# FCC & Industry Canada Certification Test Report For the Eka Systems Inc. SiP radio module

P9X-900SIP 6766A-900SIP

WLL JOB# EKA11322 Rev. 2 April 30, 2010 Re-issued June 1, 2010

Prepared for:

Eka Systems Inc. 20201 Century Blvd. Suite 250 Germantown, MD 20874

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879



# FCC & Industry Canada Certification Test Report for the Eka Systems Inc. SiP radio module P9X-900SIP 6766A-900SIP

WLL JOB# EKA11322 Rev.2

April 30, 2010 Re-issued June 1, 2010

Prepared by:

Elmer Rodriguez Testing Engineer

Reviewed by:

Steven D. Koster EMC Operations Manager

#### **Abstract**

This report has been prepared on behalf of Eka Systems Inc. to support the attached Application for Equipment Authorization. The test report and application are submitted for a Frequency Hopping Spread Spectrum Transmitter under Part 15.247 (7/2008) of the FCC Rules and Regulations and Spectrum Management and Telecommunications Policy RSS-210 of Industry Canada. This Certification Test Report documents the test configuration and test results for the Eka Systems Inc. SiP radio module.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by the American Association for Laboratory Accreditation (A2LA) under Certificate 2675.01 as an independent FCC test laboratory.

The Eka Systems Inc. SiP radio module complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 and Industry Canada RSS-210.

| Revision History | Description of Change                                                                                                | Date           |
|------------------|----------------------------------------------------------------------------------------------------------------------|----------------|
| Rev 0            | Initial Release                                                                                                      | April 30, 2010 |
| Rev 1            | Added TX/RX spurious info etc. to table                                                                              | May 25, 2010   |
| Rev 2            | Completed edits to address TCB comments. Incorrect reference to DTS system, erroneous statement of max output power. | June 1, 2010   |

# Table of Contents

| Abst                                                                | ract                                                               | ii |
|---------------------------------------------------------------------|--------------------------------------------------------------------|----|
| 1                                                                   | Introduction                                                       | 1  |
| 1.1                                                                 | Compliance Statement                                               | 1  |
| 1.2                                                                 |                                                                    |    |
| 1.3                                                                 | 3 Contract Information                                             | 1  |
| 1.4                                                                 | 4 Test Dates                                                       | 1  |
| 1.5                                                                 | Test and Support Personnel                                         | 1  |
| 1.6                                                                 |                                                                    |    |
| 2                                                                   | Equipment Under Test                                               | 3  |
| 2.1                                                                 | EUT Identification & Description                                   | 3  |
| 2.2                                                                 | 2 Test Configuration                                               | 3  |
| 2.3                                                                 | 5                                                                  |    |
| 2.4                                                                 | 4 Test Location                                                    | 4  |
| 2.5                                                                 | Measurements                                                       | 4  |
|                                                                     | 2.5.1 References                                                   | 4  |
| 2.6                                                                 | Measurement Uncertainty                                            | 4  |
| 3                                                                   | Test Equipment                                                     | 6  |
| 4                                                                   | Test Results                                                       |    |
| 4.1                                                                 |                                                                    |    |
| 4.2                                                                 |                                                                    |    |
| 4.3                                                                 | $\mathcal{L}$                                                      |    |
| 4.4                                                                 | ( )                                                                | 15 |
| 4.5                                                                 |                                                                    |    |
| 21                                                                  | 0[A8.1(b)]                                                         | 18 |
| 4.6                                                                 | 1                                                                  |    |
| 4.7                                                                 | Radiated Spurious Emissions: (FCC Part §2.1053)                    | 36 |
|                                                                     | 4.7.1 Test Procedure                                               |    |
| 4.8                                                                 | Receiver Radiated Spurious Emissions: (§15.209, RSS-Gen [7.2.3.2]) | 52 |
|                                                                     | 4.8.1 Test Procedure                                               |    |
|                                                                     | 4.8.2 Test Summary                                                 | 53 |
| <b>T</b> • ,                                                        | CTT 1.1                                                            |    |
| List (                                                              | of Tables                                                          |    |
| Table                                                               | e 1: Device Summary                                                | 3  |
| Table                                                               | e 2: Expanded Uncertainty List                                     | 5  |
|                                                                     | e 3: Test Equipment List                                           |    |
|                                                                     | e 4: RF High Power Output                                          |    |
|                                                                     | e 5: RF Low Power Output                                           |    |
|                                                                     | e 6: Occupied Bandwidth Results                                    |    |
|                                                                     | e 7: Spectrum Analyzer Settings                                    |    |
|                                                                     | e 8: Radiated Emission Test Data, Low Frequency Data (<1GHz)       |    |
|                                                                     | e 9: Radiated Emission Test Data, Low Frequency Data (<1GHz)       |    |
|                                                                     | e 10: Radiated Emission Test Data, Low Frequency Data (<1GHz)      |    |
| Table 10. Radiated Ellission Test Data, Low Frequency Data (>10112) |                                                                    |    |

| Table 11: Radiated Emission Test Data, Low Frequency Data (<1GHz)  | 40 |
|--------------------------------------------------------------------|----|
| Table 12: Radiated Emission Test Data, Low Frequency Data (<1GHz)  | 41 |
| Table 13: Radiated Emission Test Data, Low Frequency Data (>1GHz)  | 42 |
| Table 14: Radiated Emission Test Data, Low Frequency Data (>1GHz)  | 43 |
| Table 15: Radiated Emission Test Data, Low Frequency Data (>1GHz)  | 44 |
| Table 16: Radiated Emission Test Data, Low Frequency Data (>1GHz)  | 45 |
| Table 17: Radiated Emission Test Data, Low Frequency Data (>1GHz)  | 46 |
| Table 18: Radiated Emission Test Data, Low Frequency Data (>1GHz)  | 47 |
| Table 19: Radiated Emission Test Data, Low Frequency Data (>1GHz)  | 48 |
| Table 20: Radiated Emission Test Data, Low Frequency Data (>1GHz)  | 49 |
| Table 21: Radiated Emission Test Data, Low Frequency Data (>1GHz)  | 50 |
| Table 22: Radiated Emission Test Data, Low Frequency Data (>1GHz)  | 51 |
| Table 14: Radiated Emission Test Data, High Frequency Data (>1GHz) | 53 |

