



# FCC RF Test Report

**APPLICANT** : Intel Corp.  
**EQUIPMENT** : Android Smart Phone  
**BRAND NAME** : Intel  
**MODEL NAME** : AZ210  
**MARKETING NAME** : AZ210  
**FCC ID** : O2Z-AZ210  
**STANDARD** : FCC Part 15 Subpart E  
**CLASSIFICATION** : (NII) Unlicensed National Information Infrastructure TX

The product was received on Mar. 23, 2012 and completely tested on May 16, 2012. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.4-2003 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Jones Tsai / Manager



**SPORTON INTERNATIONAL INC.**  
No. 52, Hwa Ya 1<sup>st</sup> Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.



## TABLE OF CONTENTS

|                                                          |           |
|----------------------------------------------------------|-----------|
| <b>REVISION HISTORY.....</b>                             | <b>3</b>  |
| <b>SUMMARY OF TEST RESULT .....</b>                      | <b>4</b>  |
| <b>1 GENERAL DESCRIPTION.....</b>                        | <b>5</b>  |
| 1.1    Applicant .....                                   | 5         |
| 1.2    Manufacturer.....                                 | 5         |
| 1.3    Feature of Equipment Under Test .....             | 5         |
| 1.4    Testing Site.....                                 | 6         |
| 1.5    Applied Standards .....                           | 6         |
| 1.6    Ancillary Equipment List .....                    | 6         |
| <b>2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....</b> | <b>7</b>  |
| 2.1    Carrier Frequency Channel .....                   | 7         |
| 2.2    Pre-Scanned RF Power.....                         | 7         |
| 2.3    Test Mode.....                                    | 8         |
| 2.4    Connection Diagram of Test System.....            | 9         |
| 2.5    RF Utility .....                                  | 9         |
| <b>3 TEST RESULT.....</b>                                | <b>10</b> |
| 3.1    26dB Bandwidth Measurement .....                  | 10        |
| 3.2    Maximum Conducted Output Power Measurement .....  | 13        |
| 3.3    Power Spectral Density Measurement .....          | 15        |
| 3.4    AC Conducted Emission Measurement.....            | 18        |
| 3.5    Unwanted Radiated Emission Measurement .....      | 24        |
| 3.6    Peak Excursion Ratio Measurement .....            | 34        |
| 3.7    Automatically Discontinue Transmission .....      | 37        |
| 3.8    Frequency Stability Measurement .....             | 38        |
| 3.9    Antenna Requirements .....                        | 40        |
| <b>4 LIST OF MEASURING EQUIPMENT.....</b>                | <b>41</b> |
| <b>5 UNCERTAINTY OF EVALUATION.....</b>                  | <b>42</b> |
| <b>APPENDIX A. PHOTOGRAPHS OF EUT</b>                    |           |
| <b>APPENDIX B. SETUP PHOTOGRAPHS</b>                     |           |



## REVISION HISTORY



## SUMMARY OF TEST RESULT

| Report Section | FCC Rule           | IC Rule   | Description                            | Limit                                          | Result | Remark                              |
|----------------|--------------------|-----------|----------------------------------------|------------------------------------------------|--------|-------------------------------------|
| 3.1            | 15.403(i)          | A9.2      | 26dB Bandwidth                         | -                                              | Pass   | -                                   |
| 3.2            | 15.407(a)          | A9.2      | Maximum Conducted Output Power         | $\leq 17, 24, 30$ dBm (depend on band)         | Pass   | -                                   |
| 3.3            | 15.407(a)          | A9.2      | Power Spectral Density                 | $\leq 4, 11, 17$ dBm (depend on band)          | Pass   | -                                   |
| 3.4            | 15.207             | Gen 7.2.4 | AC Conducted Emission                  | 15.207(a)                                      | Pass   | Under limit 6.20 dB at 0.670 MHz    |
| 3.5            | 15.407(b)          | A9.3      | Unwanted Emissions                     | $\leq -17, -27$ dBm (depend on band)&15.209(a) | Pass   | Under limit 4.20 dB at 7088.000 MHz |
| 3.6            | 15.407(b)          | A9.3      | Peak Excursion Ratio                   | $\leq 13$ dB                                   | Pass   | -                                   |
| 3.7            | 15.407(c)          | A9.5      | Automatically Discontinue Transmission | Discontinue Transmission                       | Pass   | -                                   |
| 3.8            | 15.407(g)          | A9.5      | Frequency Stability                    | Within Operation Band                          | Pass   | -                                   |
| 3.9            | 15.203 & 15.407(a) | A9.2      | Antenna Requirement                    | N/A                                            | Pass   | -                                   |



## 1 General Description

### 1.1 Applicant

Intel Corp.

RNB-5-112, 2200 Mission College Blvd, Santa Clara, CA 95054, USA

### 1.2 Manufacturer

Chi Mei Communication Systems, Inc.

No.4, Mingsheng Street, Tucheng City, New Taipei City 23678, Taiwan

### 1.3 Feature of Equipment Under Test

| Product Feature & Specification |                                    |
|---------------------------------|------------------------------------|
| Equipment                       | Android Smart Phone                |
| Brand Name                      | Intel                              |
| Model Name                      | AZ210                              |
| Marketing Name                  | AZ210                              |
| FCC ID                          | O2Z-AZ210                          |
| Tx/Rx Frequency Range           | 5150 MHz ~ 5250 MHz                |
| Maximum Output Power to Antenna | 11.53 dBm / 0.01 W                 |
| Antenna Type                    | PIFA Antenna with gain -0.07 dBi   |
| HW Version                      | DV2.0                              |
| SW Version                      | 20120409                           |
| Type of Modulation              | OFDM (BPSK / QPSK / 16QAM / 64QAM) |
| EUT Stage                       | Production Unit                    |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.



## 1.4 Testing Site

|                           |                                                                                                                                                              |           |                                |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|
| <b>Test Site</b>          | SPORTON INTERNATIONAL INC.                                                                                                                                   |           |                                |
| <b>Test Site Location</b> | No. 52, Hwa Ya 1 <sup>st</sup> Rd., Hwa Ya Technology Park,<br>Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.<br>TEL: +886-3-3273456 / FAX: +886-3-3284978 |           |                                |
| <b>Test Site No.</b>      | <b>Sporton Site No.</b>                                                                                                                                      |           | <b>FCC/IC Registration No.</b> |
|                           | CO05-HY                                                                                                                                                      | 03CH05-HY | 722060/4086B-1                 |

## 1.5 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D01 General UNII Test Procedures v01r01
- ANSI C63.4-2003
- IC RSS-210 Issued 8
- IC RSS-Gen Issue 3

**Remark:**

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

## 1.6 Ancillary Equipment List

| Item | Equipment          | Trade Name    | Model Name  | FCC ID      | Data Cable | Power Cord                                                 |
|------|--------------------|---------------|-------------|-------------|------------|------------------------------------------------------------|
| 1.   | System Simulator   | R&S           | CMU 200     | N/A         | N/A        | Unshielded, 1.8 m                                          |
| 2.   | WLAN AP            | D-Link        | DIR-628     | KA2DIR628A2 | N/A        | Unshielded, 1.8 m                                          |
| 3.   | Notebook           | DELL          | P20G        | FCC DoC     | N/A        | AC I/P:<br>Unshielded, 1.2 m<br>DC O/P:<br>Shielded, 1.8 m |
| 4.   | LCD TV             | SONY          | KDL-22S5700 | N/A         | N/A        | Unshielded, 2.0 m                                          |
| 5.   | Bluetooth Earphone | Sony Ericsson | MW600       | PY70DA2029  | N/A        | N/A                                                        |



## 2 Test Configuration of Equipment Under Test

### 2.1 Carrier Frequency Channel

| Channel Spacing 20MHz |                |         |                |         |                |
|-----------------------|----------------|---------|----------------|---------|----------------|
| Channel               | Freq.<br>(MHz) | Channel | Freq.<br>(MHz) | Channel | Freq.<br>(MHz) |
| 36                    | 5180           | 44      | 5220           | 48      | 5240           |

### 2.2 Pre-Scanned RF Power

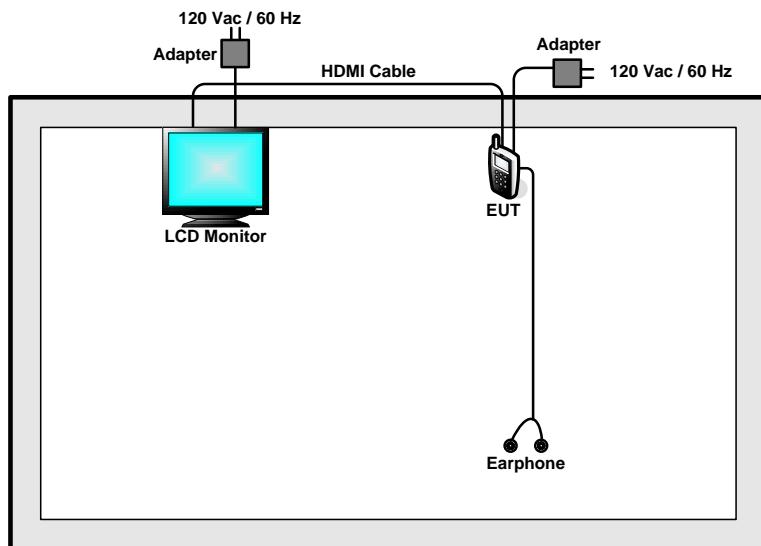
Preliminary tests were performed in different data rate as below table and the highest power data rates (11a modes) were chosen for full test in the following sections to demonstrate compliance to the FCC limit line.

| 5GHz 802.11a mode |           |           |            |            |            |            |            |            |
|-------------------|-----------|-----------|------------|------------|------------|------------|------------|------------|
| Data Rate (MHz)   | 6M<br>bps | 9M<br>bps | 12M<br>bps | 18M<br>bps | 24M<br>bps | 36M<br>bps | 48M<br>bps | 54M<br>bps |
| Peak Power (dBm)  | 11.53     | 11.46     | 11.50      | 11.52      | 10.90      | 10.64      | 11.27      | 11.11      |

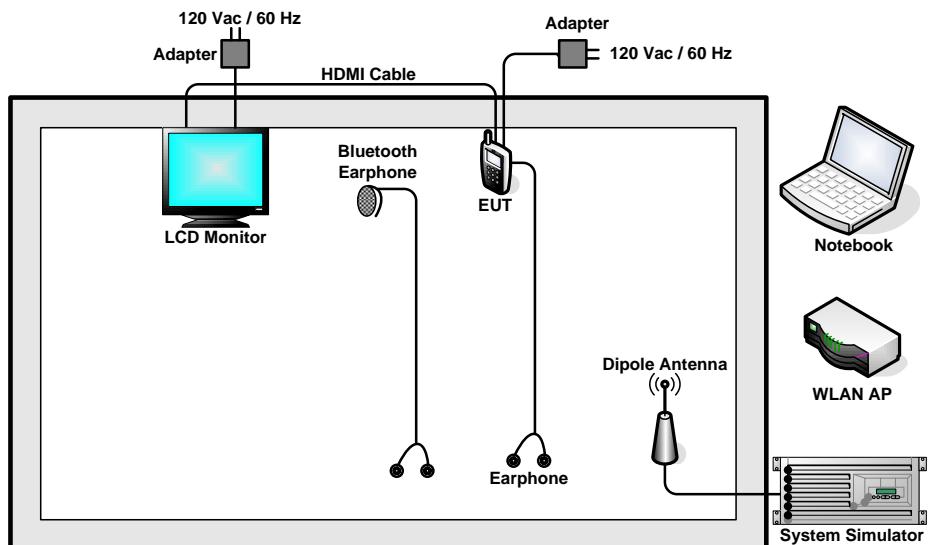


## 2.3 Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2003 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).


Pre-scanned tests, X, Y, Z in three orthogonal panels, were conducted to determine the final configuration from all possible combinations, laptop / tablet modes.

