| FCC requirements § 2.1033 (b)(6)         |
|------------------------------------------|
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
| TEST MEASUREMENT REPORT                  |
| Contains 33 pages and follows this page. |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |

Test Report:FAFCC.13120\_2
Date: January, 1999
Total 33 pages
FCC ID: OC8CA108

# **ELECTROMAGNETIC EMISSIONS TEST REPORT**

ACCORDING TO FCC PART 15, SUBPART C, §15.231

FOR FIRST ACCESS Ltd.

EQUIPMENT UNDER TEST
AUTHENTICATION CARD
Model CA108

Prepared by: (

Mrs. M. Cherniavsky, certif. engineer

Hermon Labs

Approved by:

Mr. A. Usoskin, QA manager

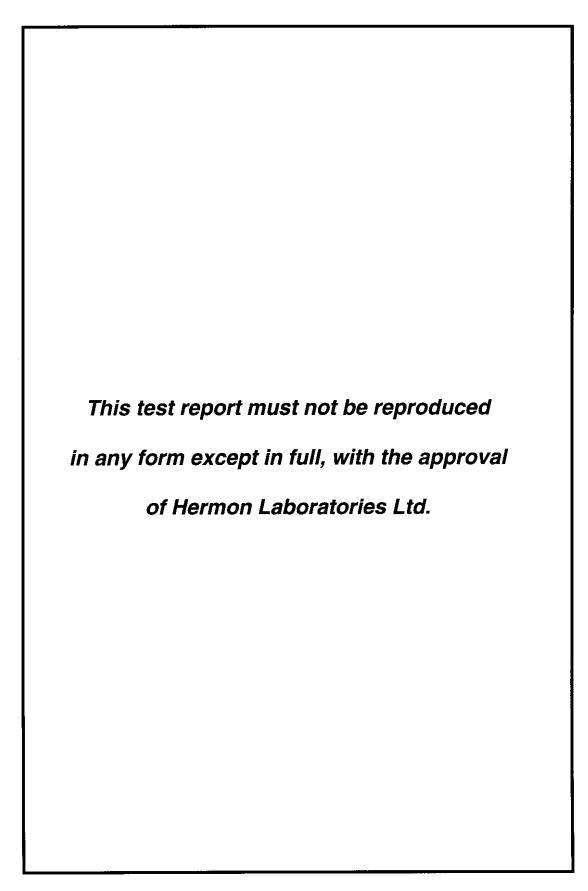
**Hermon Labs** 

Approved by:

Dr. E. Usoskin, C.E.O.

**Hermon Labs** 

Approved by: Aus bask


Mr. A. Daskal, VP hardware development

First Access Ltd.

Hermon Laboratories Ltd.
P.O.Box 23
Binyamina 30550, Israel
Tel.+972-6628-8001
Fax.+972-6628-8277
Email:hermon@Netvision.net.il









## Description of equipment under test

Transceiver of an authentication system card Test items

FCC ID:OC8CA108

Manufacturer First Access Ltd. **Brand Mark** First Access Type (Model)

**CA108** 

# **Applicant information**

Applicant's representative

Mr. Amos Daskal, Vice President & Responsible person

hardware development

First Access Ltd. Company 10 Markoni St. Address

25084 P.O. Box 31253 Postal code Haifa City Israel Country

011-972-4840-3322 Telephone number 011-972-4840-3399 Telefax number

## **Test performance**

13120 **Project Number** 

Hermon Laboratories, Binyamina, Israel Location of the test

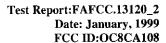
October 29, 1998 Test started November 11, 1998 Test completed

The EUT certification in accordance with Purpose of test

CFR 47, part 2, §2.1033

Test specification(s) FCC part 15 subpart C §15.231, §15.209

subpart B, §15.109


Through this report a point is used as the decimal separator and the thousands are counted with a comma. This report is in conformity with EN 45001 and ISO GUIDE 25.

The test results relate only to the items tested.



# **Table of Contents**

| 1 | GEN          | NERAL INFORMATION                                                   | 5  |
|---|--------------|---------------------------------------------------------------------|----|
|   | 1.1          | ABBREVIATIONS AND ACRONYMS                                          | 5  |
|   | 1.2          | SPECIFICATION REFERENCES                                            |    |
|   | 1.3          | EUT DESCRIPTION                                                     |    |
|   | 1.4          | EUT TEST CONFIGURATION                                              |    |
|   | 1.5          | STATEMENT OF MANUFACTURER                                           | 9  |
| 2 | TES          | ST FACILITY DESCRIPTION                                             | 10 |
|   | 2.1          | GENERAL                                                             | 10 |
|   | 2.2          | EQUIPMENT CALIBRATION                                               | 10 |
|   | 2.2.         |                                                                     | 10 |
|   | 2.3          | LABORATORY PERSONNEL                                                | 11 |
|   | 2.4          | STATEMENT OF QUALIFICATION                                          | 11 |
| 3 | RA!          | DIATED EMISSION MEASUREMENTS                                        | 12 |
|   | 3.1          | FIELD STRENGTH OF EMISSIONS ACCORDING TO § 15.231 (B)               | 12 |
|   | 3.1.         |                                                                     | 12 |
|   | 3.1.         |                                                                     | 12 |
|   | 3.2          | BANDWIDTH OF EMISSION ACCORDING TO § 15.231 (C)                     | 22 |
|   | 3.2.         | 1 Specified Limits                                                  | 22 |
|   | 3.2.         | 2 Test Procedure and Results                                        | 22 |
|   | 3.3          | PERIODIC OPERATION REQUIREMENT §15.231(A)(1)                        | 24 |
|   | 3.4          | UNINTENTIONAL RADIATED EMISSIONS TEST ACCORDING TO §15.109, §15.209 | 25 |
|   | 3.4.         |                                                                     | 25 |
|   | <i>3.4</i> . | The test set-up configuration                                       | 25 |
| 4 | SUI          | MMARY AND SIGNATURES                                                | 28 |
| A | PPEN         | DIX A – TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS               | 29 |
| A | .PPEN        | DIX B-TEST EQUIPMENT CORRECTION FACTORS                             | 30 |
| ۸ | PPEN         | DIX C. A2LA ACCREDITATION                                           | 32 |