# List of Figures

| Figure 1: Duty Cycle Plot                                                      | 8  |
|--------------------------------------------------------------------------------|----|
| Figure 2: RF Peak High Power, Low Channel                                      | 9  |
| Figure 3: RF Peak High Power, Mid Channel                                      | 10 |
| Figure 4: RF Peak High Power, High Channel                                     | 10 |
| Figure 5: RF Peak Low Power, Low Channel                                       | 11 |
| Figure 6: RF Peak Low Power, Mid Channel                                       | 11 |
| Figure 7: RF Peak Low Power, High Channel                                      | 12 |
| Figure 8: Occupied Bandwidth, Low Channel                                      | 16 |
| Figure 9: Occupied Bandwidth, Mid Channel                                      | 17 |
| Figure 10: Occupied Bandwidth, High Channel                                    | 17 |
| Figure 11: Channel Spacing                                                     | 19 |
| Figure 12: Number of Channels                                                  | 19 |
| Figure 13: Conducted Spurious Emissions, Band Edge, Low channel                | 20 |
| Figure 14: Conducted Spurious Emissions, Band Edge, High Channel               | 21 |
| Figure 15: Conducted Spurious Emissions, Band Edge, Low Channel Hoping Mode    | 21 |
| Figure 16: Conducted Spurious Emissions, Band Edge, High Channel Hoping Mode   | 22 |
| Figure 17: Conducted Spurious Emissions, Band Edge, Low Power, Low Channel     | 22 |
| Figure 18: Conducted Spurious Emissions, Band Edge, Low Power, High Channel    | 23 |
| Figure 19: Conducted Spurious Emissions, High Power, Low Channel 30 - 900MHz   | 23 |
| Figure 20: Conducted Spurious Emissions, High Power, Low Channel 900 – 930MHz  | 24 |
| Figure 21: Conducted Spurious Emissions, High power, Low Channel 930 – 5GHz    | 24 |
| Figure 22: Conducted Spurious Emissions, High Power, Low Channel 5GHz – 9.3GHz | 25 |
| Figure 23: Conducted Spurious Emissions, High Power, Mid Channel 30 – 900MHz   | 25 |
|                                                                                |    |

| Figure 24: Conducted Spurious Emissions, High Power, Mid Channel 900 – 930MHz   | 26 |
|---------------------------------------------------------------------------------|----|
| Figure 25: Conducted Spurious Emissions, High Power, Mid Channel 930MHz - 5GHz  | 26 |
| Figure 26: Conducted Spurious Emissions, High Power, Mid Channel 5GHz – 9.3GHz  | 27 |
| Figure 27: Conducted Spurious Emissions, High Power, High Channel 30 – 900MHz   | 27 |
| Figure 28: Conducted Spurious Emissions, High Power, High Channel 900 – 930MHz  | 28 |
| Figure 29: Conducted Spurious Emissions, High Power, High Channel 930MHz - 5GHz | 28 |
| Figure 30: Conducted Spurious Emissions, High Power, High Channel 5GHz – 9.3GHz | 29 |
| Figure 31: Conducted Spurious Emissions, Low Power, Low Channel 30 - 902MHz     | 29 |
| Figure 32: Conducted Spurious Emissions, Low Power, Low Channel 900- 930MHz     | 30 |
| Figure 33: Conducted Spurious Emissions, Low Power, Low Channel 930MHz - 5GHz   | 30 |
| Figure 34: Conducted Spurious Emissions, Low Power, Low Channel 5GHz – 9.3GHz   | 31 |
| Figure 35: Conducted Spurious Emissions, Low Power, Mid Channel 30 - 900MHz     | 31 |
| Figure 36: Conducted Spurious Emissions, Low Power, Mid Channel 900- 930MHz     | 32 |
| Figure 37: Conducted Spurious Emissions, Low Power, Mid Channel 930MHz - 5GHz   | 32 |
| Figure 38: Conducted Spurious Emissions, Low Power, Mid Channel 5GHz – 9.3GHz   | 33 |
| Figure 39: Conducted Spurious Emissions, Low Power, High Channel 30 - 900MHz    | 33 |
| Figure 40: Conducted Spurious Emissions, Low Power, High Channel 900- 930MHz    | 34 |
| Figure 41: Conducted Spurious Emissions, Low Power, High Channel 930MHz - 5GHz  | 34 |
| Figure 42: Conducted Spurious Emissions Low Power High Channel 5GHz – 9 3GHz    | 35 |

#### 1 Introduction

# 1.1 Compliance Statement

The Eka Systems Inc. SiP radio module complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 (7/2008) and Industry Canada RSS-210. This device was tested as a limited module approval. This module was tested with three different types of antennas.

## 1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance with FCC Public Notice DA-00-705 "Measurement Guidance for Frequency Hopping Spread Spectrum Systems. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

#### 1.3 Contract Information

Customer: Eka Systems Inc.

