

AVIATION SUPPLIES AND ACADEMICS, INC.

FOR THE

MULTIBAND RADIO RECEIVER, AR-1

FCC PART 15 SUBPART B SECTIONS 15.107, 15.109 & 15.121 CLASS B

COMPLIANCE

DATE OF ISSUE: FEBRUARY 1, 2002

PREPARED FOR:

Aviation Supplies and Academics, Inc. 7005 132nd Place SE Newcastle, WA 98059-3153 **PREPARED BY:**

Joyce Walker CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

Date of test: January 17-25, 2002

W.O. No.: 78297

Report No.: FC02-012

This report contains a total of 38 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 38 Report No.: FC02-012

TABLE OF CONTENTS

Administrative Information	3
Summary of Results	4
Modifications Required for Compliance	4
Approvals	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	
Peripheral Devices	5
Antenna Requirements	5
15.33 Frequency Ranges Tested	
15.107 Conducted Emissions	5
15.109 Radiated Emissions	5
Modes of Operation	
Temperature and Humidity During Testing	6
Report of Measurements	
Table 1: 15.107 Six Highest Conducted Emission Levels	
Table 2: 15.109 Six Highest Radiated Emission Levels: AM Bands	8
Table 3: 15.109 Six Highest Radiated Emission Levels: FM Bands	9
Table 4: 15.109 Six Highest Radiated Emission Levels: Aviation Bands	10
Table 5: 15.109 Six Highest Radiated Emission Levels: NOAA Bands	11
Measurement Uncertainty	12
EUT Setup	12
Correction Factors	13
Table A: Sample Calculations	13
Test Instrumentation and Analyzer Settings	
Table B: 15.35 Analyzer Bandwidth Settings Per Frequency Range	13
Spectrum Analyzer Detector Functions	
Peak	14
Quasi-Peak	14
Average	
EUT Testing	
15.107 Mains Conducted Emissions	
15.109 Radiated Emissions	15
15.121(a) Scanning Receivers	16
Appendix A: Test Setup Photographs	
Photograph Showing Mains Conducted Emissions	
Photograph Showing Mains Conducted Emissions	
Photograph Showing Radiated Emissions	
Photograph Showing Radiated Emissions	
Photograph Showing Scanning Receiver	
Appendix B: Test Equipment List	
Appendix C: Measurement Data Sheets	24

Page 2 of 38 Report No.: FC02-012

CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:

A2LA (USA); DATech (Germany); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).

CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:

FCC (USA); VCCI (Japan); and Industry Canada.

CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

ADMINISTRATIVE INFORMATION

DATE OF TEST: January 17-25, 2002

DATE OF RECEIPT: January 17, 2002

PURPOSE OF TEST: To demonstrate the compliance of the Multiband

Radio Receiver, AR-1 with the requirements for FCC Part 15 Subpart B Sections 15.107, 15.109 &

15.121 Class B devices.

TEST METHOD: ANSI C63.4 (1992)

MANUFACTURER: Aviation Supplies and Academics, Inc.

7005 132nd Place SE

Newcastle, WA 98059-3153

REPRESENTATIVE: Larry Clifton – Clifton Labs, Ltd.

Fred Boyns - Aviation Supplies and Academics, Inc.

TEST LOCATION: CKC Laboratories, Inc.

22105 Wilson River Hwy Tillamook, OR 97141 5473 A Clouds Rest

Mariposa, CA 95338

Page 3 of 38 Report No.: FC02-012

SUMMARY OF RESULTS

As received, the Clifton Labs, Ltd. Multiband Radio Receiver, AR-1 was found to be fully compliant with the following standards and specifications:

United States

Officer

- FCC Part 15 Subpart B Sections 15.107, 15.109 & 15.121 Class B
- ➤ ANSI C63.4 (1992) method

Canada

RSS-210 using:

- > FCC Part 15 Subpart B Sections 15.107, 15.109 & 15.121 Class B
- > ANSI C63.4 (1992) method

Industry of Canada File No. IC 3173-A

CONDITIONS FOR COMPLIANCE

During FCC 15.107 & 15.109 testing a 100 pF Cap was added to BAT and Gnd vias on the upper left corner of the analog board.

APPROVALS

QUALITY ASSURANCE:

TEST PERSONNEL:

Will Wilkinson, Test Engineer

Mike Wilkinson, Test Engineer

Mike Wilkinson, Test Engineer

Chuck Kendall

Chuck Kendall, EMC/Lab Manager

Page 4 of 38 Report No.: FC02-012

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was a production unit. AM, FM, Aviation, and NOAA weather bands receive only. Aviation band has squelch and scan with 5 preset frequencies. AM single conversion to 455 kHz, FM single conversion to 10.7 MHz, Aviation and NOAA double conversion to 10.7 and then to 455 kHz.

EQUIPMENT UNDER TEST

Multiband Radio Receiver

Manuf: Aviation Supplies and Academics, Inc.

Model: AR-1 Serial: 01-15-02 FCC ID: (pending)

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Power Supply Head Set

Manuf:Radio ShackManuf:Radio ShackModel:273-1695Model:33-1162Serial:NoneSerial:NoneFCC ID:DoCFCC ID:DoC

Antenna Requirements

The EUT has an internal ferrite rode for AM and an external non-removable helical for the other bands. Note: The EUT is not an intentional radiator and therefore does not fall under 15.203 requirements.

15.33(a) FREQUENCY RANGES TESTED

15.107 Conducted Emissions: 450 kHz – 30 MHz 15.109 Radiated Emissions: 30 – 2000 MHz

> Page 5 of 38 Report No.: FC02-012

MODES OF OPERATION

The Receiver must be tested in the following modes or configurations to comply with section 15.31(m):

- 1. Receiver tuned in the AM band (Lowest Channel and Highest Channel)
 - Operating on battery Power
 - Operating on AC Power
- 2. Receiver tuned to the FM Band (Lowest Channel and Highest Channel)
 - Operating on battery power
 - Operating on AC Power
- 3. Receiver tuned to the Aviation Band (Low, Middle and high Channels)
 - Operating on battery power
 - Operating on AC Power
- 4. Receiver tuned to the NOAA Band (Center Channel, 162.475MHz)
 - Operating on battery power
 - Operating on AC Power

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

Page 6 of 38 Report No.: FC02-012

REPORT OF MEASUREMENTS

The following tables report the worst case emissions levels recorded during the tests performed on the Multiband Radio Receiver, AR-1. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

	Table 1: Six Highest Conducted Emission Levels								
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	dB	ON FACT Cable dB	ORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
0.504327	34.5	0.0		0.2		34.7	48.0	-13.3	В
0.746709	34.4	0.1		0.2		34.7	48.0	-13.3	В
2.694920	34.4	0.0		0.4		34.8	48.0	-13.2	В
2.796410	34.1	0.0		0.4		34.5	48.0	-13.5	В
2.909840	34.5	0.0		0.5		35.0	48.0	-13.0	В
3.029240	33.9	0.0		0.6		34.5	48.0	-13.5	В

Test Method: ANSI C63.4 (1992) NOTES: B = Black Lead
Spec Limit: FCC Part 15 Section 15.107 Class B W = White Lead

COMMENTS: Radio is tuned to Aviation Band 118.00 MHz (worst case). Headset attached & powered from the AC power supply. All EUT controls are set to maximum. The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 450 kHz to 30 MHz. Power supply connected to 120V AC.