# 1 General Information

# 1.1 Abbreviations and Acronyms

The following abbreviations and acronyms are applicable to this test report:

AC alternating current AVRG average (detector)

BW bandwidth

CE conducted emissions

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu\text{A}) & \text{decibel referred to one microampere} \\ \text{dB}(\mu\text{V}) & \text{decibel referred to one microvolt} \end{array}$ 

dB(μV/m) decibel referred to one microvolt per meter

DC direct current

EMC Electromagnetic Compatibility

EUT Equipment Under Test

GHz gigahertz H height

HL Hermon Laboratories
HP Hewlett Packard

Hz hertz

IF intermediate frequency

IR infra red kHz kilohertz kV kilovolt L length

LISN Line Impedance Stabilization Network

m meter
mm millimeter
MHz megahertz
msec millisecond
NA Not Applicable

NARTE National Association of Radio and Telecommunications Engineers, Inc.

pF picofarad

QP quasi-peak (detector)
PC personal computer
RBW resolution bandwidth
RF Radio Frequency
RE radiated emission
RMS root-mean-square

sec second V volt

V/m volt per meter

W watt



# 1.2 Specification References

CFR 47 part 15: October 1997 Radio Frequency Devices.

ANSI C63.2:06/1987

American National Standard for Instrumantation-

Electromagnetic Noise and Field Strength, 10 kHz to 40

GHz-Specifications.

ANSI C63.4:1992

American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the

Range of 9 kHz to 40 GHz.

# 1.3 EUT Description

The EUT, First Access Card, model CA108, is a part of hardware kit of vicinity authentication system. The EUT is a vicinity smart card communicating with a sensor (reader) from a distance of several meters. The sensor is connected to the PC. The CA108 card functions as a superheterodyne transceiver, operating at 433.92 MHz and controlled by a microcontroller. For cards initialization the sensor uses an infra red transmitter and the card has an infra red detector. The card has a helical antenna, soldered to the printed circuit board.

The EUT is powered by 3 V internal battery.



# 1.4 EUT Test Configuration

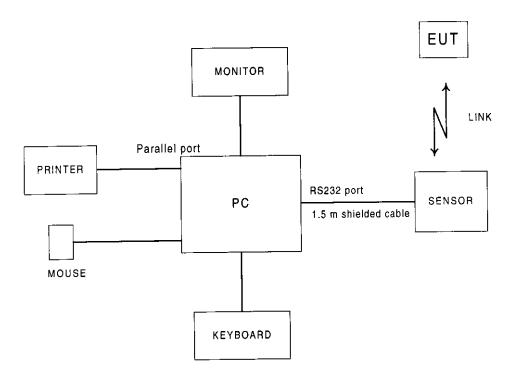

The equipment used throughout the testing is given in Table 1.1.The test configuration is shown in Figure 1.1.

Table 1.1
Test Support Equipment

| Description                 | Model number | Serial number        | FCC ID Number  |
|-----------------------------|--------------|----------------------|----------------|
| Computer<br>Siemens Nixdorf | QK028799     | 7341                 | HSSSCENICM501  |
| Monitor<br>Siemens Nixdorf  | MCM1503      | BW397726             | GWGPAXCAX14154 |
| Keyboard<br>Siemens Nixdorf | 0482N404M    | 526381-K252-<br>L188 | N/A            |
| Printer<br>Epson LX-810     | P805A        | 44B1127035           | BKM9A8P805A    |
| Mouse Microsoft             | 90741        | 03235314             | C3KKMP3        |



Figure 1.1
EUT Test Configuration



Test Report:FAFCC.13120\_2 Date: January, 1999 FCC ID:OC8CA108

#### **Statement of Manufacturer** 1.5

I, Amos Daskal, Vice President hardware development of First Access Ltd., declare that the CA108 card transciever, FCC ID:OC8CA108 was tested from October 29 to November 11, 1998 by Hermon Laboratories and which this test report applies to, is identical of the equipment that will be marketed.

The term identical means identical within the variations that can be expected to arise as a result of quantity production technique.

> Amos Daskal, Vice President hardware development First Access Ltd.

