

Advanced
Compliance Laboratory

6 Randolph Way
Hillsborough, NJ 08844
Tel: (908) 927 9288
Fax: (908) 927 0728

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT
of
WEATHER STATION
MODEL: WS1
FCC ID: OF7WS9
January 25, 2011

This report concerns (check one): Original grant Class II change
Equipment type: Low Power Intentional Radiator

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? yes no
If yes, defer until: _____ (date)
Company agrees to notify the Commission by _____ (date)
of the intended date of announcement of the product so that the grant can be
issued on that date.

Transition Rules Request per 15.37? yes no
If no, assumed Part 15, Subpart B for unintentional radiators - the new 47 CFR
[10-1-90 Edition] provision.

Report prepared for: THE TORO COMPANY
Report prepared by: Advanced Compliance Lab
Report number: 0048-101130-01-FCC

Lab Code: 200101 The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	1
Table of Contents	2
Figures	3
1. GENERAL INFORMATION.....	4
1.1 Verification of Compliance	4
1.2 Equipment Modifications.....	5
1.3 Product Information.....	6
1.4 Test Methodology	6
1.5 Test Facility.....	6
1.6 Test Equipment.....	6
1.7 Statement for the Document Use	7
2. PRODUCT LABELING	8
3. SYSTEM TEST CONFIGURATION.....	9
3.1 Justification	9
3.2 Special Accessories.....	9
3.3 Configuration of Tested System	9
4. SYSTEM SCHEMATICS.....	12
Figure 4.1 System Schematics	12
5. RADIATED EMISSION DATA	13
6.1 Field Strength Calculation	13
6.2 Test Methods and Conditions.....	13
6.3 Test Data	13
6.4 EUT RECEIVING MODE VERIFICATION	17
6. PHOTOS OF TESTED EUT	18

Figures

Figure 2.1 FCC ID Label.....	8
Figure 2.2 Location of Label on Back of the EUT.....	8
Figure 3.1 Radiated Test Setup.....	10
Figure 3.2 Conducted Test Setup.....	11
Figure 3.3 Conducted Test Setup.....	11
Figure 4.1 EUT Schematics.....	12
Figure 6.1 Front View	19
Figure 6.2 Back View	20
Figure 6.3 Inside View.....	21
Figure 6.4 PCB Component View.....	22
Figure 6.5 PCB Foil View.....	23

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: WEATHER STATION

Model: WS1

Applicant: THE TORO COMPANY

Test Type: FCC Part 15C CERTIFICATION

Result: PASS

Tested by: ADVANCED COMPLIANCE LABORATORY

Test Date: 11/30/2010 - 01/24/2011

Report Number: 0048-101130-01-FCC

The above equipment was tested by Compliance Laboratory, Advanced Technologies, Inc. for compliance with the requirement set forth in the FCC rules and regulations Part 15 subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

Wei Li
Lab Manager
Advanced Compliance Lab

Date January 25, 2011

1.2 Equipment Modifications

N/A

1.3 Product Information

System Configuration

ITEM	DESCRIPTION	FCC ID	CABLE
Product	WEATHER STATION ⁽¹⁾	OF7WS9	
Housing	PLASTICS		
Power Supply	9V DC Battery		
Operation Freq.	906MHz ~ 922MHz		
Receiver	WS1(RX)	Verification	

(1) EUT submitted for grant.

