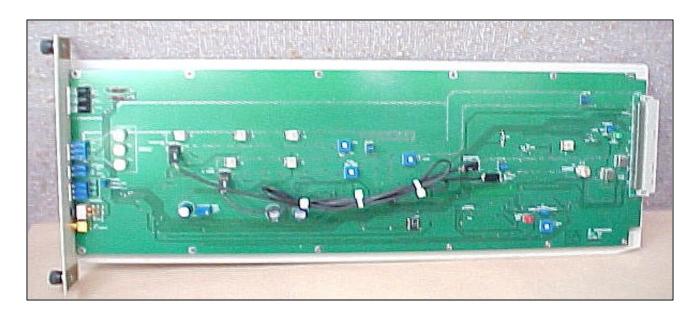
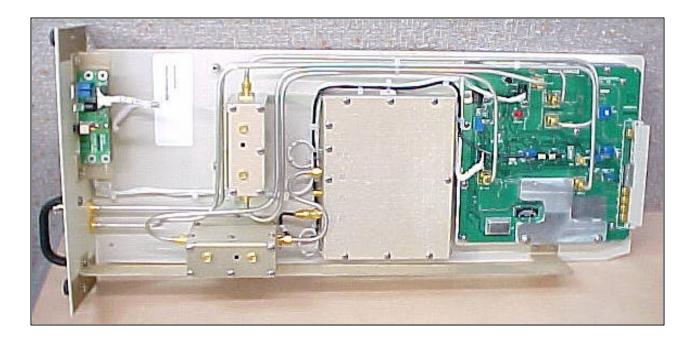

# **5. USER'S MANUAL**

The user's manual for the Axcera-LU2000AL system is provided as separate PDF files.




# **6. INTERNAL PHOTOS**

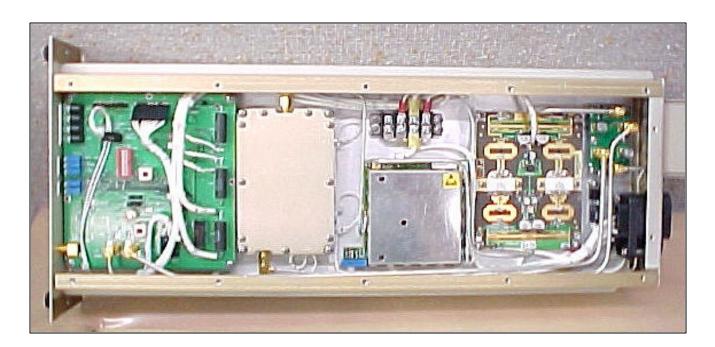
# 6.1 Front view - Chassis Assembly (Exciter)






# 6.2 Side view - IF Processor Assembly (Exciter)

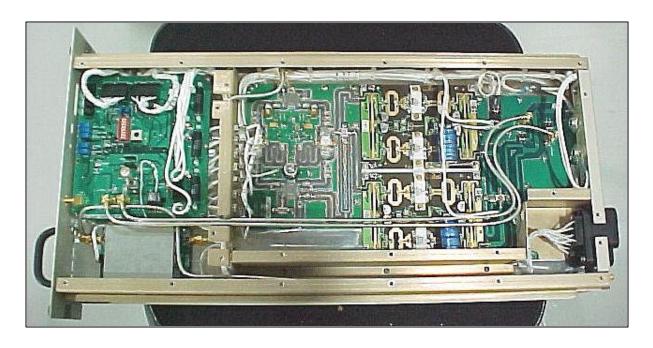



# 6.3 Side view - L.O. Upconverter Assembly (Exciter)



# 6.4 Side view - Control / Power Supply Assembly (Exciter)



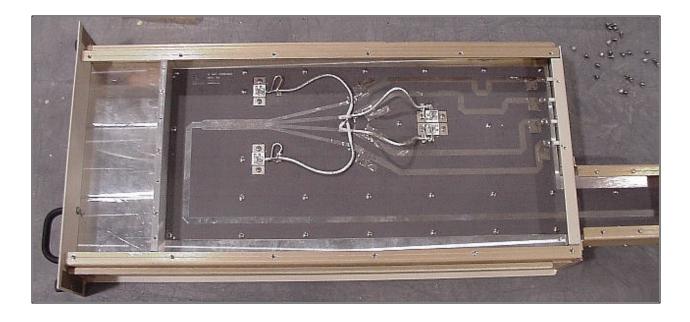

# 6.5 Side view - Power Amplifier Assembly (Exciter)



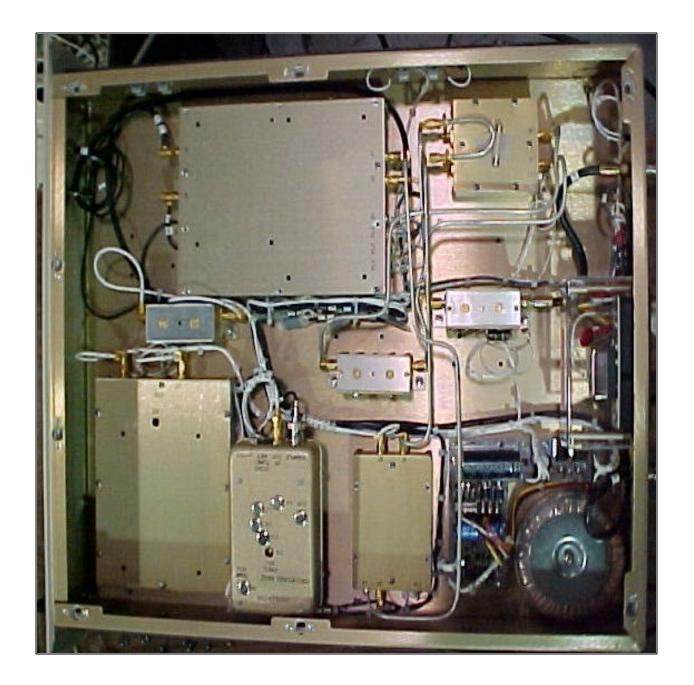
# 6.6 Front view - Chassis Assembly (External Power Amplifier)



# 6.7 Side view - Power Amplifier Assembly (External Power Amplifier)







# 6.8 Side view – Power Supply Assembly (External Power Amplifier)



# 6.9 Side view – 4-Way Combiner Assembly (External Power Amplifier)



# 6.10 Top view, Receiver Tray



#### 7. PARTS LIST/TUNE-UP INFO

#### 7.1 Parts List

The translator, can be subdivided as follows:

#### Receiver Tray:

- VHF filter
- · Dual stage amplifier board
- Channel oscillator Assembly
- Channel oscillator multiplier board
- Downconverter/amplifier board
- IF filter/ALC board
- SAW filter amplifier board
- Power supply board

# **Exciter Tray:**

- IF Processor Module
- L.O. / Upconverter Module
- Control & Monitoring / Power Supply Module
- Power Amplifier Module

# **External Amplifier Trays:**

- 4-Way Splitter (Qty of 2)
- Power Amplifier Module (Qty of 8)
- Power Supply Module (Qty of 4)
- 4-Way Combiner (Qty of 2)

# 7.2 Tune-up Information

The LU2000AL translator was aligned at the factory and should not require additional alignments to achieve normal operation.

The UHF/VHF Receiver Tray w/(Optional) Frequency Correction selects the desired UHF or VHF On Channel Input Signal and converts it to a Combined IF Signal of 45.75 MHz Visual + 41.25 MHz Aural. The Tray also has provisions for a Frequency Correction Option that consists of a VCXO Channel Oscillator Assembly with a PLL Circuit which maintains an exact IF Output Frequency, over the capture range of the PLL circuit, even if the Input UHF or VHF Frequency may vary.

## 7.2.1 RF Input Signal Path (Receiver)

The RF Input to the Tray, (-61 dBm to -16 dBm in Level), is fed through J1 for  $50\Omega$  to (A7) the input  $50\Omega$  Filter, DC Multiplexed (1035-1204 UHF, 1035-1902 VHF LB or 2065-1024 VHF HB) or through J5 for  $75\Omega$  to (A7) the  $75\Omega$  input Filter, DC Multiplexed (1035-1207 UHF, 1035-1903 VHF LB or 2065-1023 VHF HB), which is of a double tuned design that is adjusted to the desired Input UHF or VHF Channel Frequency. Note: If the input signal is greater then -25dBm, an attenuator should be used to limit the level to -25dBm. +12 VDC, for use by an (Optional) external Preamplifier Assembly, connects to the filter through F1 a 1 Amp Fuse. This +12 VDC is DC Multiplexed onto the input signal cable from the Preamplifier. DS1 a Red LED located on TB1 in the Tray will be lit if the +12 VDC is present on the input cable. If a Preamplifier is not used, F1 should be removed and DS1 should not be lit.

The signal is next amplified +12 dB to approximately the -49 to -4 dBm level by a low noise amplifier located on (A8-A1) the Dual Stage Amplifier Board (1227-1501) that is contained in (A8) the Dual Stage Amplifier Assembly (1227-1503). The board has



approximately +13 dB or +26 dB of gain, depending on whether Jumper W1 on J5 is in place. The signal is then filtered in (A9) a Channel Filter (1007-1101 UHF, 1034-1202 VHF LB or 2065-1000 VHF HB) and then applied back to (A8-A1) the Dual Stage Board where the same amplification takes place. Jumper W1 on J7, located on the Dual Stage Board, should be removed if the Receiver Input level is greater than -40dBm. The output is connected to (A10) the Downconverter Amplifier Assembly (1227-1505) that contains (A10-A1) the Downconverter Amplifier Board (1227-1502). The RF, at the -47 dBm to -2 dBm Level, connects to the "R" Input Jack of the Mixer Z1 located on the Downconverter Amplifier Board.