Page 7 of 38 Report No.: FC02-012

	Table 2: Six Highest Radiated Emission Levels: AM Bands								
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION Amp	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
30.470	30.8	18.9	-27.2	1.3		23.8	40.0	-16.2	V
32.411	30.4	17.8	-27.2	1.4		22.4	40.0	-17.6	Н
32.414	31.5	17.8	-27.2	1.4		23.5	40.0	-16.5	Н
39.320	36.0	14.0	-27.2	1.5		24.3	40.0	-15.7	V
55.990	39.1	6.9	-27.2	1.8		20.6	40.0	-19.4	V
78.190	40.6	7.2	-27.1	2.2		22.9	40.0	-17.1	V

Test Method: ANSI C63.4 (1992)

Spec Limit: FCC Part 15 Section 15.109 Class B

Test Distance: 3 Meters

NOTES: H = Horizontal PolarizationV = Vertical Polarization

COMMENTS: Radio is tuned to AM Band 530 kHz (lowest) and 1710 kHz (Highest) as indicated in the data notes for each reading (see Appendix C). Headset attached & powered from the AC power supply. All EUT controls are set to maximum. The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 30 MHz to 1.0 GHz.

Page 8 of 38 Report No.: FC02-012

	Table 3: Six Highest Radiated Emission Levels: FM Bands								
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
307.210	44.9	13.3	-26.5	4.3		36.0	46.0	-10.0	Н
435.003	42.1	16.5	-27.5	4.9		36.0	46.0	-10.0	Н
486.998	45.7	17.5	-27.7	5.3		40.8	46.0	-5.2	Н
1546.300	28.8	28.8	-25.1	10.5		43.0	54.0	-11.0	Н
1737.500	28.1	29.0	-24.0	11.8		44.9	54.0	-9.1	V
1860.000	28.7	29.0	-22.8	12.2		47.1	54.0	-6.9	Н

Test Method: ANSI C63.4 (1992) NOTES: H = Horizontal Polarization
Spec Limit: FCC Part 15 Subpart B Section 15.109 Class B V = Vertical Polarization

Test Distance: 3 Meters

COMMENTS: Radio is tuned to FM Band 87.5 MHz (lowest), 97.7 MHz (Middle) and 108.1 (Highest) MHz as indicated in the data notes for each reading (see Appendix C). Headset attached & powered from the AC power supply. All EUT controls are set to maximum. The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 30 MHz to 2.0 GHz.

Page 9 of 38 Report No.: FC02-012

	Table 4: Six Highest Radiated Emission Levels: Aviation Bands								
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
107.298	50.7	10.4	-27.0	2.4		36.5	43.5	-7.0	V
126.272	50.0	11.6	-27.1	2.7		37.2	43.5	-6.3	V
487.929	46.7	17.5	-27.8	5.2		41.6	46.0	-4.4	VQ
487.963	50.3	17.5	-27.8	5.2		45.2	46.0	-0.8	HQ
497.211	49.3	17.7	-27.8	5.3		44.5	46.0	-1.5	HQ
505.103	48.4	17.8	-27.8	5.4		43.8	46.0	-2.2	HQ

Test Method: ANSI C63.4 (1992) NOTES: H = Horizontal Polarization
Spec Limit: FCC Part 15 Subpart B Section 15.109 B V = Vertical Polarization
Test Distance: 3 Meters Q = Quasi Peak Reading

COMMENTS: Radio is tuned to Aviation Band 118.00 MHz (lowest), 127.00 MHz (Middle) and 136.975 (Highest) MHz as indicated in the data notes for each reading (see Appendix C). Headset attached & powered from the AC power supply. All EUT controls are set to maximum. The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 30 MHz to 2.0 GHz.

Page 10 of 38 Report No.: FC02-012

	Table 5: Six Highest Radiated Emission Levels: NOAA Bands								
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
151.779	50.5	11.8	-26.9	2.9		38.3	43.5	-5.2	VQ
151.780	50.9	11.8	-26.9	2.9		38.7	43.5	-4.8	Н
303.558	40.7	13.2	-26.4	4.3		31.8	46.0	-14.2	V
607.105	36.6	19.7	-27.9	6.0		34.4	46.0	-11.6	Н
1716.088	28.9	28.9	-24.2	11.7		45.3	54.0	-8.7	Н
1793.800	27.8	29.0	-23.5	12.1		45.4	54.0	-8.6	V

Test Method: ANSI C63.4 (1992)

Spec Limit: FCC Part 15 Section 15.107 Class B

Test Distance: 3 Meters

NOTES: H = Horizontal Polarization

V = Vertical Polarization Q = Quasi Peak Reading

COMMENTS: Radio is tuned to NOAA Band at 162.475 MHz. Headset attached & power from the AC power supply. All EUT controls are set to maximum. The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 30 MHz to 2.0 GHz.

Page 11 of 38 Report No.: FC02-012

MEASUREMENT UNCERTAINTY

Associated with data in this report is \pm 2.94 dB measurement uncertainty for radiated and 1.56 dB measurement uncertainty for conducted.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected. The interval between different pieces of equipment was approximately 10 centimeters. All excessive interconnecting cable was bundled in 30-40 centimeter lengths.

The radiated and conducted emissions data of the Multiband Radio Receiver, AR-1, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

Page 12 of 38 Report No.: FC02-012

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAI	TABLE A: SAMPLE CALCULATIONS						
	Meter reading	(dBµV)					
+	Antenna Factor	(dB)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
	Corrected Reading	$(dB\mu V/m)$					

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated and conducted emissions data for the Multiband Radio Receiver, AR-1. For frequencies from 30 to 1000 MHz, the biconilog antenna was used. The horn antenna was used for frequencies above 1000 MHz. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10~dB per division were used. A 10~dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0~dB of attenuation, a reference level of $97~dB\mu V$, and a vertical scale of 10~dB per division.

FCC SECTION 15.35: TABLE B: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	450 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS 30 MHz 1000 MHz 120 kHz								
RADIATED EMISSIONS	1000 MHz	2 GHz	1 MHz					

Page 13 of 38 Report No.: FC02-012

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the Multiband Radio Receiver, AR-1.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

Page 14 of 38 Report No.: FC02-012

EUT TESTING

Mains Conducted Emissions

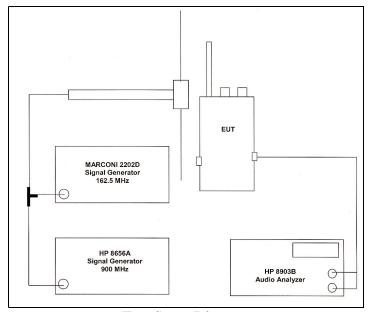
During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.