The following tables are showing the test modes as the worst cases (Y plane) and recorded in this report.


| Test Cases            |                                                                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Test Item             | 802.11a (Modulation : OFDM)                                                                                                             |
| Conducted TCs         | <ul style="list-style-type: none"><li>■ Mode 1: CH36_5180 MHz</li><li>■ Mode 2: CH44_5220 MHz</li><li>■ Mode 3: CH48_5240 MHz</li></ul> |
| Radiated TCs          | <ul style="list-style-type: none"><li>■ Mode 1: CH36_5180 MHz</li><li>■ Mode 2: CH44_5220 MHz</li><li>■ Mode 3: CH48_5240 MHz</li></ul> |
| AC Conducted Emission | Mode 1 : GSM850 Idle + Bluetooth Link + WLAN (5G) Link + Camera + Earphone + Battery + USB Cable (Charging from Adapter) + HDMI Cable   |

## 2.4 Connection Diagram of Test System

### <WLAN Tx Mode>



### <AC Conducted Emission Mode>

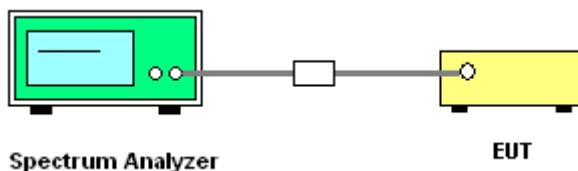


## 2.5 RF Utility

The programmed RF utility “Intel-BB2WiFiBTTestMode” is installed in EUT to provide channel selection, power level, data rate and the application type. RF Utility can send transmitting signal for all testing. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

### **3 Test Result**

#### **3.1 26dB Bandwidth Measurement**

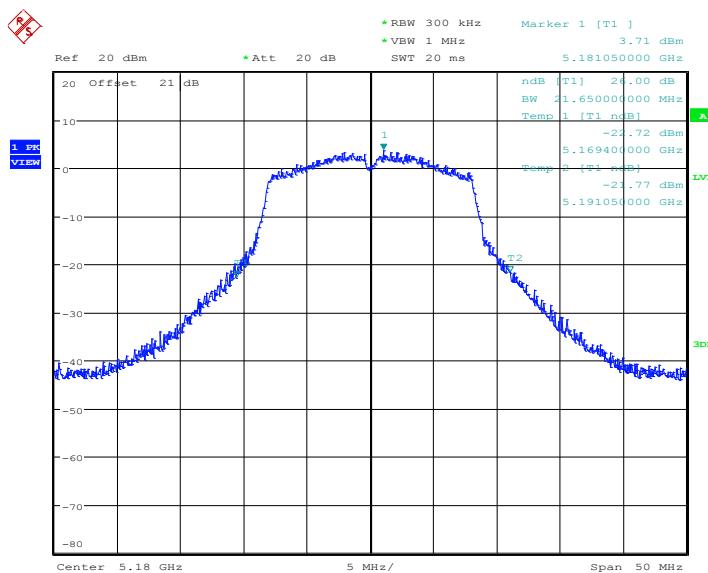

##### **3.1.1 Measuring Instruments**

See list of measuring instruments of this test report.

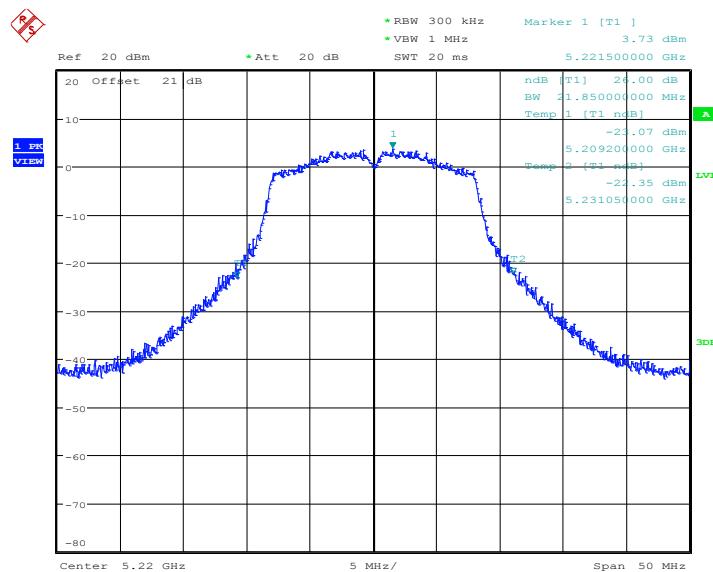
##### **3.1.2 Test Procedures**

1. The testing follows FCC KDB 789033 D01 General UNII Test Procedures v01r01.
2. Set RBW = approximately 1% of the emission bandwidth.
3. Set the VBW > RBW.
4. Detector = Peak.
5. Trace mode = max hold
6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.  
Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

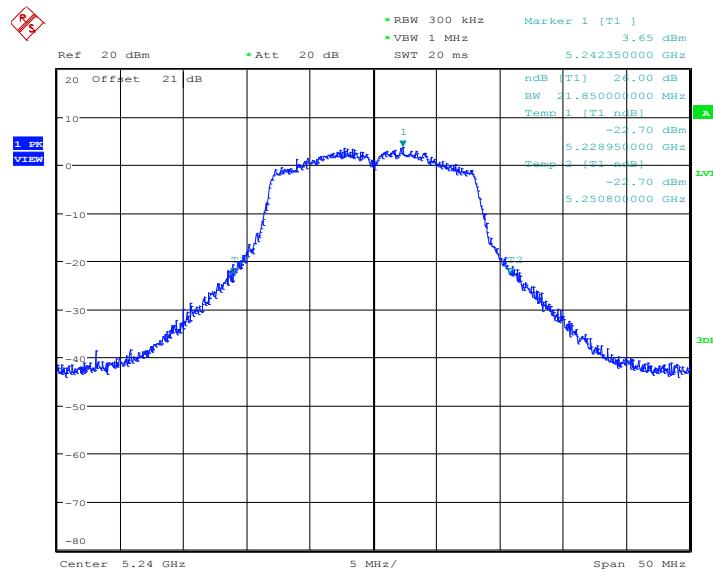
##### **3.1.3 Test Setup**




### 3.1.4 Test Result of 26dB Bandwidth Plots


|                        |          |                            |         |
|------------------------|----------|----------------------------|---------|
| <b>Test Mode :</b>     | Mode 1~3 | <b>Temperature :</b>       | 24~26°C |
| <b>Test Engineer :</b> | Bill Kuo | <b>Relative Humidity :</b> | 45~49%  |

| <b>Channel</b> | <b>Frequency (MHz)</b> | <b>802.11a<br/>26dB Bandwidth (MHz)</b> | <b>Pass/Fail</b> |
|----------------|------------------------|-----------------------------------------|------------------|
|                |                        |                                         |                  |
| 36             | 5180                   | 21.650                                  | N/A              |
| 44             | 5220                   | 21.850                                  | N/A              |
| 48             | 5240                   | 21.850                                  | N/A              |


**26 dB Bandwidth Plot on 802.11a Channel 36**



Date: 10.MAY.2012 23:14:40

**26 dB Bandwidth Plot on 802.11a Channel 44**


Date: 10.MAY.2012 23:29:22

**26 dB Bandwidth Plot on 802.11a Channel 48**


Date: 10.MAY.2012 23:32:15



## 3.2 Maximum Conducted Output Power Measurement

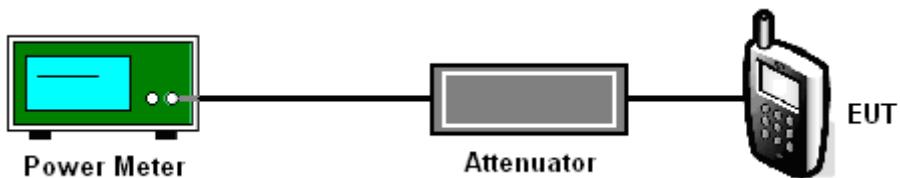
### 3.2.1 Limit of Maximum Conducted Output Power

For the band 5.15~5.25 GHz, the maximum conducted output power shall not exceed the lesser of 50 mW (17dBm) or  $4 \text{ dBm} + 10\log B$ , where B is the 26 dB emissions bandwidth in MHz. If transmitting antenna directional gain is greater than 6 dBi, the peak output power and power density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### 3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

### 3.2.3 Test Procedures


#### The duty cycle of WLAN 802.11a was 58.16 % for 802.11a.

The testing follows Method PM of FCC KDB 789033 D01 General UNII Test Procedures v01r01.

Method PM (Measurement using an RF average power meter):

- a) As an alternative to spectrum analyzer measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
  - (i) The EUT is configured to transmit continuously or to transmit with a consistent duty factor.
  - (ii) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
  - (iii) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- b) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B).
- c) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- d) Adjust the measurement in dBm by adding  $10 \log(1/x)$  where x is the duty cycle (e.g.,  $10 \log(1/0.25)$ )

### 3.2.4 Test Setup



### 3.2.5 Test Result of Maximum Conducted Output Power

|                        |          |                            |         |
|------------------------|----------|----------------------------|---------|
| <b>Test Mode :</b>     | Mode 1~3 | <b>Temperature :</b>       | 24~26°C |
| <b>Test Engineer :</b> | Bill Kuo | <b>Relative Humidity :</b> | 45~49%  |
| <b>Duty Cycle</b>      | 58.16%   | <b>Duty Factor</b>         | 2.35dB  |

| <b>Channel</b> | <b>Frequency<br/>(MHz)</b> | <b>802.11a Output Power (dBm)</b> |              | <b>Max. Limits<br/>(dBm )</b> | <b>Pass/Fail</b> |
|----------------|----------------------------|-----------------------------------|--------------|-------------------------------|------------------|
|                |                            | <b>Measured</b>                   | <b>Final</b> |                               |                  |
| 36             | 5180                       | 9.18                              | 11.53        | 17                            | Pass             |
| 44             | 5220                       | 9.01                              | 11.36        | 17                            | Pass             |
| 48             | 5240                       | 8.78                              | 11.13        | 17                            | Pass             |

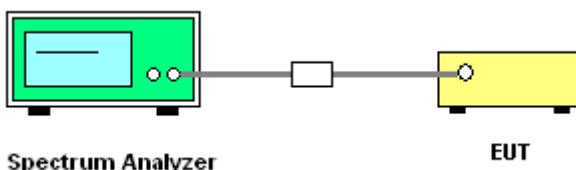
**Note:**

1. Final Output Power equals to Measured Output Power adds the duty factor.
2. For the band 5.15~5.25 GHz, the maximum conducted output power shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log (26dB BW)

### **3.3 Power Spectral Density Measurement**

#### **3.3.1 Limit of Power Spectral Density**

For the band 5.15–5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1MHz band.


#### **3.3.2 Measuring Instruments**

See list of measuring instruments of this test report.

