FCC ID: PED-SURESIGNAL

MPE EVALUATION

FCC 1.1310:- The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3–3.0 3.0–30 30–300 30–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	ion/Uncontrolled Exp	osure	
0.3-1.34 1.34-30 30-300 300-1500 1500-100,000	614 824f 27.5	1.63 2.19/f 0.073	*(100) *(180/f²) 0.2 f/1500 1.0	30 30 30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density

NoTE 1 To TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Calculation Method of RF Safety Distance

$$S = PG/4\Pi r^2 = EIRP/4\Pi r^2 ==> r = \sqrt{PG/4\Pi S} = \sqrt{EIRP/4\Pi S}$$

Where:

P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power.

S: power density mW/cm²

G: numeric gain of antenna relative to isotropic radiator

r: distance to center of radiation in cm

EIRP = 35.8 dBm = 3802 mW (max. eirp measured at 901 MHz)

 $S = 896/1500 \text{ mW/cm}^2$ (limits for general population/uncontrolled exposure)

$$r = \sqrt{EIRP/4\Pi S} = \sqrt{3802 / (4\Pi(896/1500))} = 22.5 \text{ cm}$$

The minimum safety distance is approximately 23 cm. In the user manual, RF exposure statement will specified a safety distance of 30 cm.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: whk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

File #: SSS24-FTX February 8. 2001

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)