

iFIT Inc.

RF TEST REPORT

Report Type:

FCC Part 15.247 & ISED RSS-247 RF report

Model:

MP24-Xenon2-L

REPORT NUMBER:

2412B1488SHA-001

ISSUE DATE:

May 16, 2025

DOCUMENT CONTROL NUMBER:

TTRF15.247-02_V1 © 2018 Intertek

Intertek Testing Services (Shanghai FTZ) Co., Ltd.
Building No.86, 1198 Qinzhou Road (North)
Caohejing Development Zone
Shanghai 200233, China

Telephone: 86 21 6127 8200

www.intertek.com

Report no.: 2412B1488SHA-001

Applicant: iFIT Inc.

1500 South 1000 West, Logan, UT 84321, USA

Manufacturer: iFIT Inc.

1500 South 1000 West, Logan, UT 84321, USA

Manufacturing Site: LUXSHARE ELECTRONIC TECHNOLOGY (KUNSHAN) LTD.

No.277, Baisheng Road, Jinxi Town, Kunshan City, Jangsu Province,

China

Product Name: Tablet

 Type/Model:
 MP24-Xenon2-L

 FCC ID:
 OMC456481L

 IC:
 3673A-456481L

SUMMARY:

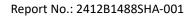
The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2021): Radio Frequency Devices (Subpart C)

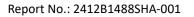
ANSI C63.10 (2020): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

RSS-247 Issue 3 (August 2023): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

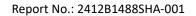
RSS-Gen Issue 5 (February 2021) Amendment 2: General Requirements for Compliance of Radio Apparatus


PREPARED BY:	REVIEWED BY:	
Tylan tang	Wakeyou	
Project Engineer	Reviewer	
Dylan Tang	Wakeyou Wang	

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

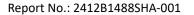

Content

RE	EVISIO	N HISTORY	5
М	EASUR	REMENT RESULT SUMMARY	6
1	GE	NERAL INFORMATION	7
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	7
	1.2	TECHNICAL SPECIFICATION	
	1.3	DESCRIPTION OF TEST FACILITY	8
2	TES	ST SPECIFICATIONS	g
	2.1	STANDARDS OR SPECIFICATION	Ç
	2.2	Mode of operation during the test	
	2.3	TEST SOFTWARE LIST	10
	2.4	TEST PERIPHERALS LIST	10
	2.5	TEST ENVIRONMENT CONDITION:	10
	2.6	Instrument list	11
	2.7	MEASUREMENT UNCERTAINTY	12
3	MI	INIMUM 6DB BANDWIDTH	13
	3.1	LIMIT	13
	3.2	MEASUREMENT PROCEDURE	13
	3.3	TEST CONFIGURATION	13
	3.4	TEST RESULTS OF MINIMUM 6DB BANDWIDTH	13
4	MA	AXIMUM CONDUCTED OUTPUT POWER AND E.I.R.P	14
	4.1	LIMIT	14
	4.2	MEASUREMENT PROCEDURE	14
	4.3	TEST CONFIGURATION	15
	4.4	TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	15
5	РО	OWER SPECTRUM DENSITY	16
	5.1	LIMIT	16
	5.2	MEASUREMENT PROCEDURE	16
	5.3	TEST CONFIGURATION	17
	5.4	TEST RESULTS OF POWER SPECTRUM DENSITY	17
6	EN	MISSION OUTSIDE THE FREQUENCY BAND	18
	6.1	LIMIT	18
	6.2	MEASUREMENT PROCEDURE	18
	6.3	TEST CONFIGURATION	19
	6.4	THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND	19
7	RA	ADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS	20
	7.1	LIMIT	
	7.2	Measurement Procedure	20
	7.3	Test Configuration	
	7.4	TEST RESULTS OF RADIATED EMISSIONS	24
8	OC	CCUPIED BANDWIDTH	28
	8.1	LIMIT	28
	8.2	MEASUREMENT PROCEDURE	28
	8.3	Test Configuration	28