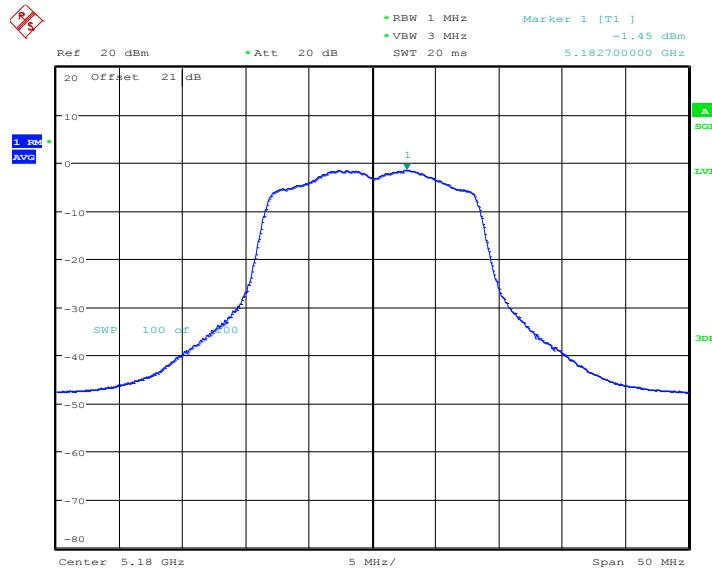
#### **3.3.3 Test Procedures**

1. The testing follows Method SA-2 of FCC KDB 789033 D01 General UNII Test Procedures v01r01.
  - Measure the duty cycle.
  - Set span to encompass the entire emission bandwidth (EBW) of the signal.
  - Set RBW = 1 MHz.
  - Set VBW  $\geq$  3 MHz.
  - Number of points in sweep  $\geq$  2 Span / RBW.
  - Sweep time = auto.
  - Detector = sample
  - Trace average at least 100 traces in power averaging mode.
  - Add  $10 \log(1/x)$ , where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add  $10 \log(1/0.25) = 6$  dB if the duty cycle is 25 percent.
2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
3. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

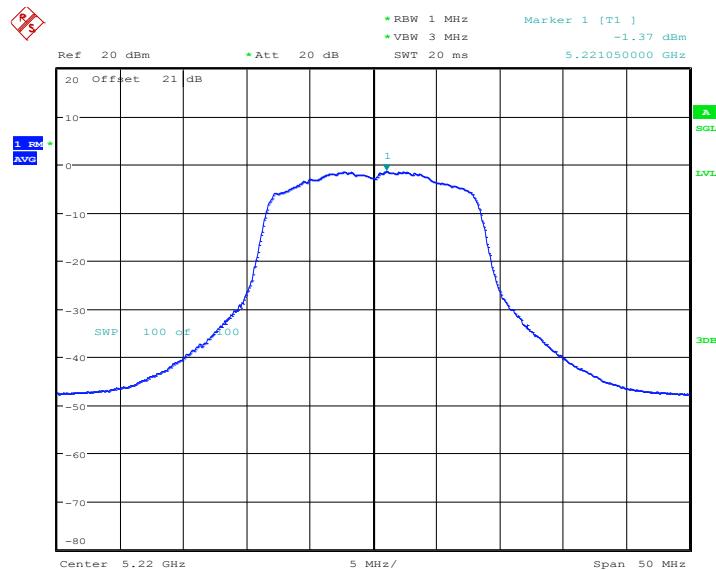
#### **3.3.4 Test Setup**



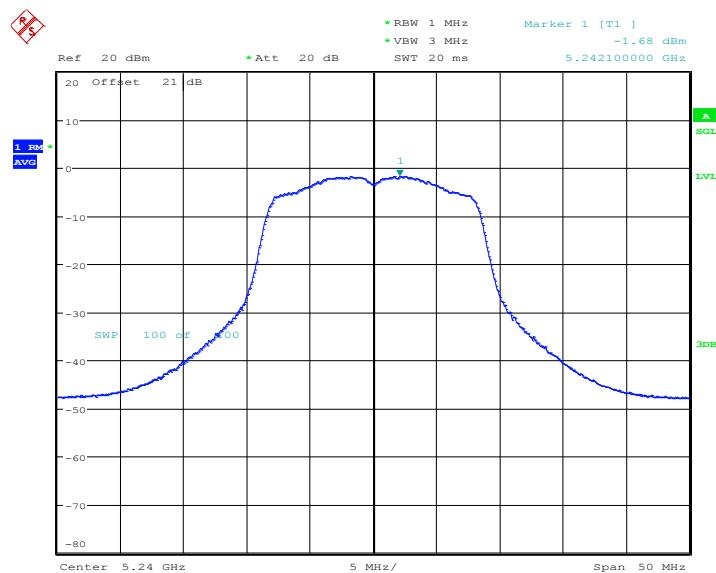
### 3.3.5 Test Result of Power Spectral Density


|                        |          |                            |         |
|------------------------|----------|----------------------------|---------|
| <b>Test Mode :</b>     | Mode 1~3 | <b>Temperature :</b>       | 24~26°C |
| <b>Test Engineer :</b> | Bill Kuo | <b>Relative Humidity :</b> | 45~49%  |
| <b>Duty Cycle</b>      | 58.16%   | <b>Duty Factor</b>         | 2.35dB  |

| Channel | Frequency (MHz) | 802.11a PSD (dBm) |       | Max. Limits (dBm ) | Pass/Fail |
|---------|-----------------|-------------------|-------|--------------------|-----------|
|         |                 | Measured          | Final |                    |           |
| 36      | 5180            | -1.45             | 0.90  | 4                  | Pass      |
| 44      | 5220            | -1.37             | 0.98  | 4                  | Pass      |
| 48      | 5240            | -1.68             | 0.67  | 4                  | Pass      |


**Note:** Result of Final PSD equals to Measured PSD adds the duty factor if less than 98%.

### 3.3.6 Test Result of Power Spectral Density Plots


**PSD Plot on 802.11a Channel 36**



Date: 10.MAY.2012 23:15:05

**PSD Plot on 802.11a Channel 44**


Date: 10.MAY.2012 23:29:45

**PSD Plot on 802.11a Channel 48**


Date: 10.MAY.2012 23:32:38



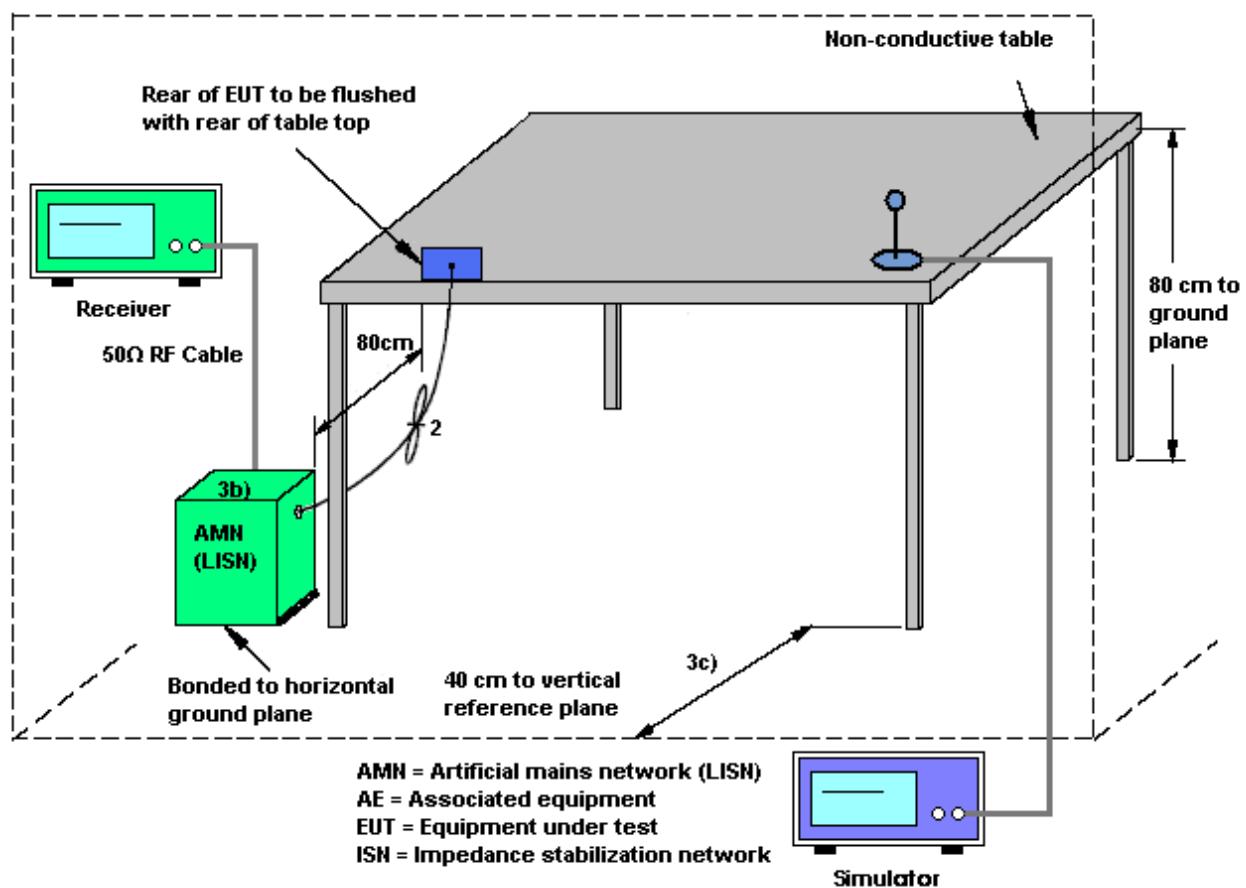
## 3.4 AC Conducted Emission Measurement

### 3.4.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

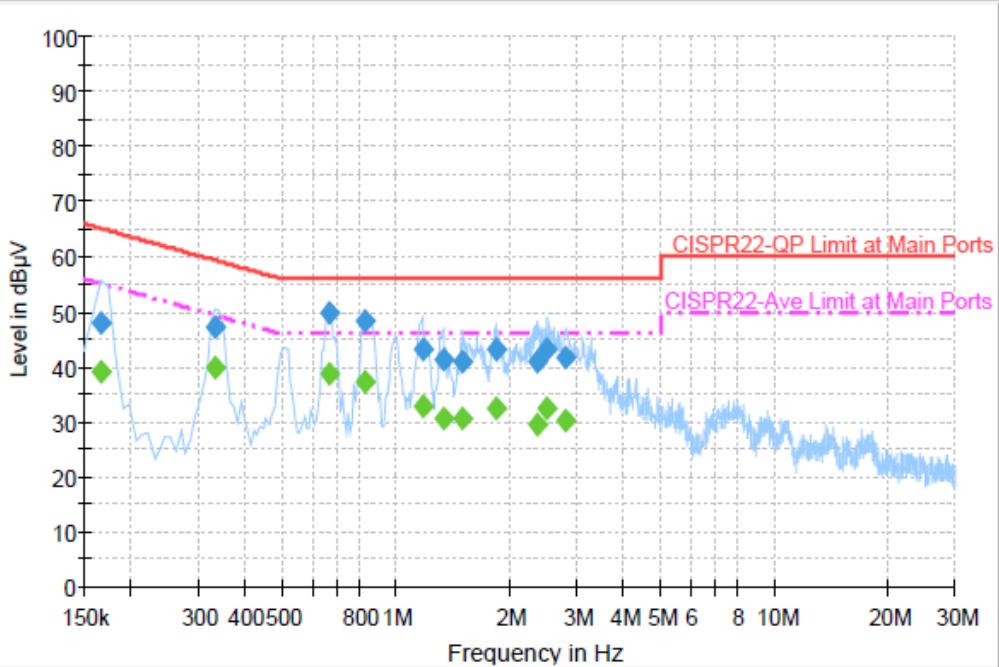
| Frequency of emission (MHz) | Conducted limit (dBuV) |           |
|-----------------------------|------------------------|-----------|
|                             | Quasi-peak             | Average   |
| 0.15-0.5                    | 66 to 56*              | 56 to 46* |
| 0.5-5                       | 56                     | 46        |
| 5-30                        | 60                     | 50        |

\*Decreases with the logarithm of the frequency.


