

TEST REPORT

Test Report No. : UL-RPT-RP- UL-RPT-RP-12226309-116-FCC

Applicant : Seba Dynatronic Mess- und Ortungstechnik GmbH
Model No. : LOG PS-3-913
FCC ID : Contains FCC ID: OV8-PS-3 & Contains FCC ID: X7J-A10040601
Technology : 915 MHz & WLAN 2.4 GHz Intermodulation Products
Test Standard(s) : FCC Parts 15.207, 15.209 & 15.247

For details of applied tests refer to test result summary

1. This test report shall not be reproduced in full or partial, without the written approval of UL International Germany GmbH.
2. The results in this report apply only to the sample tested.
3. The test results in this report are traceable to the national or international standards.
4. Test Report Version 1.1 supersedes Test Report Version 1.0
5. Result of the tested sample: **PASS**

Prepared by: Segun, Adeniji
Title: Engineer
Date: 31.July.2018

Approved by: Ajit, Phadtare
Title: Lead Test Engineer
Date: 08.July.2019

Deutsche
Akkreditierungsstelle
D-PL-19381-02-00

This laboratory is accredited by DAkkS.
The tests reported herein have been performed in
accordance with its' terms of accreditation.

UL INTERNATIONAL GERMANY GMBH

Hedelfinger Str. 61
70327 Stuttgart, Germany
STU.CTECHLab@ul.com

This page has been left intentionally blank.

Table of Contents

1. Customer Information.....	4
1.1.Applicant Information	4
1.2.Manufacturer Information	4
2. Summary of Testing.....	5
2.1. General Information	5
Applied Standards	5
Location	5
Date information	5
2.2. Summary of Test Results	6
2.3. Methods and Procedures	6
2.4. Deviations from the Test Specification	6
3. Equipment Under Test (EUT)	7
3.1. Identification of Equipment Under Test (EUT)	7
3.2. Description of EUT	7
3.3. Modifications Incorporated in the EUT	7
3.4. Additional Information Related to Testing	8
3.5. Support Equipment	8
A. Support Equipment (In-house)	8
B. Support Equipment (Manufacturer supplied)	8
4. Operation and Monitoring of the EUT during Testing	9
4.1. Operating Modes	9
4.2. Configuration and Peripherals	9
4.3. Worst case Justification for Intermodulation	9
5. Measurements, Examinations and Derived Results	10
5.1. General Comments	10
5.2. Test Results	11
5.2.1. Transmitter AC Conducted Spurious Emissions	11
5.2.2. Transmitter Radiated Emissions	15
6. Measurement Uncertainty	26
7. Used equipment	27
8. Report Revision History	28

1. Customer Information

1.1. Applicant Information

Company Name:	Seba Dynatronic Mess- und Ortungstechnik GmbH
Company Address:	Dr.-Herbert-lann-Str. 6, Baunach, 96148, Germany
Contact Person:	Steffen Schmidt
Contact E-Mail Address:	schmidt.s@sebakmt.com
Contact Phone No.:	+49-9544-680

1.2. Manufacturer Information

Company Name:	Seba Dynatronic Mess- und Ortungstechnik GmbH
Company Address:	Dr.-Herbert-lann-Str. 6, Baunach, 96148, Germany
Contact Person:	Steffen Schmidt
Contact E-Mail Address:	schmidt.s@sebakmt.com
Contact Phone No.:	+49-9544-680

2. Summary of Testing

2.1. General Information

Specification Reference:	47CFR15.247
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247
Specification Reference:	47CFR15.207 and 47CFR15.209
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Sections 15.207 and 15.209
Test Firm Registration:	399704

Applied Standards

Location

Location of Testing:	UL International Germany GmbH Hedelfinger Str. 61 70327 Stuttgart Germany
-----------------------------	--

Date information

Order Date:	21 March 2018
EUT arrived:	11 July 2018
Test Dates:	20 July 2018 to 24 July 2018
EUT returned:	-/-

2.2. Summary of Test Results

Clause	Measurement	Complied	Did not comply	Not performed	Not applicable
Part 15.207	Transmitter AC Conducted Emissions ⁽¹⁾	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Part 15.247(a)(2)	Transmitter Minimum 6 dB Bandwidth	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Part 15.35(c)	Transmitter Duty Cycle	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Part 15.247(e)	Transmitter Power Spectral Density	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Part 15.247(b)(3)	Transmitter Maximum (Average) Output Power	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Part 15.247(d) & 15.209(a)	Transmitter Radiated Emissions ⁽¹⁾	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Part 15.247(d) & 15.209(a)	Transmitter Band Edge Radiated Emissions	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

Note(s):

1. The measurements were performed to assist in the determination of the level of intermodulation products power resulting from the simultaneous operation of WLAN 2.4GHz and a 915 MHz radio. Only the marked tests have been requested to be performed by the customer.

2.3. Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Reference:	KDB 174176 D01 Line Conducted FAQ v01r01 June 3, 2015
Title:	AC Power-Line Conducted Emissions Frequently Asked Questions

2.4. Deviations from the Test Specification

The deviation is that the test focuses only on the intermodulation products produced due to the co-operation of the 915 MHz module and the WLAN 2.4 GHz module.

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	SebaKMT
Model Name or Number:	LOG PS-3-913
Serial Number:	12323710002
FCC ID:	Contains FCC ID: OV8-PS-3 & Contains FCC ID: X7J-A10040601
Hardware Version Number:	6.057.03
Software Version Number:	1.1.0
Firmware Version Number:	Not marked/ stated

3.2. Description of EUT

The equipment under test was a PocketServer incorporating a WLAN 2.4 GHz and 915 MHz radio modules.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.4. Additional Information Related to Testing

Technology Tested:	WLAN (IEEE 802.11b,g,n) / Digital Transmission System	
Type of Unit:	Transceiver	
Modulation Type:	DBPSK, DQPSK, BPSK, QPSK, 16QAM	
Data Rates:	802.11b (SISO)	1, 2, 5.5 & 11 Mbps
	802.11g (SISO)	6, 9, 12, 18, 24, 36, 48 & 54 Mbps
	802.11n HT20 (SISO)	MCS0 to MCS7
Power Supply Requirement(s):	Nominal	Internal Battery (3.6 VDC), External Charger (5.0 VDC)
Channel Spacing:	20 MHz	
Transmit Frequency Range:	2412 MHz to 2462 MHz	
WLAN Transmit Channels Tested:	Channel Designation	Channel Frequency (MHz)
	Bottom	2412
	Middle	2437
	Top	2462
Technology Tested:	902-928 MHz Short Range Radio / Digital Transmission System	
Type of Unit:	Transceiver	
Modulation Type:	2-FSK	
Data Rates:	10 Kbaud	
Transmit Frequency Range:	907.790 MHz to 922.062 MHz	
915 MHz Radio Transmit Channels Tested:	Channel Designation	Channel Frequency (MHz)
	Bottom	907.790
	Middle	914.902
	Top	922.062