	8.4	THE RESULTS OF OCCUPIED BANDWIDTH	28
9	ANT	ENNA REQUIREMENT	29

Revision History

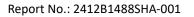
Report No.	Version	Description	Issued Date
2412B1488SHA-001	Rev. 01	Initial issue of report	May 16, 2025



Measurement result summary

TEST ITEM	FCC REFERENCE	IC REFERENCE	RESULT
Minimum 6dB Bandwidth	15.247(a)(2)	RSS-247 Issue 3 Clause 5.2	Pass
Maximum conducted output power and e.i.r.p.	15.247(b)(3)	RSS-247 Issue 3 Clause 5.4	Pass
Power spectrum density	15.247(e)	RSS-247 Issue 3 Clause 5.2	Pass
Emission outside the frequency band	15.247(d)	RSS-247 Issue 3 Clause 5.5	Pass
Radiated Emissions in restricted frequency bands	15.247(d), 15.205&15.209	RSS-Gen Issue 5 Clause 8.9&8.10	Pass
Power line conducted emission	15.207(a)	RSS-Gen Issue 5 Clause 8.8	Pass
Occupied bandwidth	-	RSS-Gen Issue 5 Clause 6.6	Tested
Antenna requirement	15.203	-	Pass

Notes: 1: NA =Not Applicable

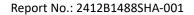

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	Tablet
Type/Model:	MP24-Xenon2-L
	The EUT is a Tablet which supports WIFI and Bluetooth function, it has
Description of EUT:	only one model.
Rating:	DC 12V 3A
Category of EUT:	Class B
Product Marketing Name:	MP24-Xenon2-L
HVIN:	MP24-Xenon2-L
Software Version:	LKX2_20250110
Hardware Version:	EM_AIT9002_V1.2
Sample received date:	February 10, 2025
Date of test:	February 10, 2025 ~ April 11, 2025

1.2 Technical Specification

Frequency Range:	2402-2480MHz
Support Standards:	IEEE 802.15.1
Type of Modulation:	GFSK
Channel Number:	40
Data Rate:	1Mbps,2Mbps
Antenna Information:	1.98dBi, FPC antenna



1.3 Description of Test Facility

Name:	Intertek Testing Services (Shanghai FTZ) Co., Ltd.	
Addrossi		
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China	
Telephone:	86 21 61278200	
Telefax:	86 21 54262353	

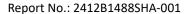
The test facility is recognized,	CNAS Accreditation Lab Registration No. CNAS L21189
certified, or accredited by these organizations:	FCC Accredited Lab Designation Number: CN0175
organizations.	IC Registration Lab CAB identifier.: CN0014
	VCCI Registration Lab Registration No.: R-4243, G-845, C-4723, T-2252
	NVLAP Accreditation Lab NVLAP LAB CODE: 200849-0
	A2LA Accreditation Lab Certificate Number: 3309.02

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2023) ANSI C63.10 (2020) RSS-247 Issue 3 (August 2023) RSS-Gen Issue 5 (April 2018) KDB 558074 (v05r02)

2.2 Mode of operation during the test


The lowest, middle and highest channel were tested as representatives.

Frequency Band (MHz)			2402 ~ 2480				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Data rate VS Power:

The test setting software is offered by the manufactory. The pre-scan for the conducted power with all rates in each modulation and bands was used, and the worst case was found and used in all test cases.

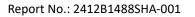
Test software and Power Setting parameter					
Test Software	CMD				
Working Mode	BLE				
Test Channel	2402MHz 2426MHz 2480MHz				
Power Setting	default	default	default		

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

Radiated test mode: EUT transmitted signal with BLE antenna;

Conducted test mode: EUT transmitted signal from BLE RF port connected to SPA directly;

2.3 Test software list


Test Items	Test Items Software		Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.4 Test peripherals list

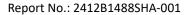
Item No.	Name Band and Model		Description
1	Laptop computer	DELL 5480	-
2	RF cable	/	0.2m length; 0.5dB loss
3	Adapter	HUAWEI/HW-200325CP1	Input: AC 100-240V 50/60Hz