## 7.2.2 Local Oscillator Signal Path (Receiver)

The Local Oscillator Signal is derived from a cut to channel crystal mounted in an oven that is factory set at 45° C. The Oscillator operates at 1/8 for UHF, 1/4 for VHF High Band or 1/2 for VHF Low Band of the desired local oscillator frequency. The crystal is mounted on (A4-A1) the Channel Oscillator Board, Dual Oven (1145-1201), that is part of the Channel Oscillator Assembly (1145-1202). The oscillator circuitry is a modified Colpitts design operating in a separate oven set at 50° C. for improved stability. If the Frequency Correction Option is purchased, the VCXO Channel Oscillator Assembly (1145-1206), which contains the VCXO Channel Oscillator Board (1145-1204), is used in place of the standard Channel Oscillator Assembly, and an AFC voltage from the PLL circuit maintains the frequency of the VCXO.

The output of the Channel Oscillator is connected to the (A5-A1) the x8 Multiplier Board (1227-1002) for UHF, the x4 Multiplier Board (1227-1525) for VHF HB or the x2 Multiplier Board (1227-1524) for VHF LB, which is located in (A5) the Multiplier Enclosure (1265-1125). The proper multiplier board takes the output of the Channel Oscillator (+3 dBm) and multiplies it eight, four or two times by a series of three, two or one x2 Broadband Doublers (2x2x2 = x8), which produces the L.O. signal on the desired frequency needed for the upconversion process. The signal is then amplified to the +16 dBm level. A sample of the multiplied L.O. Signal is fed to a detector circuit, which lights the Green LED DS1 that indicates that the L.O. is present at the Output Jack J2 of the Multiplier Board. This Green LED is seen through a hole in the lid of the Multiplier Assembly and is an indication, when lit, that there is a signal present at the output of the Multiplier Board. The L.O. signal is filtered in (A6) a L.O. Filter 1007-1101 UHF, 2065-1000 VHF HB or 1034-1211 VHF LB) and then sent (+15 dBm) to J2 on (A10-A1) the Downconverter Amplifier Board. The L.O. Input to the Downconverter Amplifier Board is connected thru a 3 dB matching pad to the "L" Input of the Mixer (Z1) at a +12 dBm level.

# 7.2.3 Combined IF Signal Path (Receiver)

The L.O. and the RF signals are mixed in the Mixer Stage of the Downconverter Amplifier Board to produce the desired IF difference frequency at -55 dBm to -10 dBm in level, depending on the RF Input Level. The Combined IF Signal is routed to (A11-A1) the IF Filter/ALC Board (1227-1504), which is mounted in (A11) the IF Filter/ALC Enclosure (1265-1105). The IF Filter/ALC Board contains a Pin Diode Attenuator circuit, which is part of the Automatic Level Control (ALC) that controls the level of the IF Signal to the two stage amplifier ICs U1 and U2.

The (Optional) (A11-A2) SAW Filter/Amplifier Board (1035-1211) is also contained in the IF Filter/ALC Enclosure. The SAW Filter/Amplifier Board connects to J5 and J6 of the IF Filter/ALC Board if more attenuation of the Out Of Band products is needed. If the SAW Filter/Amplifier Board is not needed, a jumper connects the Combined IF from J5 to J6 on the IF Filter/ALC Board.

The Combined IF is then bandpass filtered to the needed 6 MHz IF bandwidth around the 41.25 MHz + 45.75 MHz Combined IF signal and amplified by U3 to the -41 dBm to +4 dBm



Level before it is split. One output is detected by U4 for use as the ALC reference level to the Pin Diode Attenuator Circuit. The ALC comparator drives the Pin Diode Attenuator Circuit to maintain the desired output level, typically +2 dBm. The other split output connects to J2 the Combined IF Output of the board that is cabled to the IF Output Jack of the Tray at J4 (+2 dBm).

# 7.2.4 Frequency Correction Option (Receiver)

If the Frequency Correction Option (1227-1528) is purchased, (A13) the IF Filter/Limiter Board (1109-1001), (A14) the IF PLL Board (1109-1002), the (A15) IF Carrier Oven Oscillator Board (1100-1206), (A4) the VCXO Channel Oscillator Assembly (1145-1206) and (A16) an IF Amplifier Board, High Gain (1197-1126) are part of the System.

A Sample of the amplified and ALC controlled signal from the IF Filter/ALC Board is directed to the IF Amplifier Board, High Gain (1197-1126) where it is amplified and connected to J2 on (A13) the IF Filter/Limiter Board (1109-1001). The IF is filtered by a SAW Filter, which passes Visual Carrier and Aural Carrier only, and amplified before it is split. The Aural IF Output is not used in this Tray. The other output of the splitter is amplified and applied to a Notch Filter. The Notch Filter is tuned to the Aural Frequency by C17 and R10, which reduces or eliminates the Aural IF from the Visual IF signal. The Visual IF Only signal then connects to a video detector circuit, which in conjunction with U5 strips the video from the Visual IF signal. The IF CW Signal is amplified and buffered before it is connected to the output of the board at J6. The IF CW connects to J2 of (A14) the IF PLL Board (1109-1002).

The IF CW Signal (+3 dBm) on the IF PLL Board is wired to U1 a Divider IC, which, in conjunction with U2, sets up one of the reference signals to the comparator circuit. The other reference signal is derived from the 50 kHz reference Input at J4, which is a divided down 50 kHz sample of the 38.9 MHz signal generated on (A15) the IF Carrier Oven Oscillator Board (1100-1206). The 38.9 MHz IF Carrier Oven Oscillator Board is used instead of the 45.75 MHz IF Carrier Oven Oscillator Board to minimize the interference between the generated 45.75 MHz IF and the signal generated on the (A15) IF Carrier Oscillator Board. The 38.9 MHz signal itself is not used, just the divided down 50 kHz reference of the 38.9 MHz Signal is used. The two reference signals applied to the IF PLL Board are compared by U2 and a difference voltage (AFC) is produced. The difference voltage (AFC), approximately -3 VDC, is fed from J3 of the board to FL2 of (A4) the VCXO Assembly. If the frequency of the VHF or UHF Input to the Tray should drift, the ALC voltage will change to increase or decrease the output frequency of the VCXO Assembly which increases or decreases the L.O. Frequency that maintains the IF Frequency at the standard 45.75 + 41.25 MHz Frequency. If the frequency of the Input Signal should drift out of the capture range of the PLL Circuit, DS1 the Red LED Unlock Indicator, located on the IF PLL Board, lights.

## 7.2.5 Voltages for Operation of the Tray (Receiver)

The AC input to the Tray is 117 VAC or 230 VAC and is directed thru Jack J2, of the (A1) Power Entry Module (1265-1104), to the step down Toroid (A2). The Power Entry Module contains an On/Off Switch, a 4 Amp Slo-Blo Fuse and three MOVs which protect the Tray from transients or surges which may occur on the AC Input Lines. When the On/Off Switch is switched On, AC is applied to the (A2) Toroid. The Toroid steps down the voltage into two 16 VAC outputs which are fed to (A3) the +12V(3A)/-12V Power Supply Board (1092-1206). The 16 VAC Inputs are connected to the two full wave bridge networks one for +12 VDC and one for -12 VDC. The output of the +12 VDC rectifier is fed to three 7812 IC regulators (U1, U2 and U3) and the output of the -12 VDC rectifier is fed to one 7912 IC regulator (U4). The  $\pm 12V$  Power Supply Board provides the voltage regulated and current limited +12 VDC and -12 VDC to the rest of the boards in the Tray.



## 7.2.6 + 12VDC for External Preamplifier (Receiver)

+12 VDC is also applied through a 1 Amp Fuse F1 to (A7) the input DC Multiplexed UHF or VHF Filter. The +12 VDC is multiplexed in the Filter onto the input coaxial cable that connects from the (Optional) Remote Preamplifier Unit to the Receiver Tray. This supplies the Preamplifier with the +12 VDC needed for operation. The Red LED DS1 mounted on the Terminal Block TB1 will be lit if the +12 VDC is applied to the coaxial cable. **Note**: If the Red LED, DS1, is lit, the +12 VDC may damage Test Equipment that is connected to the input of the Receiver Tray. If a Preamplifier Assembly is not part of your System, F1 should be removed, therefore DS1 should not be lit and the +12 VDC is not multiplexed onto the input coaxial cable. A spare Fuse for F1 is supplied and stored near the fuse holder for F1.

Connect a UHF or VHF Input with a Multiburst Test signal applied, that is at the desired Channel Frequency, to J1  $50\Omega$  or J5  $75\Omega$  located on the rear of the (A3) VHF/UHF Receiver Tray. Check that the On/Off Switch located on the rear of the Tray is On.

**Note**: If the Red LED, DS1 is lit, +12 VDC is present at the input of the Receiver Tray and may damage any test equipment connected to it. Remove the fuse F1, DS1 will not be lit, before connecting test equipment to the input jack of the Receiver Tray.

7.2.6.1 (A7) UHF Filter, DC Multiplexed (1035-1204, 50W or 1035-1207, 75W), VHF Filter, LB, DC Multiplexed (1035-1902, 50W or 1035-1903, 75W) or VHF Filter, HB, DC Multiplexed (2065-1024, 50W or 2065-1023, 75W)

The input UHF or VHF signal (-61 dBm to -16 dBm) is fed to the filter which has been factory swept for 6 MHz Bandwidth at the Channel frequency and should not be tuned in the field. The output of the filter is directed to the J1 input of (A8) the Dual Stage Amplifier Assembly.

# 7.2.6.2 (A8-A1) Dual Stage Amplifier Board (1227-1501)

Mounted in: (A8) a Dual Stage Amplifier Assembly (1227-1503). The Dual Stage Amplifier Board has been factory set to the channel frequency and contains no customer tuning adjustments. The board has approximately +13 dB or +26 dB of gain, depending on whether Jumper W1 on J5 is in place.

# 7.2.6.3 (A9) UHF Filter (1007-1101), VHF LB Filter (1034-1202) or VHF HB Filter (2065-1000)

The UHF or VHF Filter has been factory swept for 6 MHz Bandwidth at the Channel Frequency and should not be tuned in the field. The output of the filter (-50 dBm to -5 dBm) is fed either through the additional amplifier stage on the Variable Gain Amplifier Board or to (A10-A1) the Downconverter/Filter Board.

## 7.2.6.4 (A4) Channel Oscillator Assembly, Dual Oven (1145-1202)

Contains: The Channel Oscillator Board, Dual Oven (1145-1201).