20201 Century Blvd. Suite 250

Germantown, MD 20874

Purchase Order Number: 31209

Ouotation Number: 65330A

#### 1.4 Test Dates

Testing was performed on the following date(s):

#### 1.5 Test and Support Personnel

Washington Laboratories, LTD Elmer Rodriguez; James Ritter

Client Representative Steve Seymour

# 1.6 Abbreviations

| A            | Ampere                                                 |  |
|--------------|--------------------------------------------------------|--|
| ac           | alternating current                                    |  |
| AM           | Amplitude Modulation                                   |  |
| Amps         | Amperes                                                |  |
| b/s          | bits per second                                        |  |
| BW           | <b>B</b> and <b>W</b> idth                             |  |
| CE           | Conducted Emission                                     |  |
| cm           | <b>c</b> enti <b>m</b> eter                            |  |
| CW           | Continuous Wave                                        |  |
| dB           | <b>d</b> eci <b>B</b> el                               |  |
| dc           | direct current                                         |  |
| EMI          | Electromagnetic Interference                           |  |
| EUT          | Equipment Under Test                                   |  |
| FM           | Frequency Modulation                                   |  |
| G            | giga - prefix for 10 <sup>9</sup> multiplier           |  |
| Hz           | <b>H</b> ertz                                          |  |
| IF           | Intermediate Frequency                                 |  |
| k            | <b>k</b> ilo - prefix for 10 <sup>3</sup> multiplier   |  |
| LISN         | Line Impedance Stabilization Network                   |  |
| M            | Mega - prefix for 10 <sup>6</sup> multiplier           |  |
| m            | meter                                                  |  |
| μ            | <b>m</b> icro - prefix for 10 <sup>-6</sup> multiplier |  |
| NB           | Narrow <b>b</b> and                                    |  |
| QP           | Quasi-Peak                                             |  |
| RE           | Radiated Emissions                                     |  |
| RF           | Radio Frequency                                        |  |
| rms          | root-mean-square                                       |  |
| SN           | Serial Number                                          |  |
| S/A          | Spectrum Analyzer                                      |  |
| $\mathbf{V}$ | Volt                                                   |  |

# 2 Equipment Under Test

# 2.1 EUT Identification & Description

The Eka Systems Inc. SiP radio module is a 900SiP radio module that provides a 915MHz radio interface for Eka's wireless products.

**Table 1: Device Summary** 

| ITEM                                          | DESCRIPTION                                  |  |
|-----------------------------------------------|----------------------------------------------|--|
| Manufacturer:                                 | Eka Systems Inc.                             |  |
| FCC ID:                                       | P9X-900SiP                                   |  |
| IC:                                           | 6766A-900SiP                                 |  |
| Model:                                        | SiP radio module                             |  |
| FCC Rule Parts:                               | §15.247 (Limited Module)                     |  |
| Industry Canada:                              | RSS210                                       |  |
| Frequency Range:                              | 902MHz – 928MHz                              |  |
| Maximum Output Power:                         | 27.4dBm (0.5546 Watts)                       |  |
| Modulation:                                   | FSK                                          |  |
| Occupied Bandwidth:                           | 473.1kHz                                     |  |
| Keying:                                       | Automatic, Manual                            |  |
| Type of Information:                          | Data                                         |  |
| Number of Channels:                           | 50                                           |  |
| Power Output Level                            | Fixed                                        |  |
| Antenna Connector                             | N-type Female, 06:RA MMCX                    |  |
| Antenna Type                                  | TRA9023NP - Antenex Phantom 902-928MHz – 3dB |  |
|                                               | Gain                                         |  |
| GH908U-PRO 900MHz Omnidirectional – 8dBi Gain |                                              |  |
| UGM WPIANTFR4AR120003 902-928MHz – 2.8dF      |                                              |  |
| Gain                                          |                                              |  |
| Interface Cables: Serial                      |                                              |  |
| Power Source & Voltage:                       | 3.5VDC (3.3VDC to SiP module)                |  |
| Tx Spurious                                   | 1212.2 μV/m @ 3 meters                       |  |
| Rx Spurious                                   | 198.4 μV/m @ 3 meters                        |  |
| Emissions designator                          | 473KFXD                                      |  |

#### 2.2 Test Configuration

The SiP radio module was configured to transmit using the operating software – 76.8kb/s and 153.6kb/s

#### 2.3 Testing Algorithm

The SiP radio module was programmed to transmit frequencies using the operating software – 76.8kb/s and 153.6kb/s.

Worst case emission levels are provided in the test results data.

#### 2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by the American Association for Laboratory Accreditation (A2LA) under Certificate 2675.01 as an independent FCC test laboratory.

#### 2.5 Measurements

#### 2.5.1 References

FCC Public Notice DA 00-705, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 Methods of Measurement of Radio Noise from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

#### 2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

**Equation 1: Standard Uncertainty** 

$$u_{c} = \pm \sqrt{\frac{a^{2}}{div_{a}^{2}} + \frac{b^{2}}{div_{b}^{2}} + \frac{c^{2}}{div_{c}^{2}} + \dots}$$

Where  $u_c$  = standard uncertainty

a, b,  $c_{,...}$  = individual uncertainty elements

Div<sub>a, b, c</sub> = the individual uncertainty element divisor based

on the probability distribution

Divisor = 1.732 for rectangular distribution

Divisor = 2 for normal distribution

Divisor = 1.414 for trapezoid distribution

#### **Equation 2: Expanded Uncertainty**

$$U = ku_c$$

Where U = expanded uncertainty

k = coverage factor

 $k \le 2$  for 95% coverage (ANSI/NCSL Z540-2 Annex G)

 $u_c$  = standard uncertainty

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is <u>not</u> used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 2 below.

**Table 2: Expanded Uncertainty List** 

| Scope               | Standard(s)                            | Expanded<br>Uncertainty |
|---------------------|----------------------------------------|-------------------------|
| Conducted Emissions | CISPR11, CISPR22, CISPR14, FCC Part 15 | 2.63 dB                 |
| Radiated Emissions  | CISPR11, CISPR22, CISPR14, FCC Part 15 | 4.55 dB                 |

# 3 Test Equipment

Table 3 shows a list of the test equipment used for measurements along with the calibration information.