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

A. Support Equipment (In-house)

Item	Description	Brand Name	Model Name or Number	Serial Number
1	Laptop PC	Lenovo	W530	Not marked/ stated

B. Support Equipment (Manufacturer supplied)

Item	Description	Brand Name	Model Name or Number	Serial Number
1	AC/DC Power supply	FRIWO Gerätebau GmbH	FW8000USB/05	Not marked/ stated
2	Wireless 802.11b/g/n nano USB Adapter	Edimax	EW-7811Un	EW7811UN53CA15379

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

- The EUT was configured to Continuously transmit modulated carriers of WLAN 2.4 GHz & 915 MHz

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- The test modes were activated using "Equipment_setup_LOG_PS-3.pdf" supplied by applicant.
- The EUT was powered via fully charged internal battery (3.6 VDC).
- Combination of intermodulation Test Channels were activated using "LOG PS-3 FccTool.exe" supplied by applicant. "LOG PS-3 FccTool.exe" was installed on test laptop.
- To this test laptop Wireless 802.11b/g/n nano USB Adapter was connected. "LOG PS-3 FccTool.exe" to EUT communication & data transfer were performed over wireless.
- The data rates and power levels of both WLAN2.4 GHz & 915 MHz technologies were pre-configured by the customer & were not accessible to end user.
- During testing
 - 915 MHz Radio Transmission channel was set to Permanent TX ON &
 - WLAN 2.4 GHz Transmission channel was set to Permanent WIFI traffic ON
 - Worst case channel combination was used (refer section 4.3)
- The EUT radiated sample was used for the intermodulation measurement and the result was compared with the spurious emission limits.
- EMC32 v10.1 from Rohde and Schwarz was used for the radiated intermodulation measurements.

4.3. Worst case Justification for Intermodulation

Table of test reduction and modes covered :

WLAN 2.4 GHz Channel	915 MHz Radio Channel Frequency
Bottom (2412 MHz)	Top (922.062 MHz)
Bottom (2412 MHz)	Bottom (907.790 MHz)
Middle (2437 MHz)	Middle (914.902 MHz)
Top (2462 MHz)	Top (922.062 MHz)

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6 *Measurement Uncertainty* for details.

In accordance with DAkkS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2. Test Results

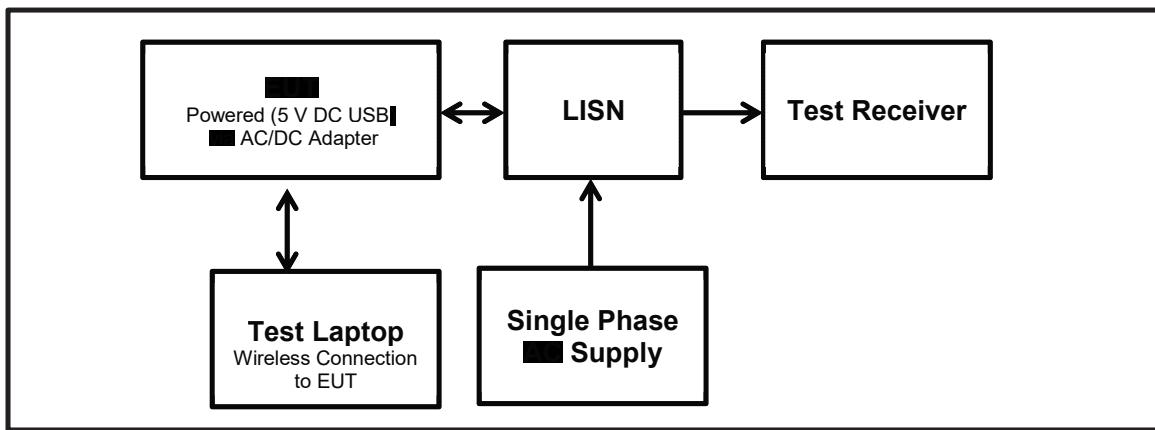
5.2.1. Transmitter AC Conducted Spurious Emissions

Test Summary:

Test Engineer:	Asim Shahzad	Test Date:	24 July 2018
Test Sample Serial Number:	12323710002		
Test Site Identification	SR 7/8		

FCC Reference:	Part 15.207
Test Method Used:	ANSI C63.10 Section 6.2 / FCC KDB 174176 and notes below

Environmental Conditions:


Temperature (°C):	22
Relative Humidity (%):	34

Settings of the Instrument

Detector	Quasi Peak/ Average Peak
-----------------	--------------------------

Note(s):

1. The EUT was connected to its Battery charger via a USB cable. The AC/DC charger adapter was connected to 120 VAC 60 Hz single phase supply via a LISN.
2. Pre-scans were performed and markers placed on the highest live and neutral measured levels. Final measurements were performed on the marker frequencies and the results entered into the tables below.
3. The tests were performed with test mode: 915 MHz Radio Top Channel + WLAN 2.4 GHz Bottom Channel.

Transmitter AC Conducted Spurious Emissions (continued)**Test setup:**

Transmitter AC Conducted Spurious Emissions (continued)**Results: Live / Quasi Peak / 120 VAC 60 Hz**

Frequency (MHz)	Line	QP Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.16024	Live	42.8	65.5	22.7	Complied
0.44506	Live	35.5	57	21.5	Complied
0.68842	Live	29.4	56	26.6	Complied
1.45909	Live	29.8	56	26.2	Complied
2.34852	Live	33.6	56	22.4	Complied
6.70079	Live	26.1	60	33.9	Complied

Results: Live / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	AV Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.16024	Live	24.6	55.5	30.9	Complied
0.44506	Live	19.3	47	27.7	Complied
0.68842	Live	12.7	46	33.3	Complied
1.45909	Live	16.4	46	29.6	Complied
2.34852	Live	19	46	27	Complied
6.70079	Live	14.3	50	35.7	Complied