1. Connect the main output of the Channel Oscillator (J1) to a spectrum analyzer, adjusted to view the crystal frequency, and peak the tuning capacitors C6 and C18 for maximum output. Then tune L2 and L4 for maximum output. The output level should be approximately +5 dBm and the Oven Temperature should be maintained at 50°C.

If a spectrum analyzer is not available, connect a DVM to TP1 on the x8, x4 or x2 Multiplier Board. Tune capacitors C6 and C18 for maximum voltage at TP1. Then



Info

tune L2 and L4 for maximum voltage at TP1.

2. Connect the sample output of the Channel Oscillator at J2 to a suitable counter and tune C11, Coarse Adjust, and C9, Fine Adjust, to the crystal frequency. Do not re-peak C6, C18, L2 or L4 because this may change the output frequency.

**Note**: While adjusting C9 and C11 to the crystal frequency the peak voltage monitored at TP1 of the Multiplier Board should not decrease. If a decrease does occur a problem with the crystal is likely.

3. Reconnect the main output at J1 of the Channel Oscillator to the Input Jack J1 of the Multiplier Board.

Note: If the Optional Frequency Correction Kit is purchased a VCXO Assembly (1145-1206), containing a VCXO Board (1145-1204), will be used instead of the standard Channel Oscillator Board. The adjustment will be the same as above except that the frequency is adjusted by moving the Jumper W1 on Jack J6, located on the IF PLL Board (1109-1002), to Pins 2 & 3, Fixed Bias, and adjusting R15 on the IF PLL Board for -3 VDC at FL2 of the VCXO Assembly. Move the Jumper W1 on Jack J6 to between Pins 1 & 2, AFC. Connect the Oscillator Sample output, at (J2) of the Channel Oscillator or the Front Panel Sample Jack (J9), to a suitable Frequency Counter and tune C11, Coarse Adjust, to the desired frequency. Do not re-peak C6, C18, L2 or L4 because it may change the output frequency.

Reconnect the main output (J1) of the Channel Oscillator (+5 dBm) to the input (J1) of the Multiplier Board. DS1 the Red Unlock Indicator, located on the IF PLL Board, should not be lit.

# 7.2.6.5 (A5-A1) x8 Multiplier Board (1227-1002), x4 Multiplier Board (1227-1525) or x2 Multiplier Board (1227-1524)

Mounted in (A5) a Multiplier Enclosure (1265-1125). During Normal operation, the Green LED DS1, which can be seen through the access hole in the Enclosure Assembly, will be lit to indicate that the L.O. is present at the output of the x8 Multiplier Board.

- 1. Connect a Spectrum Analyzer to the Output Jack (J2) of the board.
- 2. Tune C4, C6, C10, C12, C18 and C20 on the x8 and the appropriate caps on the other boards for maximum output. Readjust all the Capacitors to minimize the seventh and the ninth harmonics, they should be at least -30 dB down, without affecting the x8 Multiplier Output.

If a Spectrum Analyzer is not available a DC voltmeter can be used as follows but the harmonic frequencies must be minimized to prevent interference with other Channels.

- 1. While Monitoring each Test Point with a DC voltmeter, maximize the voltage by tuning the Broadband Multipliers in the following sequence.
- 2. For x8 Multiplier Board: Monitor TP1 with a DVM and tune C4 for maximum. (Typical .6 VDC)

Monitor TP2 and tune C6 and C10 for maximum. (Typical 1.2 VDC)

Monitor TP3 and tune C12 and C18 for maximum. (Typical 2 VDC)

Monitor TP4 and tune C20 for maximum.

Re-peak C12 and C10 while monitoring TP4. (Typical 3.5 VDC)

For x4 Multiplier: Monitor TP1 with a DVM and tune C4 for maximum. (Typical .6 VDC)

Monitor TP2 and tune C6 and C10 for maximum. (Typical 1.2 VDC)



Info

Monitor TP3 and tune C12 for maximum. Re-peak C12 and C10 while monitoring TP3. (Typical 2 VDC)

For x2 Multiplier: Monitor TP1 with a DVM and tune C4 for maximum. (Typical .6 VDC)

Monitor TP2 and tune C6 for maximum.

Re-peak C4 and C6 while monitoring TP2. (Typical 1.2 VDC)

The Green LED DS1 should be lit which indicates that the L.O. is present at the Output Jack J2 of the Multiplier Board. The output of the Multiplier at J2 is connected to (A6) a UHF or VHF Filter.

# 7.2.6.6 (A6) UHF Filter (1007-1101), VHF LB Filter (1034-1211) or VHF HB Filter (2065-1000)

This filter has been factory swept at the L.O. frequency and should not be tuned without proper equipment. The output of the filter (+15 dBm) is connected to J2 on (A10) the Downconverter/Filter Assembly.

## 7.2.6.7 (A10-A1) Downconverter/Amplifier Board (1227-1502)

Mounted in: The (A10) Downconverter/Amplifier Assembly (1227-1505).

The Mixer contains no adjustments and has a L.O. input of approximately +12 dBm in level applied to J2 and a -47 dBm to -2 dBm RF input applied to J1. The output IF level at J3 will be -55 dBm to -10 dBm.

- 1. Connect a Spectrum Analyzer to the Output Jack J3 and adjust L1, C2 and L3 for best frequency response.
- 2. Adjust C8 and R3 to notch out the Aural IF Frequency.

The IF output at J3 (-55 dBm to -10 dBm) is fed to the IF Filter/ALC Board. If needed a 10 dB Pad can be added to the circuit by moving the jumpers on J4 and J5 to the In position.

# 7.2.6.8 (A11-A1) IF Filter/ALC Board (1227-1504)

Mounted in: The (A11) IF Filter/ALC Enclosure (1265-1105).

1. Check that Switch S1, located on the IF Filter/ALC Board, is in the Auto ALC and that the output of the Board at J2 is approximately 0 dBm Output, adjust R23 if needed.

# 7.2.6.9 (Optional) (A11-A2) SAW Filter/Amplifier Board (1035-1211)

Mounted in: The (A11) IF Filter/ALC Enclosure (1265-1105).

This board is used for additional adjacent Channel rejection only if needed and may not be part of the Tray.

The board contains no tuning adjustments. The Jumpers W1 and W2 on J4 and J5 are placed for Attenuator In or Attenuator Out as needed to give the same output level at J2 as was at J1.

## 7.2.6.10 (A2) $\pm$ 12V Power Supply Board (1092-1206)

This board contains no adjustments.



Info

**Note**: If the (Optional) Frequency Corrector Kit is part of the tray, perform the following adjustments. If the Frequency Corrector Kit is not part of the tray, the tray is aligned and ready for normal operation.

# 7.2.7 Exciter/Amplifier Chassis Assembly

The exciter/amplifier chassis assembly operates using an external IF input from an external receiver tray. The IF source connects to J6, the modulated IF Input jack, on the rear of the chassis assembly, which is cabled to the IF Processor Module.

On the LCD Display, located on the Controller/Power Supply Module, push the button to switch the translator to Operate. The setup of the RF output includes adjustments to the drive level of the Power Amplifier, the adjustment of the linearity and phase predistortion to compensate for any nonlinear response of the Power Amplifier on the front panel of the IF Processor module.

Verify that all red LEDs located on the IF Processor front panel are extinguished. The following details the meaning of each LED when illuminated:

- DS1 (input fault) Indicates that either abnormally low or no IF is present at the input of the module.
- DS2 (ALC fault) Indicates that the ALC circuit is unable to maintain the signal level requested by the ALC reference. This is normally due to excessive attenuation in the linearity signal path or the IF phase corrector signal path, or that switch SW1 is in the Manual ALC Gain position.
- DS4 (Mute) Indicates that a Mute command is present to the system.

Switch the translator to Standby. The ALC is muted when the translator is in Standby. To monitor the ALC, preset R3, manual gain adjust, on the front panel of the Upconverter module, fully CCW. Move switch SW1, Auto/Man AGC, on the front panel of the Upconverter module, to the Manual position. Place the translator in Operate. Adjust the ALC GAIN pot on the front panel of the IF Processor to obtain +0.8 VDC on the LCD Display on the Controller/Power Supply in the ALC screen. Move the MAN/AUTO ALC switch back to Auto, which is the normal operating POSITION.

To adjust the AGC Cutback setting, raise the output power of the translator to 110%. Adjust R2, AGC Cutback, located on the front panel, CCW until the LED DS1, AGC Cutback, just starts to flash. Return the output power of the translator to 100%.

# 7.2.8 Linearity Correction Adjustment

As shipped, the exciter was preset to include amplitude and phase pre-distortion. The pre-distortion was adjusted to approximately compensate the corresponding non-linear distortions of the Power Amplifier.

**NOTE:** On the IF processor board inside the module the correction enable/disable jumper W12 on J30 will be in the Enable position, on pins 2 & 3.

Set up a spectrum analyzer with 100 kHz resolution bandwidth and 100 kHz video bandwidth to monitor the intermodulation products of the RF output signal of the Power Amplifier. There are three Linearity Corrector stage adjustments located on the front panel of the IF Processor Module. The adjustments are threshold settings that are adjusted as needed to correct for any amplitude or phase intermod problems. Adjust the top linearity correction adjustment R211 threshold cut in for the in phase amplitude



distortion pre-correction that is needed. Next adjust the middle linearity correction adjustment R216 threshold cut in also for the in phase amplitude distortion pre-correction that is needed. Finally adjust the bottom linearity correction adjustment R231 threshold cut in for the quadrature phase distortion pre-correction that is needed. The above pots are adjusted for the greatest separation between the peak visual carrier and the intermod products.

# 7.2.9 Frequency Response Delay Equalization Adjustment

The procedure for performing a frequency response delay equalization adjustment for the translator is described in the following steps:

The center frequency for the first stage is 45 MHz. Adjust R103, the top frequency response equalizer pot, located on the front panel of the IF Processor Module, for the best depth of frequency response correction at 45 MHz.

The center frequency for the second stage is 43.5 MHz. Adjust R106, the middle frequency response equalizer pot, located on the front panel of the IF Processor Module, for the best depth of frequency response correction at 43.5 MHz.