# **Table 3: Test Equipment List**

# **Radiated Emissions**

| WLL<br>Asset # | Manufacturer Model/Type                           | Function                    | Cal. Due   |
|----------------|---------------------------------------------------|-----------------------------|------------|
| 00618          | HP - 8563A                                        | ANALYZER SPECTRUM           | 6/1/2010   |
| 00066          | HP - 8449B                                        | PRE-AMPLIFIER RF. 1-26.5GHZ | 7/21/2010  |
| 00337          | WLL - 1.2-5GHZ                                    | FILTER BAND PASS            | 3/24/2012  |
| 00066          | HP - 8449B                                        | PRE-AMPLIFIER RF. 1-26.5GHZ | 7/21/2010  |
| 00626          | ARA - DRG-118/A                                   | ANTENNA HORN                | 6/3/2011   |
| 00644          | SUNOL SCIENCES CORPORATION - JB1 925-<br>833-9936 | BICONALOG ANTENNA           | 12/29/2010 |
| 00069          | HP - 85650A                                       | ADAPTER QP                  | 6/28/2010  |
| 00071          | HP - 85685A                                       | PRESELECTOR RF              | 6/28/2010  |
| 00073          | HP - 8568B                                        | ANALYZER SPECTRUM           | 6/28/2010  |

# Bench Conducted

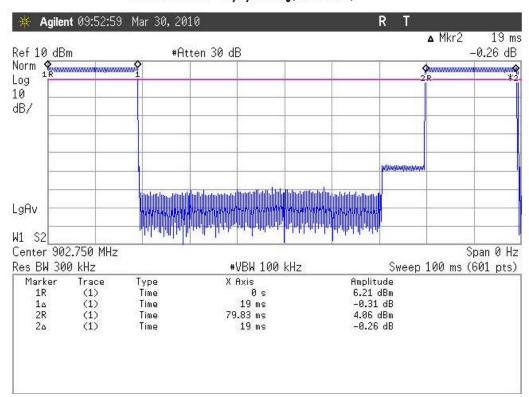
| WLL Asset<br># | Manufacturer Model/Type | Function          | Cal. Due |
|----------------|-------------------------|-------------------|----------|
| 00618          | HP - 8563A              | ANALYZER SPECTRUM | 6/1/2010 |

#### 4 Test Results

The Table Below shows the results of testing for compliance with a Frequency Hopping Spread Spectrum System in accordance with FCC part 15.247: 2007 and RSS210e issue 7.

**TX Test Summary** (Frequency Hopping Spread Spectrum) **FCC Rule Part IC Rule Part Description** Result 15.247 (a)(1)(i) 20dB Bandwidth Pass RSS-210 [A8. 1 (c)] 99% Occupied Bandwidth Pass 15.247 (b)(2) RSS-210 [A8.4 (1)] Transmit Output Power Pass 15.247 (a)(1) RSS-210 [A8.1 (b)] Channel Separation Pass 15.247 (a)(1)(i) Number of Channels = 50 RSS-210 [A8. 1 (c)] Pass minimum Time of Occupancy 15.247 (a)(1)(i) RSS-210 [A8. 1 (c)] Pass 15.247 (d) RSS-210 [A8. 5] **Out-of-Band Emissions** Pass (Band Edge @ 20dB below) 15.205 RSS-210 [A8. 5] General Field Strength Pass 15.209 Limits (Restricted Bands & RE Limits) 15 207 **AC Conducted Emissions** N/A RSS-Gen [7.2.2] **RX/Digital Test Summary** (Frequency Hopping Spread Spectrum) **FCC Rule Part IC Rule Part Description** Result 15 207 RSS-Gen [7.2.2] **AC Conducted Emissions** N/A15.209 General Field Strength RSS-Gen [7.2.3.2] Pass Limits

**Table 4: Test Summary Table** 


#### 4.1 Duty Cycle Correction

In accordance with the FCC Public Notice the spurious radiated emissions measurements may be adjusted if using a duty cycle correction factor if the dwell time per channel of the hopping signal is less than 100 ms.

The duty cycle correction factor is calculated by:

20 x LOG (dwell time/100 ms)

The following figure shows the plot of the dwell time for the transmitter. Based on this plot, the dwell time per hop is 19ms. There are 50 channels; the total dwell time per 100ms is 38ms. This corresponds to a duty cycle correction of 8.4dB; however, the maximum allowed duty cycle correction is 20dB.



#### EKA 900SiP Madule - Duty Cycle 20log(38ms/100ms)

**Figure 1: Duty Cycle Plot** 

#### 4.2 RF Power Output: (FCC Part §2.1046) & RSS-210[A8.4(1)]

To measure the output power the hopping sequence was stopped while the frequency dwelled on a low, high and middle channel. The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system.

Frequency Level Limit Pass/Fail Low Channel: 902.75MHz 27.44 dBm 30 dBm **Pass** Mid Channel: 914.75MHz 27.11 dBm 30 dBm **Pass** High Channel: 927.25MHz 26.27 dBm 30 dBm Pass

**Table 5: RF High Power Output** 

**Table 6: RF Low Power Output** 

| Frequency               | Level      | Limit  | Pass/Fail |
|-------------------------|------------|--------|-----------|
| Low Channel: 902.75MHz  | -20.65 dBm | 30 dBm | Pass      |
| Mid Channel: 914.75MHz  | -21.15 dBm | 30 dBm | Pass      |
| High Channel: 927.25MHz | -21.48 dBm | 30 dBm | Pass      |



