toll-free: ( 866 ) 311-3268 fax: ( 480 ) 926-3598 www.flomlabs.com info@ffomlabs.com

**Date:** March 13, 2009

Applicant: Vertu

Beacon Hill Road

Church Crookham, Hampshire GU52 8DY UK

Attention of: Mark Pope, Certification and Compliance Manager

+44 1252 611135; FAX: -611302

Mobile: +44 7774 8158594 mark.pope@vertu.com

**Equipment:** RM-266V, Type 466V

FCC ID: P7QRM-266V

FCC Rules:

Gentlemen:

Enclosed please find your copy of the Engineering Test Report for which you are subject to the restrictions as listed on the attached summary.

Once a Telecommunication Certification Body (TCB) issues a Grant the Federal Communication Commission (FCC) has 30 days to review the application and request added information. It is your decision whether or not to market the equipment subject to a possible recall before the end of the 30 days.

If your equipment is still retained by us, it will be returned to you 30 days after approval is achieved. Our invoice for services has been directed to your Accounts Payable Department.

For any additional information please contact us.

Thank you.

Sincerely yours,

Lab Manager



# **Summary of Restrictions**

- 1. All submissions to the FCC are subject to **their** Examiner's interpretation.
- 2. Please allow from 60 to 90 days before hearing from the FCC with regard to any submission.
- 3. The FCC can set aside any action; modify or set aside any action, within 30 days. (FCC Rule 1.108, 1.113).
- 4. Under Rule 2.803, if device is not type accepted/certificated then it must **not** be sold, leased, offered for sale, imported, shipped or distributed or advertised for sale.
- 5. FCC can revoke its certificates at any time if the equipment does not meet or **continue** to meet their Rules. (Rule Parts 2.927, 2.939).
- 6. FCC can request a sample at any time (2.936).

Date: March 13, 2009

Federal Communications Commission

Via: Electronic Filing

Attention: Authorization & Evaluation Division

Applicant: Vertu

RM-266V, Type 466V **Equipment:** 

FCC ID: P7QRM-266V

**FCC Rules:** 

Dear Gentleman:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Best regards,

Lab Manager

http://www.flomlabs.com

# Class 2 Permissive Change

**Test Report** 

for

Model: RM-266V, Type 466V

to

**Federal Communications Commission** 

Rule Part(s) 22, 24

Date of report: March 13, 2009

On the Behalf of the Applicant: Vertu

At the Request of: Vertu

Beacon Hill Road

Church Crookham, Hampshire GU52 8DY UK

Attention of: Mark Pope, Certification and Compliance Manager

> +44 1252 611135; FAX: -611302 Mobile: +44 7774 8158594 mark.pope@vertu.com

Reviewed by:

Lab Manager

John & alud



# **Test Report Revision History**

| Revision | Date           | Revised By | Reason for revision                |
|----------|----------------|------------|------------------------------------|
| 1.0      | March 13, 2009 | M. Wyman   | Original Document                  |
| 2.0      | March 24, 2009 | M. Wyman   | Put proper test equip cal dates in |
|          |                |            |                                    |



### (FCC Certification (Transmitters) - Revised 9/28/98)

Applicant: Vertu

FCC ID: P7QRM-266V

### By Applicant:

- 1. Letter of Authorization
- 2. Confidentiality Request: 0.457 And 0.459
- 3. Identification Drawings, 2.1033(c)(11)

Label

Location of Label

Compliance Statement

Location of Compliance Statement

- 4. Photographs, 2.1033(c)(12)
- 5. Documentation: 2.1033(c)
  - (3) User Manual
  - (9) Tune Up Info
  - (10) Schematic Diagram
  - (10) Circuit Description

**Block Diagram** 

Parts List

**Active Devices** 

6. MPE/SAR Report

# By F.T.L.:

A. Testimonial & Statement of Certification



# The Applicant has been cautioned as to the following:

#### 15.21 **Information to the User**.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

### 15.27(a) **Special Accessories**.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.



# **Testimonial and Statement of Certification**

# This is to Certify:

- 1. **That** the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. **That** the technical data supplied with the application was taken under my direction and supervision.
- 3. That the data was obtained on representative units, randomly selected.
- 4. **That**, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Certifying Engineer:

Lab Manager



# **Table of Contents**

| Rule          | <u>Description</u>                                 | <u>Page</u> |
|---------------|----------------------------------------------------|-------------|
| 2.1033(c)(14) | Rule Summary                                       | 2           |
|               | Standard Test Conditions and Engineering Practices | 3           |
|               | Test Results Summary                               | 4           |
| 2.1053        | Field Strength of Spurious Radiation               | 5           |
|               | Test Equipment Utilized                            | 19          |



Required information per ISO 17025-2005, paragraph 5.10.2: a) **Test Report** 

b) Laboratory: Flom Test Lab, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044A-1) Chandler, AZ 85225

c) Report Number: d0930013

d) Client: Vertu

e) Identification: RM-266V, Type 466V

EUT Description: Cell Phone

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: March 13, 2009

**EUT Received:** 

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

I) Measurement Uncertainty: In accordance with FTL internal quality manual.

m) Supervised by:

Lab Manager

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written permission

from this laboratory.

Accessories used during testing:

Type Quantity Manufacturer Model Serial No. FCC ID

Battery BL-5CV, N/S
AC Charger AC-7UV
DC Charger DC-7V
Data Cable CA-101V



Sub-part 2.1033(c)(14):

# **Test and Measurement Data**

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts: 90.



#### **Standard Test Conditions and Engineering Practices**

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI/TIA-603-C-2004, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of  $10^{\circ}$  to  $40^{\circ}$ C ( $50^{\circ}$  to  $104^{\circ}$ F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Measurement results, unless otherwise noted, are worst-case measurements.

### A2LA

"A2LA has accredited Flom Test Labs, Chandler, AZ for technical competence in the field of Electrical testing. The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO 17025:2005 'General Requirements for the Competence of Testing and Calibration Laboratories' and any additional program requirements in the identified field of testing."

Please refer to www.a2la.org for current scope of accreditation.

Certificate number: 2152.01

ACCREDITED

CERT NO: 2152.0

FCC OATS Reg. #933597

IC Reg. # 2044A-1



# **Test Results Summary**

| Specification | Test Name                            | Pass, Fail, | Comments |
|---------------|--------------------------------------|-------------|----------|
|               |                                      | N/A         |          |
| 2.1053        | Field Strength of Spurious Radiation | Pass        |          |

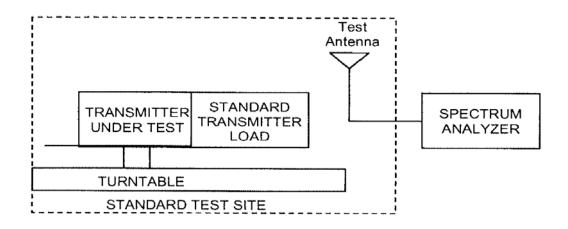


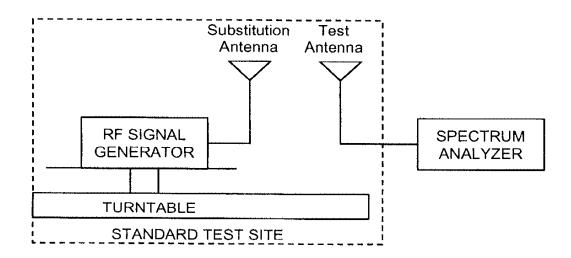
Name of Test: Field Strength of Spurious Radiation

Specification: 2.1053 Engineer: M.Wyman
Test Equipment Utilized: 100049, i00271 Test Date: March 9, 2009

**Test Procedure** 

A) Connect the equipment as illustrated


- B) Adjust the spectrum analyzer for the following settings:
  - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
  - 2) Video Bandwidth ≥ 3 times Resolution Bandwidth, or 30 kHz
  - 3) Sweep Speed ≤2000 Hz/second
  - 4) Detector Mode = Mean or Average Power
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load that is placed on the turntable. The RF cable to this load should be of minimum length.
- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to  $\pm$  the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.
- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:


Radiated spurious emissions dB =  $10log_{10}(TX power in watts/0.001) - the levels in step I)$ 

NOTE: It is permissible that other antennas provided can be referenced to a dipole.