### 3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

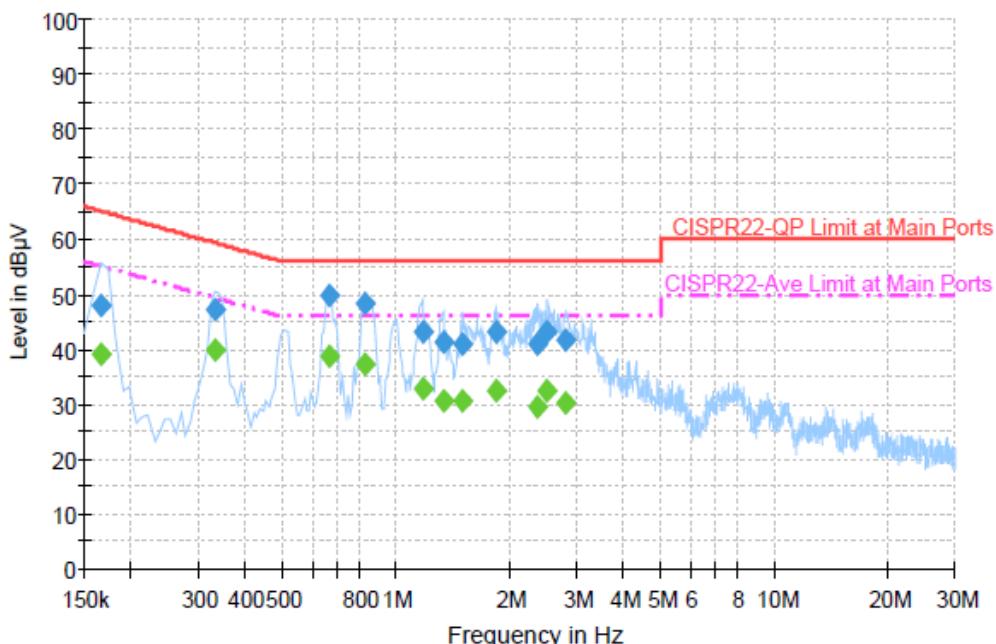
### 3.4.3 Test Procedures


1. Please follow the guidelines in ANSI C63.4-2003.
2. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
4. All the support units are connecting to the other LISN.
5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
7. Both sides of AC line were checked for maximum conducted interference.
8. The frequency range from 150 kHz to 30 MHz was searched.
9. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

### 3.4.4 Test Setup

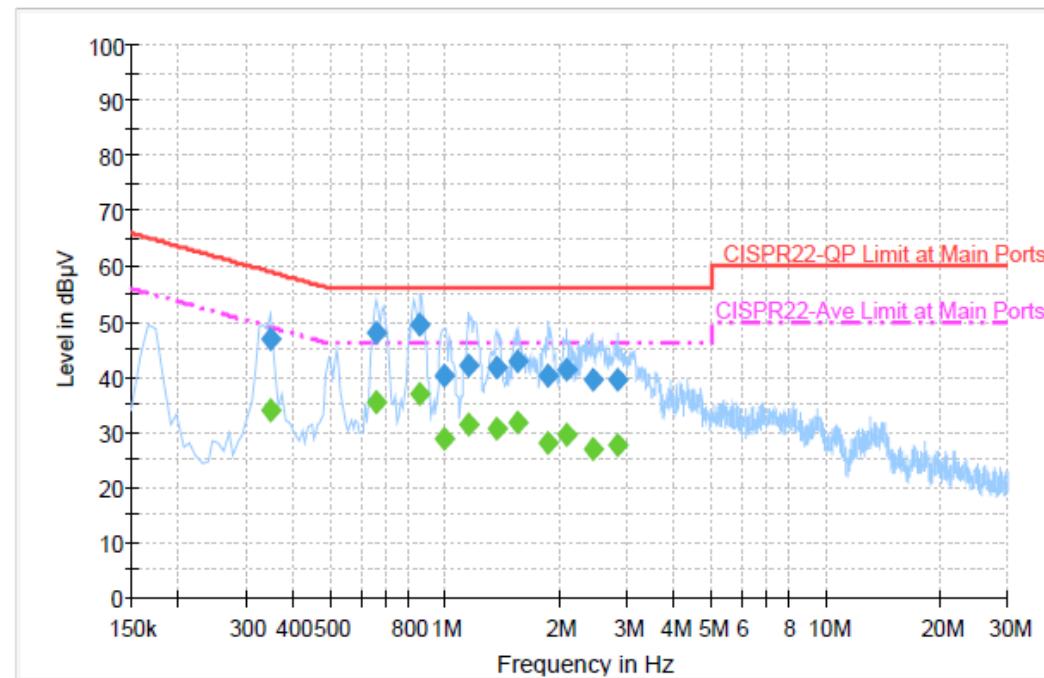


### 3.4.5 Test Result of AC Conducted Emission


|                        |                                                                                                                              |                            |         |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|
| <b>Test Mode :</b>     | Mode 1                                                                                                                       | <b>Temperature :</b>       | 20~22°C |
| <b>Test Engineer :</b> | Kai Chun Chu                                                                                                                 | <b>Relative Humidity :</b> | 45~47%  |
| <b>Test Voltage :</b>  | 120Vac / 60Hz                                                                                                                | <b>Phase :</b>             | Line    |
| <b>Function Type :</b> | GSM850 Idle + Bluetooth Link + WLAN (5G) Link + Camera + Earphone + Battery + USB Cable (Charging from Adapter) + HDMI Cable |                            |         |
| <b>Remark :</b>        | All emissions not reported here are more than 10 dB below the prescribed limit.                                              |                            |         |


**Final Result : QuasiPeak**

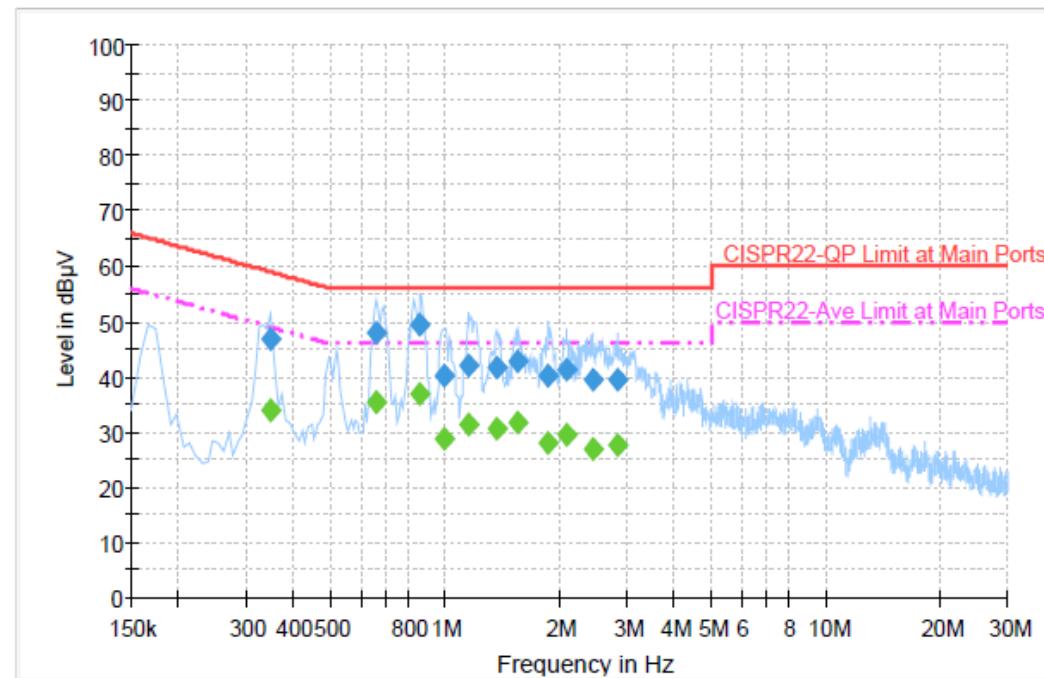
| Frequency (MHz) | QuasiPeak (dB $\mu$ V) | Filter | Line | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V) |
|-----------------|------------------------|--------|------|------------|-------------|--------------------|
| 0.166000        | 48.1                   | Off    | L1   | 19.4       | 17.1        | 65.2               |
| 0.334000        | 47.4                   | Off    | L1   | 19.4       | 12.0        | 59.4               |
| 0.670000        | 49.8                   | Off    | L1   | 19.4       | 6.2         | 56.0               |
| 0.830000        | 48.4                   | Off    | L1   | 19.5       | 7.6         | 56.0               |
| 1.174000        | 43.3                   | Off    | L1   | 19.4       | 12.7        | 56.0               |
| 1.334000        | 41.4                   | Off    | L1   | 19.4       | 14.6        | 56.0               |
| 1.502000        | 41.1                   | Off    | L1   | 19.4       | 14.9        | 56.0               |
| 1.830000        | 43.3                   | Off    | L1   | 19.4       | 12.7        | 56.0               |
| 2.374000        | 40.9                   | Off    | L1   | 19.5       | 15.1        | 56.0               |
| 2.502000        | 43.2                   | Off    | L1   | 19.4       | 12.8        | 56.0               |
| 2.798000        | 41.8                   | Off    | L1   | 19.4       | 14.2        | 56.0               |




|                        |                                                                                                                              |                            |         |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|
| <b>Test Mode :</b>     | Mode 1                                                                                                                       | <b>Temperature :</b>       | 20~22°C |
| <b>Test Engineer :</b> | Kai Chun Chu                                                                                                                 | <b>Relative Humidity :</b> | 45~47%  |
| <b>Test Voltage :</b>  | 120Vac / 60Hz                                                                                                                | <b>Phase :</b>             | Line    |
| <b>Function Type :</b> | GSM850 Idle + Bluetooth Link + WLAN (5G) Link + Camera + Earphone + Battery + USB Cable (Charging from Adapter) + HDMI Cable |                            |         |
| <b>Remark :</b>        | All emissions not reported here are more than 10 dB below the prescribed limit.                                              |                            |         |

**Final Result : Average**

| Frequency (MHz) | Average (dB $\mu$ V) | Filter | Line | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V) |
|-----------------|----------------------|--------|------|------------|-------------|--------------------|
| 0.166000        | 39.2                 | Off    | L1   | 19.4       | 16.0        | 55.2               |
| 0.334000        | 39.7                 | Off    | L1   | 19.4       | 9.7         | 49.4               |
| 0.670000        | 38.6                 | Off    | L1   | 19.4       | 7.4         | 46.0               |
| 0.830000        | 37.2                 | Off    | L1   | 19.5       | 8.8         | 46.0               |
| 1.174000        | 32.7                 | Off    | L1   | 19.4       | 13.3        | 46.0               |
| 1.334000        | 30.7                 | Off    | L1   | 19.4       | 15.3        | 46.0               |
| 1.502000        | 30.5                 | Off    | L1   | 19.4       | 15.5        | 46.0               |
| 1.830000        | 32.6                 | Off    | L1   | 19.4       | 13.4        | 46.0               |
| 2.374000        | 29.6                 | Off    | L1   | 19.5       | 16.4        | 46.0               |
| 2.502000        | 32.4                 | Off    | L1   | 19.4       | 13.6        | 46.0               |
| 2.798000        | 30.1                 | Off    | L1   | 19.4       | 15.9        | 46.0               |


|                        |                                                                                                                              |                            |         |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|
| <b>Test Mode :</b>     | Mode 1                                                                                                                       | <b>Temperature :</b>       | 20~22°C |
| <b>Test Engineer :</b> | Kai Chun Chu                                                                                                                 | <b>Relative Humidity :</b> | 45~47%  |
| <b>Test Voltage :</b>  | 120Vac / 60Hz                                                                                                                | <b>Phase :</b>             | Neutral |
| <b>Function Type :</b> | GSM850 Idle + Bluetooth Link + WLAN (5G) Link + Camera + Earphone + Battery + USB Cable (Charging from Adapter) + HDMI Cable |                            |         |
| <b>Remark :</b>        | All emissions not reported here are more than 10 dB below the prescribed limit.                                              |                            |         |



