TABLE OF CONTENTS LIST

APPLICANT: SK GLOBAL

FCC ID : 08B2201696

TEST REPORT CONTAINING:

PAGE	1-3TEST EQUIPMENT LIST
PAGE	4-5TEST PROCEDURES
PAGE	6RADIATION INTERFERENCE TEST DATA
PAGE	7VERTICAL MEASUREMENT PLOT
PAGE	8HORIZONTAL MEASUREMENT PLOT

EXHIBITS CONTAINING:

EXHIBIT	1 CONFIDENTIALITY LETTER
EXHIBIT	2FCC ID LABEL SAMPLE
EXHIBIT	3SKETCH OF LABEL LOCATION
EXHIBIT	4BLOCK DIAGRAM
EXHIBIT	5SCHEMATIC
EXHIBIT	6USERS MANUAL
EXHIBIT	7EXTERNAL PHOTOGRAPHS
EXHIBIT	8PHOTOGRAPHS
EXHIBIT	9THEORY OF OPERATION
EXHIBIT	10TEST SET UP PHOTO

APPLICANT: SK GLOBAL FCC ID: 08B2201696

REPORT #: S\SK_GLOBAL\302UT3\302UT3TestReport.doc

TABLE OF CONTENTS LIST

EMC Equipment List

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 12/22/99	12/22/02
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
	Receiver, Beige Tower Spectrum Analyzer (Tan)	НР	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
	RF Preselector (Tan)	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
	Quasi-Peak Adapter (Tan)	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
X X	Receiver, Blue Tower Spectrum Analyzer (Blue)	НР	8568B	2928A04729 2848A18049	CHAR 10/22/01	10/22/03
X	RF Preselector (Blue)	НР	85685A	2926A00983	CHAR 10/22/01	10/22/03
X	Quasi-Peak Adapter (Blue)	HP	85650A	2811A01279	CHAR 10/22/01	10/22/03
X	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
	Biconnical Antenna	Eaton	94455-1	1057	CHAR 3/15/00	3/15/02
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CHAR 10/16/01	10/16/03
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CHAR 11/24/00	11/24/03
	Double-Ridged Horn Antenna	Electro-Metrics	RGA -180	2319	CAL 12/19/01	12/19/03
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/21/01	3/21/03
	Horn Antenna	ATM	19-443-6R	None	No Cal Required	
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03

APPLICANT: SK GLOBAL FCC ID: 08B2201696

REPORT #: S\SK_GLOBAL\302UT3\302UT3TestReport.doc

TABLE OF CONTENTS LIST

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
П	Line Impedance Stabilization	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03
	Line Impedance Stabilization	Electro-Metrics	EM-7820	2682	CAL 3/16/01	3/16/03
	Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
	Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 12/12/01	12/12/03
	Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
	Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
	AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
	AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
	AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
X	Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
	Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
	Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
	Multimeter	Fluke	FLUKE-77-3	79510405	CAL 9/26/01	9/26/03
	Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/03
	Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
	Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
X	Temp/Humidity gauge	EXTech	44577F	E000901	CHAR 1/22/02	1/22/04
	Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
	Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 1/26/01	1/26/03
\Box	Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
	Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
H	Signal Generator	HP	8640B	2308A21464	CAL 11/15/01	11/15/03
	Modulation Analyzer	НР	8901A	3435A06868	CAL 9/5/01	9/5/03

APPLICANT: SK GLOBAL FCC ID: 08B2201696

 $REPORT \#: S\SK_GLOBAL\302UT3\302UT3TestReport.doc$

Page 2 of 8

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03
BandReject Filter	Lorch Microwave	5BR4-2400/ 60-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	6BR6-2442/ 300-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	5BR4-10525/ 900-S	Z1	CHAR 3/2/01	3/2/03
High Pas Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
Frequency Counter	HP	5385A	3242A07460	CHAR 12/11/01	12/11/03
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

APPLICANT: SK GLOBAL FCC ID: 08B2201696

 $REPORT \#: S\SK_GLOBAL\302UT3\302UT3TestReport.doc$

Page 3 of 8

TEST PROCEDURES

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

RADIATION INTERFERENCE: Testing was done in accordance with ANSI C63.4-2001. Section 15.35(b)specifies the use of an average detector in this band. In addition, the peak level of an emissions shall not exceed the average limit by more than 20 dB using a minimum Resolution Bandwidth (RBW) of 1 MHz and minimum Video Bandwidth (VBW) OF 1 MHz. The following procedure is designed to determine if there are any spurious emissions from the local oscillator within the band of interest along with any additional spurious emissions caused by other circuitry within the device.

- 1) Determine the frequency of the peak emission:
 Start Frequency 11.7 GHz
 Stop Frequency 12.2 GHz
 RBW equal to or greater than 1 MHz
 VBW equal to or greater than 1 MHz
 Detector Function Peak
 Maximize the emissions with regards to device orientation, antenna polarization, and antenna height. Sweep the band using Max Hold for a minimum of 2 minutes. Record this frequency for measuring the peak emission. In addition record the frequency of other spurious emissions noted.
- Determine the peak level of the emission:

 Center Frequency Set to the frequency determined in Step 1 RBW

 Equal to or greater than 1 MHz VBW Equal to or greater than 1 MHz

 Detector Function Peak Measure the value of the peak emission

 using Max Hold for a minimum of 2 minutes. This can be done at

 zero span or a frequency span where the analyzer does not show a

 "Measurement Uncalibrated" message. Record the peak value. If

 the peak measurement is compliant with the average limit an

 average measurement is not necessary. If the peak value exceeds

 the average limit by less than 20 dB proceed to Step 3.
- Determine the average level of the emission: Center Frequency Set to the frequency determined in Step 1 Span Zero RBW Equal to or greater than 1 MHz VBW Equal to or greater than 10 Hz Detector Function Peak

This measurement uses video averaging and must be done in Linear mode. The analyzer Reference Level is adjusted so that a signal is clearly visible on the screen. Measure the value of the emission using Max Hold for a minimum of 2 minutes. Record this as the average value. Step 2 and Step 3 should be repeated for other spurious emissions.