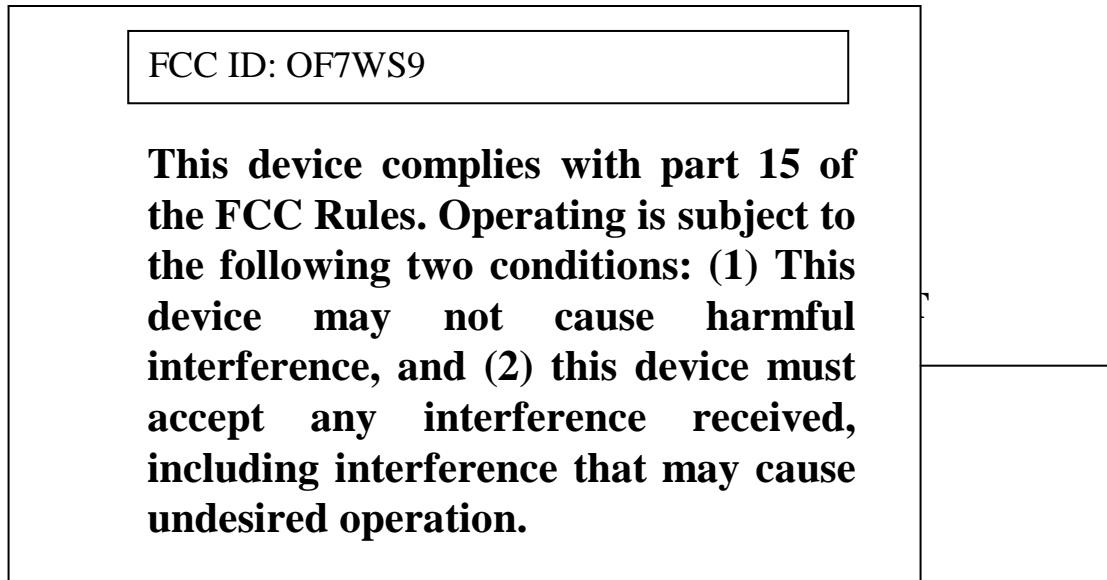
1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-2003 at an antenna to EUT distance of 3 meters.

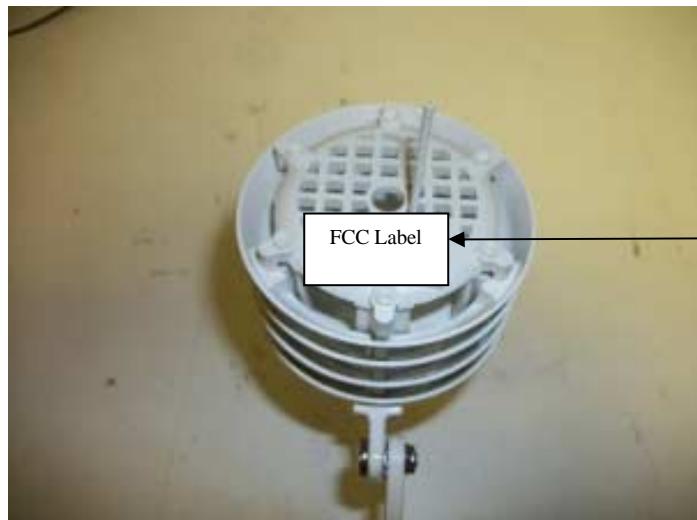
1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at Hillsborough, New Jersey. This site has been accepted by FCC to perform measurements under Part 15 or 18 in a letter dated May 19, 1997 (Refer to: 31040/PRV 1300F2). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment


Manufacture	Model	Serial No.	Description	Cal Due dd/mm/yy
Hewlett-Packard	HP8546A	3448A00290	EMI Receiver	25/09/11
Agilent	E4440A	US40420700	3Hz-26.5GHz Spec. Analyzer	17/06/12
EMCO	3104C	9307-4396	20-300MHz Biconical Antenna	19/10/11
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	19/10/11
Fischer Custom	LISN-2	900-4-0008	Line Impedance Stabilization Networks	05/10/11
Fischer Custom	LISN-2	900-4-0009	Line Impedance Stabilization Networks	18/10/11
EMCO	3115	4945	Double Ridge Guide Horn Antenna	17/10/11

All Test Equipment Used are Calibrated Traceable to NIST Standards.


1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

**Figure 2.1 FCC ID Label
(Only FCC ID shown on EUT)**

Figure 2.2 FCC Label Location

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). And its antenna was permanently attached to the EUT with max length, 3". Testing was performed as EUT was continuously operated at the following frequency channels:

Low=906MHz, Middle= 914MHz, High=922MHz.

Fresh external battery was used for extended operating time.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.1 illustrate this system, which is tested standing along.

Figure 3.1 Radiated Test Setup

N/A

Figure 3.2 Conducted Setup- Front

N/A

Figure 3.3 Conducted Setup- Rear

4. SYSTEM SCHEMATICS

See Attachment.