During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. For frequencies exceeding 1000 MHz, the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

Page 15 of 38 Report No.: FC02-012

15.121(a) Scanning Receivers

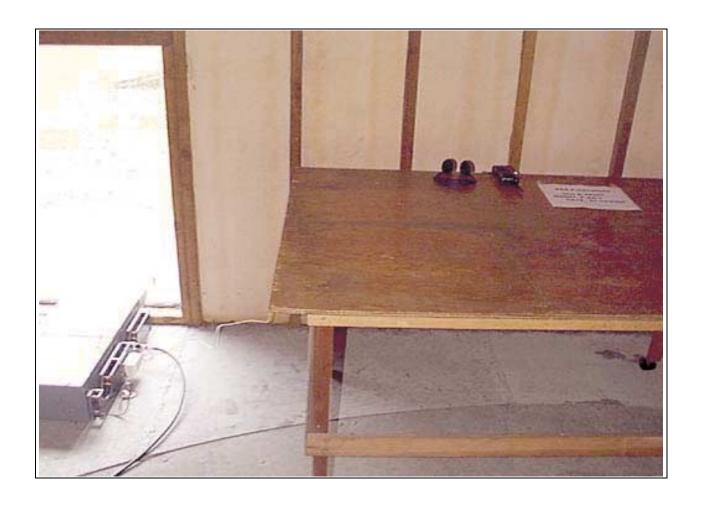
Test Setup Diagram

Equipment set up in the following manner: The headphones were opened up and three leads were soldered onto the left, right and ground of the earphones. Left and ground was input to the measurement side of the audio analyzer. Two signal generators were attached to a dipole antenna via a BNC tee connector. The dipole antenna was placed some 2-3 inches away from the antenna on the radio receiver. One signal generator was set the highest signal that could be received by the scanning radio receiver—set to 162.5 MHz.

This signal generator amplitude was increased until a 12 dB SINAD signal was indicated on the Audio Analyzer. This signal generator was FM modulated by a 400 Hz tone. It was then a second signal generator was input to the other port of the BNC tee. This signal generator was set to 900 MHz and FM modulated with a 1 kHz tone. The amplitude of the 900 MHz signal generator was increased slowly while monitoring the output in the headphones. When the other tone was detected in the headphones, the level setting on the 900 MHz generator was noted and recorded.

Results: It took an output of 60dBuV to produce a 12dB SINAD signal. The 1 kHz tone was detectable when the 900 MHz signal generator's amplitude was set to 109 dBuV. The difference between the two amplitudes was the rejection level of the input to the 900 MHz signal. This level was 49 dB or the difference between 109-60 or 49 dB.

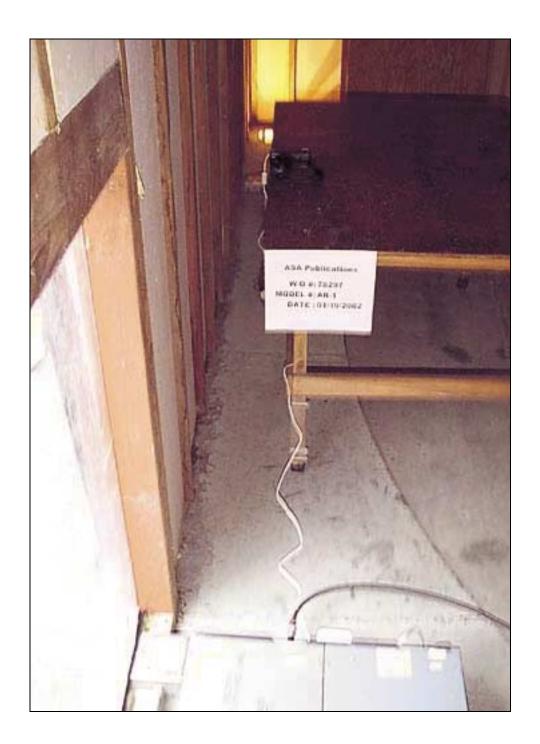
Page 16 of 38 Report No.: FC02-012


APPENDIX A

TEST SETUP PHOTOGRAPHS

Page 17 of 38 Report No.: FC02-012

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS



Mains Conducted Emissions - Front View

Page 18 of 38 Report No.: FC02-012

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Side View

Page 19 of 38 Report No.: FC02-012

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

Page 20 of 38 Report No.: FC02-012

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

Page 21 of 38 Report No.: FC02-012

PHOTOGRAPH SHOWING SCANNING RECEIVER

Emissions - Front View

Page 22 of 38 Report No.: FC02-012

APPENDIX B

TEST EQUIPMENT LIST

15.107 Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8593EM EMC	3624A00159	09/21/2001	09/21/2002	2111
Analyzer				
Fischer LISN	none	11/15/2001	11/15/2002	14
Fischer LISN	none	11/15/2001	11/15/2002	13

15.109 Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8593EM EMC	3624A00159	09/21/2001	09/21/2002	2111
Analyzer				
HP 8447D Amplifier	2727A05392	08/17/2001	08/17/2002	10
Chase CBL6111C	2455	02/09/2001	02/09/2002	1992
Bilog Antenna				
EMCO 3115 1-18	9006-3413	06/07/2001	06/07/2002	327
GHz Horn Antenna				

15.121 Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Marconi Sig	119259/015	09/05/2001	09/05/2002	01870
Generator				
HP Sig	2208A02884	09/06/2001	09/06/2002	01645
HP Audio	3011A09432	11/20/2001	11/20/2002	02338

Page 23 of 38 Report No.: FC02-012

APPENDIX C

Page 24 of 38 Report No.: FC02-012

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

Customer: Clifton Labs, Ltd. Specification: FCC B RADIATED

 Work Order #:
 78297
 Date:
 01/19/2002

 Test Type:
 Radiated Scan
 Time:
 10:25:20

Equipment: Multiband Radio Receiver Sequence#: 6

Manufacturer: Avaiation Supplies and Academics, Inc. Tested By: Mike Wilkinson

Model: AR-1 S/N: 01-15-02

Equipment Under Test (* = EUT):

1 1	- ,-		
Function	Manufacturer	Model #	S/N
Multiband Radio Receiver*	Avaiation Supplies and	AR-1	01-15-02
	Academics, Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N	
Head Set	Radio Shack	33-1162	None	
Power Supply	Radio Shack	273-1695	None	

Test Conditions / Notes:

Radio is tuned to AM Band 530 kHz (lowest) and 1710 kHz (Highest) as indicated in the data notes for each reading. Headset attached & powered from the AC power supply. All EUT controls are set to maximum The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 30 MHz to 1.0 GHz.