The center frequency for the second stage is 42 MHz. Adjust R274, the bottom frequency response equalizer pot, located on the front panel of the IF Processor Module, for the best depth of frequency response correction at 42 MHz.

After the three delay attenuation equalizers have been adjusted, fine tune, as needed, for the best frequency response across the channel.

Note: The frequency response adjustment is done at IF, so the frequency cut-in points will be reversed at the UHF frequencies.

# 7.2.10 Calibration of the Translator Forward Output Power Level

Note: Perform the following procedure only if the power calibration is suspect.

Switch the translator to Standby and preset R51, the aural null pot on (A4) the visual/aural metering board, fully CCW. Switch the LO/Upconverter sled to Manual Gain. Adjust R48, the null offset pot on the visual/aural metering board, full CW. Adjust CCW until 0% visual output is displayed on the LCD Display in the System Visual Power position. Perform the following adjustments with no aural present by removing the jumper cable, the aural IF loop-through, that is connected on the rear of the exciter/driver chassis. Connect a sync and black test signal to the video input jack of the exciter/driver. Switch the translator to Operate.

Next, set up the translator for the appropriate average output power level using the Manual Gain pot on the LO/Upconverter sled:

Example is for 500-Watt translator.

- Sync + black 0 IRE setup/wattmeter=300 watts
- Sync + black 7.5 IRE setup/wattmeter=275 watts

Note: The translator must have 40 IRE units of sync.

Adjust R28, visual calibration, on the (A4) visual/aural metering board for .8V, at TB30-14 and TB30-12 return, on the exciter/driver assembly, then adjust display to read 100% on the front panel meter in the System Forward Power position.



With the spectrum analyzer set to zero span mode, obtain a peak reference on the screen. Reconnect jumper cable on the rear of the exciter/driver. While in the Visual Output Power position, adjust L3 for a minimum visual power reading on the LCD display. Turn the power adjust pot on the LO/Upconverter sled front panel until the original peak reference level is attained. Peak L1 and C8 for a maximum aural power reading, then adjust R20 for .8V, at TB30-15 and TB30-12 return, on the exciter/driver assembly, then adjust LCD display for 100% system aural power reading. Switch to the Visual Output Power position and adjust R51 for 100% visual power on system LCD display.

## 7.2.11 Calibration of the Translator Reflected Output Level

On the meter, in the Visual Power position, turn the power adjust pot to 25%. Move the Reflected cable on the (A11) coupler to the unused "INC" port on the coupler. Then adjust R39 on (A4) the visual/aural metering board for a .2VDC, at TB30-13 and TB30-12 return, on the exciter/driver assembly. Then adjust the LED display for 25% reading in the System Reflected Power position. At this 25% reference power reading a reflected power fault should appear on the System Errors Menu. Turn the power adjust pot slightly CCW and the fault should be clearable on the System Error Menu. Turn the pot CW until the Fault appears. The reflected output power is now calibrated.

Switch the translator to Standby and move the Reflected power cable on the A11 Coupler back to the "Reflected Port". Switch the translator to Operate and adjust the front panel power pot for a 100% visual power reading. Switch the LO/Upconverter to the Auto AGC position and adjust the ALC Gain adjust pot on the front of the IF Processor module for 100% visual power reading, if needed.

# 7.2.12 (A9) Bandpass Filter Assembly

The Bandpass Filter Assembly is tuned to reject unwanted distortion products generated when the signals are diplexed and also during the amplification process.

The Bandpass Filter is factory tuned to the proper bandwidth and should not need tuned. If you think tuning is needed consult Axcera Field Support Department before beginning the adjustment.

# 7.2.13 (A10) UHF Trap Filter Assembly

The Traps on the output Trap Filter are labeled with their Center Frequency relative to the Frequency of the Carrier. (For Example: The Traps labeled -4.5 MHz are tuned for a Center Frequency of 4.5 MHz Lower than the Frequency of the Visual Carrier.) The first section of the Trap Filter filters out the Visual Carrier plus 9 MHz ( $f_v$ +9 MHz). The second and fourth sections work together to filter out the lower spurious product ( $f_v$ -4.5 MHz). The third section is tuned to remove the ( $f_v$ +8.08). The output of the Trap Filter is an "N" Type Connector.

The Trap Sections have been factory tuned and should not need major adjustments. The Trap Filter is comprised of four trap sections connected to the main transmission line.

The Trap Sections are Reflective Notches, adjustable across the entire UHF Frequency Band. The electrical length of the Outer Sleeve and the Center Rod of the Notch can be adjusted to Tune the Notch Frequency. The Depth of the Notch is set by the gap between the Center Conductor of the Trap Section and the Center Conductor of the Main Line. Tight Coupling makes a Deep Notch, while Loose Coupling makes a Shallow Notch.

**FINE TUNING** of the Notches Center Frequency can be accomplished with the Tuning Bolts located on the side of the Filter Section. Loosen the nut locking the Bolt in place



and adjust the Bolt to change the Frequency of the Notch. Monitor the output of the Translator with a Spectrum Analyzer and Null the Distortion Product with the Bolt. Red Field is a good Video Test Signal to use to see the +8.08 MHz Product. Tighten the nut when the tuning is completed. Hold the bolt in place with a screwdriver as the nut is tightened to prevent it from slipping.

MAJOR TUNING, such as changing the Notch Depth or moving the Notch Frequency more than 1 MHz, the Outer Conductor and the Center Conductor of the Trap Section must both be moved. This requires a RF Sweep Generator to accomplish. Apply the Sweep signal to the Input of the Trap Filter and monitor the Output. Loosen the Clamp holding the Outer Conductor in place and make the length longer to Lower the frequency of the Notch or shorter to Raise the frequency of the Notch. Loosen the Center Conductor with an Allen Wrench and move it Deeper for a Lower Frequency Notch or out for a Higher Frequency Notch. These adjustments must both be made to change the Notch Frequency. Moving only the Center Conductor or the Outer Conductor will effect the Notch Depth in addition to the Center Frequency. The variable that is being adjusted with this procedure is the length of the Center Conductor inside the Trap Filter. The gap between the Trap and the Main Line should not be changed. Moving only the Inner or the Outer Conductors by itself will effect the Gap and the Notch depth.

To effect the Notch Depth Only, both sections will have to be moved. The Notch Depth is controlled by the Gap between the Center Conductor and the Trap Section. This Gap also has an effect on the Center Frequency. To Deepen the Notch, Shorten the Outer Conductor and pull the Center Conductor Out until the Notch is back in the same place. Move the Sections in the opposite direction to make a Shallow Notch. **NOTE: THE TRAP FILTER IS TYPICALLY ADJUSTED FOR A NOTCH DEPTH OF 10 dB.** 

# 7.2.14 The Effects of Tuning the Output Trap Filter

Lengthening Outer Conductor Only - Notch Frequency Up, Shallower Notch.

Shortening Outer Conductor Only - Notch Frequency Down, Deeper Notch.

Inserting Inner Conductor Deeper - Notch Frequency Down, Deeper Notch.

Inserting Less Inner Conductor - Notch Frequency Up, Shallower Notch.

Tuning Bolt In - Notch Frequency Down.

Tuning Bolt Out - Notch Frequency Up.

Moving both Inner and Outer Conductors to keep the Same Gap inside - Center Frequency Moves, Notch Stays the Same.

After tuning has been completed, tighten the Clamp and the Allen Screws that hold the Conductors. Use the Fine Tuning Bolts to bring the Frequency In. The Final Tuning Adjustments should be completed with the Translator driving the Output Trap Filter for at least one hour to allow for warm-up drift.

The Translator is ready for normal operation.

This completes the detailed alignment procedures for the LX Series translator.



# 8. OPERATIONAL DESCRIPTION - MODEL Axcera-LU2000AL

# 8.1 General Description

The LU2000AL is a complete 2000-watt UHF solid-state, internally diplexed television translator. It operates at a nominal visual output power of 2000 watts peak sync and an average aural output power of 200 watts, at an A/V ratio of 10 dB, 10% sound.

# 8.2 Technical Specifications

|            | Type of Emissions:  Visual                                                                                                                                                                                                                                            |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Frequency Range470 MHz to 860 MHz (any 6-MHz channel)                                                                                                                                                                                                                 |
|            | Output Power Visual                                                                                                                                                                                                                                                   |
|            | Maximum Power Rating Visual                                                                                                                                                                                                                                           |
|            | Power Consumption                                                                                                                                                                                                                                                     |
| 8.3 Perfor | mance Specifications                                                                                                                                                                                                                                                  |
|            | <u>Visual Performance</u>                                                                                                                                                                                                                                             |
|            | Operating Frequency Range470 MHz to 860 MHz                                                                                                                                                                                                                           |
|            | RF output - Nominal: Power                                                                                                                                                                                                                                            |
|            | Visual Sideband Response:       -1.25 MHz and below.       -20B         -0.75 to -0.5 MHz       +0.5, -2.0dB         -0.5 MHz to +3.58 MHz       ±0.5 dB         3.58 MHz to 4.18 MHz       +0.5, -1.0 dB                                                             |
|            | Variation of Frequency Response with Brightness ±0.5 dB Differential Phase ±3° Incidental Phase Modulation ±3° Differential Gain 5% Low Frequency Linearity 5% Intermodulation Products -52 dB (red field) Output Variation (Over 1 Frame) 2% Regulation of Output 3% |
|            | Signal-to-Noise Ratio                                                                                                                                                                                                                                                 |



| 2t K-Factor  Harmonic Radiation  Spurious (>3 MHz from channel edge)  Carrier Frequency Stability  Noise Figure w/Input Preamp  Input Dynamic Range (no Preamp) 60 t |                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| <u>Aural Performance</u>                                                                                                                                             |                            |
| RF Output – Nominal Power Impedance Connector                                                                                                                        | 50 ohms                    |
| Electrical Requirements                                                                                                                                              |                            |
| Power Line Voltage                                                                                                                                                   |                            |
| Environmental                                                                                                                                                        |                            |
| Maximum Altitude                                                                                                                                                     |                            |
| <u>Mechanical</u>                                                                                                                                                    |                            |
| Dimensions: Width Depth Height Weight                                                                                                                                | . 34 inches<br>. 55 inches |

# 8.4. System Overview

The LU2000AL (1303828) is made up of the (3) trays listed in Table 8-1.