Results: Neutral / Quasi Peak / 120 VAC 60 Hz

Frequency (MHz)	Line	QP Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.1618	Neutral	43	65.4	22.4	Complied
0.44883	Neutral	34	56.9	22.9	Complied
0.81566	Neutral	26.7	56	29.3	Complied
1.77602	Neutral	29.8	56	26.2	Complied
2.6401	Neutral	32.6	56	23.4	Complied
5.79436	Neutral	22.8	60	37.2	Complied

Results: Neutral / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	AV Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.1618	Neutral	25.8	55.4	29.6	Complied
0.44883	Neutral	21	46.9	25.9	Complied
0.81566	Neutral	18.4	46	27.6	Complied
1.77602	Neutral	20.5	46	25.5	Complied
2.6401	Neutral	24.4	46	21.6	Complied
5.79436	Neutral	14.4	50	35.6	Complied

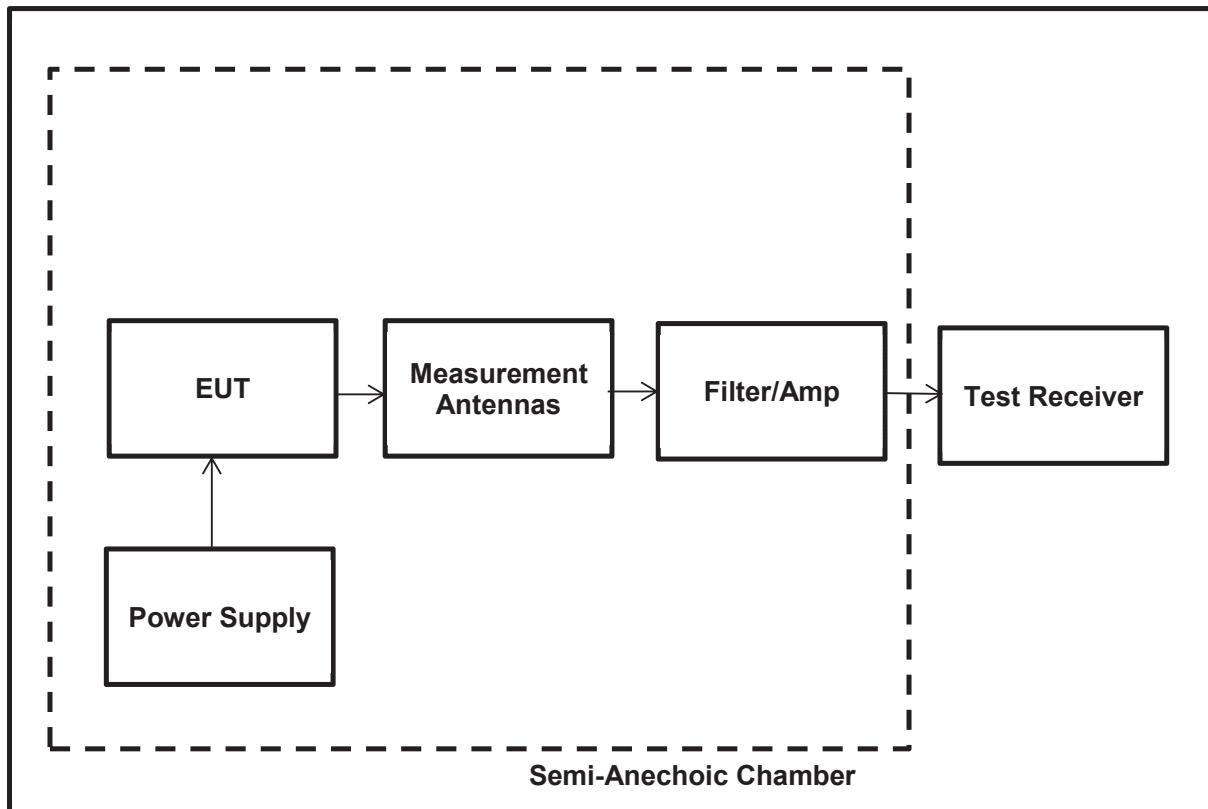
Result: Pass

Transmitter AC Conducted Spurious Emissions (continued)**Plot: Live and Neutral Line**

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

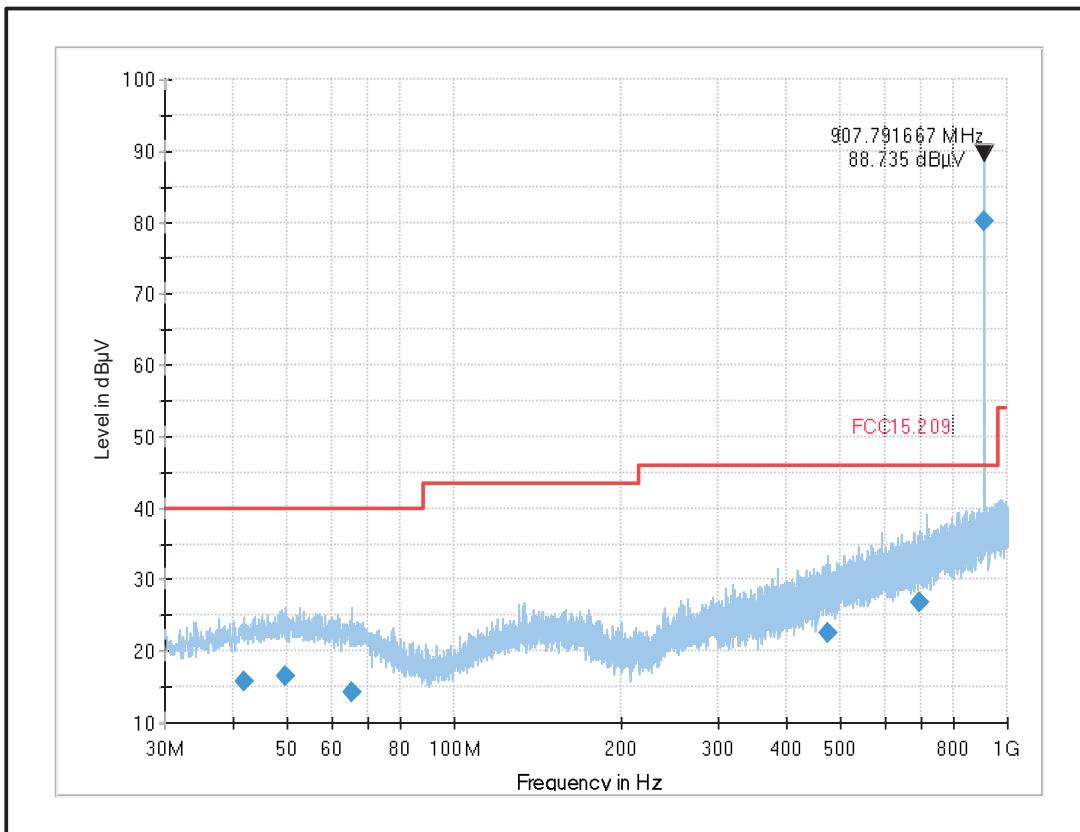
5.2.2. Transmitter Radiated Emissions**Test Summary:**