The ambient temperature of the UUT was 80°F with a humidity of 70%.

APPLICANT: SK GLOBAL FCC ID: 08B2201696

REPORT #: S\SK_GLOBAL\302UT3\302UT3TestReport.doc

Page 4 of 8

TEST PROCEDURES CONTINUED

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The unit under test was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

APPLICANT: SK GLOBAL FCC ID: 08B2201696

REPORT #: S\SK GLOBAL\302UT3\302UT3TestReport.doc

Page 5 of 8

APPLICANT: SK GLOBAL

FCC ID: 08B2201696

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NUMBER: 15.109

REQUIREMENTS: 30 to 88 MHz: 40.0 dBuV/M @ 3 METERS

88 to 216 MHz: 43.5 dBuV/M 216 to 960 MHz: 46.0 dBuV/M ABOVE 960 MHz: 54.0 dBuV/M 11.7 to 12.2GHz: 54.0dBuV/m

TEST RESULTS:

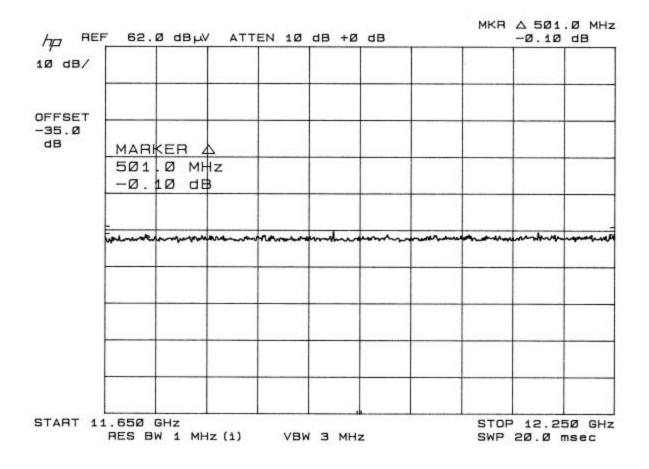
A search was made of the spectrum from 30 to 1000MHz and from 11.7 to 12.2GHz the measurements indicate that the unit DOES meet the FCC requirements. Measurements in the 11.7 to 12.2GHz band were made with a Standard Gain Horn. The measurements in the 11.7 to 12.2GHz band represent the ambient noise levels. The attached plots were made with peak detector with the analyzer in a maximum hold for 2 minutes.

TEST DATA:

Tuned Frequency MHz	Emission Frequency MHz	Meter Reading dBuV	ANT. POLARITY	Coax Loss dB	Correction Factor dB	Field Strength dBuV/m	Margin dB
10,500.0	11,700.00	8.8	H	9.77	0.00	18.57	35.43
10,500.0	11,700.00	10.1	v	9.77	0.00	19.87	34.13
10,500.0	11,950.00	9.7	H	10.05	0.00	19.75	34.26
10,500.0	11,950.00	10.2	v	10.05	0.00	20.25	33.76
10,500.0	12,200.00	8.8	H	10.30	0.00	19.10	34.90
10,500.0	12,200.00	10.1	v	10.30	0.00	20.40	33.60

^{*} The EUT is operating on the following bands; $10.525 \mathrm{GHz}(X-Band)$, $24.150 \mathrm{GHz}(K-Band)$, $33.4-36.0 \mathrm{GHz}(KA Band)$

SAMPLE CALCULATION: FSdBuV/m = MR(dBuV) + ACFdB.

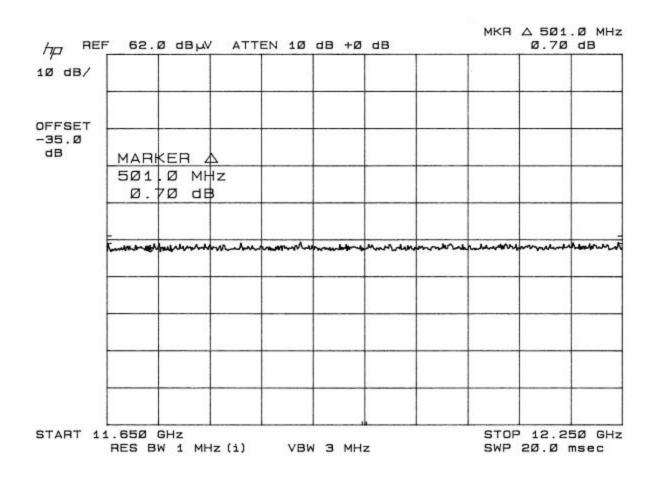

PERFORMED BY: SID SANDERS DATE: MARCH 13, 2003

APPLICANT: SK GLOBAL FCC ID: 08B2201696

REPORT #: S\SK_GLOBAL\302UT3\302UT3TestReport.doc

Page 6 of 8

VERTICAL LINE PLOT



APPLICANT: SK GLOBAL FCC ID: 08B2201696

REPORT #: S\SK_GLOBAL\302UT3\302UT3TestReport.doc

Page 7 of 8

HORIZONTAL LINE PLOT

APPLICANT: SK GLOBAL FCC ID: 08B2201696

REPORT #: S\SK_GLOBAL\302UT3\302UT3TestReport.doc

Page 8 of 8