Table 8-1. LU2000AL Major Trays and Assemblies

| MAJOR ASSEMBLY DESIGNATOR | TRAY/ASSEMBLY NAME          | DRAWING NUMBER |
|---------------------------|-----------------------------|----------------|
| A1                        | Receiver                    | 1265-1100      |
| A2                        | UHF Exciter                 | 1303268        |
| A3, A4                    | External Amplifier Assembly | 1303828        |

The (A2) UHF Exciter can operate using a 45.75 MHz IF carrier from either the (A1) Receiver tray's output, or that from a Modulator tray. Both of these carriers must be diplexed with a 41.25 MHz aural carrier, at an A/V ratio not to exceed –10dB.



# 8.4.1 Receiver Tray

The RF Input to the Tray, (-61 dBm to -26 dBm in Level), is fed through J1 to the input  $50\Omega$  Filter or through J5 to the  $75\Omega$  input Filter, which are of a double tuned design that is adjusted to the desired Input UHF or VHF Channel Frequency. Note: If the input signal is greater then -25dBm, an attenuator should be used to limit the level to -25dBm. +12 VDC, for use by an (Optional) external Preamplifier Assembly, connects to the filter through F1 a 1 Amp Fuse. This +12 VDC is DC Multiplexed onto the input signal cable from the Preamplifier. DS1 a Red LED located on TB1 in the Tray will be lit if the +12 VDC is present on the input cable. If a Preamplifier is not used, F1 should be removed and DS1 should not be lit.

The signal is next amplified +12 dB to approximately the -49 to -4 dBm level by a low noise amplifier located on the Dual Stage Amplifier Board that is contained in (A8) the Dual Stage Amplifier Assembly. The board has approximately +13 dB or +26 dB of gain, depending on whether Jumper W1 on J5 is in place. The signal is then filtered in (A9) a Channel Filter and then applied back to (A8-A1) the Dual Stage Board where the same amplification takes place. Jumper W1 on J7, located on the Dual Stage Board, should be removed if the Receiver Input level is greater than -40dBm. The output is connected to (A10) the Downconverter Amplifier Assembly that contains (A10-A1) the Downconverter Amplifier Board The RF, at the -47 dBm to -2 dBm Level, connects to the "R" Input Jack of the Mixer Z1 located on the Downconverter Amplifier Board.

The Local Oscillator Signal is derived from a cut to channel crystal mounted in an oven that is factory set at 45° C. The Oscillator operates at 1/8 for UHF, 1/4 for VHF High Band or 1/2 for VHF Low Band of the desired local oscillator frequency. The crystal is mounted on (A4-A1) the Channel Oscillator Board, Dual Oven that is part of the Channel Oscillator Assembly. The oscillator circuitry is a modified Colpitts design operating in a separate oven set at 50° C. for improved stability.

The output of the Channel Oscillator is connected to the (A5-A1) the x8 Multiplier Board for UHF, the x4 Multiplier Board for VHF HB or the x2 Multiplier Board for VHF LB, which is located in (A5) the Multiplier Enclosure. The proper multiplier board takes the output of the Channel Oscillator ( $\pm$ 3 dBm) and multiplies it eight, four or two times by a series of three, two or one x2 Broadband Doublers ( $\pm$ 2x2x2 = x8), which produces the L.O. signal on the desired frequency needed for the upconversion process. The signal is then amplified to the  $\pm$ 16 dBm level. A sample of the multiplied L.O. Signal is fed to a detector circuit, which lights the Green LED DS1 that indicates that the L.O. is present at the Output Jack J2 of the Multiplier Board. This Green LED is seen through a hole the lid of the Multiplier Assembly and is an indication, when lit, that there is a signal present at the output of the Multiplier Board. The L.O. signal is filtered in (A6) a L.O. Filter and then sent ( $\pm$ 15 dBm) to J2 on (A10-A1) the Downconverter Amplifier Board. The L.O. Input to the Downconverter Amplifier Board is connected thru a 3 dB matching pad to the "L" Input of the Mixer (Z1) at a  $\pm$ 12 dBm level.

The L.O. and the RF signals are mixed in the Mixer Stage of the Downconverter Amplifier Board to produce the desired IF difference frequency at -55 dBm to -10 dBm in level, depending on the RF Input Level. The Combined IF Signal is routed to (A11-A1) the IF Filter/ALC Board, which is mounted in (A11) the IF Filter/ALC Enclosure. The IF Filter/ALC Board contains a Pin Diode Attenuator circuit, which is part of the Automatic Level Control (ALC) that controls the level of the IF Signal to the two-stage amplifier ICs U1 and U2.



The (Optional) (A11-A2) SAW Filter/Amplifier Board is also contained in the IF Filter/ALC Enclosure. The SAW Filter/Amplifier Board connects to J5 and J6 of the IF Filter/ALC Board if more attenuation of the Out Of Band products is needed. If the SAW Filter/Amplifier Board is not needed, a jumper connects the Combined IF from J5 to J6 on the IF Filter/ALC Board.

The Combined IF is then bandpass filtered to the needed 6 MHz IF bandwidth around the 41.25 MHz + 45.75 MHz Combined IF signal and amplified by U3 to the -41 dBm to +4 dBm Level before it is split. One output is detected by U4 for use as the ALC reference level to the Pin Diode Attenuator Circuit. The ALC comparator drives the Pin Diode Attenuator Circuit to maintain the desired output level, typically +2 dBm. The other split output connects to J2 the Combined IF Output of the board that is cabled to the IF Output Jack of the Tray at J4 (+2 dBm).

The AC input to the Tray is 117 VAC or 230 VAC and is directed thru Jack J2, of the (A1) Power Entry Module to the step down Toroid (A2). The Power Entry Module contains an On/Off Switch, a 4 Amp Slo-Blo Fuse and three MOVs, which protect the Tray from transients or surges which may occur on the AC Input Lines. When the On/Off Switch is switched On, AC is applied to the (A2) Toroid. The Toroid steps down the voltage into two 16 VAC outputs which are fed to (A3) the +12V(3A)/-12V Power Supply Board The 16 VAC Inputs are connected to the two full wave bridge networks one for +12 VDC and one for -12 VDC. The output of the +12 VDC rectifier is fed to three 7812 IC regulators (U1, U2 and U3) and the output of the -12 VDC rectifier is fed to one 7912 IC regulator (U4). The  $\pm 12V$  Power Supply Board provides the voltage regulated and current limited +12 VDC and -12 VDC to the rest of the boards in the Tray.

# 8.4.2 Exciter Tray (Driver)/External Amplifier Tray

The input to the Exciter Tray is a modulated Internally Diplexed IF signal. This signal is connected to the input of the IF Processor Module. The output of the Exciter Tray (driver) drives the input to the External Amplifier Tray.

## 8.4.2.1 IF Processor Module (Driver)

The (A3) IF Processor Assembly contains the IF Processor Board (1301977). The IF Processor provides pre-correction to ensure broadcast quality output signal. The pre-correction consists of amplitude linearity correction, Incidental Carrier Phase Modulation (ICPM) correction and frequency response correction.

The IF Processor module is configured either for an analog or digital system. Pin 13C of the IF Processor module is grounded in analog systems and left not connected in digital systems. An IF Processor Interlock signal is used to report the presence of the IF Processor module to the Control Monitoring board. If the IF Processor interlock signal is not present, the Pioneer 100 Watt Translator/Exciter Driver RF output is Muted (turned off). If an analog IF Processor module is installed and the Modulation Present signal is not true, the Pioneer 100 Watt Translator / Exciter Driver output is Muted (turned off).

The Control & Monitoring/Power Supply module uses the IF Processor module for System output power control. Through the front panel display or a remote interface, an operator can set the translator's RF output power. The range of RF power adjustment is between 0% (full off) and 105% (full power plus). A front panel IF Processor module potentiometer sets the upper limit of RF power at 120%. The system's Control



Monitoring board compares the RF Power Monitoring module RF power level with the desired level and uses the IF Power Control PWM line to correct for errors.

In digital systems, a digital level control (DLC) voltage is generated on the IF Processor module and sent to an external digital modulator (DT1C or DT2B). RF power control is implemented by changing the DLC voltage provided to the external digital modulator. The 'RF High' potentiometer sets the upper adjusted range of RF control circuit output to 120%.

The IF Processor module provides a reference ALC voltage to the system's Upconverter. When the ALC voltage decreases, the Upconverter automatically lowers the system output power through the AGC circuits.

The IF Processor module has a front panel switch to select Auto or Manual ALC. When Manual ALC is selected, the reference ALC voltage is set by a front panel potentiometer. In this condition, the RF power level control circuit is removed from use. When the ALC select switch is changed to Auto, the RF power level control circuit will start at low power and increase the RF output until the desired output power is attained.

The IF Processor module Modulation Present signal is monitored. If the modulation level is too low or non-existent, a Modulation Present fault is reported to the Control Monitoring board. When the controller detects this fault, it can be set to Automatically Mute the translator or in Manual mode the translator will continue to operate at 25% output.

The IF Processor module Input Signal level is monitored. If the signal level is too low or non-existent, an Input fault is reported on the Control Monitoring board. When the IF Processor board detects an Input Signal fault it automatically Mutes the translator. The system controller does not Mute on an IF Processor Input fault.

## 8.4.2.2 L.O. / Upconverter Module (Driver)

The (A5) LO/Upconverter Module Assembly contains a front panel LED display board (1303033), a UHF Filter (1007-1101), a UHF Generator Board (1585-1265) and a LO/Upconverter Assembly (1303039). The LO/Upconverter Assembly contains the LO/Upconverter Board (1302132).

The Pioneer Upconverter converts an IF input signal to a RF output signal on the desired channel frequency using a high stability oven controlled oscillator with very low phase noise and an Automatic Level Control (ALC) for stable output signal level.

Several control voltages are used for translator power control. Automatic gain control (AGC) circuits set the RF output level of the translator system.