Test Engineer:	Segun I. Adeniji	Test Date:	20 July - 23 July 2018
Test Sample Serial Number:	12323710002		
Test Site Identification	SR 1/2		


FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.5
Frequency Range	30 MHz to 1000 MHz

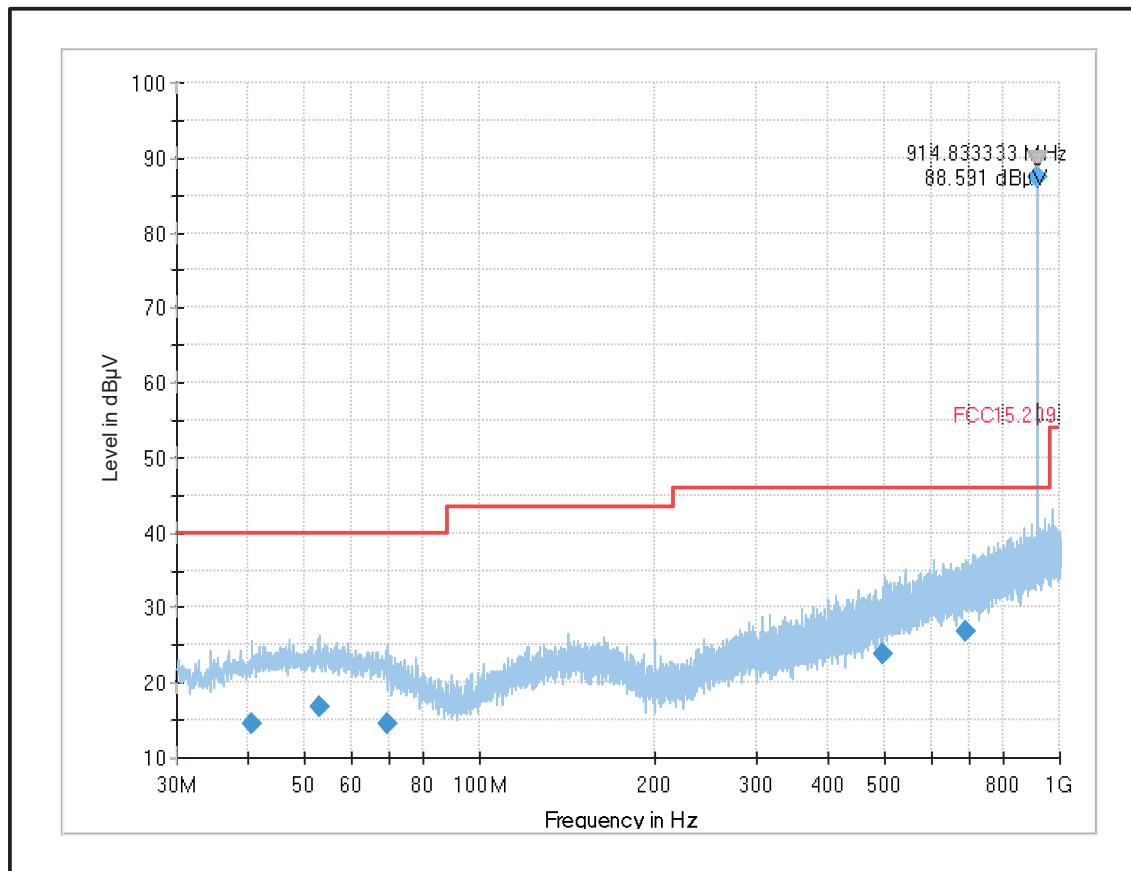
Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	31


Note(s):

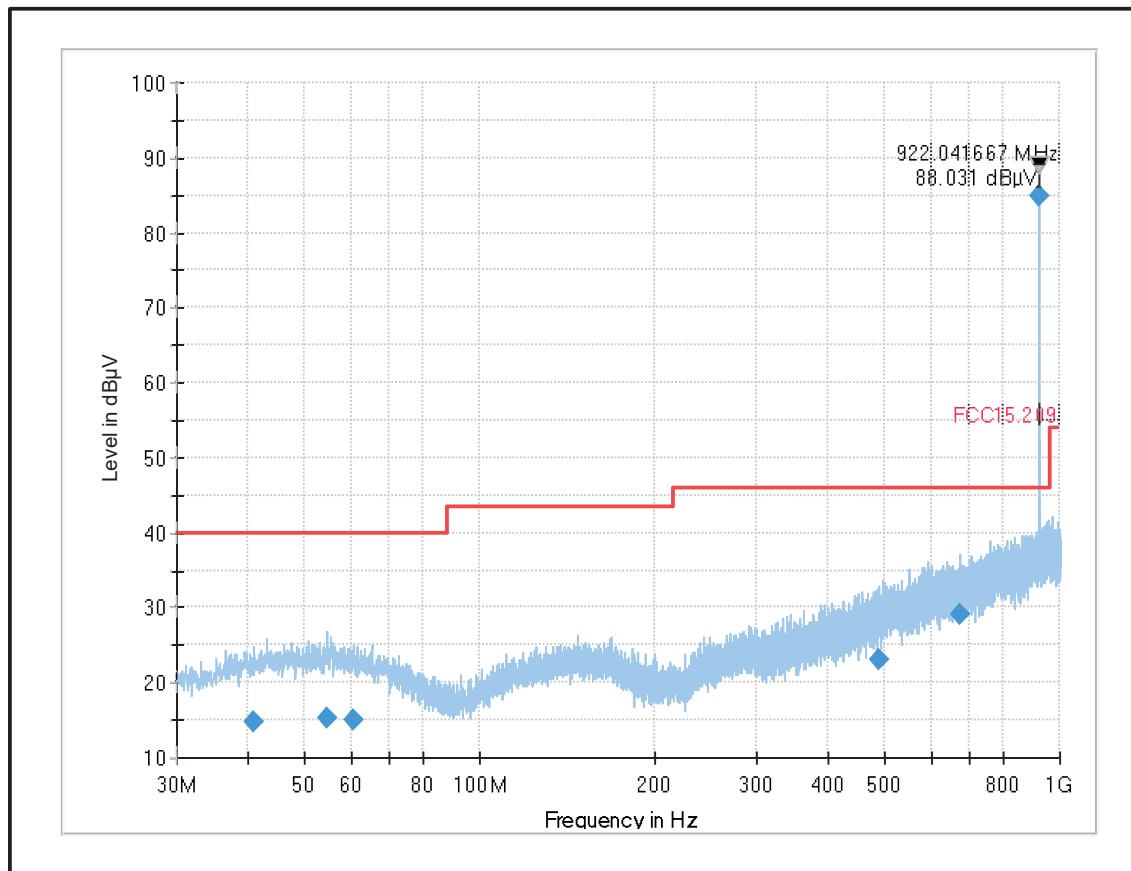
1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. The worst case combinations of 915 MHz and WLAN 2.4 GHz channels have been tested.
3. No intermodulation product resulting from the simultaneous operation of the two technologies was observed and only spurious emissions were found.
4. Measurements below 1 GHz were performed in a semi-anechoic chamber at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
5. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
6. As the peak detector result complies with the Average limits, hence no average measurement with the average detector was performed.

