

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-878_Mar23

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =

 $6.1 \mu V$, 1LSB = 61nV,

Low Range:

full range = -100...+300 mV full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	z
High Range	405.298 ± 0.02% (k=2)	405.327 ± 0.02% (k=2)	404.778 ± 0.02% (k=2)
Low Range	3.99633 ± 1.50% (k=2)	4.01474 ± 1.50% (k=2)	3.99339 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	282.5 ° ± 1 °
---	---------------

Certificate No: DAE4-878_Mar23

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	199992.86	-1.01	-0.00
Channel X	+ Input	20004.36	2.33	0.01
Channel X	- Input	-20000.19	1.55	-0.01
Channel Y	+ Input	199990.97	-3.00	-0.00
Channel Y	+ Input	20002.30	0.50	0.00
Channel Y	- Input	-20002.49	-0.63	0.00
Channel Z	+ Input	199987.84	-5.63	-0.00
Channel Z	+ Input	20002.39	0.65	0.00
Channel Z	- Input	-20003.76	-1.68	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2001.57	0.39	0.02
Channel X + Input	201.95	0.57	0.28
Channel X - Input	-198.65	-0.14	0.07
Channel Y + Input	2001.08	-0.00	-0.00
Channel Y + Input	201.23	-0.01	-0.00
Channel Y - Input	-198.49	0.06	-0.03
Channel Z + Input	2000.79	-0.30	-0.01
Channel Z + Input	200.43	-0.88	-0.44
Channel Z - Input	-199.67	-1.16	0.58

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.51	12.12
	- 200	-10.96	-12.92
Channel Y	200	5.11	4.70
	- 200	-5.34	-5.84
Channel Z	200	-0.09	0.06
	- 200	-2.56	-2.46

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-0.37	-3.72
Channel Y	200	6.78	-	0.63
Channel Z	200	10.21	5.27	-

Certificate No: DAE4-878_Mar23

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16025	16096
Channel Y	15958	15909
Channel Z	16045	13410

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.55	0.20	2.86	0.45
Channel Y	-0.29	-1.65	1.11	0.44
Channel Z	-0.21	-1.58	1.14	0.47

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Report No.: BL-SZ23C0597-AC-1

F.3 6.5GHz Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

ALIBRATION CE	RTIFICATE		
Dbject	D6.5GHzV2 - SN	:1037	
	QA CAL-22.v6 Calibration Proce	dure for SAR Validation Sources	between 3-10 GHz
Calibration date:	July 01, 2021		
The measurements and the uncerta	ainties with confidence po	onal standards, which realize the physical unit robability are given on the following pages and y facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	SN: 104778		D. Company
Power meter NRP			Apr-22
		09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291)	Apr-22 Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 103244 SN: 103245	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292)	Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T	SN: 103244 SN: 103245 SN: 100967	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293)	Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator	SN: 103244 SN: 103245	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343)	Apr-22 Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination	SN: 103244 SN: 103245 SN: 100967 SN: BH9394 (20k)	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293)	Apr-22 Apr-22 Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103244 SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 103244 SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 103244 SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EXS-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G	SN: 103244 SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G	SN: 103244 SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G Network Analyzer R&S ZVL13	SN: 103244 SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID # SN: 669 SN: 101093	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house) 28-Mar-17 (in house check Dec-18) 10-May-12 (in house check Dec-18)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21 In house check: Dec-21
Power meter NRP Prower sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G Network Analyzer R&S ZVL13 Calibrated by:	SN: 103244 SN: 103245 SN: 103967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID # SN: 669 SN: 101093	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house) 28-Mar-17 (in house check Dec-18) 10-May-12 (in house check Dec-18)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21 In house check: Dec-21
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G Network Analyzer R&S ZVL13	SN: 103244 SN: 103245 SN: 103967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID # SN: 669 SN: 101093	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house) 28-Mar-17 (in house check Dec-18) 10-May-12 (in house check Dec-18)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21 In house check: Dec-21

Certificate No: D6.5GHzV2-1037_Jul21

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF N/A tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned
 under the liquid filled phantom. The impedance stated is transformed from the measurement at the
 SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty
 required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1037_Jul21

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.6 ± 6 %	6.12 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	28.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	286 W/kg ± 24.7 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 24.4 % (k=2)

Certificate No: D6.5GHzV2-1037_Jul21

Page 3 of 6

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.5 Ω - 2.4 jΩ
Return Loss	- 30.9 dB

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	286 W/m ²
APD measured	normalized to 1W	2860 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	128 W/m ²
APD measured	normalized to 1W	1280 W/m ² ± 28.9 % (k=2)

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG

Certificate No: D6.5GHzV2-1037_Jul21

Page 4 of 6

DASY6 Validation Report for Head TSL

Measurement Report for D6.5GHz-1037, UID 0 -, Channel 6500 (6500.0MHz)

Device	under	Test	Pro	perties	s
--------	-------	------	-----	---------	---

Name, Manufacturer D6.5GHz

Dimensions [mm] 16.0 x 6.0 x 300.0 IMEI SN: 1037 **DUT Type**

Exposure Conditions

Position, Test Band Section, TSL Distance

Group, UID Band

Frequency [MHz]

Conversion Factor 5.75

TSL Cond. [S/m]

Permittivity

Flat, HSL

Phantom

[mm] 5.00

CW,

6500

6.12

33.6

Hardware Setup Phantom

MFP V8.0 Center - 1182

HBBL600-10000V6

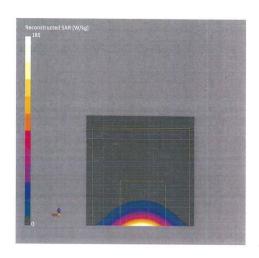
Probe, Calibration Date EX3DV4 - SN7405, 2020-12-30 DAE, Calibration Date DAE4 Sn908, 2021-06-24

Scan Setup

Grid Extents [mm] Grid Steps [mm] Sensor Surface [mm] Graded Grid **Grading Ratio** MAIA Surface Detection Scan Method

Zoom Scan 22.0 x 22.0 x 22.0 3.4 x 3.4 x 1.4 1.4

Yes 1.4 N/A VMS + 6p Measured Date psSAR1g [W/Kg] psSAR10g [W/Kg] Power Drift [dB]

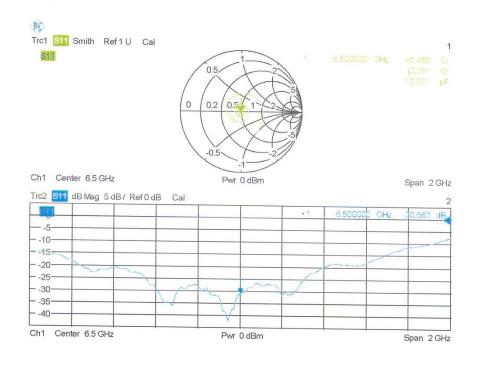

Measurement Results

Power Scaling Scaling Factor [dB] TSL Correction M2/M1 [%] Dist 3dB Peak [mm]

Zoom Scan 2021-07-10, 10:54

28.8 5.30 0.00 Disabled

No correction 50.2 4.8



Certificate No: D6.5GHzV2-1037_Jul21

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D6.5GHzV2-1037_Jul21

Page 6 of 6

--END OF REPORT--