Figure 2: RF Peak High Power, Low Channel

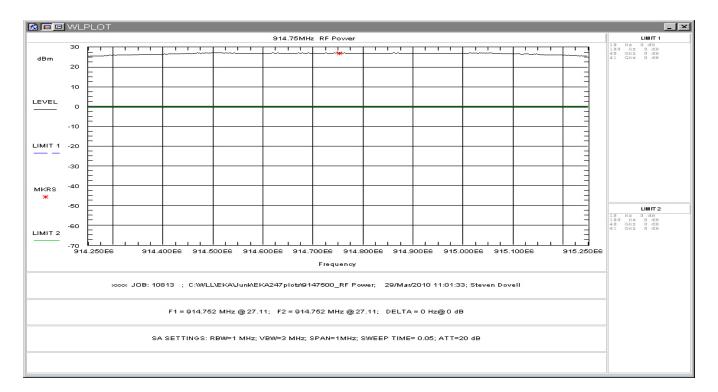



Figure 3: RF Peak High Power, Mid Channel

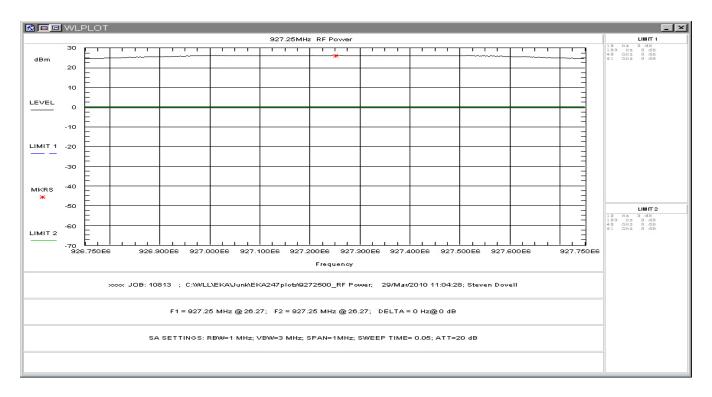



Figure 4: RF Peak High Power, High Channel

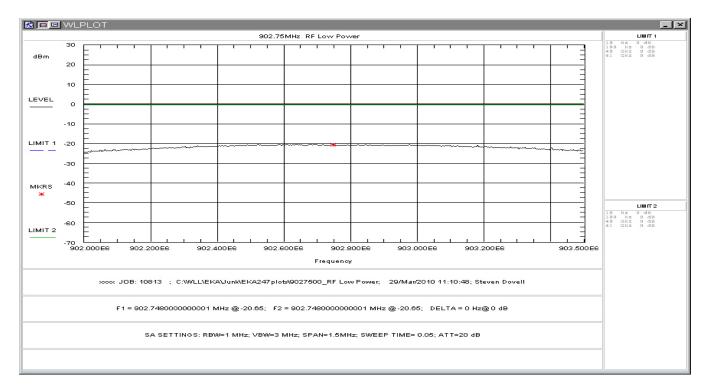



Figure 5: RF Peak Low Power, Low Channel

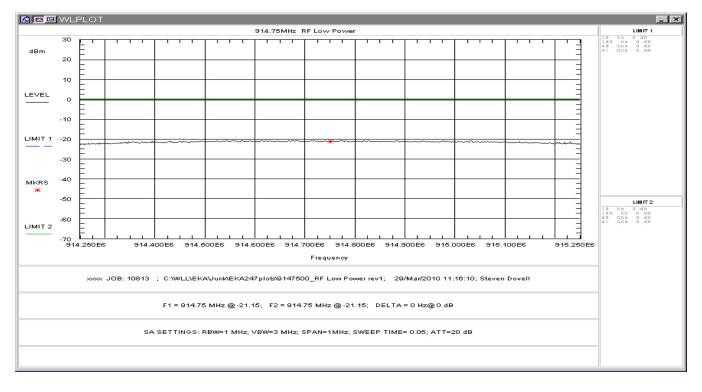



Figure 6: RF Peak Low Power, Mid Channel

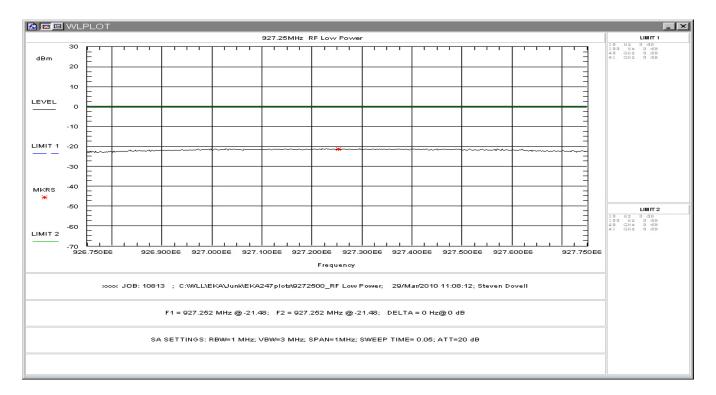



Figure 7: RF Peak Low Power, High Channel

#### 4.3 99% Occupied Bandwidth: (For Industry Canada – Certification Filing)

The 99% Occupied Bandwidth Measurement was performed by coupling the output of the EUT to the input of a spectrum analyzer using the following procedure:

The spectrum analyzer was set to a resolution and video bandwidth far greater than the emission bandwidth and the peak of the signal was set to the top line of the analyzer using a sampling detector.

The analyzer resolution bandwidth was then reduced to between 1 and 3 % of the approximate emission bandwidth with the video bandwidth set to approximately 3 times the resolution bandwidth.

The marker was then placed on the trace at the point left of center that displays a value that is 20 dB below the value of the reference level. The delta marker is evoked and placed at the point to the right of center that displays 0 dB differential. The frequency differential is the occupied bandwidth. This result was used as part of the emission designator calculation.