Test Setup:


Results: Peak / 915 MHz Radio Bottom Channel + WLAN 2.4 GHz Bottom Channel

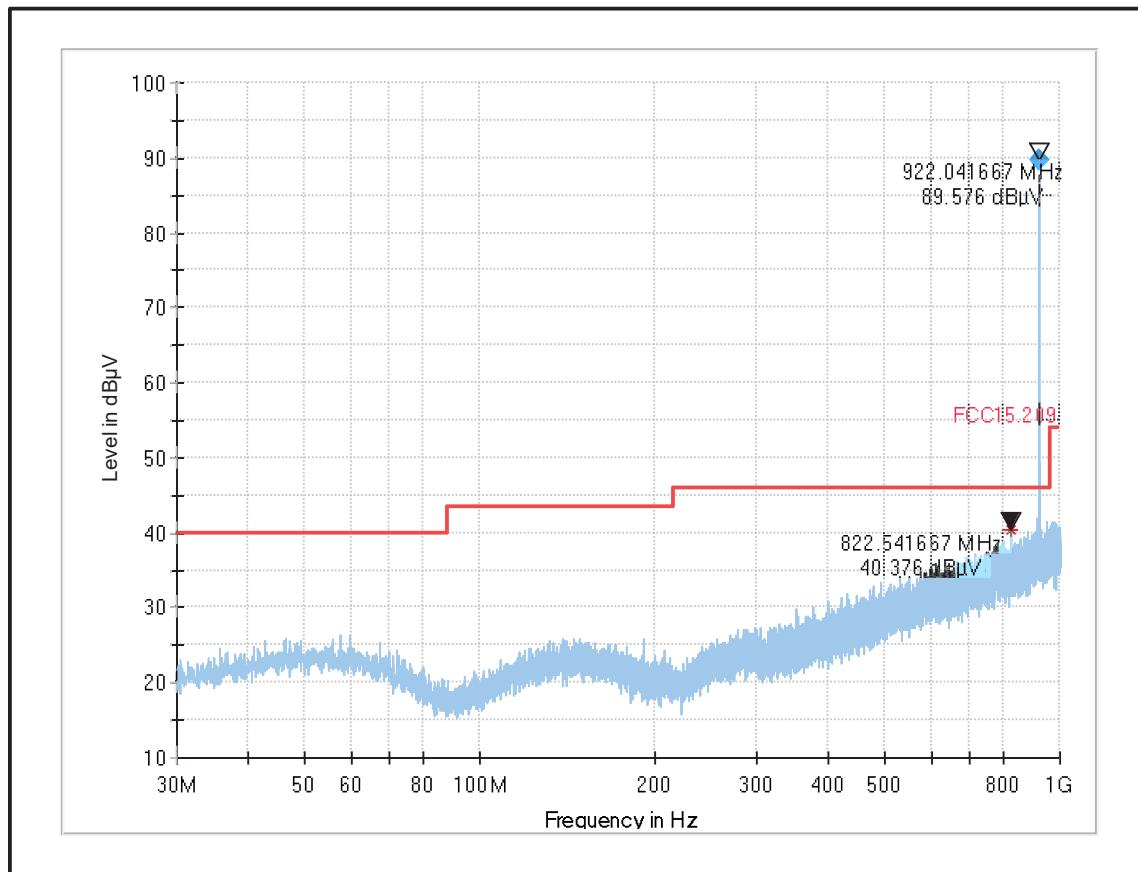
Frequency (MHz)	Antenna Polarization	Max Peak Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
41.565000	V	15.88	40.00	24.12	Complied
49.530000	V	16.46	40.00	23.54	Complied
65.280000	V	14.18	40.00	25.82	Complied
473.733333	V	22.57	46.00	23.43	Complied
693.958333	V	26.86	46.00	19.14	Complied

Plot: 30 MHz – 1GHz / 915 MHz Radio Bottom Channel + WLAN 2.4 GHz Bottom Channel**Result: Pass**


Results: Peak / 915 MHz Radio Middle Channel + WLAN 2.4 GHz Middle Channel

Frequency (MHz)	Antenna Polarization	Max Peak Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
40.530000	V	14.41	40.00	25.59	Complied
52.995000	H	16.88	40.00	23.12	Complied
69.150000	V	14.47	40.00	25.53	Complied
494.333333	V	23.81	46.00	22.19	Complied
689.750000	H	26.88	46.00	19.12	Complied

Plot: 30 MHz – 1GHz / 915 MHz Radio Middle Channel + WLAN 2.4 GHz Middle Channel**Result: Pass**


Results: Peak / 915 MHz Radio Top Channel + WLAN 2.4 GHz Top Channel

Frequency (MHz)	Antenna Polarization	Max Peak Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
40.755000	H	14.81	40.00	25.19	Complied
54.525000	V	15.23	40.00	24.77	Complied
60.510000	V	14.93	40.00	25.07	Complied
488.700000	H	23.04	46.00	22.96	Complied
675.041667	H	29.03	46.00	16.97	Complied