Signature: Arros Dark

Date: January 18, 1993

Page 9 of 33



# 2 Test Facility Description

#### 2.1 General

Tests were performed at Hermon Laboratories, which is a fully independent, private EMC, Safety and Telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), listed by Industry Canada for radiated measurements (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), recognized by VDE (Germany) for witness test, certified by VCCI (Japan), assessed by NMi Certin B.V. (Netherlands) for a number of EMC, Telecommunications and Safety standards, recognized by TUV Sudwest (Germany) for Safety testing, and Accredited by AMTAC (UK) for safety of Medical Devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO GUIDE 25/EN 45001 for EMC, Telecommunications and Product Safety Information Technology Equipment (Certificate No. 839.01).

Address:

PO Box 23, Binyamina 30550, Israel.

Telephone:

+972-6-628-8001

Fax:

+972-6-628-8277

Person for contact: Mr. Alex Usoskin, testing and QA manager.

# 2.2 Equipment Calibration

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error. The standards and instruments used in the calibration system conform to the present requirements of MIL-STD-45662A. The laboratory standards are calibrated by the third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements.

#### 2.2.1 Uncertainty in Hermon Labs Measurements.

| Conducted Emissions<br>(95% Confidence) | 9 KHz to 150 KHz: ± 1.09 dB Combined standard uncertainty ± 2.18 dB Expanded uncertainty 150 KHz to 30 MHz: ± 1.21 dB Combined standard uncertainty ±2.42 dB Expanded uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radiated Emissions<br>(95% Confidence)  | Biconical Antenna: 3 m measuring distance: + 2.032 dB Combined standard uncertainty + 4.06 dB Expanded uncertainty - 1.99 dB Combined standard uncertainty - 3.98 dB Expanded uncertainty 10 m measuring distance: + 1.99 dB Combined standard uncertainty + 3.98 dB Expanded uncertainty - 2.04 dB Combined standard uncertainty - 4.08 dB Expanded uncertainty  Log periodic Antenna: 3 m measuring distance: + 2.37 dB Combined standard uncertainty + 4.74 dB Expanded uncertainty - 1.63 dB Combined standard uncertainty - 3.26 dB Expanded uncertainty 10 m measuring distance: + 3.06 dB Expanded uncertainty + 1.53 dB Combined standard uncertainty - 3.00 dB Expanded uncertainty - 3.00 dB Expanded uncertainty - 1.50 dB Combined standard uncertainty |

Test Report:FAFCC.13120\_2 Date: January, 1999 FCC ID:OC8CA108

# 2.3 Laboratory Personnel

The three people of Hermon Laboratories that have participated in measurements and documentation preparation are: Dr. Edward Usoskin - C.E.O., Mr. Michael Feldman, test technician, and Mrs. Marina Cherniavsky - certification engineer.

Dr. E. Usoskin is an EMC specialist and M. Cherniavsky is a telecommunication engineer certified by the National Association of Radio and Telecommunications Engineers (NARTE, USA.).

The Hermon Laboratories' personnel that participated in this project have more than 90 years combined experience time in EMC measurements and electronic products design.

#### 2.4 Statement of Qualification

The test measurement data supplied in this test measurement report having been received by me, is hereby duly certified. The following is a statement of my qualifications: I am a technician, have obtained 30 years experience in electronics and measurements. I have been with Hermon Laboratories since 1995.

Name: Mr. Michael Feldman

Position: test technician

Signature:

Date:

January 12, 1999

I hereby certify that this test measurement report was prepared by me and is hereby duly certified. The following is a statement of my qualifications.

I am an engineer, graduated from University in 1971, with an MScEE degree, have obtained 26 years experience in electronic products design and development and have been with Hermon Laboratories since 1991. Also, I am a Telecommunication Class II engineer certified by the National Association of Radio and Telecommunications Engineers, Inc. (USA.), the certificate no. is E2-03410.

Name: Mrs. Marina Cherniavsky
Position: certif. engineer

Signature
Date:

January 12, 1999

I hereby certify that this test measurement report was prepared under my direction and that to the best of my knowledge and belief, the facts set in the report and accompanying technical data are true and correct.

The following is a statement of my qualifications.

I have a Ph.D. degree in electronics, have obtained more than 42 years of experience in EMC measurements and electronic product design and have been with Hermon Laboratories since 1986.

Also, I am an EMC engineer certified by the National Association of Radio and Telecommunications Engineers, Inc. (USA). The certificate no. is EMC-000623-NE, Senior Member.

Name: Dr. Edward Usoskin
Position: General Manager

Signature:
Date:
January 12, 1999



# 3 Radiated Emission Measurements

# 3.1 Field Strength of Emissions according to § 15.231 (b)

# 3.1.1 Specified limits at 3 m distance

| Fundamental<br>Frequency | Field Strength of Fundamental | Field Strength of Spurious<br>Emissions |  |
|--------------------------|-------------------------------|-----------------------------------------|--|
| MHz                      | dB (μV/m)                     | dB (μV/m)                               |  |
| 260 - 470                | 71.5 to 82*                   | 51.5 to 62*                             |  |
| above 470                | 82                            | 62                                      |  |

<sup>\* -</sup> Linear interpolations

#### 3.1.2 Test Procedure and Results

The test was performed in the Hermon Labs anechoic chamber at 3 meter test distance, i.e. the distance between measuring antenna and EUT boundary.

The EUT was placed on the wooden turntable, as shown in Figure 3.1, Photographs 3.1.1 and 3.1.2. The EUT was operated in continuous transmitting mode during the testing. The frequency range from 30 MHz up to 10<sup>th</sup> harmonic was investigated.