**Table 7: 99% Occupied Bandwidth Results** 

| Frequency              | Bandwidth<br>(kHz) |
|------------------------|--------------------|
| Low Channel: 902.5MHz  | 469.6              |
| Center Channel: 915MHz | 470.7              |
| High Channel: 927MHz   | 473.1              |



Figure 8: 99% Occupied Bandwidth, Low Channel

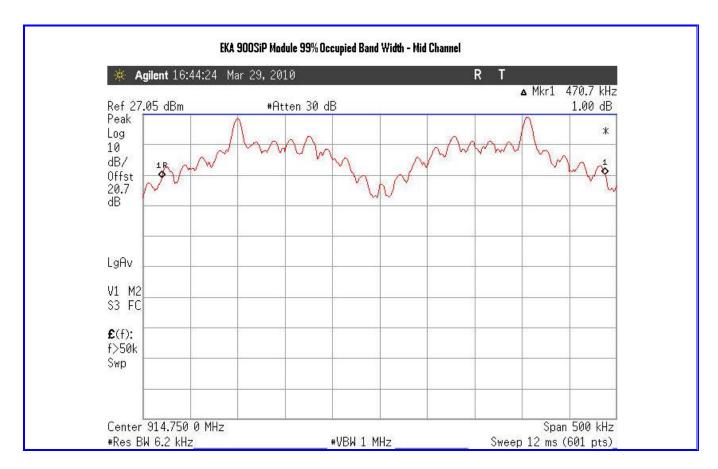



Figure 9: 99% Occupied Bandwidth, Mid Channel



Figure 10: 99% Occupied Bandwidth, High Channel

# 4.4 20dB Emission Bandwidth: (FCC Part §2.1049)

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

For Frequency Hopping Spread Spectrum Systems, FCC Part 15.247 requires the maximum 20 dB bandwidth not exceed 1MHz.

At full modulation, the occupied bandwidth was measured as shown:

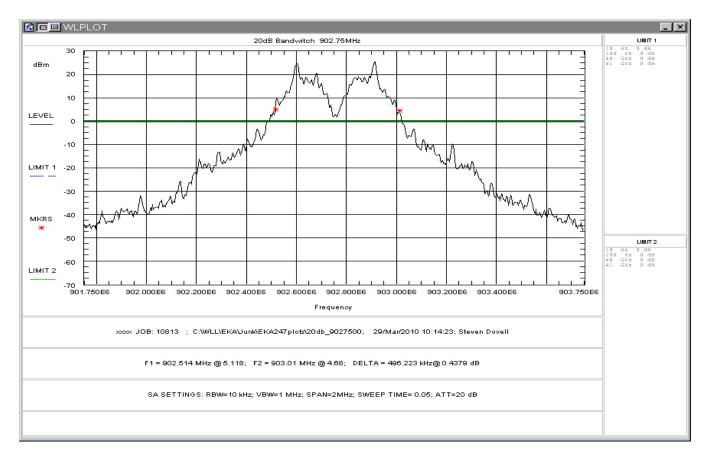



Figure 11: 20dB Bandwidth, Low Channel

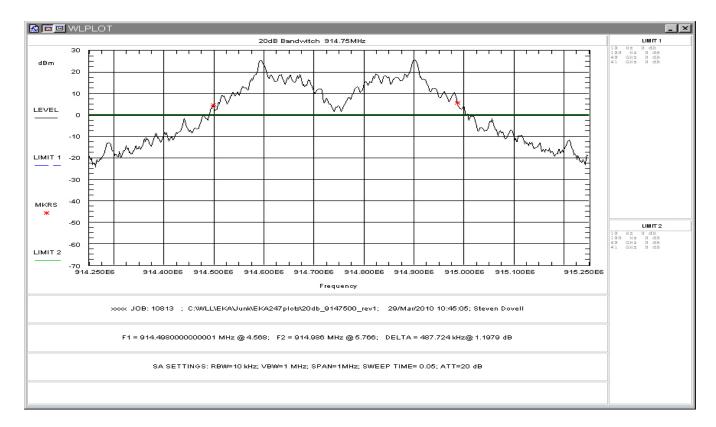



Figure 12: 20dB Bandwidth, Mid Channel

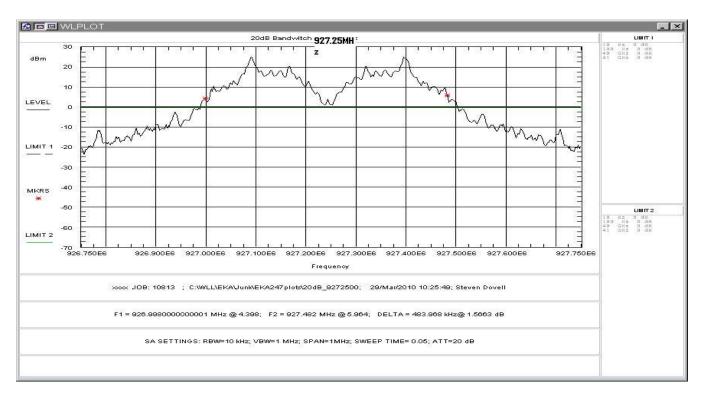
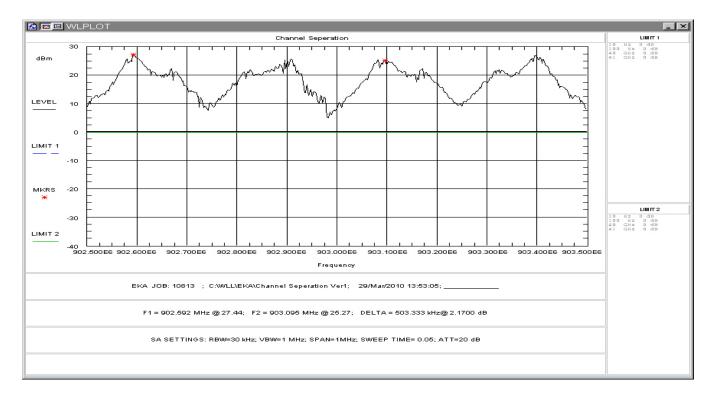



Figure 13: 20dB Bandwidth, High Channel

Table 8 provides a summary of the Occupied Bandwidth Results.