## Final Result : QuasiPeak

| Frequency (MHz) | QuasiPeak (dB $\mu$ V) | Filter | Line | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V) |
|-----------------|------------------------|--------|------|------------|-------------|--------------------|
| 0.350000        | 47.0                   | Off    | N    | 19.4       | 12.0        | 59.0               |
| 0.662000        | 48.0                   | Off    | N    | 19.4       | 8.0         | 56.0               |
| 0.862000        | 49.4                   | Off    | N    | 19.5       | 6.6         | 56.0               |
| 0.990000        | 40.2                   | Off    | N    | 19.5       | 15.8        | 56.0               |
| 1.150000        | 42.2                   | Off    | N    | 19.5       | 13.8        | 56.0               |
| 1.366000        | 41.6                   | Off    | N    | 19.5       | 14.4        | 56.0               |
| 1.558000        | 42.9                   | Off    | N    | 19.5       | 13.1        | 56.0               |
| 1.862000        | 40.1                   | Off    | N    | 19.5       | 15.9        | 56.0               |
| 2.086000        | 41.5                   | Off    | N    | 19.5       | 14.5        | 56.0               |
| 2.446000        | 39.3                   | Off    | N    | 19.5       | 16.7        | 56.0               |
| 2.830000        | 39.7                   | Off    | N    | 19.5       | 16.3        | 56.0               |

|                        |                                                                                                                              |                            |         |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|
| <b>Test Mode :</b>     | Mode 1                                                                                                                       | <b>Temperature :</b>       | 20~22°C |
| <b>Test Engineer :</b> | Kai Chun Chu                                                                                                                 | <b>Relative Humidity :</b> | 45~47%  |
| <b>Test Voltage :</b>  | 120Vac / 60Hz                                                                                                                | <b>Phase :</b>             | Neutral |
| <b>Function Type :</b> | GSM850 Idle + Bluetooth Link + WLAN (5G) Link + Camera + Earphone + Battery + USB Cable (Charging from Adapter) + HDMI Cable |                            |         |
| <b>Remark :</b>        | All emissions not reported here are more than 10 dB below the prescribed limit.                                              |                            |         |


**Final Result : Average**

| Frequency (MHz) | Average (dB $\mu$ V) | Filter | Line | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V) |
|-----------------|----------------------|--------|------|------------|-------------|--------------------|
| 0.350000        | 34.0                 | Off    | N    | 19.4       | 15.0        | 49.0               |
| 0.662000        | 35.6                 | Off    | N    | 19.4       | 10.4        | 46.0               |
| 0.862000        | 37.0                 | Off    | N    | 19.5       | 9.0         | 46.0               |
| 0.990000        | 28.6                 | Off    | N    | 19.5       | 17.4        | 46.0               |
| 1.150000        | 31.2                 | Off    | N    | 19.5       | 14.8        | 46.0               |
| 1.366000        | 30.7                 | Off    | N    | 19.5       | 15.3        | 46.0               |
| 1.558000        | 31.8                 | Off    | N    | 19.5       | 14.2        | 46.0               |
| 1.862000        | 28.2                 | Off    | N    | 19.5       | 17.8        | 46.0               |
| 2.086000        | 29.4                 | Off    | N    | 19.5       | 16.6        | 46.0               |
| 2.446000        | 27.1                 | Off    | N    | 19.5       | 18.9        | 46.0               |
| 2.830000        | 27.6                 | Off    | N    | 19.5       | 18.4        | 46.0               |



### 3.5 Unwanted Radiated Emission Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

#### 3.5.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27dBm/MHz.
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

| Frequency (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |
|-----------------|-----------------------------------|-------------------------------|
| 0.009 – 0.490   | 2400/F(kHz)                       | 300                           |
| 0.490 – 1.705   | 24000/F(kHz)                      | 30                            |
| 1.705 – 30.0    | 30                                | 30                            |
| 30 – 88         | 100                               | 3                             |
| 88 – 216        | 150                               | 3                             |
| 216 - 960       | 200                               | 3                             |
| Above 960       | 500                               | 3                             |

**Note:** The following formula is used to convert the EIRP to field strength.

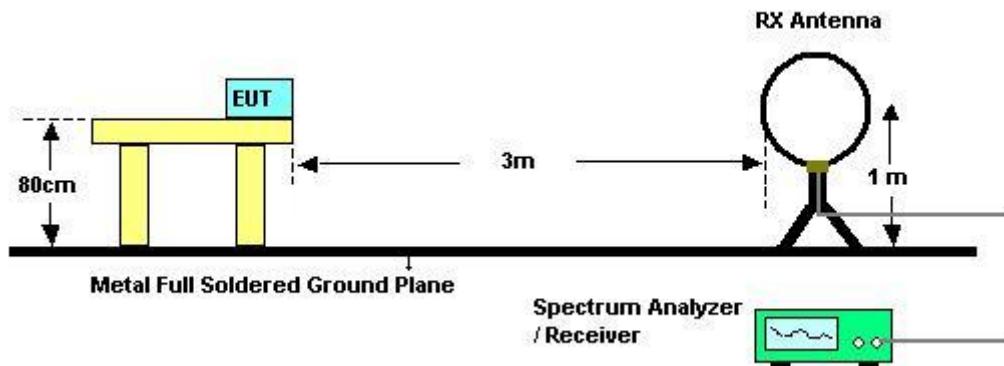
$$E = \frac{1000000\sqrt{30P}}{3} \mu\text{V/m, where } P \text{ is the eirp (Watts)}$$

| EIRP (dBm) | Field Strength at 3m (dBuV/m) |
|------------|-------------------------------|
| - 27       | 68.3                          |

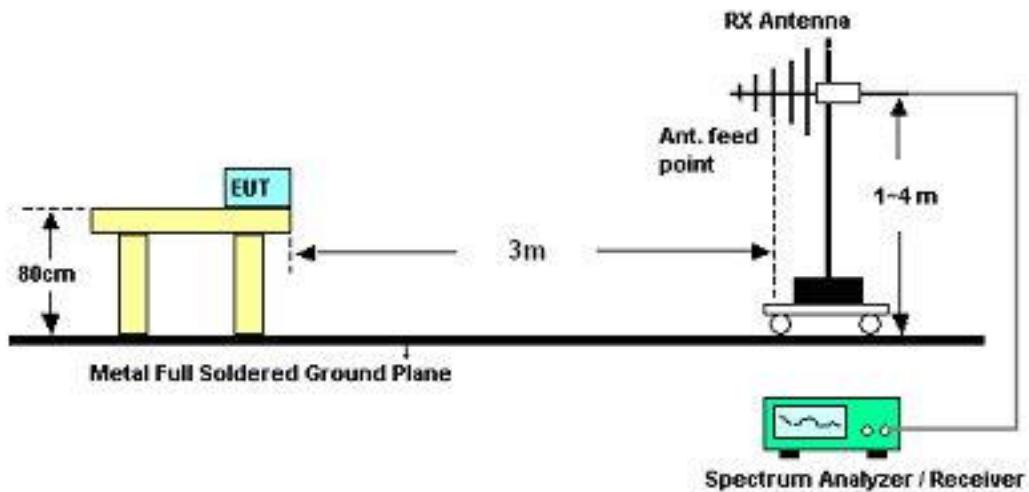
#### 3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

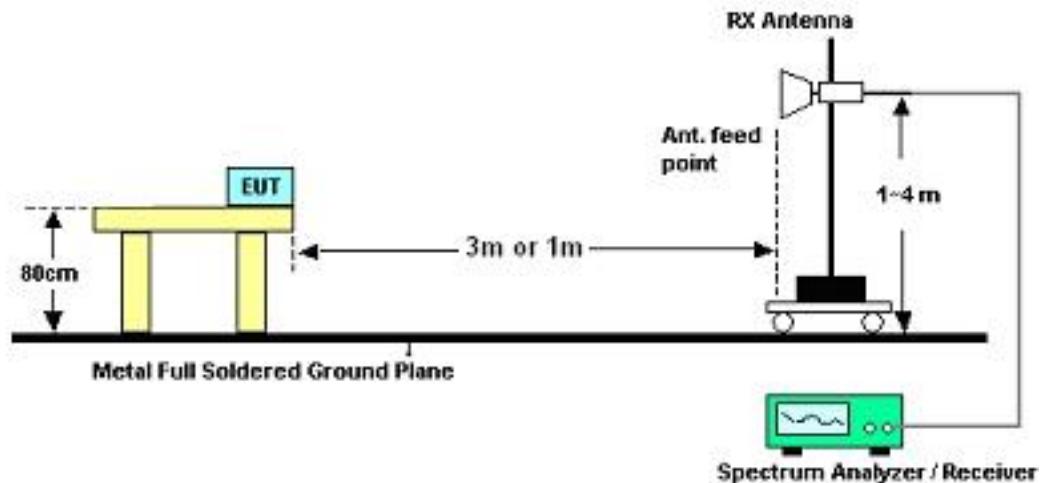



### 3.5.3 Test Procedures

1. The testing follows the guidelines in FCC KDB 789033 D01 General UNII Test Procedures v01r01.
  - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
    - RBW = 120 KHz
    - VBW = 300 KHz
    - Detector = Peak
    - Trace mode = max hold
  - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
    - The setting follows the G) 5) of FCC KDB 789033.
    - RBW = 1 MHz
    - VBW  $\geq$  3 MHz
    - Detector = Peak
    - Sweep time = auto
    - Trace mode = max hold
  - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
    - The setting follows G) 6) of FCC KDB 789033.
    - RBW = 1 MHz
    - VBW = 10 Hz, when duty cycle is no less than 98 percent.
    - VBW  $\geq$  1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
2. The EUT was placed on a rotatable table top 0.8 meter above ground.
3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
4. The table was rotated 360 degrees to determine the position of the highest radiation.
5. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.


6. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

### **3.5.4 Test Setup**


**For radiated emissions below 30MHz**



For radiated emissions from 30MHz to 1GHz



For radiated emissions above 1GHz



### 3.5.5 Test Results of Radiated Emissions (9 KHz ~ 30 MHz)

The low frequency, which started from 9 KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.