2.5 Test environment condition:

Test items	Temperature	Humidity	
Minimum 6dB Bandwidth			
Maximum conducted output power and e.i.r.p.			
Power spectrum density	23°C	52% RH	
Emission outside the frequency band			
Occupied bandwidth			
Radiated Emissions in restricted frequency bands	22°C	55% RH	
Power line conducted emission	21°C	52% RH	

2.6 Instrument list

	2.6 Instrument list							
	ucted Emission							
Used	Equipment	Manufacturer	Type	Internal no.	Due date			
~	Test Receiver	R&S	ESR7	EC 6194	2026-02-17			
V	A.M.N.	R&S	ESH2-Z5	EC 3119	2025-07-23			
	A.M.N.	R&S	ENV4200	EC 3558	2025-06-05			
~	Attenuator	Hua Xiang	Ts5-10db-6g	EC 6194-1	2025-12-06			
~	Shielded room	Zhongyu	-	EC 2838	2026-01-09			
	ted Emission							
Used	Equipment	Manufacturer	Туре	Internal no.	Due date			
V	Test Receiver	R&S	ESIB 26	EC 3045	2025-08-18			
~	Bilog Antenna	TESEQ	CBL 6112B	EC 6411	2025-09-11			
	Pre-amplifier	R&S	AFS42- 00101800-25-S- 42	EC 5262	2025-11-06			
~	Pre-amplifier	Tonscend	tap01018050	EC 6432-1	2025-12-03			
~	Horn antenna	Tonscend	bha9120d	EC 6432-2	2026-03-19			
>	Horn antenna	ETS	3116c	EC 5955	2025-08-14			
~	Semi-anechoic chamber	Albatross project	-	EC 3048	2026-07-11			
RF tes	st							
Used	Equipment	Manufacturer	Type	Internal no.	Due date			
~	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2026-03-11			
>	PXA Signal Analyzer	Keysight	N9030B	EC 6078	2025-06-14			
~	Vector Signal Generator	Agilent	N5182B	EC 5175	2026-03-11			
•	MXG Analog Signal Generator	Agilent	N5181A	EC 5338-2	2026-03-11			
V	Test Receiver	R&S	ESCI 7	EC 4501	2026-03-08			
	Universal Radio Communication Tester	R&S	CMW500	EC 6209	2027-01-14			
	Universal Radio Communication Tester	R&S	CMW500	EC5944	2027-03-11			
~	Signal generator	Agilent	N5182A	EC 6172	2025-08-06			
~	Signal generator	Agilent	N5181A	EC 6171	2025-08-06			
V	Climate chamber	GWS	MT3065	EC 6021	2026-03-06			
Addit	ional instrument							
Used	Equipment	Manufacturer	Type	Internal no.	Due date			
~	Therom-Hygrograph	Testo	175h1	EC 6640	2025-08-29			
•	Pressure meter	YM3	Shanghai Mengde	EC 3320	2025-08-16			



2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Maximum peak output power	± 0.74dB
Radiated Emissions in restricted frequency bands below 1GHz	± 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB
Emission outside the frequency band	± 2.89dB

3 Minimum 6dB bandwidth

Test result: Pass

3.1 Limit

For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Measurement Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3 Test Configuration

3.4 Test Results of Minimum 6dB bandwidth

Please refer to Appendix A

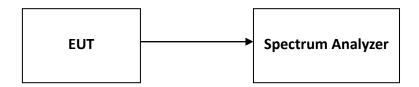
TEST REPORT

4 Maximum conducted output power and e.i.r.p.

Test result: Pass

4.1 Limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 W. (The e.i.r.p. shall not exceed 4 W)


If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain).

4.2 Measurement Procedure

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW $\geq 3 \times RBW$.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

4.3 Test Configuration

4.4 Test Results of Maximum conducted output power

Please refer to Appendix A

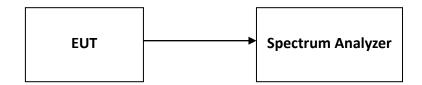
TEST REPORT

5 Power spectrum density

Test result: Pass

5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.


If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain).