Plot: 30 MHz – 1GHz / 915 MHz Radio Top Channel + WLAN 2.4 GHz Top Channel**Result: Pass**

Results: Peak / 915 MHz Radio Top Channel + WLAN 2.4 GHz Bottom Channel

Frequency (MHz)	Antenna Polarization	Max Peak Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
822.541667	H	40.38	46.00	5.62	Complied

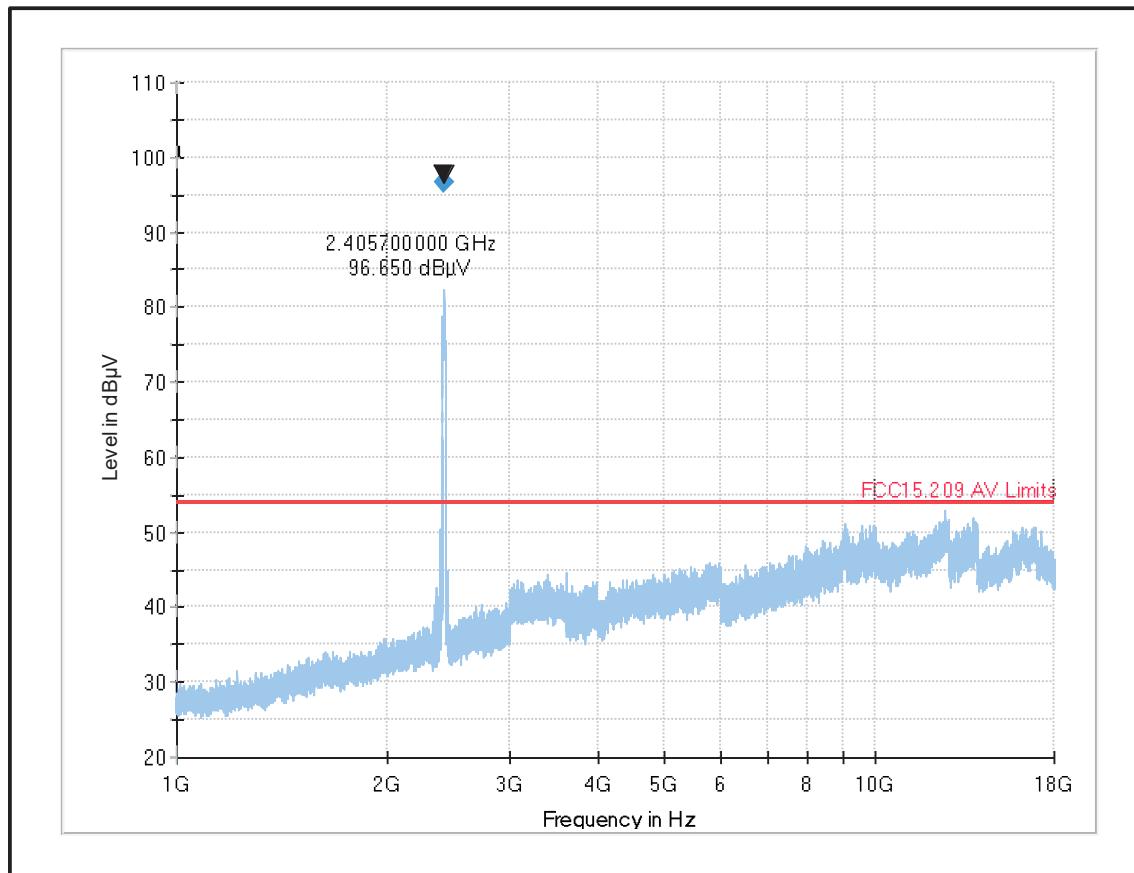
Plot: 30 MHz – 1GHz / 915 MHz Radio Top Channel + WLAN 2.4 GHz Bottom Channel**Result: Pass**

Test Summary:

Test Engineer:	Segun I. Adeniji	Test Date:	20 July, 23 July 2018
Test Sample Serial Number:	12323710002		
Test Site Identification	SR 1/2		

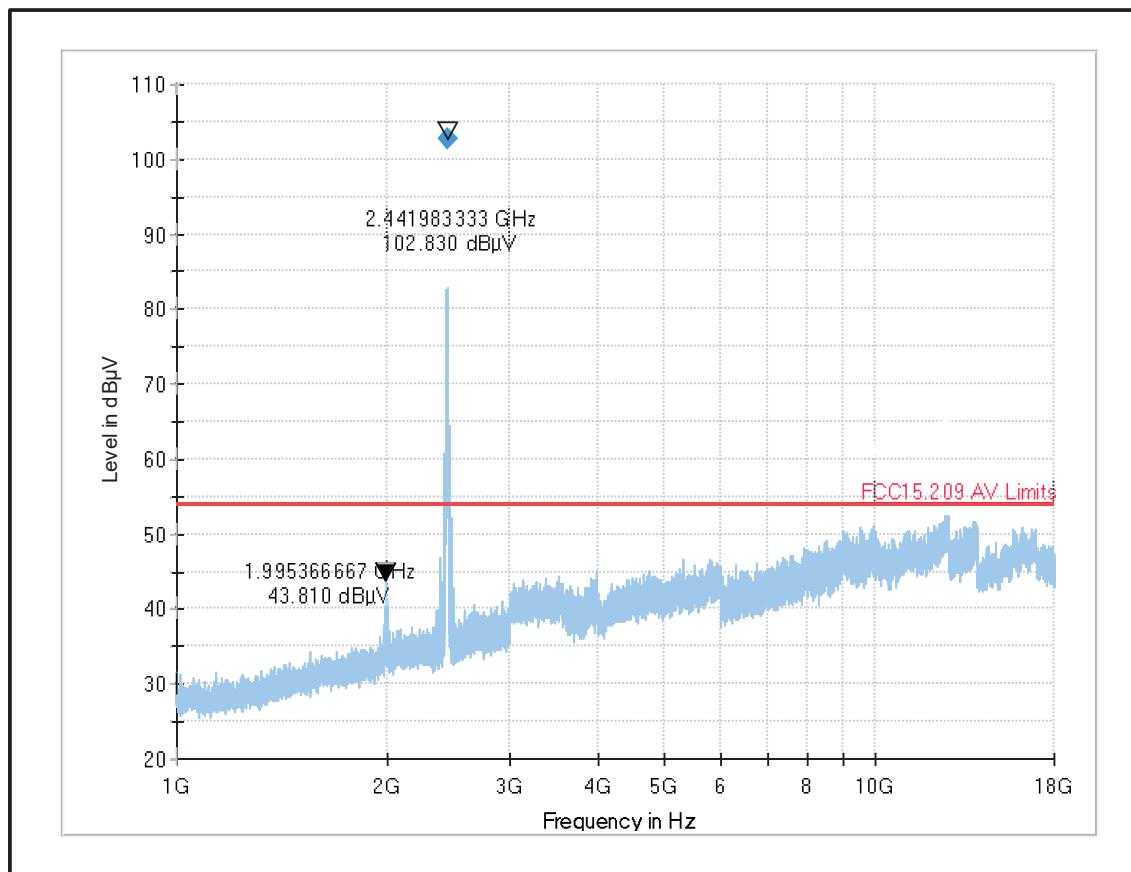
FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.6
Frequency Range	1 GHz to 18 GHz