Figure 4.1 System Schematics

5. RADIATED EMISSION DATA

5.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

$$FS = RA + AF + CF + AG$$

where FS: Corrected Field Strength in dB μ V/m

RA: Amplitude of EMI Receiver before correction in dB μ V

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

THE "DUTY CYCLE CORRECTION FACTOR" FOR SPURIOUS RADIATED EMISSIONS IS;
 $20 \log^* (23.8 \text{ ms} / 100 \text{ ms}) = -12.9 \text{ dB}$, WHICH WAS USED TO CORRECT THE AVERAGE RADIATED EMISSION READINGS.

5.2 Test Methods and Conditions

The initial step in collecting radiated data is a EMI Receiver scan of the measurement range below 30MHz using peak detector and 9KHz IF bandwidth / 30KHz video bandwidth. For the range 30MHz - 1GHz, 100KHz IF bandwidth / 100KHz video bandwidth are used. Both bandwidths are 1MHz for above 1GHz measurement. Up to 10th harmonics were investigated.

5.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 5.1.

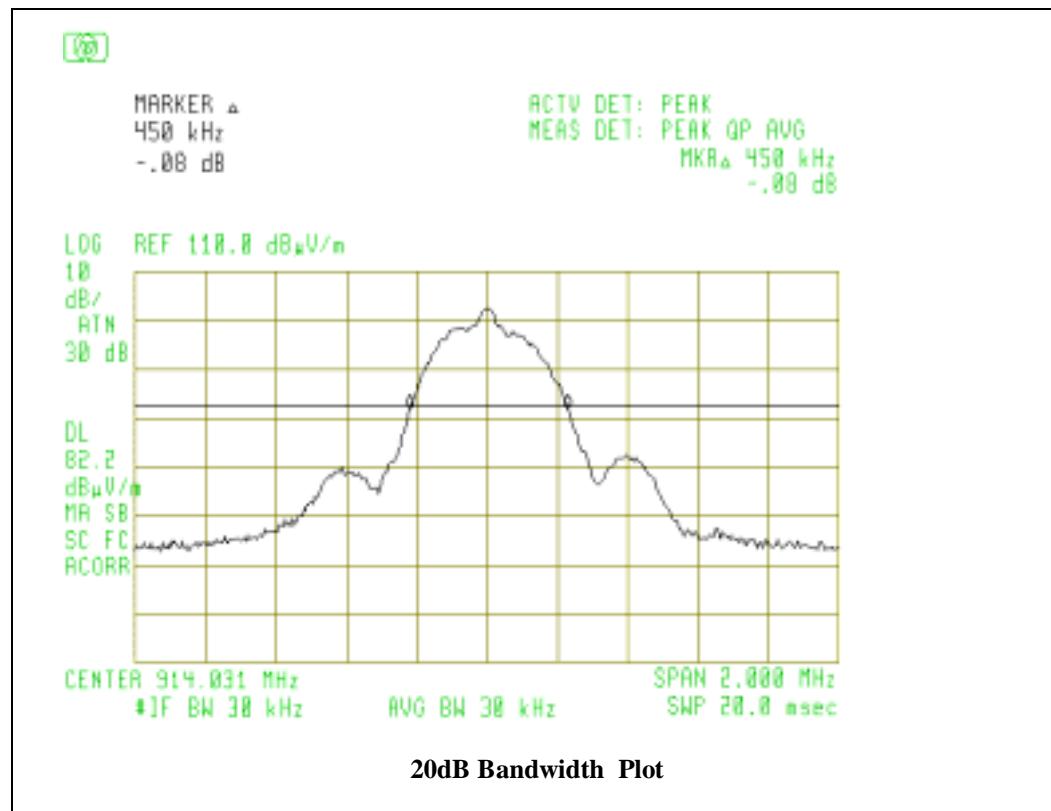
Test Personnel:

Typed/Printed Name: Edward Lee

Date: January 25, 2011

Radiated Test Data (CH-906MHz/914MHz/922MHz)