Biconilog and Double Ridged Guide antennas were used. To find maximum radiation the turntable was rotated 360°, measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

The peak and quasi-peak detectors (resolution bandwidth 120 kHz) were used at frequencies below 1 GHz. Above 1 GHz the peak detector was used.

The test results were recorded into Table 3.1 and are shown in Plots 3.1.1 to 3.1.5.

# Reference numbers of test equipment used

| HL 0041 | HL 0181 | HL 0275 | HL 0465 | HL 0507 | HL 0521 | HL 0593 |
|---------|---------|---------|---------|---------|---------|---------|
| HL 0594 | HL 0604 | HL 0815 | HL 0816 |         |         |         |

Full description is given in Appendix A.



#### Table 3.1

# Radiated Emission Measurements - Test Results (Field strength of fundamental frequency)

TEST SPECIFICATION:

FCC part 15 subpart C § 15.231

COMPANY:

First Access Ltd. CA108 transciever

EUT:

October 29, November 10, 1998

DATE: RELATIVE HUMIDITY:

50%

AMBIENT TEMPERATURE:

20°C

# MEASUREMENTS PERFORMED AT 3 METRES DISTANCE

| Frequency | Resolution<br>Bandwidth | Ant.<br>Type. | Measured<br>Result | Average<br>Factor | Radiated<br>Emissions | Spec.<br>Limit | Spec.<br>Margin | Pass/<br>Fail |
|-----------|-------------------------|---------------|--------------------|-------------------|-----------------------|----------------|-----------------|---------------|
| (MHz)     |                         |               | dB (μV)            | dB                | dB (μV/m)             | dB (μV/m)      | dB              |               |
| 433.92    | 120 kHz                 | BL            | 73.1               | -28               | 45.1                  | 80.8           | 35.7            | Pass          |
| 867.83    | 120 kHz                 | BL            | 53.8               | -28               | 25.8                  | 62.0           | 36.2            | Pass_         |
| 1301.74   | 1 MHz                   | BL            | 44.2               | -28               | 16.2                  | 62.0           | 45.8            | Pass          |

#### Notes to table:

Peak detector was used.

Antenna polarization = horizontal.

Radiated Emission  $dB(\mu V/m)$  = Measured Results  $\{dB(\mu V)\}$  + Average Factor (dB).

Average Factor = 20 log (4/100) = -28, where 4 msec is transmitting time of each 100 msec (refer to Plot 3.1.5)

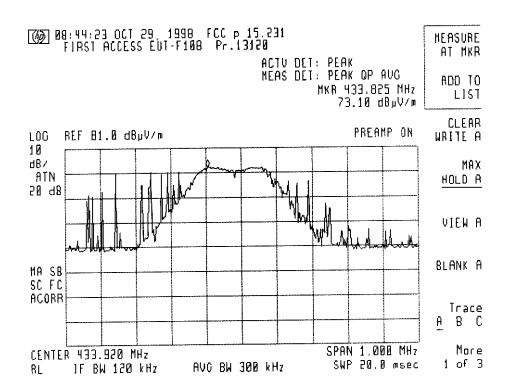
Specified Limit in accordance with § 15.231(b)

## Table abbreviations:

Ant. Type -

= Antenna type (BL -biconilog).

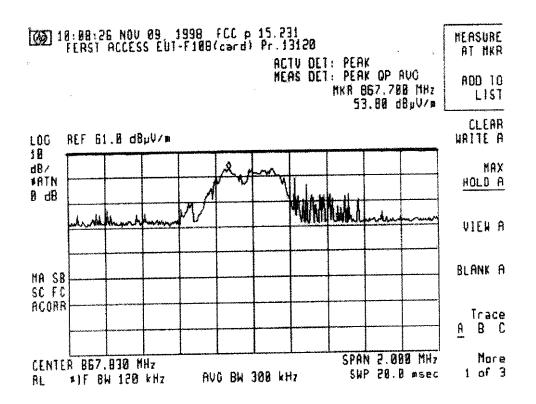
Spec. Margin = Specification Margins = dB below (negative if above) specification limit.


Test Performed by:

Mr. Michael Feldman, test technician

Hermon Labs

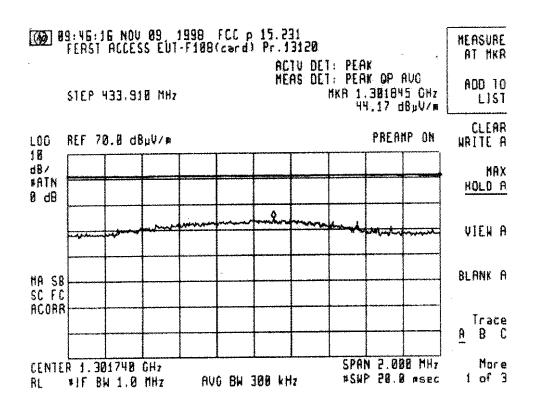



Plot 3.1.1
Radiated Emission Measurement Results



John

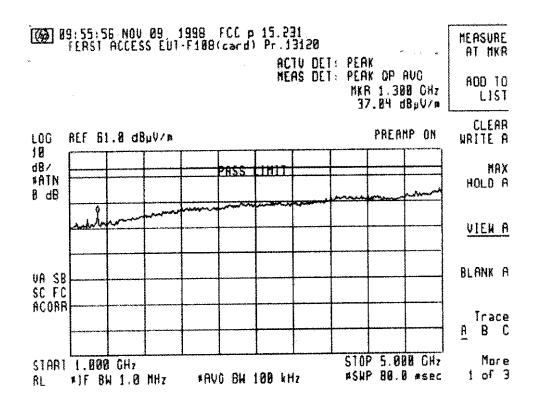



Plot 3.1.2
Radiated Emission Measurement Results



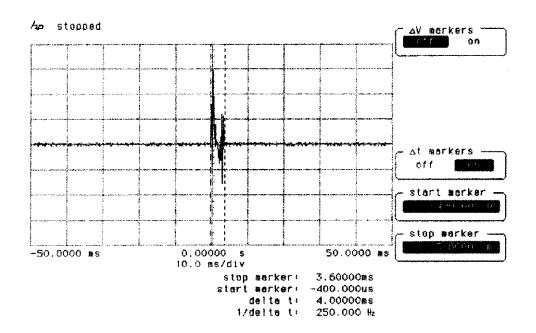
Filter




Plot 3.1.3
Radiated Emission Measurement Results



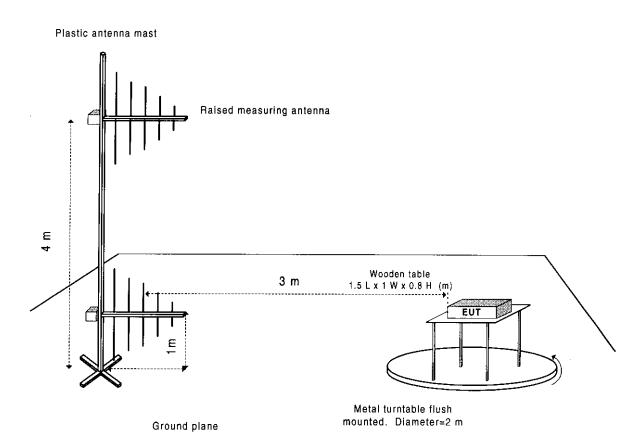
Setting




Plot 3.1.4
Radiated Emission Measurement Results






Plot 3.1.5 Average Factor Measurement



Solder



Figure 3.1
Radiated Emission Test Setup





# 3.2 Bandwidth of Emission according to § 15.231 (c)

#### 3.2.1 Specified Limits

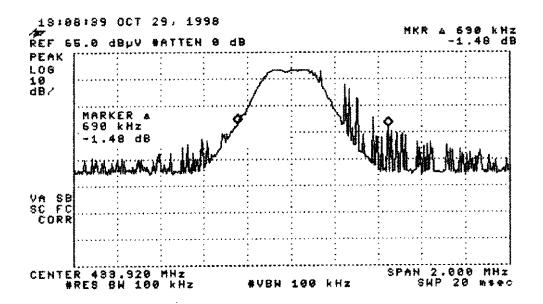
The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

#### 3.2.2 Test Procedure and Results

The maximum allowed occupied bandwidth was calculated as 0.0025 of the center frequency:

 $0.0025 \times 433.92 \text{ MHz} = 1.085 \text{ MHz}$ 

The spectrum trace data around transmitter fundamental frequency was obtained with the Spectrum Analyzer in "Max Hold" mode. The bandwidth value was determined between two points 20 dB down from the center frequency. The occupied bandwidth of 0.690 MHz was measured which is narrower than required 1.085 MHz. The test results are shown in Plot 3.2.1.


#### Reference numbers of test equipment used

|         | -       |         |         |         |      |
|---------|---------|---------|---------|---------|------|
| HL 0275 | HL 0507 | HL 0593 | HL 0594 | HL 0604 | ·    |
|         | ļ       |         |         |         | <br> |

Full description is given in Appendix A.



Plot 3.2.1
Emission Bandwidth Measurement Results
Occupied bandwidth = 690 kHz



Felom



# 3.4 Unintentional Radiated emissions test according to §15.109, §15.209

#### 3.4.1 Definition of the test

This test was performed to measure radiated emissions from the receiver portion and incorporated digital device of the EUT and also to verify the EUT full compliance with §15.109, §15.209.

#### 3.4.2 The test set-up configuration

The radiated emissions measurements of the EUT incorporated digital device and the receiver portion were performed in the anechoic chamber at 3 meters measuring distance in the frequency range from 30 MHz to 2 GHz. The EUT was placed on the wooden table as shown in Figure 3.1 and Photographs 3.1.1, 3.1.2. The biconilog antenna was used. To find maximum radiation the turntable was rotated 360°, the cables position was varied, the measuring antenna height changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

The measurements from 30 MHz to 1 GHz were performed with the EMI receiver settings: RBW=120 kHz, quasi-peak detector.

The results of measurements were recorded into Table 3.4.1 and shown in Plot 3.4.1.

The receiver radiated emissions measurements from 1 GHz up to 2 GHz were performed with the spectrum analyzer settings: RBW = VBW = 1 MHz, peak detector.

All the found emissions were at least 20 dB below limit.

#### Reference numbers of test equipment used

| HL 0041 | HL 0275 | HL 0287 | HL 0465 | HL 0521 | HL 0593 | HL 0594 |
|---------|---------|---------|---------|---------|---------|---------|
| HL 0604 |         | i       |         |         |         |         |

Full description is given in Appendix A.