**Table 8: Occupied Bandwidth Results** 


| Frequency               | Bandwidth  | Limit  | Pass/Fail |
|-------------------------|------------|--------|-----------|
| Low Channel: 902.75MHz  | 496.233kHz | 500kHz | Pass      |
| Mid Channel: 914.75MHz  | 487.723kHz | 500kHz | Pass      |
| High Channel: 927.25MHz | 483.968kHz | 500kHz | Pass      |

## 4.5 Channel Spacing and Number of Hop Channels (FCC Part §15247(a)(1) & RSS-210[A8.1(b)]

Per the FCC requirements, frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth, whichever is greater. The maximum 20dB bandwidth measured is 496.233kHz so the channel spacing must be more than 496.233kHz

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 10 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer resolution bandwidth was set to 30 kHz and the video bandwidth was set to 1MHz. The channel spacing of 2 adjacent channels was measured using a spectrum analyzer span setting of 1MHz. Also, the number of hopping channels was measured from 902MHz to 928MHz.

The following are plots of the channel spacing and number of hopping channels data. The channel spacing was measured to be 503.33kHz and the number of channels used is 50.



**Figure 14: Channel Spacing** 

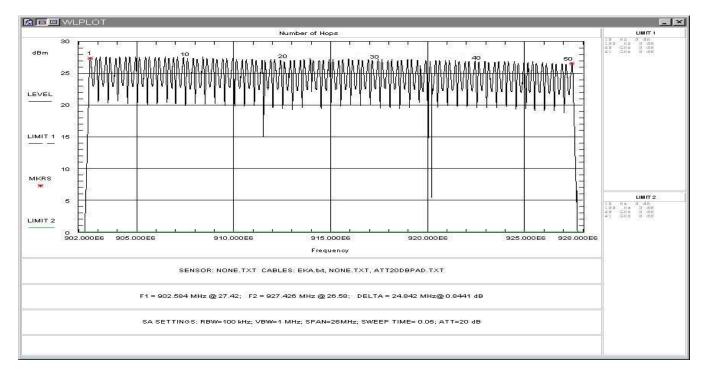



Figure 15: Number of Channels

#### 4.6 Conducted Spurious Emissions at Antenna Terminals (FCC Part §2.1051)

The EUT must comply with requirements for spurious emissions at antenna terminals. Per §15.247(d) all spurious emissions in any 100 kHz bandwidth outside the frequency band in which the spread spectrum device is operating shall be attenuated 20 dB below the highest power level in a 100 kHz bandwidth within the band containing the highest level of the desired power.

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 10 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer resolution bandwidth was set to 100 kHz and the video bandwidth was set to 1 MHz. The amplitude of the EUT carrier frequency was measured to determine the emissions limit (20 dB below the carrier frequency amplitude). The emissions outside of the allocated frequency band were then scanned from 30 MHz up to the tenth harmonic of the carrier.

The following are plots of the conducted spurious emissions data.