Measure	ement Data:	R	eading lis	sted by m	argin.		Τe	est Distanc	e: 3 Meters	1	
			Amp-A	Bilog	Cable						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	39.320M	36.0	-27.2	+14.0	+1.5		+0.0	24.3	40.0	-15.7	Vert
									530 kHz tu	ine	
									frequency		
2	30.470M	30.8	-27.2	+18.9	+1.3		+0.0	23.8	40.0	-16.2	Vert
									530 kHz tu	ine	
									frequency		
3	32.414M	31.5	-27.2	+17.8	+1.4		+0.0	23.5	40.0	-16.5	Horiz
									530 kHz tu	ine	
									frequency		
4	78.190M	40.6	-27.1	+7.2	+2.2		+0.0	22.9	40.0	-17.1	Vert
									1710 kHz	tune	
									frequency		
5	32.411M	30.4	-27.2	+17.8	+1.4		+0.0	22.4	40.0	-17.6	Horiz
									1710 kHz	tune	
									frequency		
6	55.990M	39.1	-27.2	+6.9	+1.8		+0.0	20.6	40.0	-19.4	Vert
									530 kHz tu	ine	
									frequency		

Page 25 of 38 Report No.: FC02-012

7	110.138M	36.1	-27.0	+10.6	+2.4	+0.0	22.1	43.5	-21.4	Vert
								530 kHz tu	ne	
								frequency		
8	110.510M	35.4	-27.0	+10.6	+2.4	+0.0	21.4	43.5	-22.1	Vert
								1710 kHz t	une	
								frequency		
9	43.128M	28.6	-27.2	+11.8	+1.5	+0.0	14.7	40.0	-25.3	Vert
								1710 kHz t	une	
								frequency		
10	52.083M	30.4	-27.2	+7.9	+1.7	+0.0	12.8	40.0	-27.2	Horiz
								1710 kHz t	une	
								frequency		

Page 26 of 38 Report No.: FC02-012

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

Customer: Clifton Labs, Ltd. Specification: FCC B RADIATED

 Work Order #:
 78297
 Date:
 01/19/2002

 Test Type:
 Radiated Scan
 Time:
 08:53:33

Equipment: Multiband Radio Receiver Sequence#: 5

Manufacturer: Avaiation Supplies and Academics, Inc. Tested By: Mike Wilkinson

Model: AR-1 S/N: 01-15-02

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Multiband Radio Receiver*	Avaiation Supplies and	AR-1	01-15-02
	Academics, Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N	
Head Set	Radio Shack	33-1162	None	
Power Supply	Radio Shack	273-1695	None	

Test Conditions / Notes:

Radio is tuned to FM Band 87.5 MHz (lowest), 97.7 MHz (Middle) and 108.1 (Highest) MHz as indicated in the data notes for each reading. Headset attached & powered from the AC power supply. All EUT controls are set to maximum The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 30 MHz to 2.0 GHz.

Measu	rement Data:	F	Reading lis	sted by m	argin.		Te	est Distanc	e: 3 Meters		
			Amp-A	Bilog	Cable	Horn					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	486.998M	45.7	-27.7	+17.5	+5.3	+0.0	+0.0	40.8	46.0	-5.2	Horiz
									108.1 MHz	z tune	
									frequency		
2	1860.000M	28.7	-22.8	+0.0	+12.2	+29.0	+0.0	47.1	54.0	-6.9	Horiz
									87.5 MHz	tune	
									frequency		
3	1737.500M	28.1	-24.0	+0.0	+11.8	+29.0	+0.0	44.9	54.0	-9.1	Vert
									87.5 MHz	tune	
									frequency		
4	435.003M	42.1	-27.5	+16.5	+4.9	+0.0	+0.0	36.0	46.0	-10.0	Horiz
									97.7 MHz	tune	
									frequency		
5	307.210M	44.9	-26.5	+13.3	+4.3	+0.0	+0.0	36.0	46.0	-10.0	Horiz
									87.5 MHz	tune	
									frequency		
6	1546.300M	28.8	-25.1	+0.0	+10.5	+28.8	+0.0	43.0	54.0	-11.0	Horiz
									97.7 MHz	tune	
									frequency		

Page 27 of 38 Report No.: FC02-012

7	584.398M	37.3	-27.9	+19.4	+5.9	+0.0	+0.0	34.7	46.0 -11.3 108.1 MHz tune frequency	Horiz
8	260.997M	43.7	-26.4	+12.6	+3.8	+0.0	+0.0	33.7	46.0 -12.3 97.7 MHz tune frequency	Horiz
9	261.003M	43.6	-26.4	+12.6	+3.8	+0.0	+0.0	33.6	46.0 -12.4 97.7 MHz tune frequency	Vert
10	487.002M	37.9	-27.8	+17.5	+5.3	+0.0	+0.0	32.9	46.0 -13.1 108.1 MHz tune frequency	Vert
11	1673.135M	24.6	-24.4	+0.0	+11.4	+28.9	+0.0	40.5	54.0 -13.5 108.1 MHz tune frequency	Horiz
12	307.201M	41.1	-26.5	+13.3	+4.3	+0.0	+0.0	32.2	46.0 -13.8 87.5 MHz tune frequency	Vert
13	584.392M	34.4	-27.9	+19.4	+5.9	+0.0	+0.0	31.8	46.0 -14.2 108.1 MHz tune frequency	Vert
14	292.209M	41.0	-26.4	+13.0	+4.1	+0.0	+0.0	31.7	46.0 -14.3 108.1 MHz tune frequency	Vert
15	292.208M	41.0	-26.4	+13.0	+4.1	+0.0	+0.0	31.7	46.0 -14.3 108.1 MHz tune frequency	Horiz
16	782.966M	30.0	-27.9	+21.9	+6.9	+0.0	+0.0	30.9	46.0 -15.1 97.7 MHz tune frequency	Vert
17	1242.500M	28.5	-26.8	+0.0	+8.9	+27.1	+0.0	37.7	54.0 -16.3 97.7 MHz tune frequency	Horiz
18	1186.885M	29.0	-26.9	+0.0	+8.5	+26.7	+0.0	37.3	54.0 -16.7 108.1 MHz tune frequency	Horiz
19	1089.600M	30.1	-27.2	+0.0	+8.2	+26.0	+0.0	37.1	54.0 -16.9 87.5 MHz tune frequency	Vert
20	86.982M	39.4	-27.0	+8.4	+2.3	+0.0	+0.0	23.1	40.0 -16.9 97.7 MHz tune frequency	Vert
21	76.391M	40.4	-27.1	+7.1	+2.1	+0.0	+0.0	22.5	40.0 -17.5 87.5 MHz tune frequency	Vert
22	435.000M	34.4	-27.5	+16.5	+4.9	+0.0	+0.0	28.3	46.0 -17.7 97.7 MHz tune frequency	Vert
23	522.012M	32.2	-27.8	+18.2	+5.5	+0.0	+0.0	28.1	46.0 -17.9 97.7 MHz tune frequency	Horiz