5.2 Measurement Procedure

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 × RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 Test Configuration

5.4 Test Results of Power spectrum density

Please refer to Appendix A

6 Emission outside the frequency band

Test result: Pass

6.1 Limit

TEST REPORT

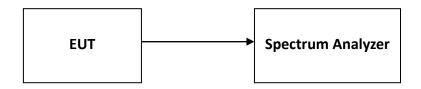
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

6.2 Measurement Procedure

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.


Emission level measurement

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

6.3 Test Configuration

6.4 The results of Emission outside the frequency band

Please refer to Appendix A

7 Radiated Emissions in restricted frequency bands

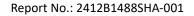
Test result: Pass

7.1 Limit

TEST REPORT

The radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits specified showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

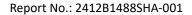

7.2 Measurement Procedure

For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

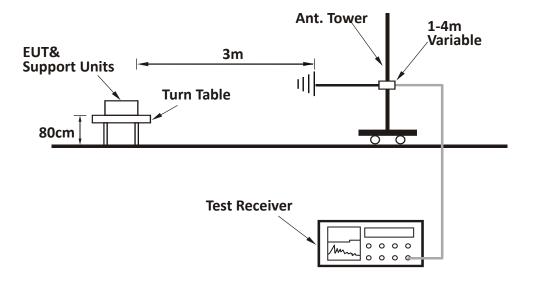


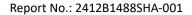
For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

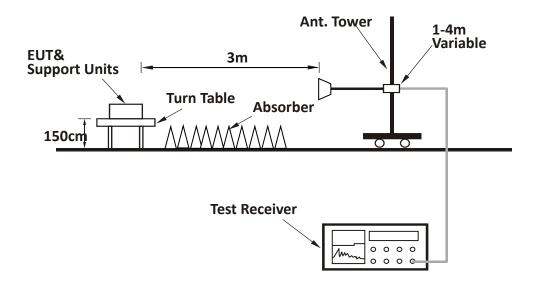
Note:

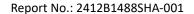
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is \geq 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle \geq 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported



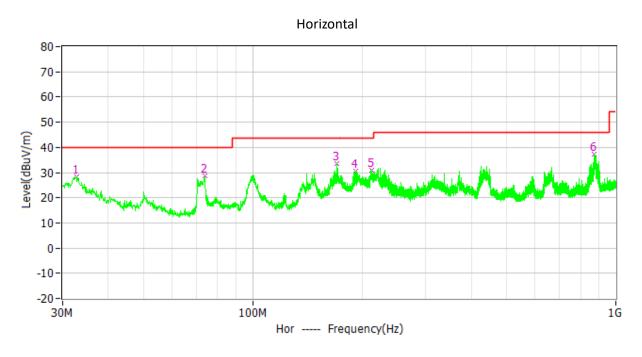

7.3 Test Configuration

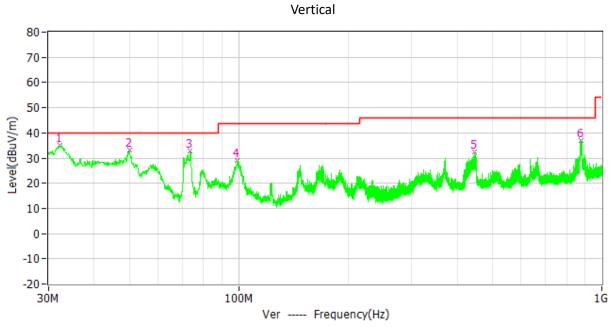
For Radiated emission below 30MHz:

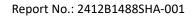

For Radiated emission 30MHz to 1GHz:



For Radiated emission above 1GHz:



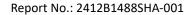



7.4 Test Results of Radiated Emissions

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

The worst waveform from 30MHz to 1000MHz is listed as below:

Test data below 1GHz

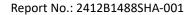

Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	32.910	28.4	18.2	40.0	-11.6	QP
Н	73.844	28.8	7.7	40.0	-11.2	QP
Н	170.844	33.6	11.0	43.5	-9.9	QP
Н	192.572	30.7	10.8	43.5	-12.8	QP
Н	212.554	31.0	10.9	43.5	-12.5	QP
Н	874.094	37.4	23.7	46.0	-8.6	QP
V	32.134	35.2	18.6	40.0	-4.8	QP
V	50.176	33.1	9.3	40.0	-6.9	QP
V	73.650	32.7	7.7	40.0	-7.3	QP
V	98.967	29.1	11.8	43.5	-14.4	QP
V	445.645	32.5	18.9	46.0	-13.5	QP
V	874.967	36.9	23.7	46.0	-9.1	QP

Test result above 1GHz:

The emission was conducted from 1GHz to 25GHz

1M

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.00	96.2	37.2	Fundamental	/	PK
	V	2402.00	101.4	37.2	Fundamental	/	PK
	Н	2390.00	52.0	37.2	74.00	22.0	PK
١.	V	2390.00	52.5	37.2	74.00	21.5	PK
L	Н	4804.00	32.8	-15.1	74.00	41.2	PK
	Н	7206.00	37.1	-9.0	74.00	36.9	PK
	V	4804.00	33.2	-15.1	74.00	40.8	PK
	V	7206.00	38.1	-9.0	74.00	35.9	PK
	Н	4852.00	35.5	-15.0	74.00	38.5	PK
N4	Н	7278.00	39.1	-8.8	74.00	34.9	PK
M	V	4852.00	36.4	-15.0	74.00	37.6	PK
	V	7278.00	40.6	-8.8	74.00	33.4	PK

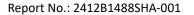

	Н	2480.00	96.8	37.5	Fundamental	/	PK
	V 2480.00 101.0 37.5		37.5	Fundamental	/	PK	
	Н	2483.50	52.5	37.5	74.00	21.5	PK
Н	H 4960.00 35.6 -14 H 7440.00 39.5 -8.	37.5	74.00	21.9	PK		
"		35.6	-14.9	74.00	38.4	PK	
		-8.5	74.00	34.5	PK		
		36.9	-14.9	74.00	37.1	PK	
	V	7440.00	39.7	-8.5	74.00	34.3	PK

2M

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.00	96.5	37.5	Fundamental	/	PK
	V	2402.00	101.0	37.5	Fundamental	/	PK
	Н	2390.00	52.3	37.5	74.00	21.7	PK
	V	2390.00	53.8	37.5	74.00	20.2	PK
L	Н	4804.00	34.2	-15.1	74.00	39.8	PK
	Н	7206.00	38.9	-9.0	74.00	35.1	PK
	V	4804.00	34.9	-15.1	74.00	39.1	PK
	V	7206.00	39.1	-9.0	74.00	34.9	PK
	Н	4852.00	36.4	-15.0	74.00	37.6	PK
	Н	7278.00	39.3	-8.8	74.00	34.7	PK
M	V	4852.00	36.6	-15.0	74.00	37.4	PK
	V	7278.00	40.1	-8.8	74.00	33.9	PK
	Н	2480.00	96.4	37.2	Fundamental	/	PK
	V	2480.00	101.6	37.2	Fundamental	/	PK
	Н	2483.50	51.3	37.2	74.00	22.7	PK
Н	V	2483.50	51.8	37.2	74.00	22.2	PK
П	Н	4960.00	36.1	-14.9	74.00	37.9	PK
	Н	7440.00	38.2	-8.5	74.00	35.8	PK
	V	4960.00	36.5	-14.9	74.00	37.5	PK
	V	7440.00	39.5	-8.5	74.00	34.5	PK

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (- Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading



4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB, Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV, Limit = 40.00dBuV/m.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m; Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

8 Occupied Bandwidth

Test result: Tested

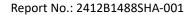
8.1 Limit

None

8.2 Measurement Procedure

The occupied bandwidth per RSS-Gen was measured using the Spectrum Analyzer.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.


The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

8.3 Test Configuration

8.4 The results of Occupied Bandwidth

Please refer to Appendix A

9 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT uses permanently	/ attached antenna to	the intentional	radiator, so it	can comply	with the p	provisions
of this section.						