHNICAL SPECIFICATIONS

INTERTEK TESTING SERVICES

6.0 Technical Specifications

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

INTERTEK TESTING SERVICES

EXHIBIT 7

INSTRUCTION MANUAL

INTERTEK TESTING SERVICES

7.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf

This manual will be provided to the end-user with each unit sold/leased in the United States.

INTERTEK TESTING SERVICES

EXHIBIT 8

MISCELLANEOUS INFORMATION

INTERTEK TESTING SERVICES

8.0 Miscellaneous Information

This miscellaneous information includes the test procedure and calculation of factors such as pulse desensitization and averaging factor.

INTERTEK TESTING SERVICES

8.1 Discussion of Pulse Desensitization

The determination of pulse desensitivity was made in accordance with Hewlett Packard Application Note 150-2, *Spectrum Analysis ... Pulsed RF*.

This device is a superheterodyne receiver. The stabilized signals are continuous, and no desensitization of the measurement equipment occurs.

INTERTEK TESTING SERVICES

8.2 Calculation of Average Factor

The emission limits are specified using spectrum analyzers or receivers which incorporate quasi-peak detectors. Typical measurements are made using peak detectors, however, emissions which approach the respective emission limit are measured using a quasi-peak detector.

For measurement above 1 GHz, spectrum analyzers or receivers using average detectors are employed, or the appropriate average factor can be applied.

Measurements using spectrum analyzers with filters other than peak detectors are recorded in the data table section of this report.

This device is a superheterodyne receiver.

It is not necessary to apply average factor to the measurement results.

INTERTEK TESTING SERVICES

8.3 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of superheterodyne receivers operating under Part 15, Subpart B rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 1992.

The equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels. The height of the antenna is varied from one to four meters.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Exhibit 8.3.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 450 kHz to 30 MHz.

INTERTEK TESTING SERVICES

8.3 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.4 - 1992.

The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater when frequency is below 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Measurements are normally conducted at a measurement distance of three meters. All measurements are extrapolated to three meters using inverse scaling, unless otherwise reported. Measurements taken at a closer distance are so marked.