Page 28 of 38 Report No.: FC02-012

24	348.002M	35.7	-26.8	+14.2	+4.6	+0.0	+0.0	27.7	46.0	-18.3	Horiz
									97.7 MHz t	une	
									frequency		
25	384.000M	32.2	-27.1	+15.2	+4.6	+0.0	+0.0	24.9	46.0	-21.1	Horiz
									87.5 MHz t	une	
									frequency		
26	383.994M	31.7	-27.1	+15.2	+4.6	+0.0	+0.0	24.4	46.0	-21.6	Vert
									87.5 MHz t	une	
									frequency		
27	194.799M	35.6	-26.7	+8.8	+3.3	+0.0	+0.0	21.0	43.5	-22.5	Vert
									108.1 MHz	tune	
									frequency		
28	230.408M	35.2	-26.6	+11.1	+3.5	+0.0	+0.0	23.2	46.0	-22.8	Vert
									87.5 MHz t	une	
									frequency		
29	153.606M	29.4	-26.9	+11.2	+2.9	+0.0	+0.0	16.6	43.5	-26.9	Vert
									87.5 MHz t	une	
									frequency		

Page 29 of 38 Report No.: FC02-012

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

Customer: Clifton Labs, Ltd. Specification: FCC B RADIATED

 Work Order #:
 78297
 Date:
 01/19/2002

 Test Type:
 Radiated Scan
 Time:
 10:47:25

Equipment: Multiband Radio Receiver Sequence#: 3

Manufacturer: Avaiation Supplies and Academics, Inc. Tested By: Mike Wilkinson

Model: AR-1 S/N: 01-15-02

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Multiband Radio Receiver*	Avaiation Supplies and	AR-1	01-15-02
	Academics, Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N	
Head Set	Radio Shack	33-1162	None	
Power Supply	Radio Shack	273-1695	None	

Test Conditions / Notes:

Radio is tuned to Aviation Band 118.00 MHz (lowest), 127.00 MHz (Middle) and 136.975 (Highest) MHz as indicated in the data notes for each reading. Headset attached & powered from the AC power supply. All EUT controls are set to maximum The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 30 MHz to 2.0 GHz.

Measu	irement Data:	F	Reading lis	sted by m	argin.		Te	est Distanc	e: 3 Meters		
			Amp-A	Bilog	Cable	Horn					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	487.963M	50.3	-27.8	+17.5	+5.2	+0.0	+0.0	45.2	46.0	-0.8	Horiz
	QP								118 MHz t	une	
									frequency		
2	497.211M	49.3	-27.8	+17.7	+5.3	+0.0	+0.0	44.5	46.0	-1.5	Horiz
	QP								127 MHz t	une	
									frequency		
3	505.103M	48.4	-27.8	+17.8	+5.4	+0.0	+0.0	43.8	46.0	-2.2	Horiz
	QP								136.975 M	Hz tune	
									frequency		
4	487.929M	46.7	-27.8	+17.5	+5.2	+0.0	+0.0	41.6	46.0	-4.4	Vert
	QP								118 MHz t	une	
									frequency		
5	126.272M	50.0	-27.1	+11.6	+2.7	+0.0	+0.0	37.2	43.5	-6.3	Vert
									136.975 M	Hz tune	
									frequency		
6	116.299M	49.9	-27.1	+11.2	+2.5	+0.0	+0.0	36.5	43.5	-7.0	Horiz
									127 MHz t	une	
									frequency		