Table 3.4.1
Radiated Emission Measurements Test Results frequency range 30 MHz - 1 GHz

TEST SPECIFICATION: FCC part 15 subpart B § 15.109,15.209

COMPANY: First Access Ltd.
EUT: CA108 transciever
DATE: October 29, 1998

Relative Humidity: 48% Ambient Temperature: 21°C

## MEASUREMENTS PERFORMED AT 3 METRES DISTANCE

| Frequency | Ant.<br>Pol. | TT<br>Pos. | Radiated<br>Emissions | Spec.<br>Limit | Spec.<br>Margin | Pass/<br>Fail |
|-----------|--------------|------------|-----------------------|----------------|-----------------|---------------|
| (MHz)     |              | (°)        | dB (μV/m)             | dB (μV/m)      | dB              |               |
| 423.208   | Н            | 138        | 34.94                 | 46             | 11.06           | Pass          |
| 846.412   | ٧            | 16         | 32.17                 | 46             | 13.83           | Pass          |

#### Notes to table calculations:

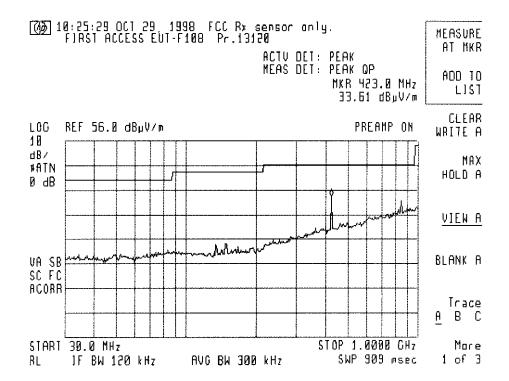
The worst test results were obtained during measurements with biconilog antenna @ 1 m height and quasi-peak detector.

Page 26 of 33

Resolution bandwidth = 120 kHz

Ant. Pol. = Antenna polarization – (V - vertical, H - horizontal)TT Pos. = Turntable position in degrees, (EUT front panel =  $0^{\circ}$ )

Spec. Margin = Specification Margins = dB below (negative if above) specification limit.


Test Performed by:

Mr. Michael Feldman, test technician

Hermon Labs



Plot 3.4.1
Radiated Emission Measurement Results



Folder



# 4 Summary and Signatures

The CA108 card transceiver, FCC ID:OC8CA108 was found to be in compliance with the requirements of FCC part 15 subpart C §§ 15.231, 15.209 and subpart B §15.109.

## Test performed by:

Mr. Michael Feldman, test technician

## Approved by:

Dr. Edward Usoskin, C.E.O.

## Responsible Person from First Access Ltd.

Mr. Amos Daskal, VP hardware development



# APPENDIX A – Test equipment and ancillaries used for tests

| HL<br>Serial<br>No. | Serial<br>No. | Description                                                                      | Manufacturer       | Model No.     | Due<br>Calibr. |
|---------------------|---------------|----------------------------------------------------------------------------------|--------------------|---------------|----------------|
| 0041                | 2811          | Double Ridged Guide<br>Antenna, 1-18 GHz                                         | Electro-Metrics    | RGA 50/60     | 8/99           |
| 0181                | 3950          | Oscilloscope, Digitizing, 100 MHz                                                | Hewlett<br>Packard | 54501A        | 11/99          |
| 0275                | 040           | Table non-metallic,<br>1.5 x 1.0 x 0.8 m                                         | Hermon Labs        | WT-1          | 3/99<br>Check  |
| 0465                | 023           | Anechoic Chamber<br>9 (L) x 6.5 (W) x 5.5 (H) m                                  | Hermon Labs        | AC-1          | 10/99          |
| 0507                | 0162          | Spectrum Analyzer,<br>9 kHz - 1.8 GHz                                            | Hewlett<br>Packard | 8591A         | 4/99           |
| 0521                | 0319          | Spectrum Analyzer with<br>RF filter section (EMI<br>Receiver 9 kHz – 6.5<br>GHz) | Hewlett<br>Packard | 8546 <b>A</b> | 7/99           |
| 0593                | 101           | Antenna Mast, 1-4 m/<br>1-6 m, pneumatic                                         | Hermon Labs        | AM-F1         | 4/99<br>Check  |
| 0594                | 102           | Turntable for Anechoic<br>Chamber, flush mounted,<br>d=1.2 m, pneumatic          | Hermon Labs        | WDC1          | 11/99          |
| 0604                | 1011          | Antenna Log-Periodic/T<br>Bow-Tie, 26 – 2000 MHz                                 | EMCO               | 3141          | 12/99          |
| 0815                | 151           | Cable, coax, RG-214,<br>7.3 m, N-type connectors,<br>inside anechoic chamber     | Hermon Labs        | C214-7        | 8/99           |
| 0816                | 152           | Cable, coax, RG-214,<br>8 m, N-type connectors,<br>outside anechoic chamber      | Hermon Labs        | C214-8        | 8/99           |