Environmental Conditions:


Temperature (°C):	23
Relative Humidity (%):	31

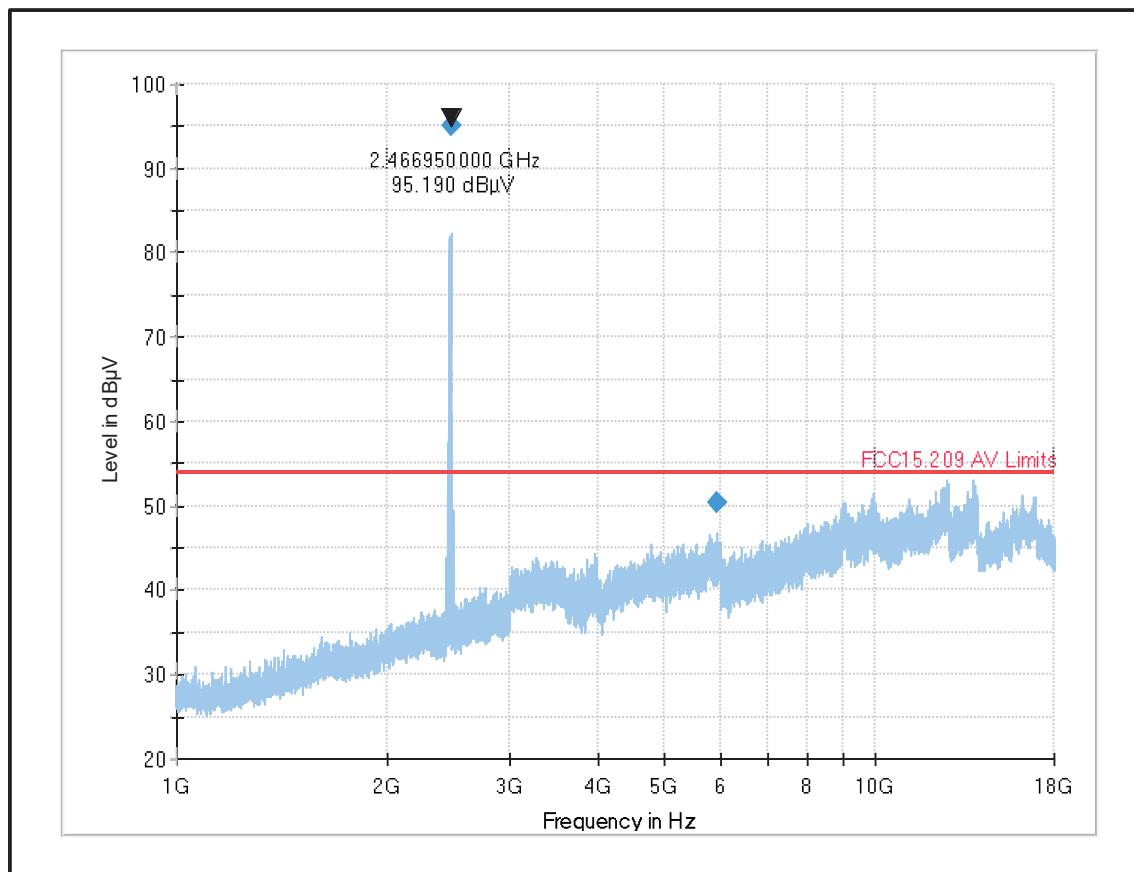
Note(s):

1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. The worst case combinations of 915 MHz and WLAN 2.4 GHz channels have been tested.
3. Referring to the plots below, on the first and second plots, the emission shown around the 2.4 GHz is the combination of the two signals and no intermodulation product was found. Therefore only the noise floor levels have been recorded.
4. The preliminary scans showed no intermodulation products & critical emissions levels above 18 GHz, for each channel of worst case combinations of 915 MHz and WLAN 2.4 GHz channels ; Therefore measurements were made on a frequency range (up to 18 GHz) to cover above 9th order intermodulation product.
5. Measurements above 1 GHz were performed in a semi-anechoic chamber at a distance of 3 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
6. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto.
7. *In accordance with ANSI C63.10 Section 6.6.4.3, Note 1, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
8. The reference level for the emission in the non-restricted band was established by following KDB 558074 Section 11.2 procedure.