Page 30 of 38 Report No.: FC02-012

107.298M	50.7	-27.0	+10.4	+2.4	+0.0	+0.0	36.5	43.5 -7.0 118 MHz tune frequency	Vert
505.101M	43.2	-27.8	+17.8	+5.4	+0.0	+0.0	38.6	46.0 -7.4 136.975 MHz tune	Vert
126.277M	46.8	-27.1	+11.6	+2.7	+0.0	+0.0	34.0	43.5 -9.5 136.975 MHz tune	Horiz
1768.800M	27.3	-23.7	+0.0	+11.9	+29.0	+0.0	44.5	54.0 -9.5 136.975 MHz tune	Vert
595.234M	37.9	-27.9	+19.5	+5.9	+0.0	+0.0	35.4	46.0 -10.6 118 MHz tune	Horiz
1521.300M	28.8	-25.2	+0.0	+10.4	+28.8	+0.0	42.8	54.0 -11.2 136.975 MHz tune	Vert
1535.000M	28.3	-25.1	+0.0	+10.5	+28.8	+0.0	42.5	54.0 -11.5 127 MHz tune frequency	Vert
595.226M	35.2	-27.9	+19.5	+5.9	+0.0	+0.0	32.7	46.0 -13.3 118 MHz tune frequency	Vert
465.202M	38.0	-27.7	+17.1	+5.1	+0.0	+0.0	32.5	46.0 -13.5 127 MHz tune	Horiz
380.656M	39.9	-27.1	+15.1	+4.6	+0.0	+0.0	32.5	46.0 -13.5 118 MHz tune	Horiz
1272.500M	30.8	-26.7	+0.0	+9.0	+27.3	+0.0	40.4	54.0 -13.6 127 MHz tune	Horiz
380.899M	38.2	-27.1	+15.1	+4.6	+0.0	+0.0	30.8	46.0 -15.2 127 MHz tune	Horiz
378.825M	38.0	-27.0	+15.0	+4.6	+0.0	+0.0	30.6	46.0 -15.4 136.975 MHz tune frequency	Horiz
1166.300M	29.5	-27.0	+0.0	+8.5	+26.6	+0.0	37.6	54.0 -16.4 118 MHz tune frequency	Horiz
108.227M	37.6	-27.0	+10.5	+2.4	+0.0	+0.0	23.5	43.5 -20.0 136.975 MHz tune frequency	Vert
109.721M	36.1	-27.0	+10.6	+2.4	+0.0	+0.0	22.1	43.5 -21.4 127 MHz tune frequency	Vert
	505.101M 126.277M 1768.800M 595.234M 1521.300M 1535.000M 465.202M 380.656M 1272.500M 380.899M 378.825M 1166.300M	505.101M 43.2 126.277M 46.8 1768.800M 27.3 595.234M 37.9 1521.300M 28.8 1535.000M 28.3 595.226M 35.2 465.202M 38.0 380.656M 39.9 1272.500M 30.8 380.899M 38.2 378.825M 38.0 1166.300M 29.5 108.227M 37.6	505.101M 43.2 -27.8 126.277M 46.8 -27.1 1768.800M 27.3 -23.7 595.234M 37.9 -27.9 1521.300M 28.8 -25.2 1535.000M 28.3 -25.1 595.226M 35.2 -27.9 465.202M 38.0 -27.7 380.656M 39.9 -27.1 1272.500M 30.8 -26.7 380.899M 38.2 -27.1 378.825M 38.0 -27.0 108.227M 37.6 -27.0	505.101M 43.2 -27.8 +17.8 126.277M 46.8 -27.1 +11.6 1768.800M 27.3 -23.7 +0.0 595.234M 37.9 -27.9 +19.5 1521.300M 28.8 -25.2 +0.0 1535.000M 28.3 -25.1 +0.0 595.226M 35.2 -27.9 +19.5 465.202M 38.0 -27.7 +17.1 380.656M 39.9 -27.1 +15.1 1272.500M 30.8 -26.7 +0.0 380.899M 38.2 -27.1 +15.1 378.825M 38.0 -27.0 +15.0 1166.300M 29.5 -27.0 +0.0 108.227M 37.6 -27.0 +10.5	505.101M 43.2 -27.8 +17.8 +5.4 126.277M 46.8 -27.1 +11.6 +2.7 1768.800M 27.3 -23.7 +0.0 +11.9 595.234M 37.9 -27.9 +19.5 +5.9 1521.300M 28.8 -25.2 +0.0 +10.4 1535.000M 28.3 -25.1 +0.0 +10.5 595.226M 35.2 -27.9 +19.5 +5.9 465.202M 38.0 -27.7 +17.1 +5.1 380.656M 39.9 -27.1 +15.1 +4.6 1272.500M 30.8 -26.7 +0.0 +9.0 380.899M 38.2 -27.1 +15.1 +4.6 378.825M 38.0 -27.0 +15.0 +4.6 1166.300M 29.5 -27.0 +0.0 +8.5 108.227M 37.6 -27.0 +10.5 +2.4	505.101M 43.2 -27.8 +17.8 +5.4 +0.0 126.277M 46.8 -27.1 +11.6 +2.7 +0.0 1768.800M 27.3 -23.7 +0.0 +11.9 +29.0 595.234M 37.9 -27.9 +19.5 +5.9 +0.0 1521.300M 28.8 -25.2 +0.0 +10.4 +28.8 1535.000M 28.3 -25.1 +0.0 +10.5 +28.8 595.226M 35.2 -27.9 +19.5 +5.9 +0.0 465.202M 38.0 -27.7 +17.1 +5.1 +0.0 380.656M 39.9 -27.1 +15.1 +4.6 +0.0 1272.500M 30.8 -26.7 +0.0 +9.0 +27.3 380.899M 38.2 -27.1 +15.1 +4.6 +0.0 378.825M 38.0 -27.0 +15.0 +4.6 +0.0 1166.300M 29.5 -27.0 +0.0 +8.5 +26.6 108.227M 37.6 -27.0 +10.5 +2.4 +0.0 </td <td>505.101M 43.2 -27.8 +17.8 +5.4 +0.0 +0.0 126.277M 46.8 -27.1 +11.6 +2.7 +0.0 +0.0 1768.800M 27.3 -23.7 +0.0 +11.9 +29.0 +0.0 595.234M 37.9 -27.9 +19.5 +5.9 +0.0 +0.0 1521.300M 28.8 -25.2 +0.0 +10.4 +28.8 +0.0 1535.000M 28.3 -25.1 +0.0 +10.5 +28.8 +0.0 595.226M 35.2 -27.9 +19.5 +5.9 +0.0 +0.0 465.202M 38.0 -27.7 +17.1 +5.1 +0.0 +0.0 380.656M 39.9 -27.1 +15.1 +4.6 +0.0 +0.0 1272.500M 30.8 -26.7 +0.0 +9.0 +27.3 +0.0 378.825M 38.0 -27.0 +15.0 +4.6 +0.0 +0.0 108.227M 37.6 -27.0 +10.5 +2.4 +0.0 +0.0</td> <td>505.101M 43.2 -27.8 +17.8 +5.4 +0.0 +0.0 38.6 126.277M 46.8 -27.1 +11.6 +2.7 +0.0 +0.0 34.0 1768.800M 27.3 -23.7 +0.0 +11.9 +29.0 +0.0 44.5 595.234M 37.9 -27.9 +19.5 +5.9 +0.0 +0.0 35.4 1521.300M 28.8 -25.2 +0.0 +10.4 +28.8 +0.0 42.8 1535.000M 28.3 -25.1 +0.0 +10.5 +28.8 +0.0 42.5 595.226M 35.2 -27.9 +19.5 +5.9 +0.0 +0.0 32.7 465.202M 38.0 -27.7 +17.1 +5.1 +0.0 +0.0 32.5 380.656M 39.9 -27.1 +15.1 +4.6 +0.0 +0.0 32.5 1272.500M 30.8 -26.7 +0.0 +9.0 +27.3 +0.0 40.4 380.899M 38.2 -27.1 +15.0 +4.6 +0.0 +0.0 30.6</td> <td> 118 MHz tune 126.277M</td>	505.101M 43.2 -27.8 +17.8 +5.4 +0.0 +0.0 126.277M 46.8 -27.1 +11.6 +2.7 +0.0 +0.0 1768.800M 27.3 -23.7 +0.0 +11.9 +29.0 +0.0 595.234M 37.9 -27.9 +19.5 +5.9 +0.0 +0.0 1521.300M 28.8 -25.2 +0.0 +10.4 +28.8 +0.0 1535.000M 28.3 -25.1 +0.0 +10.5 +28.8 +0.0 595.226M 35.2 -27.9 +19.5 +5.9 +0.0 +0.0 465.202M 38.0 -27.7 +17.1 +5.1 +0.0 +0.0 380.656M 39.9 -27.1 +15.1 +4.6 +0.0 +0.0 1272.500M 30.8 -26.7 +0.0 +9.0 +27.3 +0.0 378.825M 38.0 -27.0 +15.0 +4.6 +0.0 +0.0 108.227M 37.6 -27.0 +10.5 +2.4 +0.0 +0.0	505.101M 43.2 -27.8 +17.8 +5.4 +0.0 +0.0 38.6 126.277M 46.8 -27.1 +11.6 +2.7 +0.0 +0.0 34.0 1768.800M 27.3 -23.7 +0.0 +11.9 +29.0 +0.0 44.5 595.234M 37.9 -27.9 +19.5 +5.9 +0.0 +0.0 35.4 1521.300M 28.8 -25.2 +0.0 +10.4 +28.8 +0.0 42.8 1535.000M 28.3 -25.1 +0.0 +10.5 +28.8 +0.0 42.5 595.226M 35.2 -27.9 +19.5 +5.9 +0.0 +0.0 32.7 465.202M 38.0 -27.7 +17.1 +5.1 +0.0 +0.0 32.5 380.656M 39.9 -27.1 +15.1 +4.6 +0.0 +0.0 32.5 1272.500M 30.8 -26.7 +0.0 +9.0 +27.3 +0.0 40.4 380.899M 38.2 -27.1 +15.0 +4.6 +0.0 +0.0 30.6	118 MHz tune 126.277M