## 3.5.6 Test Result

## 3.5.6.1 Test Result of Radiated Band Edges

|                |         |  |  |                     |          |  |  |  |  |
|----------------|---------|--|--|---------------------|----------|--|--|--|--|
| Test Mode :    | Mode 1  |  |  | Temperature :       | 20~22°C  |  |  |  |  |
| Test Band :    | 802.11a |  |  | Relative Humidity : | 40~42%   |  |  |  |  |
| Test Channel : | 36      |  |  | Test Engineer :     | David Ke |  |  |  |  |

## ANTENNA POLARITY : HORIZONTAL

| Frequency<br>( MHz ) | Level<br>( dB $\mu$ V/m ) | Over<br>Limit<br>( dB ) | Limit<br>Line<br>( dB $\mu$ V/m ) | Read<br>Level<br>( dB $\mu$ V ) | Antenna<br>Factor<br>( dB ) | Cable<br>Loss<br>( dB ) | Preamp<br>Factor<br>( dB ) | Ant<br>Pos<br>( cm ) | Table<br>Pos<br>( deg ) | Remark  |
|----------------------|---------------------------|-------------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|----------------------------|----------------------|-------------------------|---------|
| 5150                 | 53.06                     | -20.94                  | 74                                | 47.56                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 261                     | Peak    |
| 5150                 | 41.59                     | -12.41                  | 54                                | 36.09                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 261                     | Average |

## ANTENNA POLARITY : VERTICAL

| Frequency<br>( MHz ) | Level<br>( dB $\mu$ V/m ) | Over<br>Limit<br>( dB ) | Limit<br>Line<br>( dB $\mu$ V/m ) | Read<br>Level<br>( dB $\mu$ V ) | Antenna<br>Factor<br>( dB ) | Cable<br>Loss<br>( dB ) | Preamp<br>Factor<br>( dB ) | Ant<br>Pos<br>( cm ) | Table<br>Pos<br>( deg ) | Remark  |
|----------------------|---------------------------|-------------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|----------------------------|----------------------|-------------------------|---------|
| 5150                 | 51.4                      | -22.6                   | 74                                | 45.9                            | 33.95                       | 6.69                    | 35.14                      | 100                  | 241                     | Peak    |
| 5150                 | 40.81                     | -13.19                  | 54                                | 35.31                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 241                     | Average |

|                |         |  |  |                     |          |  |  |  |  |
|----------------|---------|--|--|---------------------|----------|--|--|--|--|
| Test Mode :    | Mode 3  |  |  | Temperature :       | 20~22°C  |  |  |  |  |
| Test Band :    | 802.11a |  |  | Relative Humidity : | 40~42%   |  |  |  |  |
| Test Channel : | 48      |  |  | Test Engineer :     | David Ke |  |  |  |  |

## ANTENNA POLARITY : HORIZONTAL

| Frequency<br>( MHz ) | Level<br>( dB $\mu$ V/m ) | Over<br>Limit<br>( dB ) | Limit<br>Line<br>( dB $\mu$ V/m ) | Read<br>Level<br>( dB $\mu$ V ) | Antenna<br>Factor<br>( dB ) | Cable<br>Loss<br>( dB ) | Preamp<br>Factor<br>( dB ) | Ant<br>Pos<br>( cm ) | Table<br>Pos<br>( deg ) | Remark  |
|----------------------|---------------------------|-------------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|----------------------------|----------------------|-------------------------|---------|
| 5350                 | 48.14                     | -25.86                  | 74                                | 42.09                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 265                     | Peak    |
| 5350                 | 39.34                     | -14.66                  | 54                                | 33.29                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 265                     | Average |

## ANTENNA POLARITY : VERTICAL

| Frequency<br>( MHz ) | Level<br>( dB $\mu$ V/m ) | Over<br>Limit<br>( dB ) | Limit<br>Line<br>( dB $\mu$ V/m ) | Read<br>Level<br>( dB $\mu$ V ) | Antenna<br>Factor<br>( dB ) | Cable<br>Loss<br>( dB ) | Preamp<br>Factor<br>( dB ) | Ant<br>Pos<br>( cm ) | Table<br>Pos<br>( deg ) | Remark  |
|----------------------|---------------------------|-------------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|----------------------------|----------------------|-------------------------|---------|
| 5350                 | 48.14                     | -25.86                  | 74                                | 42.09                           | 34.15                       | 6.83                    | 34.93                      | 138                  | 344                     | Peak    |
| 5350                 | 39.17                     | -14.83                  | 54                                | 33.12                           | 34.15                       | 6.83                    | 34.93                      | 138                  | 344                     | Average |



### 3.5.6.2 Test Results of Unwanted Radiated Emissions (9kHz ~ 30MHz)

|                 |          |                     |        |
|-----------------|----------|---------------------|--------|
| Temperature :   | 20~22°C  | Relative Humidity : | 40~42% |
| Test Engineer : | David Ke |                     |        |

| Freq.<br>(MHz) | Level<br>(dBuV) | Over Limit<br>(dB) | Limit Line<br>(dBuV) | Remark   |
|----------------|-----------------|--------------------|----------------------|----------|
| -              | -               | -                  | -                    | See Note |

**Note:**

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =  $40 \log (\text{specific distance} / \text{test distance})$  (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.



## 3.5.6.3 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

|                        |                                                                                                         |  |  |                            |  |            |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------|--|--|----------------------------|--|------------|--|--|--|--|
| <b>Test Mode :</b>     | Mode 1                                                                                                  |  |  | <b>Temperature :</b>       |  | 20~22°C    |  |  |  |  |
| <b>Test Channel :</b>  | 36                                                                                                      |  |  | <b>Relative Humidity :</b> |  | 40~42%     |  |  |  |  |
| <b>Test Engineer :</b> | David Ke                                                                                                |  |  | <b>Polarization :</b>      |  | Horizontal |  |  |  |  |
| <b>Remark :</b>        | 1. 5180 MHz is fundamental signal which can be ignored.<br>2. 7090 MHz is not within a restricted band. |  |  |                            |  |            |  |  |  |  |

| Frequency<br>( MHz ) | Level<br>( dB $\mu$ V/m ) | Over<br>Limit<br>( dB ) | Limit<br>Line<br>( dB $\mu$ V/m ) | Read<br>Level<br>( dB $\mu$ V ) | Antenna<br>Factor<br>( dB ) | Cable<br>Loss<br>( dB ) | Preamp<br>Factor<br>( dB ) | Ant<br>Pos<br>( cm ) | Table<br>Pos<br>( deg ) | Remark  |
|----------------------|---------------------------|-------------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|----------------------------|----------------------|-------------------------|---------|
| 5150                 | 41.59                     | -12.41                  | 54                                | 36.09                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 261                     | Average |
| 5150                 | 53.06                     | -20.94                  | 74                                | 47.56                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 261                     | Peak    |
| 5180                 | 94.88                     | -                       | -                                 | 89.31                           | 33.98                       | 6.71                    | 35.12                      | 100                  | 261                     | Average |
| 5180                 | 105.44                    | -                       | -                                 | 99.87                           | 33.98                       | 6.71                    | 35.12                      | 100                  | 261                     | Peak    |
| 5350                 | 39.69                     | -14.31                  | 54                                | 33.64                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 261                     | Average |
| 5350                 | 49.13                     | -24.87                  | 74                                | 43.08                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 261                     | Peak    |
| 7090                 | 59.39                     | -8.91                   | 68.3                              | 73.36                           | 35.6                        | 8.04                    | 57.61                      | 100                  | 53                      | Peak    |

|                        |                                                                                                         |  |  |                            |  |          |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------|--|--|----------------------------|--|----------|--|--|--|--|
| <b>Test Mode :</b>     | Mode 1                                                                                                  |  |  | <b>Temperature :</b>       |  | 20~22°C  |  |  |  |  |
| <b>Test Channel :</b>  | 36                                                                                                      |  |  | <b>Relative Humidity :</b> |  | 40~42%   |  |  |  |  |
| <b>Test Engineer :</b> | David Ke                                                                                                |  |  | <b>Polarization :</b>      |  | Vertical |  |  |  |  |
| <b>Remark :</b>        | 1. 5180 MHz is fundamental signal which can be ignored.<br>2. 7082 MHz is not within a restricted band. |  |  |                            |  |          |  |  |  |  |

| Frequency<br>( MHz ) | Level<br>( dB $\mu$ V/m ) | Over<br>Limit<br>( dB ) | Limit<br>Line<br>( dB $\mu$ V/m ) | Read<br>Level<br>( dB $\mu$ V ) | Antenna<br>Factor<br>( dB ) | Cable<br>Loss<br>( dB ) | Preamp<br>Factor<br>( dB ) | Ant<br>Pos<br>( cm ) | Table<br>Pos<br>( deg ) | Remark  |
|----------------------|---------------------------|-------------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|----------------------------|----------------------|-------------------------|---------|
| 5150                 | 40.81                     | -13.19                  | 54                                | 35.31                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 241                     | Average |
| 5150                 | 51.4                      | -22.6                   | 74                                | 45.9                            | 33.95                       | 6.69                    | 35.14                      | 100                  | 241                     | Peak    |
| 5180                 | 91.83                     | -                       | -                                 | 86.26                           | 33.98                       | 6.71                    | 35.12                      | 100                  | 241                     | Average |
| 5180                 | 102.05                    | -                       | -                                 | 96.48                           | 33.98                       | 6.71                    | 35.12                      | 100                  | 241                     | Peak    |
| 5350                 | 38.86                     | -15.14                  | 54                                | 32.81                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 241                     | Average |
| 5350                 | 48.51                     | -25.49                  | 74                                | 42.46                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 241                     | Peak    |
| 7082                 | 55.85                     | -12.45                  | 68.3                              | 69.86                           | 35.6                        | 8                       | 57.61                      | 100                  | 48                      | Peak    |



|                        |                                                                                                         |                            |  |            |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|--|------------|--|--|--|--|--|
| <b>Test Mode :</b>     | Mode 2                                                                                                  | <b>Temperature :</b>       |  | 20~22°C    |  |  |  |  |  |
| <b>Test Channel :</b>  | 44                                                                                                      | <b>Relative Humidity :</b> |  | 40~42%     |  |  |  |  |  |
| <b>Test Engineer :</b> | David Ke                                                                                                | <b>Polarization :</b>      |  | Horizontal |  |  |  |  |  |
| <b>Remark :</b>        | 1. 5220 MHz is fundamental signal which can be ignored.<br>2. 7084 MHz is not within a restricted band. |                            |  |            |  |  |  |  |  |

| Frequency<br>( MHz ) | Level<br>( dB $\mu$ V/m ) | Over<br>Limit<br>( dB ) | Limit<br>Line<br>( dB $\mu$ V/m ) | Read<br>Level<br>( dB $\mu$ V ) | Antenna<br>Factor<br>( dB ) | Cable<br>Loss<br>( dB ) | Preamp<br>Factor<br>( dB ) | Ant<br>Pos<br>( cm ) | Table<br>Pos<br>( deg ) | Remark  |
|----------------------|---------------------------|-------------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|----------------------------|----------------------|-------------------------|---------|
| 5150                 | 39.25                     | -14.75                  | 54                                | 33.75                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 261                     | Average |
| 5150                 | 50.14                     | -23.86                  | 74                                | 44.64                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 261                     | Peak    |
| 5220                 | 93.73                     | -                       | -                                 | 88.06                           | 34.02                       | 6.74                    | 35.09                      | 100                  | 261                     | Average |
| 5220                 | 103.75                    | -                       | -                                 | 98.08                           | 34.02                       | 6.74                    | 35.09                      | 100                  | 261                     | Peak    |
| 5350                 | 39.56                     | -14.44                  | 54                                | 33.51                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 261                     | Average |
| 5350                 | 49.89                     | -24.11                  | 74                                | 43.84                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 261                     | Peak    |
| 7084                 | 60.45                     | -7.85                   | 68.3                              | 74.42                           | 35.6                        | 8.04                    | 57.61                      | 100                  | 0                       | Peak    |

|                        |                                                                                                         |                            |  |          |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|--|----------|--|--|--|--|--|
| <b>Test Mode :</b>     | Mode 2                                                                                                  | <b>Temperature :</b>       |  | 20~22°C  |  |  |  |  |  |
| <b>Test Channel :</b>  | 44                                                                                                      | <b>Relative Humidity :</b> |  | 40~42%   |  |  |  |  |  |
| <b>Test Engineer :</b> | David Ke                                                                                                | <b>Polarization :</b>      |  | Vertical |  |  |  |  |  |
| <b>Remark :</b>        | 1. 5220 MHz is fundamental signal which can be ignored.<br>2. 7084 MHz is not within a restricted band. |                            |  |          |  |  |  |  |  |