# **Test Setup**







# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

# **Limit calculation**

Plim = 43 + 10log(P) = 55.73dBc

### Fundamental ERP value = 18.76dbm

#### **Test Results**

### **GSM** Data

| Tuned      | Emission    | Measured | Spurious |
|------------|-------------|----------|----------|
| Frequency  | Frequency   | Power    | dBc      |
| (MHz)      | (MHz)       | dBm EIRP |          |
| 824.200000 | 1648.400000 | -65.31   | -84.07   |
| 824.200000 | 2472.600000 | -59.28   | -78.04   |
| 824.200000 | 3296.800000 | -57.60   | -76.36   |
| 824.200000 | 4121.000000 | -55.80   | -74.56   |
| 824.200000 | 4945.200000 | -55.07   | -73.83   |



# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

# Limit calculation

Plim = 43 + 10log(P) = 56.10dbc

# Fundamental ERP value = 20.58dBm

# **GSM** data

| Tuned      | Emission    | Measured | Spurious |
|------------|-------------|----------|----------|
| Frequency  | Frequency   | Power    | dBc      |
| (MHz)      | (MHz)       | dBm EIRP |          |
| 836.600000 | 1673.200000 | -64.58   | -85.16   |
| 836.600000 | 2509.800000 | -60.70   | -81.28   |
| 836.600000 | 3346.400000 | -57.16   | -77.74   |
| 836.600000 | 4183.000000 | -55.43   | -76.01   |
| 836.600000 | 5019.600000 | -54.83   | -75.41   |



# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

# Limit calculation

Plim = 43 + 10log(P) = 56.3dBc

# Fundamental ERP value = 21.29dBm

#### **GSM Data**

| Tuned      | Emission    | Measured | Spurious |
|------------|-------------|----------|----------|
| Frequency  | Frequency   | Power    | dBc      |
| (MHz)      | (MHz)       | dBm EIRP |          |
| 848.800000 | 1697.600000 | -54.15   | -75.44   |
| 848.800000 | 2546.400000 | -49.54   | -70.83   |
| 848.800000 | 3395.200000 | -47.66   | -66.21   |
| 848.800000 | 4244.000000 | -46.53   | -67.82   |
| 848.800000 | 5092.800000 | -44.92   | -66.21   |



# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

# Limit calculation

Plim = 43 + 10log(P) = 55.06dBc

Fundamental ERP value = 16.09dBm

#### **Test Results**

### **EGPRS Data**

| I | Tuned      | Emission    | Measured | Spurious |
|---|------------|-------------|----------|----------|
| ١ | Frequency  | Frequency   | Power    | dBc      |
| 1 | (MHz)      | (MHz)       | dBm EIRP |          |
| Ī | 824.200000 | 1648.400000 | -65.35   | -81.44   |
| Ī | 824.200000 | 2472.600000 | -59.98   | -76.07   |
|   | 824.200000 | 3296.800000 | -58.82   | -74.91   |
|   | 824.200000 | 4121.000000 | -56.24   | -72.33   |
| ſ | 824.200000 | 4945.200000 | -55.68   | -71.77   |



# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

# Limit calculation

Plim = 43 + 10log(P) = 55.44dBc

### Fundamental ERP value = 17.55dBm

# **EGPRS** data

| Tuned      | Emission    | Measured | Spurious |
|------------|-------------|----------|----------|
| Frequency  | Frequency   | Power    | dBc      |
| (MHz)      | (MHz)       | dBm EIRP |          |
| 836.600000 | 1673.200000 | -66.65   | -84.20   |
| 836.600000 | 2509.800000 | -61.66   | -79.21   |
| 836.600000 | 3346.400000 | -57.56   | -75.11   |
| 836.600000 | 4183.000000 | -57.50   | -75.05   |
| 836.600000 | 5019.600000 | -55.72   | -73.27   |



# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

# Limit calculation

Plim = 43 + 10log(P) = 55.64dBc

# Fundamental ERP value = 18.39dBm

#### **EGPRS Data**

| Tuned      | Emission    | Measured | Spurious |
|------------|-------------|----------|----------|
| Frequency  | Frequency   | Power    | dBc      |
| (MHz)      | (MHz)       | dBm EIRP |          |
| 848.800000 | 1697.600000 | -54.31   | -72.70   |
| 848.800000 | 2546.400000 | -50.98   | -69.37   |
| 848.800000 | 3395.200000 | -48.26   | -66.65   |
| 848.800000 | 4244.000000 | -47.27   | -65.65   |
| 848.800000 | 5092.800000 | -46.81   | -65.20   |



# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

#### Limit calculation

Plim = 43 + 10 log (P) = 47.92dBc

Fundamental ERP value = 13.11dBm

# **Summary Results Table**

### **GSM** Data

| Tuned       | Emission     | Calculated | Spurious |
|-------------|--------------|------------|----------|
| Frequency   | Frequency    | Power      | dBc      |
| (MHz)       | (MHz)        | dBm        |          |
| 1850.200000 | 3700.400000  | -58.35     | -61.46   |
| 1850.200000 | 5550.600000  | -54.35     | -57.46   |
| 1850.200000 | 7400.800000  | -47.13     | -50.24   |
| 1850.200000 | 9251.000000  | -46.67     | -49.78   |
| 1850.200000 | 11101.200000 | -44.96     | -48.07   |



# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

### **Limit calculation**

Plim = 43 + 10 log (P) = 50.75dBc

# Fundamental ERP value = 15.95dBm

### **GSM** data

| Tuned       | Emission     | Calculated | Spurious |
|-------------|--------------|------------|----------|
| Frequency   | Frequency    | Power      | dBc      |
| (MHz)       | (MHz)        | dBm        |          |
| 1880.000000 | 3760.000000  | -57.49     | -63.44   |
| 1880.000000 | 5640.000000  | -54.56     | -60.51   |
| 1880.000000 | 7520.000000  | -47.07     | -53.02   |
| 1880.000000 | 9400.000000  | -46.20     | -52.15   |
| 1880.000000 | 11280.000000 | -45.97     | -51.92   |



# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

#### Limit calculation

Plim = 43 + 10 log (P) = 55.15dBc

# Fundamental ERP value = 16.42dBm

# **GSM** data

| Tuned<br>Frequency<br>(MHz) | Emission<br>Frequency<br>(MHz) | Calculated<br>Power<br>dBm | Spurious<br>dBc |
|-----------------------------|--------------------------------|----------------------------|-----------------|
| 1909.800000                 | 3819.600000                    | -57.47                     | -73.89          |
| 1909.800000                 | 5729.400000                    | -55.89                     | -72.31          |
| 1909.800000                 | 7639.200000                    | -47.13                     | -63.55          |
| 1909.800000                 | 9549.000000                    | -45.15                     | -61.57          |
| 1909.800000                 | 11458.800000                   | -43.58                     | -60.00          |



# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

#### Limit calculation

Plim = 43 + 10 log (P) = 54.39dBc

Fundamental ERP value = 13.78dBm

#### **EGPRS Data**

| Tuned<br>Frequency<br>(MHz) | Emission<br>Frequency<br>(MHz) | Calculated<br>Power<br>dBm | Spurious<br>dBc |  |
|-----------------------------|--------------------------------|----------------------------|-----------------|--|
| 1850.200000                 | 3700.400000                    | -55.36                     | -69.14          |  |
| 1850.200000                 | 5550.600000                    | -54.81                     | -68.59          |  |
| 1850.200000                 | 7400.800000                    | -46.65                     | -60.43          |  |
| 1850.200000                 | 9251.000000                    | -45.65                     | -59.43          |  |
| 1850.200000                 | 11101.200000                   | -45.31                     | -59.09          |  |



# Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

### **Limit calculation**

Plim = 43 + 10 log (P) = 55.07dBc

### Fundamental ERP value = 16.12dBm

### **EGPRS** data

| Tuned       | Emission     | Calculated | Spurious<br>dBc |  |
|-------------|--------------|------------|-----------------|--|
| Frequency   | Frequency    | Power      |                 |  |
| (MHz)       | (MHz)        | dBm        |                 |  |
| 1880.000000 | 3760.000000  | -57.17     | -73.29          |  |
| 1880.000000 | 5640.000000  | -54.11     | -70.23          |  |
| 1880.000000 | 7520.000000  | -46.03     | -62.15          |  |
| 1880.000000 | 9400.000000  | -47.63     | -63.75          |  |
| 1880.000000 | 11280.000000 | -44.22     | -60.34          |  |



### Sample calculation

Spurious Power – Radiated ERP = Spurious dBc

#### Limit calculation

Plim = 43 + 10 log (P) = 54.98dBc

Fundamental ERP value = 15.78dBm

#### **EGPRS Data**

| Tuned       | Emission     | Calculated | Spurious<br>dBc |  |
|-------------|--------------|------------|-----------------|--|
| Frequency   | Frequency    | Power      |                 |  |
| (MHz)       | (MHz)        | dBm        |                 |  |
| 1909.800000 | 3819.600000  | -56.17     | -71.95          |  |
| 1909.800000 | 5729.400000  | -54.82     | -70,60          |  |
| 1909.800000 | 7639.200000  | -46.26     | -62.04          |  |
| 1909.800000 | 9549.000000  | -45.24     | -61.02          |  |
| 1909.800000 | 11458.800000 | -44.03     | -59.81          |  |



# **Test Equipment Utilized**

| Description             | MFG     | Model Number       | FTL Asset Number   | Last Cal Date | Cal Due Date |
|-------------------------|---------|--------------------|--------------------|---------------|--------------|
| Power Supply            | HP      | 6286A              | i00005             | NCR           | NCR          |
| Temperature Chamber     | Tenney  | Tenney Jr.         | i00027             | 12/8/08       | 12/08/09     |
| Monopole Antenna Set    | Ailtech | DM-105A-T1, T2, T3 | i00037, 39, 42, 48 | Verified      | Verified     |
| Spectrum Analyzer       | HP      | 8566B              | i00049             | 8/22/08       | 8/22/09      |
| Bi Con Antenna          | EMCO    | 3109B              | i00088             | 10/15/07      | 10/15/09     |
| Log Periodic Antenna    | Aprel   | 2001               | i00089             | 10/22/07      | 10/22/09     |
| Horn Antenna            | Aprel   | 118T               | 100271             | 10/15//07     | 10/07/09     |
| Tunable Notch Filter    | Eagle   | TNF-1              | i00124             | NCR           | NCR          |
| Crystal Detector        | HP      | 8472B              | i00159             | NCR           | NCR          |
| Power Meter             | HP      | E4418B             | i00228             | 10/1/08       | 10/1/09      |
| Signal Generator        | R&S     | SMT-03             | i00266             | NCR           | NCR          |
| Power sensor            | HP      | 8482A              | i00341             | 9/30/08       | 9/30/09      |
| Digitizing Oscilloscope | HP      | 50402              | i00318             | Verified      | Verified     |
| Modulation Analyzer     | HP      | 8901A              | i00321             | 10/27/08      | 10/27/09     |
| Audio Analyzer          | HP      | 8903A              | i00020             | 2/05/09       | 2//05/10     |
| Spectrum Analyzer       | Agilent | E4407B             | i00331             | 11/3/08       | 11/3/09      |

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

**END OF TEST REPORT**