

The Device is a **Portable** RF Fob for periodic TX applications. RF fob is suitable for commercial and residential application.

RF fob is evaluated for RF radiation exposure according to the provisions of FCC §2.1093, MPE guidelines identified in FCC §1.1310 and FCC KDB 447498:2015.

### §2.1093 Radiofrequency radiation exposure evaluation: portable devices.

(b) For purposes of this section, a portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user.

(c)(1) Portable devices that operate in the Cellular Radiotelephone Service pursuant to part 22 of this chapter; the Personal Communications Service (PCS) pursuant to part 24 of this chapter; the Satellite Communications Services pursuant to part 25 of this chapter; the Miscellaneous Wireless Communications Services pursuant to part 27 of this chapter; the Upper Microwave Flexible Use Service pursuant to part 30 of this chapter; the Maritime Services (ship earth station devices only) pursuant to part 80 of this chapter; the Specialized Mobile Radio Service, the 4.9 GHz Band Service, and the 3650 MHz Wireless Broadband Service pursuant to part 90 of this chapter; the Wireless Medical Telemetry Service (WMTS), the Medical Device Radiocommunication Service (MedRadio), and the 76-81 GHz Band Radar Service pursuant to subparts H, I, and M of part 95 of this chapter, respectively; unlicensed personal communication service, unlicensed NII devices and millimeter-wave devices authorized under §§15.255(f), 15.257(g), 15.319(i), and 15.407(f) of this chapter; and the Citizens Broadband Radio Service pursuant to part 96 of this chapter are subject to routine environmental evaluation for RF exposure prior to equipment authorization or use.

(2) All other portable transmitting devices are categorically excluded from routine environmental evaluation for RF exposure prior to equipment authorization or use, except as specified in §§1.1307(c) and 1.1307(d) of this chapter.

As per FCC KDB 447498:2015 clauses 4.3 General SAR test exclusion guidance.

#### 4.3.1. Standalone SAR test exclusion considerations

a) For 100 MHz to 6 GHz and test separation distances  $\leq$  50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

$$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR, and } \leq 7.5 \text{ for 10-g extremity SAR, where}$$

$f$  (GHz) is the RF channel transmit frequency in GHz

#### SAR Test Exclusion Thresholds Table at Selected Frequencies and Test Separation Distances for 100 MHz – 6 GHz and $\leq$ 50 mm

(The equation and threshold in 4.3.1 must be applied to determine SAR test exclusion.)

| MHz        | 5         | 10 | 15  | 20  | 25  | mm                                |
|------------|-----------|----|-----|-----|-----|-----------------------------------|
| 150        | 39        | 77 | 116 | 155 | 194 | SAR Test Exclusion Threshold (mW) |
| 300        | 27        | 55 | 82  | 110 | 137 |                                   |
| <b>450</b> | <b>22</b> | 45 | 67  | 89  | 112 |                                   |
| 835        | 16        | 33 | 49  | 66  | 82  |                                   |
| 900        | 16        | 32 | 47  | 63  | 79  |                                   |
| 1500       | 12        | 24 | 37  | 49  | 61  |                                   |
| 1900       | 11        | 22 | 33  | 44  | 54  |                                   |
| 2450       | 10        | 19 | 29  | 38  | 48  |                                   |
| 3600       | 8         | 16 | 24  | 32  | 40  |                                   |
| 5200       | 7         | 13 | 20  | 26  | 33  |                                   |
| 5400       | 6         | 13 | 19  | 26  | 32  |                                   |
| 5800       | 6         | 12 | 19  | 25  | 31  |                                   |

Measured Radiated field strength for fundamental frequencies 431.06 MHz and 433.06 MHz

| Frequency (MHz) | Radiated RF Peak Field Strength (E) (dB $\mu$ V/m) | Radiated EIRP EIRP(dBm)=[E(dB $\mu$ V/m) - 95.3] (dBm) | EIRP (mW) |
|-----------------|----------------------------------------------------|--------------------------------------------------------|-----------|
| 431.06          | 90.33                                              | -4.97                                                  | 0.318     |
| 433.06          | 90.10                                              | -5.20                                                  | 0.302     |

As per Tuning procedure the absolute maximum power of the chip is capable is “+10 dBm “and TX antenna gain is -6 dBi. So calculated Worse Case EIRP is

$$\text{EIRP(dBm)} = \text{Max. Tx Power (dBm)} + \text{Antenna Gain (dBi)}$$

$$\text{EIRP(dBm)} = [10 \text{ (dBm)}] + [-6 \text{ (dBi)}]$$

$$\text{EIRP(dBm)} = 4 \text{ (dBm)} = 2.5 \text{ mW}$$

#### Calculations:

Worse Power= 2.5 mW

Distance= 5 mm

Frequencies= 431.06 MHz (0.43106 GHz) and 433.06 MHz (0.43306 GHz)

$$[(2.5 \text{ mW} / 5 \text{ mm})] \times [\sqrt{(0.43106 \text{ GHz})}] \leq 3.0 \text{ for 1-g SAR, and } \leq 7.5 \text{ for 10-g extremity SAR}$$

**0.33 <<<< 3.0 (1-g SAR Limit) => SAR test excluded for 1g and 10g SAR tests**

$$[(2.5 \text{ mW} / 5 \text{ mm})] \times [\sqrt{(0.43306 \text{ GHz})}] \leq 3.0 \text{ for 1-g SAR, and } \leq 7.5 \text{ for 10-g extremity SAR}$$

**0.33 <<<< 3.0 (1-g SAR Limit) => SAR test excluded for 1g and 10g SAR tests**