| Frequency<br>( MHz ) | Level<br>( dB $\mu$ V/m ) | Over<br>Limit<br>( dB ) | Limit<br>Line<br>( dB $\mu$ V/m ) | Read<br>Level<br>( dB $\mu$ V ) | Antenna<br>Factor<br>( dB ) | Cable<br>Loss<br>( dB ) | Preamp<br>Factor<br>( dB ) | Ant<br>Pos<br>( cm ) | Table<br>Pos<br>( deg ) | Remark  |
|----------------------|---------------------------|-------------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|----------------------------|----------------------|-------------------------|---------|
| 5150                 | 38.89                     | -15.11                  | 54                                | 33.39                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 338                     | Average |
| 5150                 | 48.46                     | -25.54                  | 74                                | 42.96                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 338                     | Peak    |
| 5220                 | 90.32                     | -                       | -                                 | 84.65                           | 34.02                       | 6.74                    | 35.09                      | 100                  | 338                     | Average |
| 5220                 | 100.21                    | -                       | -                                 | 94.54                           | 34.02                       | 6.74                    | 35.09                      | 100                  | 338                     | Peak    |
| 5350                 | 39.43                     | -14.57                  | 54                                | 33.38                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 338                     | Average |
| 5350                 | 48.78                     | -25.22                  | 74                                | 42.73                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 338                     | Peak    |
| 7084                 | 63                        | -5.3                    | 68.3                              | 76.97                           | 35.6                        | 8.04                    | 57.61                      | 100                  | 0                       | Peak    |



|                        |                                                                                                         |                            |            |
|------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|------------|
| <b>Test Mode :</b>     | Mode 3                                                                                                  | <b>Temperature :</b>       | 20~22°C    |
| <b>Test Channel :</b>  | 48                                                                                                      | <b>Relative Humidity :</b> | 40~42%     |
| <b>Test Engineer :</b> | David Ke                                                                                                | <b>Polarization :</b>      | Horizontal |
| <b>Remark :</b>        | 1. 5240 MHz is fundamental signal which can be ignored.<br>2. 7084 MHz is not within a restricted band. |                            |            |

| Frequency<br>( MHz ) | Level<br>( dB $\mu$ V/m ) | Over<br>Limit<br>( dB ) | Limit<br>Line<br>( dB $\mu$ V/m ) | Read<br>Level<br>( dB $\mu$ V ) | Antenna<br>Factor<br>( dB ) | Cable<br>Loss<br>( dB ) | Preamp<br>Factor<br>( dB ) | Ant<br>Pos<br>( cm ) | Table<br>Pos<br>( deg ) | Remark  |
|----------------------|---------------------------|-------------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|----------------------------|----------------------|-------------------------|---------|
| 30                   | 22.65                     | -17.35                  | 40                                | 33.79                           | 19.8                        | 0.7                     | 31.64                      | -                    | -                       | Peak    |
| 141.24               | 25.88                     | -17.62                  | 43.5                              | 44.65                           | 11.23                       | 1.27                    | 31.27                      | -                    | -                       | Peak    |
| 203.07               | 32.78                     | -10.72                  | 43.5                              | 53.33                           | 9.13                        | 1.47                    | 31.15                      | 100                  | 84                      | Peak    |
| 323.1                | 30.37                     | -15.63                  | 46                                | 45.88                           | 13.59                       | 1.84                    | 30.94                      | -                    | -                       | Peak    |
| 364.4                | 26.73                     | -19.27                  | 46                                | 41.11                           | 14.74                       | 1.93                    | 31.05                      | -                    | -                       | Peak    |
| 741                  | 24.49                     | -21.51                  | 46                                | 29.64                           | 22.31                       | 2.73                    | 30.19                      | -                    | -                       | Peak    |
| 5150                 | 38.78                     | -15.22                  | 54                                | 33.28                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 265                     | Average |
| 5150                 | 48.84                     | -25.16                  | 74                                | 43.34                           | 33.95                       | 6.69                    | 35.14                      | 100                  | 265                     | Peak    |
| 5240                 | 93.88                     | -                       | -                                 | 88.15                           | 34.03                       | 6.76                    | 35.06                      | 100                  | 265                     | Average |
| 5240                 | 103.97                    | -                       | -                                 | 98.24                           | 34.03                       | 6.76                    | 35.06                      | 100                  | 265                     | Peak    |
| 5350                 | 39.34                     | -14.66                  | 54                                | 33.29                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 265                     | Average |
| 5350                 | 48.14                     | -25.86                  | 74                                | 42.09                           | 34.15                       | 6.83                    | 34.93                      | 100                  | 265                     | Peak    |
| 7084                 | 61.77                     | -6.53                   | 68.3                              | 75.74                           | 35.6                        | 8.04                    | 57.61                      | 110                  | 254                     | Peak    |



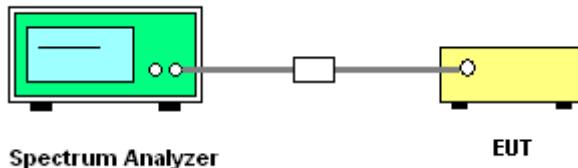
|                        |                                                                                                         |                            |          |
|------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|----------|
| <b>Test Mode :</b>     | Mode 3                                                                                                  | <b>Temperature :</b>       | 20~22°C  |
| <b>Test Channel :</b>  | 48                                                                                                      | <b>Relative Humidity :</b> | 40~42%   |
| <b>Test Engineer :</b> | David Ke                                                                                                | <b>Polarization :</b>      | Vertical |
| <b>Remark :</b>        | 1. 5240 MHz is fundamental signal which can be ignored.<br>2. 7088 MHz is not within a restricted band. |                            |          |

| Frequency<br>( MHz ) | Level<br>( dB $\mu$ V/m ) | Over<br>Limit<br>( dB ) | Limit<br>Line<br>( dB $\mu$ V/m ) | Read<br>Level<br>( dB $\mu$ V ) | Antenna<br>Factor<br>( dB ) | Cable<br>Loss<br>( dB ) | Preamp<br>Factor<br>( dB ) | Ant<br>Pos<br>( cm ) | Table<br>Pos<br>( deg ) | Remark  |
|----------------------|---------------------------|-------------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|----------------------------|----------------------|-------------------------|---------|
| 32.97                | 34.49                     | -5.51                   | 40                                | 47.64                           | 17.76                       | 0.72                    | 31.63                      | 100                  | 51                      | Peak    |
| 140.16               | 24.4                      | -19.1                   | 43.5                              | 43.13                           | 11.27                       | 1.27                    | 31.27                      | -                    | -                       | Peak    |
| 209.55               | 28.82                     | -14.68                  | 43.5                              | 49.31                           | 9.19                        | 1.5                     | 31.18                      | -                    | -                       | Peak    |
| 339.2                | 24.6                      | -21.4                   | 46                                | 39.79                           | 14.07                       | 1.87                    | 31.13                      | -                    | -                       | Peak    |
| 504.4                | 23.67                     | -22.33                  | 46                                | 33.92                           | 18.14                       | 2.24                    | 30.63                      | -                    | -                       | Peak    |
| 628.3                | 25.81                     | -20.19                  | 46                                | 32.95                           | 20.58                       | 2.52                    | 30.24                      | -                    | -                       | Peak    |
| 5150                 | 38.59                     | -15.41                  | 54                                | 33.09                           | 33.95                       | 6.69                    | 35.14                      | 138                  | 344                     | Average |
| 5150                 | 46.91                     | -27.09                  | 74                                | 41.41                           | 33.95                       | 6.69                    | 35.14                      | 138                  | 344                     | Peak    |
| 5240                 | 91.74                     | -                       | -                                 | 86.01                           | 34.03                       | 6.76                    | 35.06                      | 138                  | 344                     | Average |
| 5240                 | 101.69                    | -                       | -                                 | 95.96                           | 34.03                       | 6.76                    | 35.06                      | 138                  | 344                     | Peak    |
| 5350                 | 39.17                     | -14.83                  | 54                                | 33.12                           | 34.15                       | 6.83                    | 34.93                      | 138                  | 344                     | Average |
| 5350                 | 48.14                     | -25.86                  | 74                                | 42.09                           | 34.15                       | 6.83                    | 34.93                      | 138                  | 344                     | Peak    |
| 7088                 | 64.1                      | -4.2                    | 68.3                              | 78.07                           | 35.6                        | 8.04                    | 57.61                      | 100                  | 258                     | Peak    |

## **3.6 Peak Excursion Ratio Measurement**

### **3.6.1 Limit of Peak Excursion Ratio**

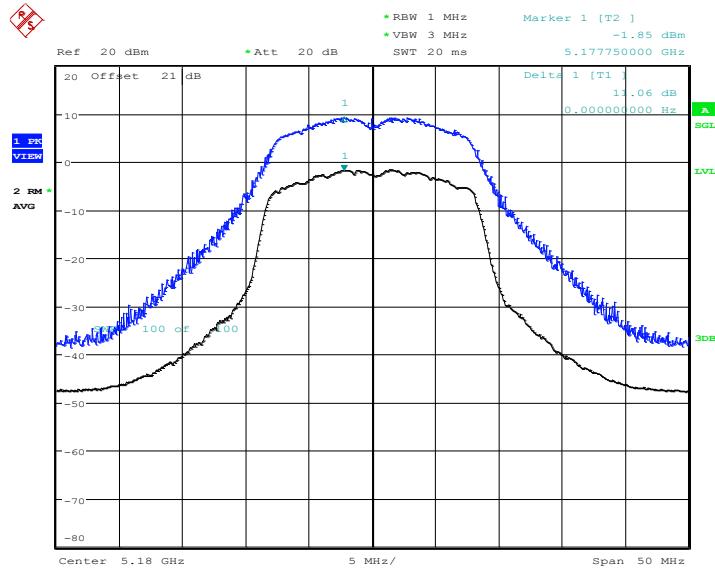
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.


### **3.6.2 Measuring Instruments**

See list of measuring instruments of this test report.

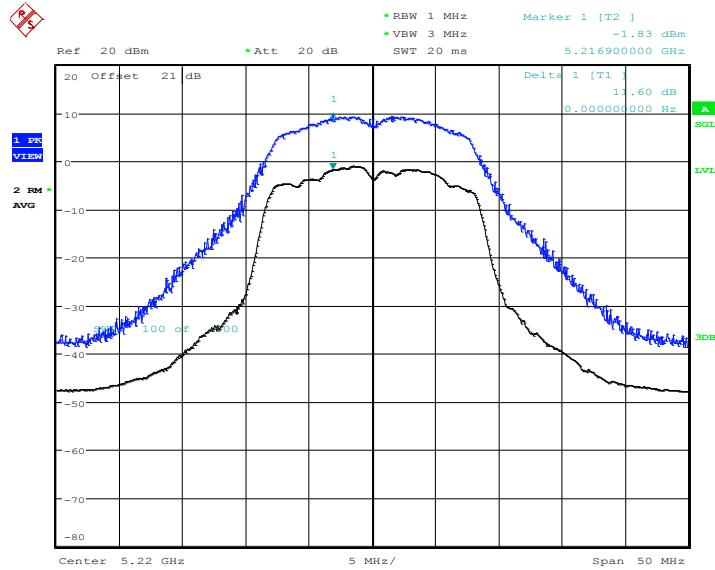
### **3.6.3 Test Procedures**

1. The transmitter output is connected to the spectrum analyzer.
2. Set the spectrum analyzer span to view the entire emission bandwidth.
3. Find the maximum of the peak-max-hold spectrum.
  - \* Set RBW = 1 MHz.
  - \* Set VBW  $\geq$  3 MHz.
  - \* Detector = peak.
  - \* Trace mode = max-hold.
  - \* Allow the sweeps to continue until the trace stabilizes.
  - \* Use the peak search function to find the peak of the spectrum.
4. Use the procedure found under section 3.3 to measure the PPSD.
5. Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.