Page 31 of 38 Report No.: FC02-012

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

Customer: Clifton Labs, Ltd. Specification: FCC B RADIATED

 Work Order #:
 78297
 Date:
 01/18/2002

 Test Type:
 Radiated Scan
 Time:
 13:16:08

Equipment: Multiband Radio Receiver Sequence#: 4

Manufacturer: Avaiation Supplies and Academics, Inc. Tested By: Mike Wilkinson

Model: AR-1 S/N: 01-15-02

Equipment Under Test (* = EUT):

Equipment enter rest (
Function	Manufacturer	Model #	S/N
Multiband Radio Receiver*	Avaiation Supplies and	AR-1	01-15-02
	Academics, Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N	
Head Set	Radio Shack	33-1162	None	
Power Supply	Radio Shack	273-1695	None	

Test Conditions / Notes:

Radio is tuned to NOAA Band at 162.475 MHz. Headset attached & power from the AC power supply. All EUT controls are set to maximum The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 30 MHz to 2.0 GHz.

Measu	rement Data:	R	leading lis	sted by m	by margin. Test Distance: 3 Meters						
			Amp-A	Bilog	Cable	Horn					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m \\$	dB	Ant
1	151.780M	50.9	-26.9	+11.8	+2.9	+0.0	+0.0	38.7	43.5	-4.8	Horiz
2	1011, , , 111	50.5	-26.9	+11.8	+2.9	+0.0	+0.0	38.3	43.5	-5.2	Vert
3	QP 1793.800M	27.8	-23.5	+0.0	+12.1	+29.0	+0.0	45.4	54.0	-8.6	Vert
4	1716.088M	28.9	-24.2	+0.0	+11.7	+28.9	+0.0	45.3	54.0	-8.7	Horiz
5	607.105M	36.6	-27.9	+19.7	+6.0	+0.0	+0.0	34.4	46.0	-11.6	Horiz
6	455.326M	37.5	-27.6	+16.9	+5.0	+0.0	+0.0	31.8	46.0	-14.2	Vert
7	303.558M	40.7	-26.4	+13.2	+4.3	+0.0	+0.0	31.8	46.0	-14.2	Vert
8	111.610M	38.6	-27.0	+10.8	+2.4	+0.0	+0.0	24.8	43.5	-18.7	Vert
9	1023.800M	29.1	-27.4	+0.0	+7.9	+25.4	+0.0	35.0	54.0	-19.0	Vert

Page 32 of 38 Report No.: FC02-012

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

Customer: Clifton Labs, Ltd. Specification: FCC B COND

 Work Order #:
 78297
 Date:
 01/19/2002

 Test Type:
 Conducted Emissions
 Time:
 11:47:12 AM

Equipment: Multiband Radio Receiver Sequence#: 7

Manufacturer: Avaiation Supplies and Academics, Inc. Tested By: Mike Wilkinson

Model: AR-1 S/N: 01-15-02

Equipment Under Test (* = EUT):

Equipment enter rest (
Function	Manufacturer	Model #	S/N
Multiband Radio Receiver*	Avaiation Supplies and	AR-1	01-15-02
	Academics, Inc.		

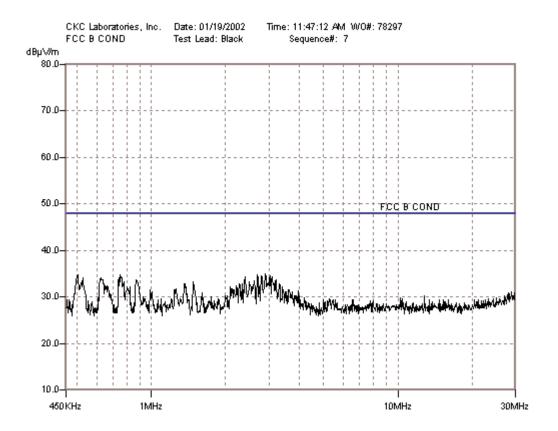
Support Devices:

Function	Manufacturer	Model #	S/N	
Head Set	Radio Shack	33-1162	None	
Power Supply	Radio Shack	273-1695	None	

Test Conditions / Notes:

Radio is tuned to Aviation Band 118.00 MHz (worst case) Headset attached & powered from the AC power supply. All EUT controls are set to maximum The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 450 kHz to 30 MHz. Power supply connected to 120V AC.

Measurement Data: Reading listed by margin. Test Lead: Black											
			T1 co		L14b						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2.910M	34.5	+0.5		+0.0		+0.0	35.0	48.0	-13.0	Black
2	2.695M	34.4	+0.4		+0.0		+0.0	34.8	48.0	-13.2	Black
3	746.709k	34.4	+0.2		+0.1		+0.0	34.7	48.0	-13.3	Black
4	504.327k	34.5	+0.2		+0.0		+0.0	34.7	48.0	-13.3	Black
5	3.029M	33.9	+0.6		+0.0		+0.0	34.5	48.0	-13.5	Black
6	2.796M	34.1	+0.4		+0.0		+0.0	34.5	48.0	-13.5	Black
7	2.414M	34.0	+0.4		+0.0		+0.0	34.4	48.0	-13.6	Black
8	3.089M	33.7	+0.6		+0.0		+0.0	34.3	48.0	-13.7	Black
9	742.530k	33.8	+0.2		+0.1		+0.0	34.1	48.0	-13.9	Black


Page 33 of 38 Report No.: FC02-012

10	625.518k	33.9	+0.1	+0.1	+0.0	34.1	48.0	-13.9	Black
11	527.312k	33.9	+0.2	+0.0	+0.0	34.1	48.0	-13.9	Black
12	867.900k	33.6	+0.2	+0.0	+0.0	33.8	48.0	-14.2	Black
13	3.208M	33.0	+0.6	+0.0	+0.0	33.6	48.0	-14.4	Black
14	736.262k	33.3	+0.2	+0.1	+0.0	33.6	48.0	-14.4	Black
15	2.617M	33.1	+0.4	+0.0	+0.0	33.5	48.0	-14.5	Black
16	521.043k	33.1	+0.2	+0.0	+0.0	33.3	48.0	-14.7	Black
17	2.498M	32.8	+0.4	+0.0	+0.0	33.2	48.0	-14.8	Black
18	1.483M	32.8	+0.3	+0.1	+0.0	33.2	48.0	-14.8	Black
19	773.873k	33.0	+0.2	+0.0	+0.0	33.2	48.0	-14.8	Black
20	1.364M	32.5	+0.3	+0.1	+0.0	32.9	48.0	-15.1	Black
21	3.304M	32.2	+0.6	+0.0	+0.0	32.8	48.0	-15.2	Black
22	2.337M	32.4	+0.4	+0.0	+0.0	32.8	48.0	-15.2	Black
23	2.277M	32.4	+0.4	+0.0	+0.0	32.8	48.0	-15.2	Black
24	1.376M	32.4	+0.3	+0.1	+0.0	32.8	48.0	-15.2	Black
25	2.217M	31.9	+0.5	+0.1	+0.0	32.5	48.0	-15.5	Black
26	658.950k	32.3	+0.1	+0.1	+0.0	32.5	48.0	-15.5	Black
27	533.580k	32.3	+0.2	+0.0	+0.0	32.5	48.0	-15.5	Black
28	2.581M	32.0	+0.4	+0.0	+0.0	32.4	48.0	-15.6	Black
29	650.592k	32.2	+0.1	+0.1	+0.0	32.4	48.0	-15.6	Black
30	671.487k	32.1	+0.1	+0.1	+0.0	32.3	48.0	-15.7	Black