AGC #1 is provided by the 50-Watt Translator/Exciter Driver Power Amplifier module. This voltage is used by the Upconverter to maintain a constant RF output level at the Power Amplifier module output. If this voltage exceeds 0.9 VDC, the system is in an over-drive condition. The 0.9 VDC over-driver threshold is set by a front panel Upconverter module potentiometer. When an over-drive condition is detected, the Upconverter module reduces its RF output level. For values less than 0.9 VDC, the Upconverter uses the AGC #1 voltage for automatic gain control by setting it's RF output to maintain AGC #1 equal to the AGC voltage set by another front panel potentiometer. When the Upconverter is set for manual gain, the RF output of the Upconverter is set by



the front panel AGC potentiometer. In manual gain operation, the AGC #1 feedback voltage from the PA is not used to adjust the RF level unless an over-drive condition is detected.

AGC #2 is provided by each of the optional external amplifier modules. Diodes are used in each of the external amplifier forward power circuits to capture the highest detected sample voltage. This voltage is used by the Upconverter to maintain a constant RF output of the system. As with AGC #1, the Upconverter module reduces its RF output level if AGC #2 is too high. AGC #1 and ACG #2 are diode ORed together in the Upconverter gain circuit. Both AGC voltages are first reduced by an on-board potentiometer before being amplified. If an over-drive condition does not exist, the higher of the two AGC voltages is used to control the Upconverter gain circuit.

An AFC Voltage is generated to control the VCXO of the UHF Generator portion of the Upconverter module. The typical AFC voltage is 1.5 VDC but it can be as high as +5 VDC.

The Upconverter can operate on either it's internal 10 MHz source or on a 10 MHz external reference signal. When an external 10 MHz source is present on J10, it is automatically selected. An external reference present signal is provided to the controller for display purposes. The selected 10 MHz signal from the Upconverter is buffered then sent to the backplane on two ports. One port is sent to the Modulator module, if present, and the other is routed to a BNC connect or (J11) on the backplane for a system 10 MHz output signal.

A National Semiconductor frequency synthesizer IC is used in the frequency conversion of the IF signal to a RF signal. The frequency synthesizer IC uses a 10MHz reference frequency for signal conversion. Typically the IF input frequency is 45.75 MHz for analog system and 44 MHz for DTV. To obtain different output RF frequencies, the synthesizer IC is serial programmed by the Control Monitoring board. The part is programmed to use a 5 kHz phase detection frequency. With a 10 MHz input signal, the R counter is set to 2000. With these settings the N counter is set to the desired LO frequency in kHz / 5 kHz. The maximum LO frequency setting with these parameters is 1310.715 MHz.

## Example:

For a Frequency RF Out = 517.125 MHz, N = 517125 kHz / 5 kHz = 103425

An Upconverter PLL Lock indicator is used to insure that the frequency control circuits are operating properly. When the Upconverter PLL is locked, the frequency synthesizer IC is programmed and the Power Amplifier module(s) can be enabled.

The RF output of the LO/Upconverter Module is at J23 on the rear chassis

# 8.4.2.3 Control & Monitoring / Power Supply Module (Driver)

The (A4) Control & Monitoring/Power Supply Assembly is made up of a Control Board (1302021), a Power Protection Board (1302837) and a Switch Board (1527-1406). The Assembly also contains a switching power supply that provides  $\pm 12$  VDC to the rest of the modules in the chassis and  $\pm 32$  VDC to the Power Amplifier module.



The Assembly provides all translator control and monitoring functions. The Front panel LCD allows monitoring of system parameters, including forward and reflected power, transistor currents, module temperatures and power supply voltages.

## 8.4.2.4 Power Amplifier Module (Driver)

The (A6) Power Amplifier Module Assembly is made up of a Coupler Board Assembly (1301949), an Amplifier Control Board (1301962), a 1 Watt Module Assembly (1302891), a TFS 40W UHF Module (1206693) and a RF Module Pallet, Philips (1300116).

The Power Amplifier Module contains Broadband LDMOS amplifiers that cover the entire UHF band with no tuning required. They amplify the RF to the 10W to 50W output power level of the translator.

The Power Amplifier of the Translator/Exciter Driver is used to amplify the RF output of the Upconverter module. A cable, located on the rear chassis, connects the RF output from the LO/Upconverter at J23 to J24 the RF input to the PA Assembly. This module contains RF monitoring circuitry for both an analog and a digital system. Control and monitoring lines to the Power Amplifier module are routed through the floating blindmate connector of the Control & Monitoring/Power Supply module.

The 50 Watt Translator/Exciter Driver Power Amplifier module and any External Amplifier modules contain the same control and monitoring board. This board monitors RF output power, RF reflected power, the current draw of amplifier sections, the supply voltage, and the temperature of the PA heat sink.

The RF power detector circuit outputs vary with operating frequency. These circuits must be calibrated at their intended operating frequency. Front panel adjustment potentiometers are used to calibrate the following:

Table 1: Power Amplifier Calibration Adjustments in Analog Systems

R201 Reflected Power Cal

R202 Visual / Forward Power Cal

R203 Aural Power Cal

R204 Visual Offset Zero

R205 Aural Null

In analog systems, the Aural power of an Exciter Driver Power Amplifier and the Aural power of any external amplifier will not be reported by the system Control Monitoring module. Additionally the Visual power of these amplifiers, is reported as Forward Power just like in digital systems. In analog systems, aural and visual power will only be reported for the final system RF output.

In digital systems, the Forward power of an Exciter Driver Power Amplifier and the Forward power of any external amplifier, is reported by the system Control Monitoring module.

If the Control Monitoring module is monitoring a 5-50 Watt Translator, system power is measured in the Power Amplifier module. The wired connections are transferred through the power supply connector to the backplane board on a five position header. All four positions of control board switch SW1 must be set on to route these lines as the system's RF power signals. In systems of output power greater than 50 Watts, system



power is monitored by an external module that is connected to TB31 and control board SW1 switches must be set off.

The Forward Power of the Translator/Exciter Driver Power Amplifier module is routed to the Upconverter module as AGC #1. A system over-drive condition is detected when this value rises above 0.9 VDC. When an over-drive condition is detected, the Upconverter module reduces its RF output level. For values less than 0.9 VDC, the Upconverter uses this voltage for automatic gain.

# 8.4.2.5 Power Amplifier Module (External Power Amplifier Assembly)

The Power Amplifier Module Assembly is made up of (A6) an Amplifier Control Board (1301962), (A1) a UHF Phase/Gain Board (1303213), (A2) a 150 Watt Driver Pallet Assembly (1303293), (A3 & A4) two RF Module Pallets, Philips (1300116), and (A5) a 2-Way Combiner Board (1303208).

The Power Amplifier Module contains Broadband LDMOS amplifiers that cover the entire UHF band with no tuning required. Each module amplifies the RF to a nominal 300W output power.

The Power Amplifier assembly is used to amplify the RF output of the Transmitter/Exciter Driver. A cable, located on the rear chassis, connects the RF output from the Exciter/Driver at J25 to J200 the RF input to the PA Assembly. This module contains RF monitoring circuitry for both an analog and a digital system. Control and monitoring lines to the Power Amplifier module are routed through the floating blindmate connector of the Control & Monitoring/Power Supply module.

The 100-Watt Transmitter/Exciter Driver Power Amplifier module and any External Amplifier modules contain the same control and monitoring board. This board monitors RF output power, RF reflected power, the current draw of amplifier sections, the supply voltage, and the temperature of the PA heat sink.

The RF power detector circuit outputs vary with operating frequency. These circuits must be calibrated at their intended operating frequency. Front panel adjustment potentiometers are used to calibrate the following:

Table 2: Power Amplifier Calibration Adjustments in Analog Systems

R201 Reflected Power Cal R202 Forward Power Cal R204 Meter Offset Zero

In analog systems, the Aural power of an Exciter Driver Power Amplifier and the Aural power of any external amplifier will not be reported by the system Control Monitoring module. Additionally the Visual power of these amplifiers, is reported as Forward Power just like in digital systems. In analog systems, aural and visual power will only be reported for the final system RF output.

In digital systems, the Forward power of an Exciter Driver Power Amplifier and the Forward power of any external amplifier, is reported by the system Control Monitoring module.



If the Control Monitoring module is monitoring a 5-50 Watt Digital or 10-100 Watt Analog Transmitter, system power is measured in the Power Amplifier module. The wired connections are transferred through the power supply connector to the backplane board on a five position header. All four positions of control board switch SW1 must be set on to route these lines as the system's RF power signals. In systems of output power greater than 50 Watts digital or 100 Watts aural, system power is monitored by an external module that is connected to TB31 and control board SW1 switches must be set off.

The Forward Power of the Transmitter/Exciter Driver Power Amplifier module is routed to the Upconverter module as AGC #1. A system over-drive condition is detected when this value rises above 0.9 VDC. When an over-drive condition is detected, the Upconverter module reduces its RF output level. For values less than 0.9 VDC, the Upconverter uses this voltage for automatic gain.

# 8.4.2.6 Power Supply Module (External Power Amplifier Assembly)

The Power Supply Module Assembly is made up of (A1) a  $\pm 32V/2000W$  Switching Power Supply and (A2) a  $\pm 12V/40W$  Switching Power Supply.

The power supply module provides the +32 VDC and the +12 VDC and -12 VDC to the power amplifier module assembly.

#### 8.5 Control and Status

# 8.5.1 Receiver Tray

There are no external Control and Status indicators or switches for the Receiver Tray.