# **APPENDIX B-Test Equipment Correction Factors**

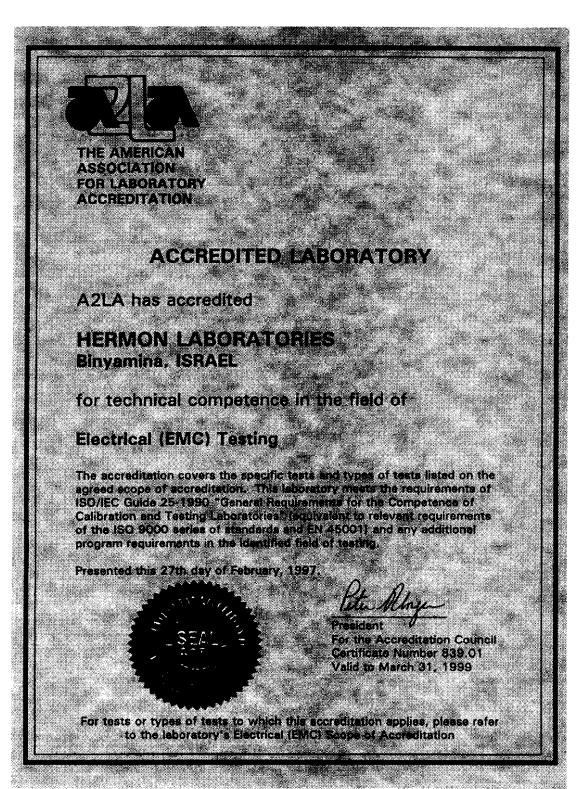
Antenna Factor at 3m calibration
Biconilog Antenna EMCO Model 3141, Ser.No.1011

| Biconilog Antenna EMCO Model 3141, Ser.No.1011 |                                                  |                |                            |  |  |  |  |
|------------------------------------------------|--------------------------------------------------|----------------|----------------------------|--|--|--|--|
| Frequency, MHz                                 | Antenna Factor,<br>dB(1/m)                       | Frequency, MHz | Antenna Factor,<br>dB(1/m) |  |  |  |  |
| 26                                             | 7.8                                              | 940            | 24.0                       |  |  |  |  |
| 28                                             | 7.8                                              | 960            | 24.1                       |  |  |  |  |
| 30                                             | 7.8                                              | 980            | 24.5                       |  |  |  |  |
| 40                                             | 7.2                                              | 1000           | 24.9                       |  |  |  |  |
| 60                                             | 7.1                                              | 1020           | 25.0                       |  |  |  |  |
| 70                                             | 8.5                                              | 1040           | 25.2                       |  |  |  |  |
| 80                                             | 9.4                                              | 1060           | 25.4                       |  |  |  |  |
| 90                                             | 9.8                                              | 1080           | 25.6                       |  |  |  |  |
| 100                                            | 9.7                                              | 1100           | 25.7                       |  |  |  |  |
| 110                                            | 9.3                                              | 1120           | 26.0                       |  |  |  |  |
| 120                                            | 8.8                                              | 1140           | 26.4                       |  |  |  |  |
| 130                                            | 8.7                                              | 1160           | 27.0                       |  |  |  |  |
| 140                                            | 9.2                                              | 1180           | 27.0                       |  |  |  |  |
|                                                |                                                  |                |                            |  |  |  |  |
| 150                                            | 9.8                                              | 1200           | 26.7                       |  |  |  |  |
| 160                                            | 10.2                                             | 1220           | 26.5                       |  |  |  |  |
| 170                                            | 10.4                                             | 1240           | 26.5                       |  |  |  |  |
| 180                                            | 10.4                                             | 1260           | 26.5                       |  |  |  |  |
| 190                                            | 10.3                                             | 1280           | 26.6                       |  |  |  |  |
| 200                                            | 10.6                                             | 1300           | 27.0                       |  |  |  |  |
| 220                                            | 11.6                                             | 1320           | 27.8                       |  |  |  |  |
| 240                                            | 12.4                                             | 1340           | 28.3                       |  |  |  |  |
| 260                                            | 12.8                                             | 1360           | 28.2                       |  |  |  |  |
| 280                                            | 13.7                                             | 1380           | 27.9                       |  |  |  |  |
| 300                                            | 14.7                                             | 1400           | 27.9                       |  |  |  |  |
| 320                                            | 15.2                                             | 1420           | 27.9                       |  |  |  |  |
| 340                                            | 15.4                                             | 1440           | 27.8                       |  |  |  |  |
| 360                                            | 16.1                                             | 1460           | 27.8                       |  |  |  |  |
| 380                                            | 16.4                                             | 1480           | 28.0                       |  |  |  |  |
| 400                                            | 16.6                                             | 1500           | 28.5                       |  |  |  |  |
| 420                                            | 16.7                                             | 1520           | 28.9                       |  |  |  |  |
| 440                                            | 17.0                                             | 1540           | 29.6                       |  |  |  |  |
| 460                                            | 17.7                                             | 1560           | 29.8                       |  |  |  |  |
| 480                                            | 18.1                                             | 1580           | 29.6                       |  |  |  |  |
| 500                                            | 18.5                                             | 1600           | 29.5                       |  |  |  |  |
| 520                                            | 19.1                                             | 1620           | 29.3                       |  |  |  |  |
| 540                                            | 19.5                                             | 1640           | 29.2                       |  |  |  |  |
| 560                                            | 19.8                                             | 1660           | 29.4                       |  |  |  |  |
| 580                                            | 20.6                                             | 1680           | 29.6                       |  |  |  |  |
| 600                                            | 21.3                                             | 1700           | 29.8                       |  |  |  |  |
| 620                                            | 21.5                                             | 1700           | 30.3                       |  |  |  |  |
| 640                                            |                                                  |                |                            |  |  |  |  |
|                                                | 21.2                                             | 1740           | 30.8                       |  |  |  |  |
| 660                                            | 21.4                                             | 1760           | 31.1                       |  |  |  |  |
| 680                                            | 21.9                                             | 1780           | 31.0                       |  |  |  |  |
| 700                                            | 22.2                                             | 1800           | 30.9                       |  |  |  |  |
| 720                                            | 22.2                                             | 1820           | 30.7                       |  |  |  |  |
| 740                                            | 22.1                                             | 1840           | 30.6                       |  |  |  |  |
| 760                                            | 22.3                                             | 1860           | 30.6                       |  |  |  |  |
| 780                                            | 22.6                                             | 1880           | 30.6                       |  |  |  |  |
| 800                                            | 22.7                                             | 1900           | 30.6                       |  |  |  |  |
| 820                                            | 22.9                                             | 1920           | 30.7                       |  |  |  |  |
| 840                                            | 23.1                                             | 1940           | 30.9                       |  |  |  |  |
| 860                                            | 23.4                                             | 1960           | 31.2                       |  |  |  |  |
| 880                                            | 23.8                                             | 1980           | 31.6                       |  |  |  |  |
| 900                                            | 24.1                                             | 2000           | 32.0                       |  |  |  |  |
| 920                                            | <del>                                     </del> | -500           | <u></u>                    |  |  |  |  |
| <b>サ</b> ムハ                                    | 24.1                                             |                |                            |  |  |  |  |