Frequency (MHz)	Polarity (V,H) Position (X,Y,Z)	Antenna Height (m)	Azimuth (Degree)	Peak Reading at 3m (2) (dBuV/m)	Peak Reading After Correction (dBuV/m)	FCC 3m Limit (1) (dBuV/m)	Difference (dBuV/m)
906	V	1.2	000	105.0	92.5	94	-1.5
1812	V	1.1	270	62.2	49.7	54	-4.3
2718	V	1.1	270	53.6	41.1	54	-12.9
906	H	1.2	000	95.7	83.2	94	-10.8
1812	H	1.1	270	51.3	38.8	54	-15.2
2718	H	1.1	235	48.6	36.1	54	-17.9
<hr/>							
914	V	1.2	090	105.3	92.8	94	-1.2
1828	V	1.1	090	62.2	49.7	54	-4.3
2712	V	1.0	090	61.6	49.1	54	-4.9
914	H	1.2	300	92.9	80.4	94	-13.6
1828	H	1.1	000	51.8	39.3	54	-14.7
2742	H	1.0	090	61.0	48.5	54	-5.5
<hr/>							
922	V	1.2	235	104.0	91.5	94	-2.5
1844	V	1.0	000	62.8	50.3	54	-3.7
2766	V	1.0	270	61.3	48.8	54	-5.2
922	H	1.2	235	93.9	81.4	94	-12.6
1844	H	1.1	260	53.0	40.5	54	-13.5
2766	H	1.0	135	56.5	44	54	-10


(1) The limit for emissions within the 902-928MHz band is 50mV(94dB) per Sec. 15.249. The limit for its harmonics is 500uV (54dB). Other spurious emissions shall be lower than either its fundamental by 50dB or the limit defined in Sec. 15.209, whichever is higher.

(2) If each peak reading is less than the FCC average limit, it'll be not necessary to show the measured/ calculated average reading

Other Spurious outside of the band 902-928MHz
 (the worst case of investigated L, M, H channel operation modes)

Frequency (MHz)	Polarity (V,H) Position X	Antenna Height (m)	Azimuth (Degree)	Peak Reading at 3m (2) (dBuV/m)	Peak Reading After Correction (dBuV/m)	FCC 3m Limit (1) (dBuV/m)	Difference (dBuV/m)
334	V	1.1	000	26.1		46.5	-20.4
382	V	1.1	000	27.0		46.5	-19.5
440	V	1.1	180	26.5		46.5	-20.0
402	H	1.1	180	26.2		46.5	-20.3
440	H	1.0	180	27.0		46.5	-19.5
458	H	1.0	180	27.2		46.5	-19.3
500	H	1.0	180	27.1		46.5	-19.4

Comparing to the limit defined in Sec. 15.209, emissions below the limit by 20dB were not recorded.

**Pulse Train and Duty Cycle Calculation over
100ms Worst Case Window**

FCC: OF7CL9, OF7WS9, OF7SP9
IC: 3575A-CL9, 3575A-WS9, 3575A-SP9

$T \geq A \approx 11.9\text{ms}$ (11.9ms = 24bytes @ 396us/byte + 2.4ms preamble)

$A \geq B \approx 10\text{ ms}$

$B \geq C \approx 11.9\text{ms}$ (optional repeat if ACK not received.)

$C \geq D \approx 66.2\text{ ms}$

$T \geq D \approx 100\text{ms}$

Duty Cycle :: 23.8% = $(11.9 + 11.9) / 100$

Duty Cycle Plot

5.4 EUT RECEIVING MODE VERIFICATION

Radiated Test Data for Receiving Mode (the worst case of investigated L, M, H channel operation modes)

Frequency (MHz)	Polarity (H or V)	Antenna Height (m)	Azimuth (Degree)	Peak Reading at 3m(2) (dBuV/m)	FCC 3m Limit(1) (dBuV/m)	Difference (dBuV/m)
334	V	1.2	000	24.0	46.5	-22.5
382	V	1.1	000	24.9	46.5	-21.6
436	V	1.1	180	25.0	46.5	-21.5
400	H	1.1	000	25.9	46.5	-20.6
420	H	1.1	180	26.0	46.5	-20.5
436	H	1.0	180	27.4	46.5	-19.1
458	H	1.0	180	27.2	46.5	-19.3
496	H	1.0	090	27.5	46.5	-19.0

- (1) Receiving mode spurious emissions shall be lower than the limit defined in Sec. 15.209.
- (2) If each peak reading is less than the FCC average limit, it'll be not necessary to show the measured/ calculated average reading.