### **3.6.4 Test Setup**



### 3.6.5 Test Result of Peak Excursion Ratio


|                        |          |                            |         |
|------------------------|----------|----------------------------|---------|
| <b>Test Mode :</b>     | Mode 1~3 | <b>Temperature :</b>       | 24~26°C |
| <b>Test Engineer :</b> | Bill Kuo | <b>Relative Humidity :</b> | 45~49%  |

**Peak Excursion Ratio Plot on 802.11a Channel 36**



Date: 10.MAY.2012 23:15:22

**Peak Excursion Ratio Plot on 802.11a Channel 44**



Date: 10.MAY.2012 23:30:02

**Peak Excursion Ratio Plot on 802.11a Channel 48**



Date: 10.MAY.2012 23:32:59



## 3.7 Automatically Discontinue Transmission

### 3.7.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

### 3.7.2 Measuring Instruments

See list of measuring instruments of this test report.

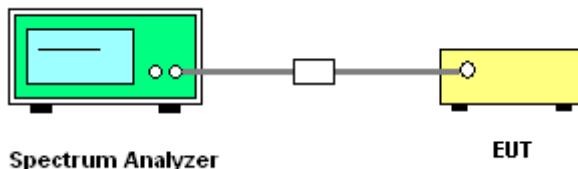
### 3.7.3 Test Result of Automatically Discontinue Transmission

During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

## 3.8 Frequency Stability Measurement

### 3.8.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.


### 3.8.2 Measuring Instruments

See list of measuring instruments of this test report.

### 3.8.3 Test Procedures

1. To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
3. The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

### 3.8.4 Test Setup





### 3.8.5 Test Result of Frequency Stability

| <b>Test Mode :</b>     | Mode 1~3        | <b>Temperature :</b>       | 24~26°C             |                           |
|------------------------|-----------------|----------------------------|---------------------|---------------------------|
| <b>Test Engineer :</b> | Bill Kuo        | <b>Relative Humidity :</b> | 45~49%              |                           |
| Channel                | Frequency (MHz) | Low Frequency (Fl)         | High Frequency (Fh) | Frequency Stability (ppm) |
| 36                     | 5180            | 5171.32                    | 5188.79             | 10.64                     |
| 44                     | 5220            | 5211.40                    | 5228.77             | 16.33                     |
| 48                     | 5240            | 5231.43                    | 5248.65             | 7.77                      |



## **3.9 Antenna Requirements**

### **3.9.1 Standard Applicable**

According to FCC 47 CFR Section 15.407(a)(1)(2) ,if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### **3.9.2 Antenna Connected Construction**

The antennas type used in this product is PIFA Antenna without connector and it is considered to meet antenna requirement of FCC.

### **3.9.3 Antenna Gain**

The antenna gain is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.



## 4 List of Measuring Equipment

| Instrument        | Manufacturer | Model No.                  | Serial No. | Characteristics                | Calibration Date | Test Date                      | Due Date      | Remark                |
|-------------------|--------------|----------------------------|------------|--------------------------------|------------------|--------------------------------|---------------|-----------------------|
| Spectrum Analyzer | R&S          | FSP40                      | 100055     | 9kHz~40GHz                     | Jun. 13, 2011    | May 10, 2012<br>~ May 11, 2012 | Jun. 12, 2012 | Conducted (TH02-HY)   |
| Power Meter       | Anritsu      | ML2495A                    | 0932001    | N/A                            | Sep. 18, 2011    | May 10, 2012<br>~ May 11, 2012 | Sep. 17, 2012 | Conducted (TH02-HY)   |
| Power Sensor      | Anritsu      | MA2411B                    | 0846202    | N/A                            | Sep. 18, 2011    | May 10, 2012<br>~ May 11, 2012 | Sep. 17, 2012 | Conducted (TH02-HY)   |
| EMI Test Receive  | R&S          | ESCS 30                    | 100356     | 9KHz ~ 2.75GHz                 | Oct. 27, 2011    | May 04, 2012                   | Oct. 26, 2012 | Conduction (CO05-HY)  |
| Two-LISN          | R&S          | ENV216                     | 11-100081  | 9KHz ~ 30MHz                   | Dec. 09, 2011    | May 04, 2012                   | Dec. 08, 2012 | Conduction (CO05-HY)  |
| Two-LISN          | R&S          | ENV216                     | 11-100080  | 9KHz ~ 30MHz                   | Dec. 06, 2011    | May 04, 2012                   | Dec. 05, 2012 | Conduction (CO05-HY)  |
| AC Power Source   | APC          | APC-1000W                  | N/A        | N/A                            | N/A              | May 04, 2012                   | N/A           | Conduction (CO05-HY)  |
| System Simulator  | R&S          | CMU200                     | 117591     | N/A                            | Oct. 21, 2011    | May 04, 2012                   | Oct. 20, 2013 | Conduction (CO05-HY)  |
| Spectrum Analyzer | R&S          | ESU26                      | 100390     | 20Hz ~ 26.5GHz                 | Dec. 22, 2011    | May 15, 2012~<br>May 16, 2012  | Dec. 21, 2012 | Radiation (03CH05-HY) |
| Bilog Antenna     | SCHAFFNER    | CBL6111C                   | 2725       | 30MHz ~ 2GHz                   | Oct. 22, 2011    | May 15, 2012~<br>May 16, 2012  | Oct. 21, 2012 | Radiation (03CH05-HY) |
| Turn Table        | HD           | Deis HD 2000               | 420/611    | 0 ~ 360 degree                 | N/A              | May 15, 2012~<br>May 16, 2012  | N/A           | Radiation (03CH05-HY) |
| Antenna Mast      | HD           | MA 240                     | 240/666    | 1 m ~ 4 m                      | N/A              | May 15, 2012~<br>May 16, 2012  | N/A           | Radiation (03CH05-HY) |
| Horn Antenna      | ESCO         | 3117                       | 66584      | 1GHz ~ 18GHz                   | Aug. 04, 2011    | May 15, 2012~<br>May 16, 2012  | Aug. 03, 2012 | Radiation (03CH05-HY) |
| Pre Amplifier     | COM-POWER    | PA-103A                    | 161075     | 10Hz ~<br>1000MHz<br>Gain:32dB | Feb. 27, 2012    | May 15, 2012~<br>May 16, 2012  | Feb. 26, 2013 | Radiation (03CH05-HY) |
| Pre Amplifier     | MITEQ        | AMF-7D-0010<br>1800-30-10P | 159087     | 1GHz~18GHz                     | Feb. 27, 2012    | May 15, 2012~<br>May 16, 2012  | Feb. 26, 2013 | Radiation (03CH05-HY) |
| Pre Amplifier     | Agilent      | 8449B                      | 3008A01917 | 1GHz~26.5GHz                   | Aug. 30, 2011    | May 15, 2012~<br>May 16, 2012  | Aug. 29, 2012 | Radiation (03CH05-HY) |
| Loop Antenna      | R&S          | HFH2-Z2                    | 860004/001 | 9KHz ~ 30MHz                   | Jul. 29, 2010    | May 15, 2012~<br>May 16, 2012  | Jul. 28, 2012 | Radiation (03CH06-HY) |



## 5 Uncertainty of Evaluation

### Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

| Contribution                                                                             | Uncertainty of $X_i$ |                          | $u(X_i)$ |
|------------------------------------------------------------------------------------------|----------------------|--------------------------|----------|
|                                                                                          | dB                   | Probability Distribution |          |
| Receiver Reading                                                                         | 0.10                 | Normal (k=2)             | 0.05     |
| Cable Loss                                                                               | 0.10                 | Normal (k=2)             | 0.05     |
| AMN Insertion Loss                                                                       | 2.50                 | Rectangular              | 0.63     |
| Receiver Specification                                                                   | 1.50                 | Rectangular              | 0.43     |
| Site Imperfection                                                                        | 1.39                 | Rectangular              | 0.80     |
| Mismatch                                                                                 | +0.34 / -0.35        | U-Shape                  | 0.24     |
| <b>Combined Standard Uncertainty <math>U_c(y)</math></b>                                 | <b>1.13</b>          |                          |          |
| <b>Measuring Uncertainty for a Level of Confidence of 95% (<math>U = 2U_c(y)</math>)</b> | <b>2.26</b>          |                          |          |

### Uncertainty of Radiated Emission Measurement (30MHz ~ 1000MHz)

| Contribution                                                                             | Uncertainty of $X_i$ |                          | $u(X_i)$ |
|------------------------------------------------------------------------------------------|----------------------|--------------------------|----------|
|                                                                                          | dB                   | Probability Distribution |          |
| Receiver Reading                                                                         | 0.41                 | Normal (k=2)             | 0.21     |
| Antenna Factor Calibration                                                               | 0.83                 | Normal (k=2)             | 0.42     |
| Cable Loss Calibration                                                                   | 0.25                 | Normal (k=2)             | 0.13     |
| Pre-Amplifier Gain Calibration                                                           | 0.27                 | Normal (k=2)             | 0.14     |
| RCV/SPA Specification                                                                    | 2.50                 | Rectangular              | 0.72     |
| Antenna Factor Interpolation for Frequency                                               | 1.00                 | Rectangular              | 0.29     |
| Site Imperfection                                                                        | 1.43                 | Rectangular              | 0.83     |
| Mismatch                                                                                 | +0.39 / -0.41        | U-Shape                  | 0.28     |
| <b>Combined Standard Uncertainty <math>U_c(y)</math></b>                                 | <b>1.27</b>          |                          |          |
| <b>Measuring Uncertainty for a Level of Confidence of 95% (<math>U = 2U_c(y)</math>)</b> | <b>2.54</b>          |                          |          |

Uncertainty of Radiated Emission Measurement (1GHz ~ 40GHz)

| Contribution                                                                                                                    | Uncertainty of $X_i$ |                          | $u(X_i)$ | $C_i$ | $C_i * u(X_i)$ |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|----------|-------|----------------|
|                                                                                                                                 | dB                   | Probability Distribution |          |       |                |
| Receiver Reading                                                                                                                | ±0.10                | Normal (k=2)             | 0.10     | 1     | 0.10           |
| Antenna Factor Calibration                                                                                                      | ±1.70                | Normal (k=2)             | 0.85     | 1     | 0.85           |
| Cable Loss Calibration                                                                                                          | ±0.50                | Normal (k=2)             | 0.25     | 1     | 0.25           |
| Receiver Correction                                                                                                             | ±2.00                | Rectangular              | 1.15     | 1     | 1.15           |
| Antenna Factor Directional                                                                                                      | ±1.50                | Rectangular              | 0.87     | 1     | 0.87           |
| Site Imperfection                                                                                                               | ±2.80                | Triangular               | 1.14     | 1     | 1.14           |
| Mismatch<br>Receiver VSWR $\Gamma 1 = 0.197$<br>Antenna VSWR $\Gamma 2 = 0.194$<br>Uncertainty = $20\log(1-\Gamma 1^*\Gamma 2)$ | +0.34 / -0.35        | U-Shape                  | 0.244    | 1     | 0.244          |
| <b>Combined Standard Uncertainty<br/><math>U_c(y)</math></b>                                                                    | <b>2.36</b>          |                          |          |       |                |
| <b>Measuring Uncertainty for a<br/>Level of Confidence of 95%<br/>(<math>U = 2U_c(y)</math>)</b>                                | <b>4.72</b>          |                          |          |       |                |



## **Appendix A. Photographs of EUT**

Please refer to Sporton report number EP232306 as below.