Table 8-2. Receiver Tray samples

| CONNECTOR | FUNCTION                        |
|-----------|---------------------------------|
| J6 - BNC  | Oscillator Sample (front panel) |
| J7 - BNC  | IF Sample (front panel)         |

## 8.5.2 Exciter Tray (Driver)

Table 8-3. IF Processor Front Panel Switch

| SWITCH       | FUNCTION                                                                                                                                      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|              | When Manual ALC is selected, the reference ALC voltage is set by the ALC Gain front panel potentiometer.                                      |
| MAN/AUTO ALC | When Auto ALC is selected, the IF level control circuit will automatically increase the IF output until the desired output power is attained. |



Table 8-4. IF Processor Front Panel Status Indicators

| LED               | FUNCTION                                                                                                                                                                                      |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INPUT FAULT (Red) | When lit it indicates that there is a loss of the IF Input signal to the IF Processor. Translator can be set to Mute on an IF Input Fault.                                                    |
| ALC Fault (Red)   | When lit it indicates that the required gain to produce the desired output power level has exceeded the operational range of the ALC circuit. The LED will also be lit when ALC is in Manual. |
| MUTE (Red)        | When lit it indicates that the IF input signal is cut back but the enable to the Power Supply is present and the +32 VDC remains on.                                                          |

Table 8-5. IF Processor Front Panel Control Adjustments

| POTENTIOMETERS                     | DESCRIPTION                                                                                                                                                                                                                                                                               |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FREQUENCY<br>RESPONSE<br>EQUALIZER | These three variable resistors, R103, R106 & R274, adjust the depth of gain for the three stages of frequency response correction.                                                                                                                                                        |
| ALC GAIN                           | Adjusts the gain of the translator when the translator is in the Auto ALC position.                                                                                                                                                                                                       |
| MAN GAIN                           | Adjusts the gain of the translator when the translator is in the Manual ALC position.                                                                                                                                                                                                     |
| LINEARITY<br>CORRECTION            | These three variable resistors adjust the threshold cut in for the three stages of linearity pre-correction. R211 and R216, the top two pots, are adjusted to correct for in phase amplitude distortions. R 231, the bottom pot, is adjusted to correct for quadrature phase distortions. |

Table 8-6. IF Processor Front Panel Sample

| SMA CONNECTOR | DESCRIPTION                                               |
|---------------|-----------------------------------------------------------|
| IF SAMPLE     | Sample of the pre-corrected IF output of the IF Processor |

Table 8-7. LO/Upconverter Front Panel Switch

| SWITCH       | FUNCTION                                                                                                                                            |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|              | When Manual AGC is selected, the reference AGC voltage is set by the AGC Manual Gain front panel potentiometer.                                     |
| MAN/AUTO AGC | When Auto AGC is selected, the RF power level control circuit will automatically increase the RF output until the desired output power is attained. |

Table 8-8. LO/Upconverter Front Panel Status Indicator

| LED                  | FUNCTION                                                                                                                                                                                      |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGC CUTBACK<br>(Red) | When lit it indicates that the required gain to produce the desired output power level has exceeded the level set by the AGC Cutback (Override) adjust. Translator will cut back power to 25% |



Table 8-9. LO/Upconverter Front Panel Control Adjustments

| POTENTIOMETERS  | DESCRIPTION                                                                           |
|-----------------|---------------------------------------------------------------------------------------|
| MAN GAIN ADJ    | Adjusts the gain of the translator when the translator is in the Manual AGC position. |
| AGC CUTBACK ADJ | Adjusts the point at which the translator will cut back in power                      |
| (AGC OVERRIDE)  | when the Translator is in the Auto AGC position.                                      |

Table 8-10. LO/Upconverter Front Panel Samples

| SMA CONNECTOR | DESCRIPTION                                                                         |
|---------------|-------------------------------------------------------------------------------------|
| LO SAMPLE     | Sample of the LO signal to the Upconverter as generated by the UHF Generator Board. |
| RF SAMPLE     | Sample of the On Channel RF Output of the Upconverter                               |

Table 8-11. Controller/Power Supply Display

| DISPLAY | FUNCTION                                                            |  |
|---------|---------------------------------------------------------------------|--|
|         | A 4 x 20 display providing a four-line readout of the internal      |  |
| LCD     | functions, external inputs, and status. See Chapter 3,              |  |
|         | Controller/Power Supply Display Screens, for a listing of displays. |  |

Table 8-12. Controller/Power Supply Status Indicator

| LED                       | FUNCTION                                                                                                                                                                                           |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OPERATE<br>( green )      | When lit it indicates that the translator is in the Operate Mode. If translator is Muted the Operate LED will stay lit, the translator will remain in Operate, until the input signal is returned. |
| FAULT<br>( red or green ) | Red indicates that a problem has occurred in the translator. The translator will be Muted or placed in Standby until the problem is corrected.                                                     |
| DC OK                     | Green indicates that the switchable fuse protected DC outputs that                                                                                                                                 |
| ( red or green )          | connect to the modules in the translator are OK.                                                                                                                                                   |

Table 8-13. Controller/Power Supply Control Adjustments

| POTENTIOMETERS   | DESCRIPTION                                                        |  |
|------------------|--------------------------------------------------------------------|--|
| DISPLAY CONTRAST | Adjusts the contrast of the display for desired viewing of screen. |  |

Table 8-14. Power Amplifier Status Indicator

| LED                | FUNCTION                                                                                                                                           |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ENABLED<br>(Green) | When lit Green, it indicates that the PA is in the Operate Mode. If a Mute occurs, the PA will remain Enabled, until the input signal is returned. |  |
| DC OK              | When lit Green, it indicates that the fuse protected DC inputs to the                                                                              |  |
| (Green)            | PA module are OK.                                                                                                                                  |  |
| TEMP               | When lit Green, it indicates that the temperature of the heatsink                                                                                  |  |
| (GREEN)            | assembly in the module is below 78 C.                                                                                                              |  |
| MOD OK             | When lit Green, it indicates that the PA Module is operating and has                                                                               |  |
| (Green)            | no faults.                                                                                                                                         |  |



Table 8-15. Power Amplifier Control Adjustments

| POTENTIOMETERS                                                                                   | DESCRIPTION                                                       |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| RFL CAL                                                                                          | Adjusts the gain of the Reflected Power monitoring circuit        |  |
| VISUAL CAL                                                                                       | Adjusts the gain of the Visual / Forward Power monitoring circuit |  |
| AURAL CAL                                                                                        | Adjusts the gain of the Aural Power monitoring circuit            |  |
| VISUAL ZERO                                                                                      | Adjusts the offset of the Forward Power monitoring circuit        |  |
| AURAL NULL Adjusts the offset of the Forward Power monitoring circuit bas the Aural signal level |                                                                   |  |

Table 8-16. Power Amplifier Sample

| DISPLAY    | FUNCTION                                                            |
|------------|---------------------------------------------------------------------|
| FWD SAMPLE | RF sample of the amplified signal being sent out the module on J25. |

# 8.5.3 External Power Amplifier Tray

Table 8-17. Power Amplifier Status Indicators (External Power Amplifier Assembly)

| LED                | FUNCTION                                                                                                                                           |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ENABLED<br>(Green) | When lit Green, it indicates that the PA is in the Operate Mode. If a Mute occurs, the PA will remain Enabled, until the input signal is returned. |  |  |
| DC OK              | When lit Green, it indicates that the fuse protected DC inputs to the                                                                              |  |  |
| (Green)            | PA module are OK.                                                                                                                                  |  |  |
| TEMP               | When lit Green, it indicates that the temperature of the heatsink                                                                                  |  |  |
| (Green)            | assembly in the module is below 78 C.                                                                                                              |  |  |
| MOD OK             | When lit Green, it indicates that the PA Module is operating and has                                                                               |  |  |
| (Green)            | no faults.                                                                                                                                         |  |  |

Table 8-18. Power Amplifier Control Adjustments (External Power Amplifier Assembly)

| POTENTIOMETERS | DESCRIPTION                                                       |  |
|----------------|-------------------------------------------------------------------|--|
| RFL CAL        | Adjusts the gain of the Reflected Power monitoring circuit        |  |
| VISUAL CAL     | Adjusts the gain of the Visual / Forward Power monitoring circuit |  |
| METER ZERO     | Adjusts the offset of the Forward Power monitoring circuit        |  |

Table 8-19. Power Amplifier Sample (External Power Amplifier Assembly)

| DISPLAY    | FUNCTION                                                            |  |
|------------|---------------------------------------------------------------------|--|
| FWD SAMPLE | RF sample of the amplified signal being sent out the module on J25. |  |



# 8.6 Remote Interface Connections

# 8.6.1 Remote Interface Connections (Receiver)

| Port | TYPE     | Function           | Ohm |
|------|----------|--------------------|-----|
| J1   | N        | RF Input           | 50  |
| J2   | IEC      | AC Input           | N/A |
| J3   | 15-pin D | Remote Connections | N/A |
| J4   | BNC      | IF Output          | 50  |

# 8.6.2 Remote Interface Connections (Exciter)

| Port | Туре  | Function                    | Ohm  |
|------|-------|-----------------------------|------|
| J1   | IEC   | AC Input                    | N/A  |
| TB02 | Term  | Base Band Audio Input       | 600  |
| J3   | BNC   | Composite Audio Input       | 75   |
| J4   | BNC   | SAP / PRO Audio Input       | 50   |
| J5   | BNC   | CW IF Input                 | 50   |
| J6   | BNC   | Modulated IF Input          | 50   |
| J7   | BNC   | Video Input (Isolated)      | 75   |
| J8   | BNC   | Visual IF Loop-Thru Output  | 50   |
| J9   | BNC   | Aural IF Loop-Thru Output   | 50   |
| J10  | BNC   | 10 MHz Reference Input      | 50   |
| J11  | BNC   | 10 MHz Reference Output     | 50   |
|      |       |                             |      |
| J17  | BNC   | Video Loop-Thru (Isolated)  | 75   |
| J18  | BNC   | Visual IF Loop-Thru Input   | 50   |
| J19  | BNC   | Aural IF Loop-Thru Input    | 50   |
|      |       |                             |      |
| J23  | BNC   | Upconverter RF Output       | 50   |
| J24  | BNC   | Power Amplifier RF Input    | 50   |
| J25  | N     | Power Amplifier RF Output   | 50   |
|      |       |                             |      |
| TB30 | Term  | Remote Control & Monitoring |      |
| TB31 | Term  | Remote Control & Monitoring |      |
| J32  | RJ-45 | SCADA (Input / Loop-Thru)   | CAT5 |
| J33  | RJ-45 | SCADA (Input / Loop-Thru)   | CAT5 |
| J34  | RJ-45 | System RS-485 Serial        | CAT5 |

# 8.6.3 Remote Interface Connections (External Power Amplifier Assembly)

| Port | Туре       | Function                    | Ohm  |
|------|------------|-----------------------------|------|
| J220 | Circular-3 | AC Input #1                 | N/A  |
| J221 | Circular-3 | AC Input #2                 | N/A  |
| J200 | N          | Power Amplifier RF Input    | 50   |
| J205 | 7-16       | Power Amplifier RF Output   | 50   |
|      |            |                             |      |
| J232 | RJ-45      | System RS-485 Serial Input  | CAT5 |
| J233 | RJ-45      | System RS-485 Serial Output | CAT5 |



## 8.7 AC Input

# 8.7.1 Receiver Tray

The AC input to the Receiver Tray is 117 VAC or 230 VAC and is directed thru Jack J2, of the (A1) Power Entry Module (1265-1104), to the step down Toroid (A2). The Power Entry Module contains an On/Off Switch, a 4 Amp Slo-Blo Fuse and three MOVs, which protect the Tray from transients or surges, which may occur on the AC Input Lines.