Results: Peak / 915 MHz Radio Bottom Channel + WLAN 2.4 GHz Bottom Channel

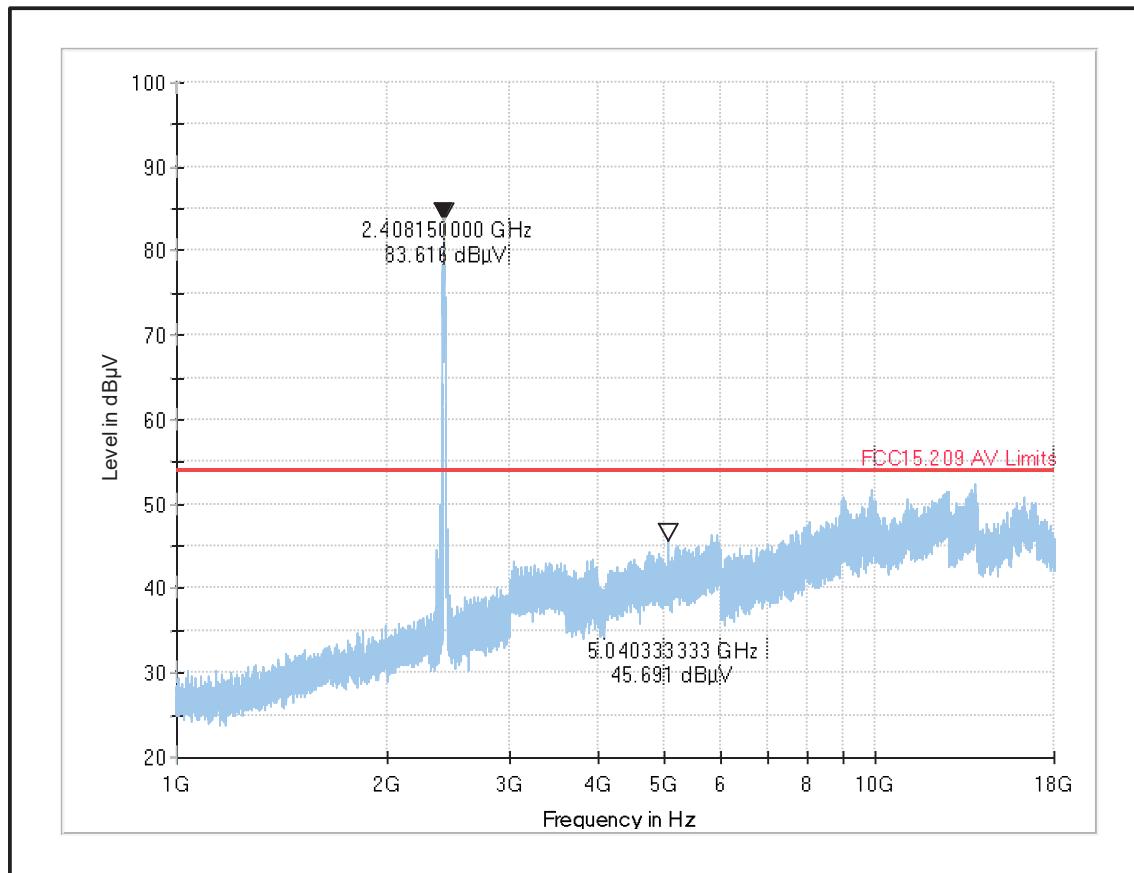
Frequency (MHz)	Antenna Polarization	Level (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Result
12532.3	H	53.00	54.0	1.00	Complied

Plot: 1-18 GHz / Peak / 915 MHz Radio Bottom Channel + WLAN 2.4 GHz Bottom Channel**Result: Pass**


Results: Peak / 915 MHz Radio Middle Channel + WLAN 2.4 GHz Middle Channel

Frequency (MHz)	Antenna Polarization	Level (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Result
1995.36	H	43.81	54.0	10.19	Complied

Plot: 1-18 GHz / Peak / 915 MHz Radio Middle Channel + WLAN 2.4 GHz Middle Channel**Result: Pass**


Results: Peak / 915 MHz Radio Top Channel + WLAN 2.4 GHz Top Channel

Frequency (MHz)	Antenna Polarization	Level (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Result
5945.66	H	50.3	54.0	3.70	Complied

Plot: 1-18 GHz/Peak / 915 MHz Radio Top Channel + WLAN 2.4 GHz Top Channel**Result: Pass**

Results: Peak / 915 MHz Radio Top Channel + WLAN 2.4 GHz Bottom Channel

Frequency (MHz)	Antenna Polarization	Level (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Result
5040.33	H	45.69	54.0	8.31	Complied

Plot: 1-18 GHz / Peak / 915 MHz Radio Top Channel + WLAN 2.4 GHz Bottom Channel**Result: Pass**

6. Measurement Uncertainty

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Confidence Level (%)	Calculated Uncertainty
AC Conducted Spurious Emissions	95%	±2.49 dB
Radiated Spurious Emissions	95%	±3.10 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

7. Used equipment

Test site: SR 1/2

ID	Manufacturer	Type	Model	Serial No.	Calibration Date	Cal. Cycle
350	Rohde & Schwarz	Receiver, EMI Test	ESIB7	836697/014	7/12/2018	12
377	Bonn Elektronik	Amplifier, Low Noise Pre	BLMA 0118-1A	025294B	7/12/2018	12
423	Bonn Elektronik	Amplifier, Low Noise Pre	BLMA 1840-1A	055929	7/12/2018	12
460	Deisl	Turntable	DT 4250 S		n/a	n/a
465	Schwarzbeck	Antenna, Trilog Broadband	VULB 9168	9168-240	8/8/2016	36
496	Rohde & Schwarz	Antenna, log. - periodical	HL050	100297	7/20/2016	24
587	Maturo	antenna mast, tilting	TAM 4.0-E	011/7180311	n/a	n/a
588	Maturo	Controller	NCD	029/7180311	n/a	n/a
591	Rohde & Schwarz	Receiver	ESU 40	100244/040	7/12/2018	12
608	Rohde & Schwarz	Switch Matrix	OSP 120	101227	4/8/2014	60
614	Wainwright Instruments	Highpass Filter 3GHz	WHKX10-	1	Lab verification	n/a
615	Wainwright Instruments	Highpass Filter 1GHz	WHKX12-	3	Lab verification	n/a
620	Bonn Elektronik	pre-amplifier	BLNA 0110-01N	1510111	7/12/2017	24
628	Maturo	Antenna mast	CAM 4.0-P	224/19590716	n/a	n/a
629	Maturo	Kippeinrichtung	KE 2.5-R-M	MAT002	n/a	n/a

Test site: SR 7/8

ID	Manufacturer	Type	Model	Serial No.	Calibration Date	Cal. Cycle
22	Rohde & Schwarz	Artificial Mains	50 Ohm// 50uH	831767/014	7/11/2018	12
215	Rohde & Schwarz	Artificial Mains Network	9 kHz - 30 MHz; 3 phase	879675/002	7/11/2018	12
349	Rohde & Schwarz	Receiver, EMI Test	20 Hz - 7 GHz	836697/009	7/10/2018	12
616	Rohde & Schwarz	ISN	8 wire ISN for CAT6	101656	7/12/2018	12

8. Report Revision History

Version Number	Revision Details		
	Page No(s)	Clause	Details
1.0	28	-	Initial Version
1.1	1,7	3.1	FCC ID information updated
	8	3.4	915 MHz Frequency Range, Modulations, Data Rate added
	21	5.2.2	Note 4 updated
	26	6.0	AC Conducted Spurious Emissions: Measurement Uncertainty added
	27	7.0	AC Conducted Spurious Emissions: Used equipment added