Page 34 of 38 Report No.: FC02-012

Page 35 of 38 Report No.: FC02-012

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

Customer: Clifton Labs, Ltd. Specification: FCC B COND

 Work Order #:
 78297
 Date:
 01/19/2002

 Test Type:
 Conducted Emissions
 Time:
 12:00:29 PM

Equipment: Multiband Radio Receiver Sequence#: 8

Manufacturer: Avaiation Supplies and Academics, Inc. Tested By: Mike Wilkinson

Model: AR-1 S/N: 01-15-02

Equipment Under Test (* = EUT):

(
Function	Manufacturer	Model #	S/N
Multiband Radio Receiver*	Avaiation Supplies and	AR-1	01-15-02
	Academics, Inc.		

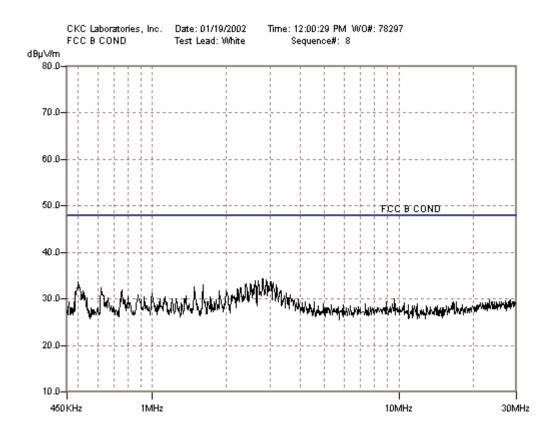
Support Devices:

TI TO THE TOTAL TO				
Function	Manufacturer	Model #	S/N	
Head Set	Radio Shack	33-1162	None	
Power Supply	Radio Shack	273-1695	None	

Test Conditions / Notes:

Radio is tuned to Aviation Band 118.00 MHz (worst case) Headset attached & powered from the AC power supply. All EUT controls are set to maximum The temperature was 69°F and the humidity was 45%. Added 100 pF Cap to BAT and Gnd vias on the upper left corner of the analog board. Based on preliminary measurements the worst case orthogonal plane is horizontal and this will be the EUT position for all testing. The EUT has had prescans and preliminary measurements made that show the worst case configuration is with the AC power supply connected. This will be the configuration used throughout the test. Frequency range investigated was 450 kHz to 30 MHz. Power supply connected to 120V AC.

Measur	rement Data:	Re	Reading listed by margin.				Test Lead: White				
			T1 co	L13w							
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	2.796M	33.9	+0.4	+0.1			+0.0	34.4	48.0	-13.6	White
2	2.904M	33.6	+0.5	+0.1			+0.0	34.2	48.0	-13.8	White
3	2.683M	33.5	+0.4	+0.1			+0.0	34.0	48.0	-14.0	White
4	2.623M	33.4	+0.4	+0.1			+0.0	33.9	48.0	-14.1	White
5	3.029M	33.0	+0.6	+0.1			+0.0	33.7	48.0	-14.3	White
6	2.999M	32.9	+0.6	+0.1			+0.0	33.6	48.0	-14.4	White
7	502.238k	33.3	+0.2	+0.1			+0.0	33.6	48.0	-14.4	White
8	3.089M	32.8	+0.6	+0.1			+0.0	33.5	48.0	-14.5	White
9	2.498M	32.8	+0.4	+0.1			+0.0	33.3	48.0	-14.7	White


Page 36 of 38 Report No.: FC02-012

10	2.402M	32.7	+0.4	+0.1	-1	+0.0	33.2	48.0	-14.8	White
11	3.190M	32.3	+0.6	+0.1	4	+0.0	33.0	48.0	-15.0	White
12	2.528M	32.5	+0.4	+0.1	4	-0.0	33.0	48.0	-15.0	White
13	1.608M	32.5	+0.3	+0.2	-1	+0.0	33.0	48.0	-15.0	White
14	2.970M	32.2	+0.6	+0.1	-1	+0.0	32.9	48.0	-15.1	White
15	1.483M	32.1	+0.3	+0.2	4	+0.0	32.6	48.0	-15.4	White
16	2.295M	32.0	+0.4	+0.1	4	+0.0	32.5	48.0	-15.5	White
17	2.271M	32.0	+0.4	+0.1	4	+0.0	32.5	48.0	-15.5	White
18	621.339k	32.2	+0.1	+0.1	-1	-0.0	32.4	48.0	-15.6	White
19	2.217M	31.6	+0.5	+0.2	-1	+0.0	32.3	48.0	-15.7	White
20	2.570M	31.7	+0.4	+0.1	4	+0.0	32.2	48.0	-15.8	White
21	2.235M	31.3	+0.5	+0.2	4	+0.0	32.0	48.0	-16.0	White
22	752.978k	31.7	+0.2	+0.1	4	+0.0	32.0	48.0	-16.0	White
23	3.322M	31.1	+0.6	+0.1	H	+0.0	31.8	48.0	-16.2	White
24	1.990M	31.2	+0.4	+0.2	4	+0.0	31.8	48.0	-16.2	White
25	1.877M	31.1	+0.4	+0.2	H	+0.0	31.7	48.0	-16.3	White
26	521.043k	31.4	+0.2	+0.1	4	+0.0	31.7	48.0	-16.3	White
27	2.749M	31.1	+0.4	+0.1	4	+0.0	31.6	48.0	-16.4	White
28	746.709k	31.2	+0.2	+0.1	4	+0.0	31.5	48.0	-16.5	White
29	627.608k	31.3	+0.1	+0.1	4	+0.0	31.5	48.0	-16.5	White
30	487.611k	31.2	+0.2	+0.1	-	-0.0	31.5	48.0	-16.5	White

Page 37 of 38 Report No.: FC02-012