# 8.7.2 Exciter Tray

The AC input to the Upconverter Tray is 117 VAC or 230 VAC (factory selectable). The AC input is applied to the tray through Jack J1. MOV's are provided to protect the Tray from transients or surges, which may occur on the AC Input Lines.

# 8.7.3 Power Amplifier Tray

The AC input to the Power Amplifier Tray is 230 VAC. The AC input is applied to the tray through Jacks J220 and J221. MOV's are provided to protect the Tray from transients or surges, which may occur on the AC Input Lines.

# 8.8 System Operation

When the transmitter is in operate, as set by the menu screen located on the Control & Monitoring Module in the exciter/driver assembly. The IF Processor will be enabled, the mute indicator on the front panel will be extinguished. The +32 VDC stage of the Power Supply in the Control & Monitoring Module is enabled, the operate indicator on the front panel is lit and the DC OK on the front panel should also be green. The enable and DC OK indicators on the PA Module will also be green.

When the transmitter is in standby. The IF Processor will be disabled, the mute indicator on the front panel will be red. The +32 VDC stage of the Power Supply in the Control & Monitoring Module is disabled, the operate indicator on the front panel will be extinguished and the DC OK on the front panel should remain green. The enable indicator on the PA Module is also extinguished.

If the transmitter does not switch to Operate when the operate menu is switched to Operate, check that all faults are cleared and that the remote control terminal block stand-by signal is not active.

The transmitter can be controlled by the presence of a modulated input signal. If the input signal to the transmitter is lost, the transmitter will automatically cutback and the input fault indicator on the IF Processor module will light. When the video input signal returns, the transmitter will automatically return to full power and the input fault indicator will be extinguished.

## 8.8.1 Principles of Operation

## **Operating Modes**

This transmitter is either operating or in standby mode. The sections below discuss the characteristics of each of these modes.



# **Operate Mode**

Operate mode is the normal mode for the transmitter when it is providing RF power output. To provide RF power to the output, the transmitter will not be in mute. Mute is a special case of the operate mode where the +32 VDC section of the power supply is enabled but there is no RF output power from the transmitter. This condition is the result of a fault condition that causes the firmware to hold the IF Processor module in a mute state.

## Operate Mode with Mute Condition

The transmitter will remain in the operate mode but will be placed in mute when the following fault conditions exists in the transmitter.

- Upconverter is unlocked
- Upconverter module is not present
- IF Processor module is not present
- Modulator (if present) is in Aural/Visual Mute

# **Entering Operate Mode**

Entering the operate mode can be initiated a few different ways by the transmitter control board. A list of the actions that cause the operate mode to be entered is given below:

- A low on the Remote Transmitter Operate line.
- User selects "OPR" using switches and menus of the front panel.
- Receipt of an "Operate CMD" over the serial interface.

There are several fault or interlock conditions that may exist in the transmitter that will prevent the transmitter from entering the operate mode. These conditions are:

- Power Amplifier heat sink temperature greater than 78 C.
- Transmitter is Muted due to conditions listed above.
- Power Amplifier Interlock is high indicating that the amplifier is not installed.

#### Standby Mode

The standby mode in the transmitter indicates that the output amplifier of the transmitter is disabled.

## **Entering Standby Mode**

Similar to the operate mode, the standby mode is entered using various means. These are:

• A low on the Remote Transmitter Stand-By line.

Depressing the "STB" key on selected front panel menus.



• Receipt of a "Standby CMD" over the serial interface.

# **Operating Frequency**

The LX Series transmitter controller is designed to operate on UHF frequencies. The exact output frequency of the transmitter can be set to one of the standard UHF frequencies, or it can be set to a custom frequency using software set-up menus. Since RF performance of the transmitter requires different hardware for different frequency bands, not all frequency configurations are valid for a specific transmitter. The Power detectors in the transmitter have frequency dependency, therefore detectors of power amplifiers are calibrated at their frequency of use. The detectors for System RF monitoring are also calibrated at the desired frequency of use.



# 9. CERTIFICATION OF TEST DATA

This equipment has been tested in accordance with the requirements contained in the appropriate Commission regulation. To the best of my knowledge, these tests were performed using measurement procedures consistent with the industry or Commission standards and demonstrate that the equipment complies with the appropriate standards. Each unit manufactured, imported or marketed, as defined in the Commission's regulations, will conform to the sample(s) tested within the variations that can be expected due to quantity production and testing on a statistical basis. I further certify that the necessary measurements were made by Axcera, LLC, 103 Freedom Drive, P.O. Box 525, Lawrence, PA 15055-0525

Kenneth Foutz
Chief Operations Officer

Lance Trussa Engineer

James Mounts Engineer



## MODEL 8821 SPECIFICATIONS

Internal Oscillator Options

E9 (Standard TCXO)

Accuracy while Tracking: 5 X 10-9

Stability when coasting: Better than ± 1 X 10-6

0° C to + 50° C

E4 (Optional OCXO)

Accuracy while Tracking: 1 X 10-9

Stability when coasting: Better than ± 1 X 10-9

per day

Synchronization

The position of the antenna is determined by measuring the pseudo-range to four satellites and computing the position of these satellites using ephemens data. The receiver basic specifications are as follows:

Receiver Description: L1 C/A code pseudo-ranging

Channels:

Six independent, continuous

tracking channels

Frequency:

1575.42 MHz

Acquisition Time:

Typically less than two min-

utes

Navigation Outputs

Latitude, longitude, and height with a position accuracy of ± 30 meters, 2 drms (without SA) are available on the RS-232 ports.

Tracking Modes

In its default tracking mode, the Model 8821 automatically tracks one to six satellites, as available, on a stationary platform.

Two other modes, one for use on a moving platform and the other for use with an operator-entered fixed position, can be selected.

Timekeeping

The Model 8821 normally accumulates Universal Time (UTC). By command, this may be changed to local time. When local time is used, automatic daylight savings time adjustments are made at preprogrammed dates. Leap second and leap year adjustments are made automatically. Time is available on the RS-232 ports with a resolution of one millisecond.

IRIG E Output

Format:

Modulated IRIG B 122

Level:

3 Vpp nominal

Drive:

Will drive 50 ohms

Mod. Ratio:

Adjustable 2:1 to 5:1

Phase:

Modulated code on-time mark adjustable to within ± 10 us of on-time refer-

Rate/DC Code Output

Frequency:

One of the following may be selected: 1 PPH, 6 PPH, 12 PPH, 1 PPM, or 1 PPS - 1 MPPS in decade steps.

IRIG 8 DC may be outputted in place of a selected rate via internal strap.

Levels:

TTL

Drive:

50 ohms.

Conerence:

Within one microsecond of UTC

Connector:

BNC

1 PPS Output

Levels:

TTL

Drive:

50 phms

Coherenca:

Within one microsecond of UTC

Connector.

BNC

High Rate Output

Frequency:

5 or 10 MPPS by internal strap

Levels: Drive:

TTL 50 ohms

Coherence:

Phase coherent to 1 PPS

Connector.

BNC

Option Sinewave Rate Output 5 or 10 Mhz sinewave into 50 ohms in place of

TTL rate above.

IVRms a/P

Status Output

Three contacts of a form-C relay provide tracking status output on a 9-pin connector. Contact rating is 1/2 A. Also on this connector is status at TTL logic levels.

## Remote Setup and Status

The following is a partial list of setup and status commands via the RS-232 Port.

Set/Request UTC/LOCAL Set/Request local time offset Set/Request daylight savings dates Set/Request satellites to be used (default is automatic selection) Set/Request output rate Sat/Request local position Set/Request AUTO/DYN/FIXED nav. mode Set/Request minimum tracking elevation Request time output Request navigation data Request tracking/locked status Request time offset data Request leap second stalus Request satellites being tracked Request firmware version

#### Time/Status Display (option)

The unit can be ordered with an LED display of time and status.

#### Power Supply

The unit operates on 85-265 Vrms, 48-440 Hz, or 100-370 Vdc, Power required is 25 watts nominal.

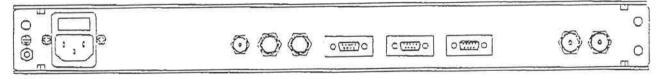
## Internal Battery

An internal lithium battery maintains setup data and coarse timekeeping during time that no external power is applied.

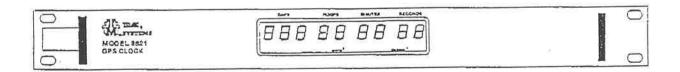
#### Physical

Chassis is 19" wide X 1.72" high X 14" deep, Weight is 9 pounds.

Antenna unit is 4.25 Inches in diameter X 6.5 inches high. Weight is 7 ounces. It is connected to the main chassis via a coaxial cable. A 50 foot cable with TNC connectors is supplied. Optional lead-in systems with coaxial cables and in-line amplifiers are available to 2500 feet. Refer to application note AN-3A for complete details.


# Temperature

Main unit:


-10 to + 50° C

Antenna:

-40 to + 70° C



# Model 8821 Rear Panel



Model 8821 with Display Option

Specification subject to change without notice.

Printed In U.S.A., Sept., 1995

TRAK SYSTEMS

8723840387