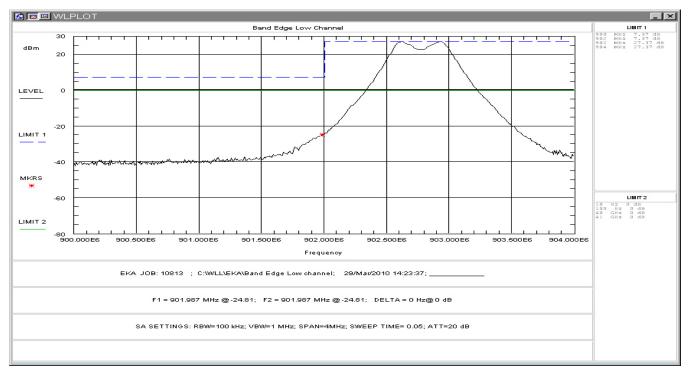



Figure 16: Conducted Spurious Emissions, Band Edge, Low channel

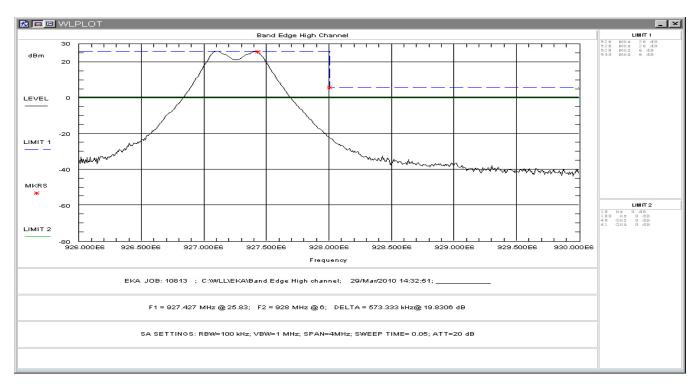



Figure 17: Conducted Spurious Emissions, Band Edge, High Channel

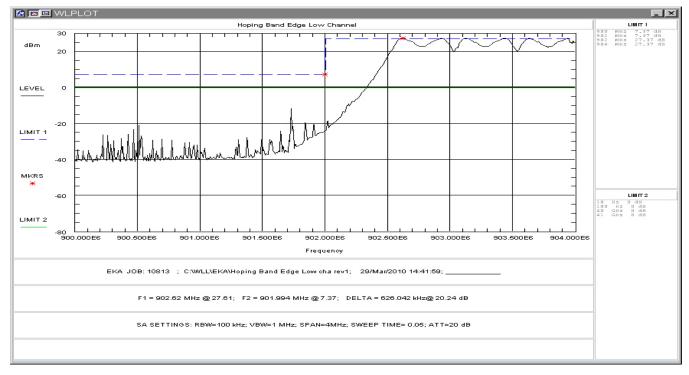



Figure 18: Conducted Spurious Emissions, Band Edge, Low Channel Hoping Mode

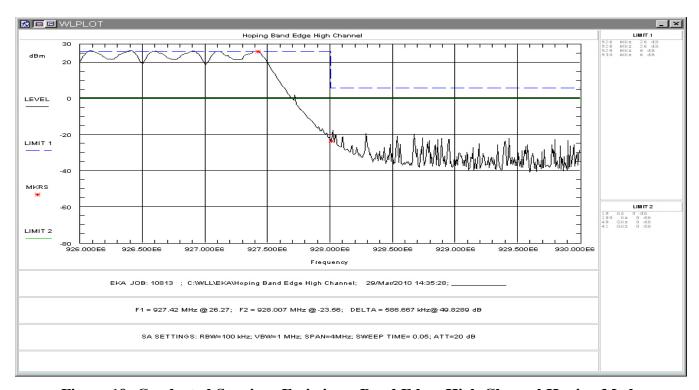



Figure 19: Conducted Spurious Emissions, Band Edge, High Channel Hoping Mode

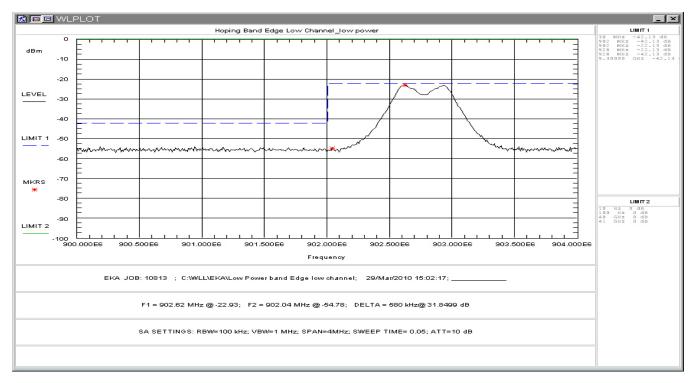



Figure 20: Conducted Spurious Emissions, Band Edge, Low Power, Low Channel

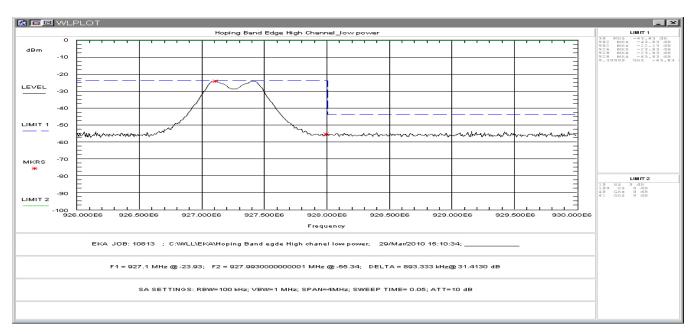



Figure 21: Conducted Spurious Emissions, Band Edge, Low Power, High Channel

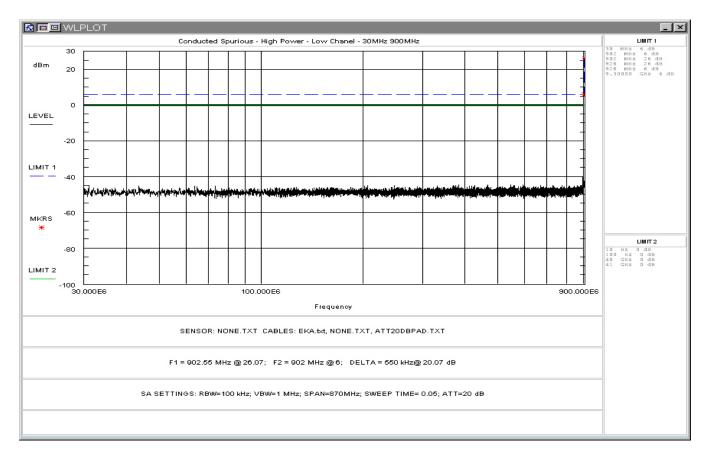



Figure 22: Conducted Spurious Emissions, High Power, Low Channel 30 - 900MHz

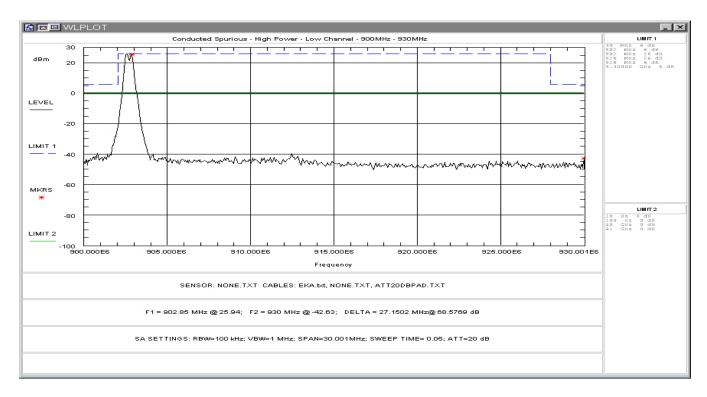



Figure 23: Conducted Spurious Emissions, High Power, Low Channel 900 - 930MHz

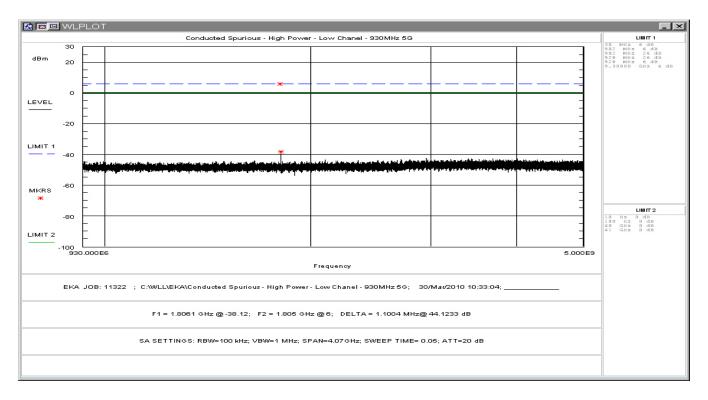



Figure 24: Conducted Spurious Emissions, High power, Low Channel 930 – 5GHz