Antenna factor is to be added to receiver meter reading in  $dB(\mu V)$  to convert to field intensity in  $dB(\mu V/meter)$ .

Project number: 13120 Page 30 of 33




# Antenna Factor Double Ridged Guide Antenna Electro-Metrics, Model RGA-50/60 Ser.No.2811

| Frequency, MHz | Antenna Factor, |
|----------------|-----------------|
|                | dB(1/m)         |
| 1000           | 24.3            |
| 1500           | 25.4            |
| 2000           | 28.4            |
| 2500           | 29.2            |
| 3000           | 30.5            |
| 3500           | 31.6            |
| 4000           | 33.7            |
| 4500           | 32.2            |
| 5000           | 34.5            |
| 5500           | 34.5            |
| 6000           | 34.6            |
| 6500           | 35.3            |
| 7000           | 35.5            |
| 7500           | 35.9            |
| 8000           | 36.6            |
| 8500           | 37.3            |
| 9000           | 37.7            |
| 9500           | 37.7            |
| 10,000         | 38.2            |
| 10,500         | 38.5            |
| 11,000         | 39.0            |
| 11,500         | 40.1            |
| 12,000         | 40.2            |
| 12,500         | 39.3            |
| 13,000         | 39.9            |
| 13,500         | 40.6            |
| 14,000         | 41.1            |
| 14,500         | 40.5            |
| 15,000         | 39.9            |
| 15,500         | 37.8            |
| 16,000         | 39.1            |
| 16,500         | 41.1            |
| 17,000         | 41.7            |
| 17,500         | 45.1            |
| 18,000         | 44.3            |

Antenna factor dB(1/m) is to be added to receiver meter reading in dB( $\mu$ V) to convert it into field intensity in dB( $\mu$ V/meter)



# **APPENDIX C- A2LA Accreditation**





型為

# American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO ISO/TEC GUIDE 25-1990 (EN 45001)

HERMON LAGRATURIES
P.O. Box 23
Binyamina 30550, Jarael
Edward Useskin Phone: 572 6 6286 001

#### ELECTRICAL (ENC)

Valid to: March 31, 1999

Certificate Number: 0839.01

In recognition of the successful completion of the AZA evaluation process, accreditation is granted to this laboratory to perform the following tests:

Electromagnetic Compatibility
Radiated Emissions Tests
Conducted Emissions Tests

Product Safety Testing
Heat Resistance
Impulse
Clearance & Greepage Distance
Temperature Rise
High Current Arching Ignition
Bonding Resistance

Telecommunications Testing
Longitudinal Balance.
Environmental Stresses, Surges
DTWF & Pulse Dialing
On Hook, Off Hook DC/AC Impedances
In-Band, Out of Band Signals

Flammability Overload Leakage Current Not Wire Ignition Dielectric Withstanding

Return Losses Hazardous Voltages Hearing Aids Billing Protection

On the following equipment: Information Technology Equipment (ITE): Industrial. Scientific and Medical Equipment (ISM): Telecommunications Equipment: Electrical Appliances: Portable Tools: Notors: Transformers: and Similar Electrical Apparatus

Using the following test methods/specifications/standards:
FCC Part 15 using ANSI C63.4 - 1992
ANSI/UL 1950 - 1994
CISPR 11 - 1990, CISPR 14, CISPR 22 - 1993
EN 55011 - 1991, EN 55014 - 1987, EN 55022 - 1994, EN 60950 - 1993
IEC 950 - 1996
IS 7996
IS 7996
IS 7996
IS 7997
IS

Revised 06/25/97

656 Quince Orchard Road, #620 - Gaithersburg, MD 20878-1409 - Phone: 301 670 1377 - FAX: 869 1495

